http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
Aspects of Heat Transfer to Particles in Thermal Plasma Processing

Murray Kelvin Wu

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Engineering

Department of Chemical and Materials Engineering
The University of Auckland

July 1991
ABSTRACT

Thermal plasma technology is potentially useful for a range of materials processing applications, such as the synthesis of sub-micron, ultra-pure ceramic powders. Thermal plasma reactors are characterised by short residence times (between 10 and 100 ms). Consequently, for chemical reactions to proceed to completion, reactants must be in the gas phase. Reaction rates of solids and liquids are too slow to proceed to any great degree in a thermal plasma, and unvaporised particles can contaminate product material. However, many useful reagents for plasma synthesis are available in particulate form, and thus particles must be completely vaporised if they are to be effective. In this thesis, vaporisation of particles in thermal plasmas was investigated both numerically and experimentally.

A numerical model of particle vaporisation in a thermal plasma was developed, which considers the effects of particle vapour on thermodynamic and transport properties of the plasma. This was compared with a simpler model which neglects vapour contamination effects on the plasma. Results showed that the simpler model greatly over-estimated vaporisation times of copper, aluminium, and tungsten particles in argon plasmas at temperatures less than 11000 K, but reasonable accuracy was obtained at higher temperatures. It was found that heat and mass fluxes, and vaporisation time could be expressed in a reduced form which is independent of initial particle diameter. Heat and mass fluxes during vaporisation were found to be linear functions of the inverse of particle radius. Gas-vapour property data are generally difficult to obtain, and guidelines are recommended for using pure argon properties to estimate vaporisation time.

The two major types of thermal plasma are the DC (direct current) arc, and the RF (radio-frequency), or induction, plasma. The RF plasma has several advantages over other techniques for the synthesis of powders. Reactions occur in primarily in the gas phase, resulting in good mixing between reactants. Rapid quenching of the tail flame can be used to promote homogeneous nucleation and fine particle size. There is no source of external contamination, because the RF plasma torch lacks electrodes, and a wide variety of reactants can be used, including corrosive and oxidising reagents. The plasma has a relatively low velocity and large diameter, and axial feeding of particles results in better vaporisation of particulate reagents than other thermal plasma torches.

In the experimental programme, two RF plasma torches were designed and constructed using the same 13.5 MHz, 15 kW power supply. Fluidised bed feeders and a vibratory feeder were
constructed to feed low flow rates (less than 0.2 g/min) of powders, and other apparatus were
designed for collecting product particles and quenching the plasma tail flame. The final torch
design was used to study heat transfer to particles of a range of materials and particle sizes in the
plasma. The materials studied covered a range of boiling points and heats of vaporisation, so that
the effects of these properties could be investigated.

Particles of alumina, titanium carbide and magnesium oxide smaller than 38 μm diameter were
found to vaporise completely. Condensation of vapour produced particles approximately 100 nm
diameter which were probably agglomerates of smaller particles formed by homogeneous
nucleation. Inspection of morphologies of unvaporised particles showed that the treatment of
particles in the plasma is not always uniform, as particles follow a wide range of trajectories and
experience various temperature histories. From a semi-empirical analysis of partial vaporisation
of a range of particle sizes it was estimated that the mean residence time of particles was 18 ms
and the mean plasma temperature was 9400 K. A heat transfer coefficient of 8000 W/m²K was
estimated for partially vaporising particles, which was similar to heat transfer coefficients obtained
by numerical modelling. These three parameters may be used to predict the degree of vaporisation
of particles in an RF plasma torch.

Thermodynamic analyses of plasma synthesis of titanium carbide and nitride were performed,
indicating the feasibility of the synthesis of these materials in thermal plasma reactors and possible
reactant combinations which may be used.
Acknowledgements

During the course of this project I have been fortunate enough to work with Robert Stephens, Aubrey Mathias and Anne Mette Fjellerad. Rob's contribution to the project was invaluable, and he has been a good friend and colleague. Aubrey constructed much of the apparatus and made it look like art. He also provided some handy golfing tips. Anne Mette helped with experimental runs and analysis, and her effervescence was infectious. *Jeg vil aldrig prøve at drikke som en Dansker igen!*

I wish to thank my supervisors, Dr. John McFeaters, Professor Barry Welch and Professor John Moore, for their advice and support. I value the different perspectives each had from their various disciplines of engineering. The support of DSIR Chemistry and Dr. Ian Brown is gratefully acknowledged. I am grateful to Professor Gordon Mallinson and Graeme Moffat of the CAD Centre for the use of computing facilities, and to Dr. Tony Murphy of CSIRO for providing data for numerical modelling.

