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Abstract

Aluminium smelting is an energy intensve process, and as a result there has been considerable
and ongoing research over a number of decades on the energy efficiency of various aspects of
the process. One of the most important measures is current efficiency, which has been shown
to have direct relationships with current density, cdl temperature, eectrolyte chemistry, and
anode-cathode distance. The effects of these variables on current efficiency are generdly
accepted, however there remains debate over the influence of the dumina concentration in the

electrolyte on current efficiency.

This research relied upon the development of a laboratory scale duminium smeting cell where
the current efficiency was measured via sampling of the product gases. A modified oxygen
bal ance was used, with gas analyss performed using online mass spectrometry.

The findings of this research agreed with the accepted current efficiency trends, showing a
current density influence of 17.25 %CE per Alcnt, over the range 0.3 and 1.1 A/cn?. The
influence of dectrolyte chemigry was -7.8 %CE per unit cryolite molar ratio, between cryolite
ratios 1.99 and 3. The anode-cathode distance was shown to have no influence on current
efficency in this cdl, contradicting the established findings, however this was expected
because of the design of the cell with no metd pad at the cathode and therefore constant mass
transfer conditions &t al the anode- cathode distances used.

The mog dgnificant finding concerning current efficiency is that the variation with dumina
concentration is so smdl, -0.0376 %CE/Wwt% Al,O3, that there is effectively no influence.
While in many other sudies an influence was found, the vaues and direction of the relationship
vaied. This suggedts that in many cases the obsarved variation in current efficiency was
actudly caused by achangein the level of stability in the cell, by processes such as dissolution
of dudge from the cathode or he thermd disurbance of dumina feeding, wheress in this
research the cell was stable under all operating conditions.



Abstract

In recent years there has been sgnificant focus on the environmenta impact of the emissons
from duminium smdters. Of particular interest are the perfluorocarbons and sulfurous species,
because of theimpact on globa warming and the ozone layer.

Thermodynamic predictions indicate that the CF, formed at anode effect is in concentrations
orders of magnitude higher than C,Fs. Gas andysis from a cell going onto anode effect shows
CF, formed only &fter the cell voltage has increased stepwise. The role of carbonyl fluoride in
the onset of anode effect was investigated, and COF, was detected in the product gas shortly
before the anode effect began. This indicates that COF, is a precursor to anode effect, by
being formed as the anode polarisation increases before the anode effect begins. Voltage
andyss shows the polarisation increases sufficiently to dlow the eectrolytic formation of
COF,. Once formed, the COF, then reacts with anode carbon, forming the initid layer of
CF, under the anode. The thickness of the CF, layer increases until it becomes insuleting,
causing the voltage to increase suddenly in what is traditiondly viewed as the anode effect
onst, after which CF, and C,Fs are formed dectrolytically.

Sulfur dioxide has generaly been consdered the most important sulfurous species in the waste
gases from duminium smdting. The sulfur in the anode carbon, however, isinitialy released as
carbonyl sulfide in the zone under the anodes where the oxidation potentid islow. The COS
is then oxidised to SO, asit passes through progressively increasing oxidation potential zones,
until it is released from the cdll in the drafting air and most of the COS has reacted.
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