http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
A Land Mobile Radio Coverage Area Prediction Model For New Zealand.

by

G. B. Rowe.

A Thesis submitted in fulfilment of the requirements of the degree of Doctor of Philosophy.

Department of Electrical and Electronic Engineering.

University of Auckland.

June 1984
This thesis describes research undertaken as an initial step in the development of a nationwide land mobile coverage area prediction model for New Zealand. The most suitable approach is shown to be a computer-based method which includes corrections for both environmental and terrain features. Extensive field trials performed in Auckland at 76 and 465 MHz to develop a propagation data base are described. Measurements have been made in a variety of environments over unobstructed, obstructed and mixed land-sea paths. An analysis of these measurements indicates that, subject to the availability of suitable topographic and environmental data bases and with the exception of two special cases, a plane earth based prediction method is suitable for incorporation in a nationwide land mobile coverage area prediction model for New Zealand. Recommendations are made for the implementation and further development of this model.
ACKNOWLEDGEMENTS.

A number of people have provided assistance during this project. In particular, the author wishes to thank
- Dr B. Egan and Dr A. G. Williamson, who jointly supervised the project, for their assistance so willingly provided during the course of the project.
- The technical staff of the Department of Electrical and Electronic Engineering (and in particular Mr G. E. Dennis) for the assistance they provided.
- The New Zealand University Grants Committee and the Auckland University Research Committee for funding this project.
- The Telecommunications Division of the New Zealand Police Department for assistance with the field work.
CONTENTS

CHAPTER 1 INTRODUCTION
References. 1.1

CHAPTER 2 A REVIEW OF THE FACTORS INFLUENCING THE MEDIAN PATH LOSS.

2.1 Introduction. 2.1
2.2 Free Space Propagation. 2.1
2.3 Propagation in the Presence of the Earth.
 2.3.1 Plane Earth Propagation. 2.3
 2.3.2 The Divergence Factor. 2.4
 2.3.3 Some Practical Simplifications. 2.4
 2.3.4 The Rayleigh Criterion. 2.6
 2.3.5 Conclusions. 2.7
2.4 Diffraction Around the Earth's Curvature. 2.8
2.5 Tropospheric Propagation. 2.9
2.6 Terrain Obstacles and Environmental Features.
 2.6.1 Introduction. 2.12
 2.6.2 Diffraction Loss Introduced by Irregular Terrain
 Features.
 2.6.3 Fresnel Radius. 2.13
 2.6.4 Ground Reflection. 2.14
 2.6.5 The Effect of Changes in K. 2.14
 2.6.6 Local Clutter. 2.15
 2.6.7 Summary. 2.15
 2.7 Conclusions. 2.16
References. 2.17

CHAPTER 3 THE MOBILE RADIO SIGNAL ENVIRONMENT.

3.1 Introduction. 3.1
3.2 Lognormal and Rayleigh Fading. 3.1
3.3 Excess Loss Introduced by the Vehicle's Environment. 3.2
3.4 The Consequences of Signal Flutter on the Choice of
 Modulation Type. 3.4
3.5 Prediction of Coverage Areas. 3.4
3.6 Conclusions. 3.6
References. 3.6

CHAPTER 4 A REVIEW OF EXISTING MODELS FOR THE PREDICTION OF
MEDIAN PATH LOSS.

4.1 Introduction. 4.1
4.2 Basic Propagation Characteristics. 4.1
4.3 Environmental Clutter Treatments. 4.2
4.4 Terrain Shadowing Treatments.
 4.4.1 Treatment of Terrain Irregularity Via ΔH. 4.3
 4.4.2 Treatment of Terrain Irregularity by Stylized
 Profiles. 4.3
 4.4.3 Multiple Diffraction. 4.5
 4.4.4 Comparison of Multiple Knife-Edge Methods. 4.6
 4.4.5 Surface Treatments. 4.6
4.5 Prediction Techniques.
 4.5.1 Graphical Presentation. 4.7

PAGE
1.1
1.6
2.1
2.1
2.3
2.3
2.4
2.4
2.6
2.7
2.8
2.9
2.12
2.12
2.12
2.13
2.14
2.14
2.15
2.15
2.16
2.17
3.1
3.1
3.2
3.4
3.4
3.6
3.6
4.1
4.1
4.2
4.3
4.3
4.3
4.5
4.6
4.6
4.7
4.7
4.5.2 Simplified Formulae.
4.5.3 Computer Modelling.
4.6 Conclusions.
References.

