http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
SATURATED POOL BOILING AND SUBCOOLED FLOW
BOILING OF MIXTURES AT ATMOSPHERIC PRESSURE

By
ULRICH WENZEL

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE
DEGREE OF DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF AUCKLAND
DECEMBER 1992
ABSTRACT

An experimental and theoretical investigation of heat transfer to liquid mixtures has been performed using binary and ternary mixtures of acetone, isopropanol and water. Two databases were established which contain measurements of the heat transfer coefficient under saturated pool boiling and subcooled flow boiling conditions. A third database comprises measurements of heat transfer and pressure drop in a plate heat exchanger. The performance of two heat transfer enhancement techniques, namely the coating of the heat transfer surface with teflon and a perforated brass foil, was studied under saturated pool boiling conditions.

A model was developed, which can be used to predict the heat transfer coefficient. The model is based on the additive superposition of convective and boiling heat transfer coefficients. It is applicable for heat transfer to mixtures and single component fluids under saturated and subcooled boiling conditions. The empirical parameters in the correlations used in the model were not altered to fit the measurements of this study. The predictions of the model were compared to the experimental data, which covers the convective heat transfer regime, the transition region and the fully developed nucleate boiling regime. It was found that the best agreement between predicted and measured values was achieved, if the linear mixing law was used to calculate the ideal heat transfer coefficient rather than the correlations by Stephan-Preußer or Stephan-Abdelsalam.

The heat transfer coefficient under saturated pool boiling conditions could be predicted with an accuracy of 12.6 %. A comparison between over 2000 measured heat transfer coefficients under subcooled flow boiling conditions in an annulus and the predictions of the model showed good agreement with a mean error of 10.3 %. The accuracy of the model was found to be independent of the fluid velocity and composition, as well as of the magnitude and mechanism of heat transfer. The heat flux in a plate heat exchanger could be predicted with a mean error of 6.9 % for a wide range of fluid velocities, subcoolings and compositions. The heat transfer coefficient on the test liquid side of the exchanger could be predicted with a mean error of 10 %.

The heat transfer model was used for a theoretical study of the heat transfer to mixtures boiling on a finned surface. It was found that the fin geometry and thermal conductivity have a distinct influence on the local and mean heat transfer coefficients. The results indicate that
the application of fins is more effective for boiling of mixtures than for boiling of single component liquids.
TABLE OF CONTENTS

ABSTRACT

1. INTRODUCTION
 1.1 Saturated Pool Boiling and Subcooled Flow Boiling of Mixtures 1
 1.2 Scope of Present Work 2

2. EXPERIMENTAL EQUIPMENT
 2.1 Pool Boiling Apparatus 3
 2.2 Flow Boiling Apparatus 4
 2.2.1 Annular Test Section 5
 2.2.2 Plate Heat Exchanger 6
 2.3 Test Heater 7
 2.4 Data Acquisition Equipment and Procedure 9

3. EXPERIMENTAL PROCEDURE
 3.1 Experimental Error 10

4. EXPERIMENTAL RESULTS AND DISCUSSION
 4.1 Saturated Pool Boiling 12
 4.1.1 Experimental Parameters 12
 4.1.2 Influence of Augmented Surfaces on Heat Transfer to Mixtures 14
 4.1.2.1 Heat Transfer Surfaces 14
 4.1.2.2 Boiling of Mixtures 20
 4.2 Subcooled Flow Boiling 28
 4.2.1 Annular Test Section 28
 4.2.1.1 Experimental Parameters 28
 4.2.1.2 Heat Transfer to Mixtures 29
 4.2.1.2.1 Convective Heat Transfer 30
 4.2.1.2.2 Boiling Heat Transfer 35
 4.2.1.2.3 Addition of a Non-Volatile Component 41
 4.2.2 Plate Heat Exchanger 44
 4.2.2.1 Experimental Parameters 44
 4.2.2.2 Heat Transfer to Mixtures 45
 4.2.2.3 Pressure Drop in a Plate Heat Exchanger 54

- III -
5. PREDICTION OF HEAT TRANSFER COEFFICIENTS

5.1 Saturated Pool Boiling of Mixtures
 5.1.1 Calculation of Ideal Heat Transfer Coefficient
 5.1.2 Performance of Correlations for the Ideal Heat Transfer Coefficient

5.2 Subcooled Flow Boiling of Mixtures
 5.2.1 Basic Concept of Model
 5.2.1.1 Enhancement Factor F and Suppression Factor S
 5.2.1.2 Convective Heat Transfer Coefficient for Two Phase Flow
 5.2.1.3 Nucleate Flow Boiling Heat Transfer Coefficient
 5.2.1.4 Condensed Description of Computer Program
 5.2.2 Comparison between Predicted and Measured Data
 5.2.2.1 Convective Heat Transfer
 5.2.2.2 Nucleate Boiling Heat Transfer
 5.2.2.3 Complete Range of Heat Transfer
 5.2.3 Performance of Model for Process Liquors

5.3 Prediction of Heat Transfer in a Plate Heat Exchanger
 5.3.1 Basic Concept of Calculation Procedure
 5.3.2 Condensed Description of Computer Program
 5.3.3 Comparison between Predicted and Measured Data

5.4 Numerical Model of Boiling Heat Transfer on a Finned Surface
 5.4.1 Basic Concept of Calculation Procedure
 5.4.2 Results and Discussion

6. CONCLUSIONS

7. LIST OF REFERENCES

8. NOMENCLATURE

APPENDIX 1 EXPERIMENTAL DATA
APPENDIX 1.1 Heat Transfer Data : Annular Test Section
APPENDIX 1.2 Heat Transfer Data : Plate Heat Exchanger
APPENDIX 2 CALIBRATION OF TEST HEATER
APPENDIX 3 DATA ACQUISITION PROGRAMS
APPENDIX 4 CALCULATION OF MIXTURE PROPERTIES
APPENDIX 5 PROGRAMS USED TO PREDICT THE HEAT TRANSFER COEFFICIENT
ACKNOWLEDGMENTS

I would like to thank the following people who contributed to this investigation and made it an exciting and enjoyable experience:

- My supervisor A/Professor Dr.-Ing. Hans Müller-Steinhagen, for his time, support and guidance during all phases of this investigation.

- Dr. Björn Palm for supplying the perforated brass foil.

- a - Laval for supplying the plate heat exchanger.

- Frank Balzer, Bruno Hartmuth and Philipp Schönduve, who contributed to this investigation within the framework of their diploma theses, and who did not object requests for further measurements, too much.

- My friends and co-workers, Dr. Craig Branch, Jonathan Middis, and Dr. Mohammed Jamialahmadi, for their valuable assistance and interest.

Finally, a very special thank you to my wife Roswitha and to my parents, whose support and help made this investigation possible.