http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
AN ELECTROSTATIC PARTICLE ACCELERATOR

A THESIS SUBMITTED FOR THE
DEGREE OF DOCTOR OF PHILOSOPHY
AT THE UNIVERSITY OF AUCKLAND
BY HENRY NAYLOR

NOVEMBER 1968.
I agree to this thesis being consulted, and that after five years, the Librarian for the time being of the University of Auckland may at his discretion have it copied, for library purposes but not for publication.

Signed: H. Naylor

Date: 14-8-69

NAYLOR, Henry: An electrostatic particle accelerator.

(PhD)
.... because the whole machine should march
Impelled by those diversely moving parts
Each blind to aught beside its little bent.

....
....

As from the welter of their time he drew
Its elements successively to view,
Followed all actions backward on their course,
And catching up, unmingled at the source,
Such a strength,

"Sordello", R. Browning.
PHOTOGRAPH ONE

General view of the accelerator laboratory. The beam line on the left goes through a shielding wall to the mass spectrograph room. In the right foreground, mounted in the neutron pit, is a spin-precession solenoid used in neutron polarisation experiments.
CONTENTS

Introduction v

CHAPTER 1. HISTORY.

1.1. Electrostatic Particle Accelerators 1
1.2. Origins of the AURA II High Voltage Generator 2
1.3. Auckland Proposals 3
1.4. Modifications to the N.I.R.N.S. Generator 5

CHAPTER 2. THE SINGLE ENDED TANDEM ACCELERATOR.

2.1. Tandem Accelerators 6
2.2. Terminal Magnet 7
2.3. Charge Stripping 8
2.4. Conclusion 11

CHAPTER 3. BEAM OPTICS.

3.1. General Design Considerations 12
3.2. Relevant Optical Theory 13
3.3. Transfer Matrices 17
3.4. Input Beam 24
3.5. Matching the Input Beam to the Terminal Magnet 26
3.6. Positive Ion Beam 33

CHAPTER 4. CHARGE-EXCHANGE NEGATIVE ION SOURCE.

4.1. History 38
4.2. Charge Exchange of Hydrogen Ions in Hydrogen Gas 40
4.3. General Arrangement of the Source 41
4.4. Charge Exchange Canal 42
4.5. Proton Source 44
4.6. Focusing the Positive Ion Beam 47
4.7. Ion Source Analysing Magnet 48
4.8. Performance 50

CHAPTER 5. ACCELERATION TUBES.
5.1. "Long Tube" or "Total Voltage" Effect 53
5.2. Non Uniform Field Tubes 56
5.3. Electric Field Design 58
5.4. Construction 63

CHAPTER 6. LENSES AND MAGNETS.
6.1. Matching Lens 65
6.2. Tube Entrance Lens 67
6.3. Strong Focusing Lens 68
6.4. 90° Analysing Magnet 70
6.5. Permanent Magnet Quadrupole Lens 72
6.6. Orientation of Optical Components 73

CHAPTER 7. PRELIMINARY TESTS.
7.1. Generator Voltage Runs 74
7.2. Tube Testing 76
7.3. Tests with Beam 76
7.4. Analysed Proton Beam 80
7.5. Energy Loss and Energy Spread in Carbon Foils 82
7.6. Early Energy Measurements 85

CHAPTER 8. ENERGY CALIBRATION.
8.1. Introduction 87
8.2. The Energy Reference 88
8.3. Calibration Reactions 90
8.4. Results of Threshold and Resonance Energy Measurements 91
8.5. Differential Hysteresis 93
8.6. Beam Position 95
8.7. Proposed Improvements to the Energy Scale 96

CHAPTER 9. PERFORMANCE AND FUTURE DEVELOPMENTS 98
9.1. Performance 98
9.2. Ion Sources 101
9.3. Target Stations 102

APPENDIX A. ENGINEERING ASPECTS OF THE ACCELERATOR 103
Introduction 103
A.1. Mechanical 103
A.2. Gas Handling 108
A.3. Vacuum 110
A.4. Electrical 111
A.5. Controls and Metering 112

APPENDIX B. TERMINAL MAGNET 116

APPENDIX C. RELIABILITY 119

References 124