CHAPTER 5 PATH LOSS VARIABILITY.
5.1 Introduction.
5.2 Studies of Path Loss Variability.
5.2.1 Variability in Built Up Areas and Smooth Terrain.
5.2.2 Variability in Rural Areas and Irregular Terrain.
5.3 Conclusions.
References.

Chapter 6 A REVIEW OF THE NEW ZEALAND MOBILE RADIO SITUATION.
6.1 Introduction.
6.3 The Necessity for a Mobile Radio Coverage Prediction Model in New Zealand.
6.4 The Requirements of a Mobile Radio Coverage Prediction Model in New Zealand.
6.5 A Review of the Land Usage and Topographic Data Bases Available in New Zealand.
6.6 Conclusions.
References.

CHAPTER 7 FIELD TRIALS AND DATA REDUCTION.
7.1 Introduction.
7.2 Planning of Field Trials.
7.2.1 Selection of Transmission Frequencies.
7.2.2 Subdivision of Environmental Categories.
7.2.2.1 The Urban Environmental Category.
7.2.2.2 The Light Urban Environmental Category.
7.2.2.3 The Suburban Environmental Category.
7.2.2.4 The Rural Environmental Category.
7.2.3 Selection of Base Station Sites.
7.2.4 The Arrangement of the Test Equipment.
7.2.5 The Field Test Procedure.
7.3 Experimental Work.
7.4 Data Reduction.
References.

CHAPTER 8 INTERPRETATION OF EXPERIMENTAL DATA - PART 1
PROPAGATION IN THE MOST COMMON MOBILE RADIO SITUATIONS.
8.1 Introduction.
8.2 Median Path Loss.
8.3 Path Loss Variability.
8.4 The Transportability of the Median Path Loss Model.
8.5 Conclusions.
References.
CHAPTER 9 INTERPRETATION OF EXPERIMENTAL DATA - PART 2
PROPAGATION OVER OBSTRUCTED PATHS, MIXED LAND-SEA PATHS
AND IN OPEN ENVIRONMENTS.

9.1 Introduction. 9.1
9.2 Propagation Over Obstructed Paths.
9.2.1 A Comparison of Alternative Bases for the
Calculation of Obstacle Loss. 9.1
9.2.2 The Effects of the Roundedness of Obstacle Crests. 9.3
9.2.3 Prediction of Diffraction Loss Over Multiple Knife
Edges. 9.4
9.2.4 Diffraction Loss Over Irregular Terrain. 9.5
9.2.5 Diffraction Loss Over Line of Sight Paths With
Inadequate Fresnel Zone Clearance. 9.5

9.3 Propagation Over Mixed Land-Sea Paths.
9.3.1 A Description of Field Tests Made Over Mixed
Land-Sea Paths. 9.6
9.3.2 Interpretation of Experimental Data. 9.6

9.4 Propagation in Non-Multipath Environments.
9.4.1 A Tutorial Review of the Pattern of a Mobile Radio
Antenna. 9.8
9.4.2 A Review of Antenna Patterns in Multipath
Environments. 9.10
9.4.3 Propagation Measurements in an Open Environment. 9.11
9.4.4 The Implications of the Antenna Lobing Pattern
for the Radio System Designer. 9.12

9.5 Conclusions. References. 9.14

CHAPTER 10. CONCLUSIONS AND RECOMMENDATIONS. 10.1

APPENDICES
APPENDIX A1 Knife Edge Diffraction. A1.1
APPENDIX A2 The Terrain Profile Reconstruction Program. A2.1
APPENDIX A3 A Description of the MOEBM. A3.1
GLOSSARY.

a The largest linear dimension of an antenna.

ae The effective earth radius.