The graduate students and post-doctoral fellows in the Chemical and Materials Engineering and Mechanical Engineering Departments are too numerous to name individually, but they all contributed with their friendship and ideas. Thanks also to the secretaries and technicians in Chemical and Materials Engineering for their help.

Finally, thanks to Petrina for putting up with me through the ups and downs of the past few months, and for proof-reading this thesis.
Contents

Abstract ... ii
Acknowledgements ... iv
List of Figures .. ix
List of Tables .. xvi
List of Symbols .. xviii

Chapter 1 INTRODUCTION ... 1

1.1 Plasma and Plasma Torches .. 3

1.2 RF Plasma Principles and Characteristics 5
1.2.1 Theory of Induction Heating 6
1.2.2 Experimental Measurements 7
1.2.2.1 Temperature Profile .. 7
1.2.2.2 Velocity Profile .. 9
1.2.2.3 Energy Balance ... 10
1.2.2.4 Magnetic Field Distribution 11
1.2.3 Numerical Modelling .. 12

1.3 Applications of RF Plasma ... 15

Chapter 2 NUMERICAL MODELLING OF PLASMA-PARTICLE HEAT AND MASS TRANSFER ... 19

2.1 Equations of Plasma-Particle Heat, Mass and Momentum Transfer ... 20
2.1.1 Heat Transfer in the Absence of Mass Transfer 21
2.1.2 Heat Transfer in the Presence of Heat Transfer 24
2.1.3 Radiation, Non-Continuum, Particle Loading and Other Effects ... 25
2.1.4 Mass Transfer .. 26
2.1.5 Momentum Transfer ... 28

2.2 Boiling Point Model ... 30
2.2.1 Basic Equations .. 30
2.2.2 Vaporisation Boundary Conditions 32
2.2.3 Solution Procedure ... 33
2.3 Analysis of the Thermal and Concentration Boundary Layers 37
2.3.1 Previous Work ... 37
2.3.2 Governing Equations ... 38
2.3.3 Solution Procedure ... 44

2.4 Boiling Point Model Results .. 51
2.4.1 Comparison Between Boiling Point Model Boundary Conditions 51
2.4.2 Heating, Melting and Vaporisation Times of Particles in an Argon Plasma 56

2.5 Boundary Layer Model Results .. 60
2.5.1 Programming Comments .. 60
2.5.2 Effects of Particle Vapour on Vaporisation 63

Chapter 3 EQUIPMENT DESIGN AND OPERATING CHARACTERISTICS 79

3.1 Equipment Review ... 79
3.1.1 Radio-Frequency Plasma Torch Head Design 79
3.1.2 Plasma Tube Size .. 85
3.1.3 Initiation Techniques .. 88
3.1.4 Powder and Liquid Feeding ... 90
3.1.5 Quenching ... 91
3.1.6 Particle Collection .. 91

3.2 Initial Developments ... 92
3.2.1 Radio-Frequency Induction Power Supply 93
3.2.2 Induction Coils ... 95
3.2.3 Control Panel .. 95
3.2.4 Protective Cabinet ... 96
3.2.5 Mk II Head Design .. 96
3.2.6 Water-Cooled Torch .. 100

3.3 Plasma Torch Design ... 101
3.3.1 Mk IV Torch .. 102
3.3.2 Flow Separator ... 103
3.3.3 Probe .. 104
3.3.4 Initiation ... 104
3.3.5 Control of Power Input .. 106
3.3.6 Torch Stability and Limitations ... 107
Chapter 4 EXPERIMENTAL STUDY OF PARTICLE HEATING AND PHASE CHANGE

4.1 Previous Studies of Heat Transfer to Particles in RF Plasma Torches

4.2 Experimental Procedure
 4.2.1 Experimental Apparatus
 4.2.2 Safety Precautions
 4.2.3 Feeder Preparation
 4.2.4 Experimental Parameters
 4.2.5 Feed Materials
 4.2.6 Plasma Initiation and Control
 4.2.7 Specimen Collection
 4.2.8 Specimen Analysis