A Surface wave attenuation factor.

Ae Diffraction loss relative to free space.

AgC An antenna's effective aperture.

AOGC An amplitude pattern of an antenna.

AAC Auckland City Council.

AE A path loss.

AFS Free space propagation loss.

AGC Automatic gain control.

AM A path loss.

APE Amplitude modulation.

BBC British Broadcasting Corporation.

A clutter factor.

C The Rayleigh Criterion.

θ A clutter factor.

CBD Central Business District.

CCIR International Radio Consultative Committee.

CPU Central Processor Unit.

d Path length.

D The divergence coefficient.

d$_1$, d$_2$ Distances to the horizon.

dbI Decibels relative to isotropic.

dbm Decibels relative to 1mW.

Δ A phase difference.

Δn A quantitative measure of terrain irregularity.

$\Delta \phi$ A phase difference.

Δr A path difference.

DSIR Department of Scientific and Industrial Research.

E, E_f rms field strength.

$E(\theta)$ Amplitude pattern of an antenna above a plane reflector.

ε Dielectric constant of the ground.

ε' The complex permittivity.

ε_r Relative permittivity.

erfc Complementary error function.

f Frequency.

F_B Propagation loss over a smooth earth.

FOC Federal Communications Commission.

F_{EP} Propagation loss over a profile containing a number of knife edges, calculated using the Epstein-Peterson method.

FR Frequency modulation.

F_R Loss over obstructed path.

G Antenna gain in dB.

g Refractive index gradient.

G_b, G_b Base (transmitting) station antenna gain.

G_m, G_m Mobile (receiving) antenna gain.

γ An angle of incidence.

h Surface irregularity height.

hc Obstacle clearance height.

h_0 Minimum effective antenna height.

h_1, h_2 Antenna heights.
h_b, h_m Heights of the transmitting (base) and receiving (mobile) antennas.

h_r, h_r' Effective antenna heights for the transmitter and the receiver.

I/O Input/Output.

JRC Joint Radio Committee of the Nationalised Power Industries.

K The effective earth radius factor.

L Land usage factor.

L_{bf} Basic free space loss in dB.

λ The wavelength.

$MODEM$ Modulator and demodulator unit.

n Atmospheric refractive index.

n_0 Surface value of atmospheric refractive index.

N_s Surface value of the refractivity.

$NZMS$ New Zealand Map Service.

ν The Fresnel diffraction parameter.

P Total pressure in millibars.

p Partial pressure of water vapour in millibars.

P_{Q} Power flux per unit area.

P_0 Power received.

P_t Transmitter output power.

P_{sr} Operationally required probability of successful communication.

P_s Probability of successful communication.

$p(x)$ Probability density function of the normal random variable x.

ϕ' A phase lag.

ψ A grazing angle.

ϕ A diffraction angle.

R Reflection coefficient of the ground.

R_{r} Predetection signal-to-unwanted signal ratio.

R_r' The value of R required for user-determined acceptable performance.

R' Modified earth reflection coefficient (taking the divergence into account.)

r Ray radius.

R_e Crest radius.

r_{n} Effective ray radius.

r_n Radius of the n^{th} Fresnel zone.

s The percentage of the total area in a unit of 2 sq. km occupied by buildings and vegetation.

σ Index of curvature.

rms Root mean square.

S/N Signal to noise ratio.

σ' Conductivity of the earth.

T Standard deviation of the path loss.

$TASO$ Absolute temperature in degrees Kelvin.

Θ Television Allocation Study Organization.

θ Angle of Incidence.

θ_0 The diffraction angle.

U The degree of urbanisation factor.

UHF Ultra High Frequency.

VHF Very High Frequency.

x A normal random variable describing the local mean received power.

\bar{x} The mean of x.

X_0 User specified threshold of x.

z An intermediate term used in the calculation of the earth's reflection coefficient.