4.3 Observations
 4.3.1 Visual Observations
 4.3.2 Effects of Variations of Equipment Parameters
 4.3.3 Magnesium Oxide Experiments
 4.3.4 Aluminium Experiments
 4.3.5 Heating and Vaporisation of Sodium Chloride
 4.3.6 Heating and Vaporisation of Alumina
 4.3.7 Heating and Vaporisation of Titanium Carbide
 4.3.8 Supplementary Work
 4.3.8.1 Addition of Nitrogen in Plasma-Forming Gases and as a Quench
 4.3.8.2 Addition of Methane in Plasma-Forming Gases
List of Figures

Figure 1.1 a) Schematic of an RF plasma torch (after reference 1); and b) a DC transferred arc spray torch (after reference 2).
Figure 1.2 Temperature variation of electrons and heavy particles (molecules and ions) with pressure (after reference 3).
Figure 1.3 Classifications of plasma according to electron temperature and electron density (after reference 4).
Figure 1.4 Equilibrium molar composition of argon at atmospheric pressure (after reference 5).
Figure 1.5 Schematic illustration of magnetic field lines around a solenoid (after reference 11).
Figure 1.6 Processes which contribute to the generation of RF plasma.
Figure 1.7 Measured temperature fields at argon flow rates of 1) 0.14 g/s; and 2) 1.15 g/s (after reference 16).
Figure 1.8 Dependence of the radial temperature profile on plasma gas composition at the mid-section of the torch (after reference 9).
Figure 1.9 Radial temperature profiles at pressures of a) 760 torr; b) 300 torr; and c) 150 torr (after reference 15).
Figure 1.10 Schematic illustration of flow patterns of argon at 1) 0.14 g/s; and 2) 1.15 g/s (after reference 16).
Figure 1.11 Radial velocity profiles at various distances downstream from the coil (after reference 18).
Figure 1.12 Energy balance of an RF plasma torch (after reference 21).
Figure 1.13 Schematic of the channel model (after reference 9, originally from reference 23).
Figure 1.14 Temperature and flow fields of an argon plasma at 3.0 MHz and 5.0 kW calculated using the 2D EM model (after reference 38).
Figure 1.15 a) Temperature; and b) velocity profiles along the centreline of the plasma torch. Results of the 1D EM model are shown for comparison (after reference 38).
Figure 2.1 Flow chart of the boiling point model for a single time step.
Figure 2.2 Mesh used to solve the boiling point model.
Figure 2.3 The division of the vaporisation history of a particle into transient and semi-transient periods.

Figure 2.4 Flow chart of the solution procedure of the transient period for a single time step.

Figure 2.5 Flow chart of the solution procedure of the semi-transient period for a single time step.

Figure 2.6 Mesh used to solve the boundary layer model.

Figure 2.7 Temperature history of a 100 μm Al₂O₃ particle vaporising in an argon plasma.

Figure 2.8 Development of the surface and centre temperatures in a titanium dioxide particle.

Figure 2.9 Reduction in radius of an alumina particle due to vaporisation.

Figure 2.10 Reduction in radius of an aluminium particle due to vaporisation.

Figure 2.11 Reduction in radius of a titanium dioxide particle due to vaporisation.

Figure 2.12 Cumulative heating, melting and vaporisation times of a 100 μm diameter alumina particle in an argon plasma.

Figure 2.13 Cumulative heating, melting and vaporisation times of a 100 μm diameter copper particle in an argon plasma.

Figure 2.14 Cumulative heating, melting and vaporisation times of a 100 μm diameter titanium dioxide particle in an argon plasma.

Figure 2.15 Cumulative heating, melting and vaporisation time of a 100 μm diameter tungsten particle in an argon plasma.

Figure 2.16 Comparison between numerically calculated heat fluxes to vaporising particles and analytical solutions for pure argon properties of a) copper; b) aluminium; and c) tungsten.

Figure 2.17 Effect of energy equation re-evaluation interval on heat flux to a 100 μm copper particle in a 10000 K plasma after 5000 time steps.

Figure 2.18 Transient development of a) heat and vaporisation flux; and b) particle temperature and surface mass fraction of a 100 μm Cu particle in a 10000 K plasma.

Figure 2.19 Transient period development of heat to a 100 μm a) Al particle; and b) W particle in a 10000 K plasma.

Figure 2.20 Heat flux to a 100 μm Cu particle in a 10000 K plasma during the semi-transient period a) versus particle radius; b) versus inverse radius.
Figure 2.21 Ratio of heat flux calculated using gas-vapour mixture properties to that calculated using pure argon properties. 66

Figure 2.22 Total vaporisation time of a 100 µm copper particle as a function of plasma temperature. 66

Figure 2.23 Total vaporisation time of a 100 µm aluminium particle as a function of plasma temperature. 67

Figure 2.24 Total vaporisation time of a 100 µm tungsten particle as a function of plasma temperature. 67

Figure 2.25 Enthalpy profiles at the beginning of the semi-transient period for a) copper; b) aluminium; and c) tungsten for plasmas at 8000 K, 10000 K, 12000 K, 14000 K and 15000 K. 68

Figure 2.26 Heat transfer coefficients for complete vaporisation. 70

Figure 2.27 Steady particle temperature and surface mass fraction of vapour of a vaporising copper particle. 71

Figure 2.28 Steady particle temperature and surface mass fraction of vapour of a vaporising aluminium particle. 71

Figure 2.29 Steady particle temperature and surface mass fraction of vapour of a vaporising tungsten particle. 72

Figure 2.30 Temperature profiles in the boundary layer surrounding a copper particle vaporising in a 10000 K plasma. 73

Figure 2.31 Concentration profiles in the boundary layer surrounding a copper particle vaporising in a 10000 K plasma. 73

Figure 2.32 Cumulative radial distribution of copper vapour around a copper particle vaporising in a 10000 K plasma. 74

Figure 2.33 Kelvin effect on the vapour pressure of droplets of copper, aluminium and tungsten. 76

Figure 2.34 Relationship between time during vaporisation and instantaneous particle radius. 77

Figure 3.1 Reed's first RF plasma torch (after reference 7). 80

Figure 3.2 Torch head for crystal growth (after reference 63). 80

Figure 3.3 Torch designs (ref. 122): a) dual-flow, sheath stabilised; b) single-flow, vortex stabilised; c) single-flow, sheath stabilised; d) vortex stabilised with radial ports. 81

Figure 3.4 Powder injection between turns of the induction coil (after reference 123). 82

xi
Figure 3.5 RF plasma reactor with cooled copper fingers (after reference 124).

Figure 3.6 Hybrid plasma torch (after reference 125).

Figure 3.7 Dual RF plasma torch (after reference 128).

Figure 3.8 Variation of skin depth with frequency and electrical conductivity (after reference 80).

Figure 3.9 Effect of plasma and torch dimensions on coupling efficiency (after reference 80).

Figure 3.10 Effect of plasma diameter on ideal coupling efficiency (after reference 131).

Figure 3.11 Initiation of RF plasma torches using a) carbon rod; b) tungsten wire; c) Tesla coil (after reference 133).

Figure 3.12 Minimum sustaining power of an RF plasma (after reference 138).

Figure 3.13 General components of an RF plasma reactor.

Figure 3.14 Simplified circuit diagram of the induction heater.

Figure 3.15 Schematic diagram of the Mk II torch head.

Figure 3.16 Schematic diagram of the Mk IV torch.

Figure 3.17 Pertinent dimensions of the Mk IV torch.

Figure 3.18 Water-cooled probe for powder and carrier gas injection.

Figure 3.19 Schematic diagram of the vibratory feeder.

Figure 3.20 Schematic diagram of the fluidised bed feeder and hopper.

Figure 3.21 Valve calibration curve for -38 μm alumina powder.

Figure 3.22 Valve calibration curve for titanium carbide powder.

Figure 3.23 Fluidised bed feeder calibration for -38 μm Al₂O₃ - Bed 1, no drop tube.

Figure 3.24 Fluidised bed feeder calibration for -38 μm Al₂O₃ with 113 mm drop tube - Bed 1, 6.7 to 6.8 gram bed.

Figure 3.25 Fluidised bed feeder calibration showing the effect of bed mass - Bed 2, 160 mm drop tube, 120 mm sample port, -38 μm Al₂O₃.

Figure 3.26 Fluidised bed feeder calibration for TiC - Bed 3, 113 mm drop tube, 70 mm sample port. Large or bold markers indicate mean values.
Figure 3.27 Schematic diagram of the quench ring.

Figure 3.28 Schematic diagram of the sample collector.

Figure 4.1 Arrangement of the powder feeder and gas lines to the RF plasma torch.

Figure 4.2 The plasma reactor used in experimental studies.

Figure 4.3 SEM micrograph of Al$_2$O$_3$ feed particles.

Figure 4.4 SEM micrograph of titanium carbide feed particles.

Figure 4.5 SEM micrograph of sodium chloride feed particles.

Figure 4.6 X-ray diffractogram of aluminium oxide product indicating the presence of both α-Al$_2$O$_3$ and δ-Al$_2$O$_3$.

Figure 4.7 Effect of Al$_2$O$_3$ powder feed rate on mean vaporisation - plate power = 3.4 kW.

Figure 4.8 Effect of mean particle size on mean vaporisation - plate power = 3.4 kW.

Figure 4.9 Effect of carrier gas flow rate on mean vaporisation - plate power = 3.4 kW.

Figure 4.10 Effect of plate power on vaporisation: -53+45 μm Al$_2$O$_3$ at \leq 3.6 l/min carrier gas.

Figure 4.11 Splats formed by the heating and melting of sodium chloride.

Figure 4.12 Splats formed by molten alumina after impact with the substrate surface.

Figure 4.13 Large unvaporised particles of Al$_2$O$_3$ covered with condensed material lie on a bed of condensed material on the substrate surface.

Figure 4.14 A higher magnification view of the structure of Al$_2$O$_3$ deposits on the surfaces of unvaporised particles.

Figure 4.15 Fine whiskers coat the surface of a spherical Al$_2$O$_3$ particle. The surface of the particle and the thickness of the coating are revealed.

Figure 4.16 Fine particles formed by the vaporisation of -38 μm Al$_2$O$_3$.

Figure 4.17 An Al$_2$O$_3$ particle with dendritic surface features.

Figure 4.18 Products of titanium carbide vapourisation. The large particle is a glass bead from the fluidised bed.
Figure 4.19	Condensed particles of TiO which may have condensed around a nucleus of unvaporised TiC.	
Figure 4.20	Products of vaporisation of magnesium oxide.	
Figure 4.21	A unusual collection of whiskers and agglomerated platelets of aluminium oxide.	
Figure 4.22	Fine whiskers of aluminium oxide with spherical nodules.	
Figure 4.23	Columnar growth of magnesium oxide.	
Figure 4.24	An unusual spheroid of aluminium oxide.	
Figure 4.25	Schematic representation of the two-temperature plug flow model.	
Figure 4.26	Plasma temperature and velocity predicted using the two-temperature plug flow model.	
Figure 4.27	Relationship between residence time and plasma temperature calculated using the plug flow and particle heat transfer models.	
Figure 4.28	Prediction of extent of vaporisation using $T_s = 9400$ K, $t_{res} = 18$ ms and $h = 8000$ W/m2K.	
Figure 4.29	Prediction of final particle size after vaporisation using $T_s = 9400$ K, $t_{res} = 18$ ms and $h = 8000$ W/m2K.	
Figure 4.30	Theoretical heat transfer coefficients of completely vaporised 50 μm and 100 μm Al_2O_3 particles, compared with the semi-empirical estimate.	
Figure 5.1	Equilibrium composition diagram for $\text{CH}_4/\text{TiO}_2 = 3.0$	
Figure 5.2	Equilibrium composition diagram for $\text{CH}_4/\text{TiO}_2 = 1.0$	
Figure 5.3	Equilibrium composition diagram for $\text{CH}_4/\text{TiO}_2 = 4.0$	
Figure 5.4	Reaction rate constant for $\text{C}_2\text{H}_2(g) = 2\text{C} + \text{H}_2(g)$.	
Figure 5.5	Quasi-equilibrium composition diagram for $\text{CH}_4/\text{TiO}_2 = 4.0$	
Figure 5.6	Stability diagram for the CH_4-TiO_2 system.	
Figure 5.7	Equilibrium composition diagram for $\text{TiO}_2 + \text{NH}_3 + 2\text{CH}_4$.	
Figure 5.8	Equilibrium composition diagram for $\text{TiO}_2 + 2\text{NH}_3 + 2\text{CH}_4$.	
Figure 5.9	Equilibrium composition diagram for $\text{TiO}_2 + 3\text{NH}_3 + 2\text{CH}_4$.	
Figure 7.1	Properties of copper-argon mixtures.	
Figure 7.2	Properties of aluminium oxide-argon mixtures.	
Figure 7.3	Properties of tungsten-argon mixtures.	207
Figure 7.4	Properties of aluminium-argon mixtures.	208
Figure 7.5	Equilibrium composition of argon at 1 atm.	209
Figure 7.6	Equilibrium composition of copper at 1 atm.	209
Figure 7.7	Equilibrium composition of aluminium oxide at 1 atm.	210
Figure 7.8	Equilibrium composition of tungsten at 1 atm.	210
Figure 7.9	Equilibrium composition of aluminium at 1 atm.	211
Figure 7.10	General outline of the finite volume method.	213
Figure 7.11	Node notation in one dimension.	214
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Comparative influences of heat transfer phenomena (after Reference 102).</td>
<td>27</td>
</tr>
<tr>
<td>2.2</td>
<td>Main features of programmes written to solve the boundary layer model.</td>
<td>44</td>
</tr>
<tr>
<td>2.3</td>
<td>Biot numbers for the materials studied.</td>
<td>55</td>
</tr>
<tr>
<td>2.4</td>
<td>Material properties which influence vaporisation time.</td>
<td>57</td>
</tr>
<tr>
<td>3.1</td>
<td>Argon rotameter flow rates.</td>
<td>95</td>
</tr>
<tr>
<td>3.2</td>
<td>Relationship between SCR variac setting and induction heater currents and voltages.</td>
<td>107</td>
</tr>
<tr>
<td>3.3</td>
<td>Specifications of fluidised bed feeders.</td>
<td>113</td>
</tr>
<tr>
<td>4.1</td>
<td>Experimental parameters.</td>
<td>129</td>
</tr>
<tr>
<td>4.2</td>
<td>Influence of parameters on vaporisation.</td>
<td>141</td>
</tr>
<tr>
<td>4.3</td>
<td>Vaporisation of Al₂O₃ at 3.4 kW plate power.</td>
<td>142</td>
</tr>
<tr>
<td>4.4</td>
<td>Comparison between the Mk IV torch and the torch studied in Ref. 20.</td>
<td>161</td>
</tr>
<tr>
<td>4.5</td>
<td>Estimated heat transfer coefficients of Al₂O₃.</td>
<td>166</td>
</tr>
<tr>
<td>4.6</td>
<td>Extent of vaporisation predicted using the two-temperature plug flow model.</td>
<td>167</td>
</tr>
<tr>
<td>4.7</td>
<td>Maximum power absorbed by particles. (Estimated power input to plasma = 2.13 kW.)</td>
<td>170</td>
</tr>
<tr>
<td>5.1</td>
<td>Spectroscopic constants of TiC and TiN.</td>
<td>178</td>
</tr>
<tr>
<td>5.2</td>
<td>Thermodynamic property data for TiC₀ and TiN₀.</td>
<td>178</td>
</tr>
<tr>
<td>7.1</td>
<td>Argon Density</td>
<td>196</td>
</tr>
<tr>
<td>7.2</td>
<td>Argon Thermal conductivity</td>
<td>196</td>
</tr>
<tr>
<td>7.3</td>
<td>Argon Heat capacity</td>
<td>196</td>
</tr>
<tr>
<td>7.4</td>
<td>Argon Enthalpy</td>
<td>197</td>
</tr>
<tr>
<td>7.5</td>
<td>Copper-Argon Density</td>
<td>197</td>
</tr>
<tr>
<td>7.6</td>
<td>Copper-Argon Thermal conductivity</td>
<td>198</td>
</tr>
</tbody>
</table>
Table 7.7 Copper-Argon Heat capacity
Table 7.8 Copper-Argon Enthalpy
Table 7.9 Al₂O₃-Argon Density
Table 7.10 Al₂O₃-Argon Thermal conductivity
Table 7.11 Al₂O₃-Argon Heat capacity
Table 7.12 Al₂O₃-Argon Enthalpy
Table 7.13 Tungsten-Argon Density
Table 7.14 Tungsten-Argon Thermal conductivity
Table 7.15 Tungsten-Argon Heat capacity
Table 7.16 Tungsten-Argon Enthalpy
Table 7.17 Aluminium-Argon Density
Table 7.18 Aluminium-Argon Thermal conductivity
Table 7.19 Aluminium-Argon Heat capacity
Table 7.20 Aluminium-Argon Enthalpy
Table 7.21 Species considered in the calculation of thermophysical properties.
Table 7.22 Definitions of variables in the general transport equation.
List of Symbols

A
Surface area of a particle
Cross-sectional area of a fluidised bed
Finite volume method coefficient
Thomas algorithm matrix

A_{ca}
Cross-sectional area of plasma

a
Thomas algorithm coefficient

B
Finite volume method term
Rotational constant

C
Molar concentration

C_D
Drag coefficient

C_p
Heat capacity at constant pressure

C
Thomas algorithm coefficient

D
Diffusion coefficient
Thomas algorithm vector

\Delta D_e
Dissociation energy

d
Diameter
Thomas algorithm term

d_o
Nominal particle diameter

d_p
Measured particle diameter

E
East node

E_a
Activation energy

EMF
Electromagnetic force

E'
Heat transfer coefficient correction factor for vaporisation

e
East cell interface

F
Force

F_r
Multiplicative factor for mesh generation

f
Frequency

g_{eo}
Electronic ground state degeneracy

h
Heat transfer coefficient
Enthalpy

h_{bp}
Distance between the top of a fluidised bed and a sampling port

\Delta h
Enthalpy change
Ah, Heat of formation
Δh
Δh_m Heat of fusion
Δh_{ov} Overall enthalpy change
Δh_{rd} Enthalpy of decomposition
Δh_v Heat of vaporisation
h' Heat transfer coefficient corrected for vaporisation
I Heat conduction potential
Nucleation rate
Moment of inertia
Current

i' Number of molecules in a cluster of critical size
K Elutriation constant
k Thermal conductivity
Time step or time interval number
Rate constant

L Characteristic length
Plasma length

L_T Maximum allowable temperature change
M Molecular weight
m Mass
Mass of a molecule or atom

\dot{m} Mass flow rate

\dot{m}_{carrier} Mass flow rate of carrier gas
\dot{m}_{plasma} Mass flow rate of plasma gas
\dot{m}_{sheath} Mass flow rate of sheath gas in plasma-forming gases

N Molar flux
Number of turns of a solenoid
Number of nodes

P Pressure
Partial pressure
Point node
Power due to resistive (Joule) heating.

P_d Vapour pressure of a drop
P_v Vapour pressure
P_f Vapour pressure above a flat surface
P_{sat} Saturation pressure
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1, P_2, P_3</td>
<td>Finite difference coefficients</td>
</tr>
<tr>
<td>Q</td>
<td>Heating rate</td>
</tr>
<tr>
<td></td>
<td>Plasma discharge power</td>
</tr>
<tr>
<td>q</td>
<td>Heat flux</td>
</tr>
<tr>
<td>$(q)_{\text{int}}$</td>
<td>Internal partition function of an atom</td>
</tr>
<tr>
<td>$(q_\tau)_{\text{int}}$</td>
<td>Internal partition function of an ion</td>
</tr>
<tr>
<td>R</td>
<td>Residual resistance</td>
</tr>
<tr>
<td>r</td>
<td>Radius</td>
</tr>
<tr>
<td></td>
<td>Radial co-ordinate</td>
</tr>
<tr>
<td>r_e</td>
<td>Induction coil radius</td>
</tr>
<tr>
<td>r_m</td>
<td>Radius of the solid-liquid interface during melting</td>
</tr>
<tr>
<td>r_a</td>
<td>Plasma radius (channel model)</td>
</tr>
<tr>
<td>r_0</td>
<td>Initial radius</td>
</tr>
<tr>
<td>r_9</td>
<td>Interatomic distance</td>
</tr>
<tr>
<td>Δr</td>
<td>Cell length</td>
</tr>
<tr>
<td>S</td>
<td>Supersaturation ratio</td>
</tr>
<tr>
<td></td>
<td>Entropy</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
</tr>
<tr>
<td></td>
<td>Temperature vector (Thomas algorithm)</td>
</tr>
<tr>
<td>T_b</td>
<td>Boiling point</td>
</tr>
<tr>
<td>T_m</td>
<td>Melting point</td>
</tr>
<tr>
<td>T_{ref}</td>
<td>Reference temperature</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
</tr>
<tr>
<td>t_{res}</td>
<td>Residence time</td>
</tr>
<tr>
<td>t_1</td>
<td>Heating time of solid</td>
</tr>
<tr>
<td>t_2</td>
<td>Melting time</td>
</tr>
<tr>
<td>t_3</td>
<td>Heating time of liquid</td>
</tr>
<tr>
<td>t_4</td>
<td>Vaporisation time</td>
</tr>
<tr>
<td>t_{vap}</td>
<td>Total time for vaporisation, including heating and melting</td>
</tr>
<tr>
<td>Δt</td>
<td>Time step</td>
</tr>
<tr>
<td>Δt_T</td>
<td>Time interval between solutions of the energy equation</td>
</tr>
<tr>
<td>u</td>
<td>Velocity</td>
</tr>
<tr>
<td>V</td>
<td>Particle volume</td>
</tr>
<tr>
<td>V</td>
<td>Volumetric flow rate</td>
</tr>
<tr>
<td>V_b</td>
<td>Molecular volume at the boiling point</td>
</tr>
</tbody>
</table>
W West node
 Mass of particles in a fluidised bed
w West cell interface
 Mass of fines in a fluidised bed
X Extent of vaporisation (%)
X_{mix} Degree of sheath gas mixing
x Mole fraction
y Mass fraction
Z Z factor
α Under-relaxation parameter
 Condensation coefficient
Γ Diffusivity (general)
β Thomas algorithm term
δ Skin depth
Thomas algorithm term
γ Thomas algorithm term
ε Emissivity
 Energy of molecular interaction
θ Characteristic ionisation temperature
θ_r Characteristic rotational temperature
θ_v Characteristic vibrational temperature
κ Coupling parameter
λ Mean free path
μ Dynamic viscosity
ν Molar volume of liquid
ξ_o Magnetic permeability
ρ Density
ρ_u Mass flux
σ Electrical conductivity
 Lennard-Jones collision diameter
Surface tension
Symmetry number
ϕ Magnetic flux
 Dependent variable (general)
 Thermophysical property (general)
Ω_D Lennard-Jones collision integral for molecular diffusion
ω
Vibrational constant

Subscripts

A Species (general)
argon Argon
B Species (general)
E East node
e East interface
Electronic
f Mean film temperature
g Gas (plasma)
i Node number
l Liquid
lim Limit
mixture Gas-vapour mixture
P Point node
p Particle
plasma Plasma
r Rotational
s Particle surface
sd Solid
t Translational
v Vibrational
W West node
w West interface
∞ Infinity (or bulk plasma)

Superscripts

- Mean value
o Reduced value
Constants

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>Speed of light ($= 2.99776 \times 10^8 \text{ m/s}$)</td>
</tr>
<tr>
<td>h</td>
<td>Planck constant ($= 6.6242 \times 10^{-34} \text{ Js}$)</td>
</tr>
<tr>
<td>k</td>
<td>Boltzmann constant ($= 1.38048 \times 10^{-23} \text{ J/K}$)</td>
</tr>
<tr>
<td>m_e</td>
<td>Mass of an electron ($= 9.1095 \times 10^{-31} \text{ kg}$)</td>
</tr>
<tr>
<td>R</td>
<td>Gas constant ($= 8.31439 \text{ J/molK}$)</td>
</tr>
<tr>
<td>σ</td>
<td>Stefan-Boltzmann constant ($= 5.67 \times 10^{-8} \text{ W/m}^2\text{K}^4$)</td>
</tr>
</tbody>
</table>

Dimensionless groups

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi</td>
<td>Biot number ($= hL/k$)</td>
</tr>
<tr>
<td>Co</td>
<td>Courant number ($= u\Delta t/\Delta x$)</td>
</tr>
<tr>
<td>Kn</td>
<td>Knudsen number ($= \lambda/L$)</td>
</tr>
<tr>
<td>Nu</td>
<td>Nusselt number ($= hd/k$)</td>
</tr>
<tr>
<td>Pr</td>
<td>Prandtl number ($= C_p\mu/k$)</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds number ($= \rho ud/\mu$)</td>
</tr>
</tbody>
</table>