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Abstract

Missing data may arise due to happenstance, when some units fail to respond, or

due to design, such as in multi-phase sampling schemes. The goal is to model Y in

terms of a set of covariates X . Efficient analysis for multiphase studies can be obtained

by maximizing the resulting (full) likelihood. However, if the final (and fully observed)

sample is outcome-dependent, the resulting likelihood involves the marginal distribution

of an often high-dimensional X . Modelling this marginal distribution may be hard or

even unfeasible and methods that treat it non-parametrically are of interest.

Semiparametric methods in which only the conditional distribution of Y given X

is treated parametrically have been widely discussed in the literature. Most methods,

however, estimate the probability of providing full information through a saturated

model, which may only be possible in specific scenarios. Moreover, fully efficient meth-

ods often do not take into account extra information that is not part of the model of

interest. These data are discarded and approaches that make a better use of the whole

information are needed.

Here we present a semiparametric method, denoted by CML+S̃ , that copes with

both situations. We first showed that it is consistent and asymptotically normal under

mild conditions and later performed extensive simulated studies, for both discrete and

continuous responses. Our simulations showed substantially gains in efficiency when
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extra variables, not used for selecting the data, were taken into account. This was later

extended to a wider class of designs, which encompasses the well-known case-control

study and many others. The method was shown to be consistent and more efficient

than the commonly used weighted approach in all cases analysed, but not as robust to

model misspecifications.

The method is strongly connected to propensity scores and a discussion between

their similarities and differences were also conducted. Both approaches were later

combined, providing an alternative method for estimating treatment effects that could

be applied in outcome-dependent problems.

Finally, we discussed its asymptotic efficiency by numerically deriving the semi-

parametric efficiency bound. The proposed estimator seemed to achieve, for the some

specific scenarios, the semiparametric efficiency bound. For a discrete response the

equality is mathematically guaranteed and the CML+S̃ method is thus semiparamet-

ric fully efficient.
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1
Introduction

1.1 Biased samples

Biased samples, the result of selection processes that give rise to sample distributions

that differ systematically from the true target distribution, can be found in most data

collection and, if not treated properly, can lead to inconsistent estimates.

Biased sampling may occur by design. Suppose that we are interested in predicting

the probability that an individual will contract a rare disease. Partial information such

as the disease status may be known for all individuals in the study (cohort), but more

predictive information may still be required. For economic reasons, however, not all

elements can be selected for full observations and so a common approach is to randomly

choose a reasonable number of cases (subjects with the disease) and a similar number

of controls (disease-free individuals). Notice that this leads to subjects with incomplete

information and also to a ratio of cases/controls in the completely-observed sample

which is very different from the true one. The sample is, therefore, biased and by not

taking this into consideration one might get very inconsistent estimates.
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2 Chapter 1. Introduction

Biased sampling may also occur by happenstance. A survey, for example, where

men have higher probability of responding than women leads to a biased sample and

if the outcome of interest is somehow linked to sex, we must be cautious when making

inference to the entire population.

Note that if complete information had been obtained for both cases, inference could

be made in standard ways. In real studies, however, it is common to have data with

missing information. These missing data points may behave differently from the ob-

served data in such way that ignoring it may lead to badly biased estimates, making

missing data an important topic of discussion.

1.2 Missing data

Data sets are usually presented in matrix format where entries are values corre-

sponding to the observed values of variables. Ideally, all entries of such a matrix would

be filled. However, in most data collecting process it is unlikely to have full information

observed for all individuals in the study, i.e., the matrix will most likely have empty

cells. Since this missing information may bias future inferences, many methods have

then been proposed. These methods rely on strong assumptions regarding how the data

is missing, more specifically, regarding the missing data patterns and mechanisms.

1.2.1 Missing data patterns

Little and Rubin (2002) describe different missing data patterns and mechanisms

that lead to datasets with incomplete information. The major missing patterns are:

• General: Here the observations are randomly missing, in a sense that the miss-

ingness is not following any kind of pattern.
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• Monotone: Let S1 be a set of individuals with fully observed variables. Consider

the following process of collecting data. First, a subset of S1, S2, say, is taken

and extra variables are observed for these sampled individuals only. Next, a

subset of S2, S3, say, is now taken and extra information collected for these units.

This procedure can have as many steps as necessary, but the point is that each

subset has more information than the previous set. That is, the missingness is

monotonically decreasing.

• Univariate: As the name suggests, only one variable has missing data, while

all remaining variables are fully observed. If the number of partially observed

variables is greater than 1 and they all are missing on the same set of subjects,

we have a multivariate missing pattern.

1.2.2 Missing data mechanisms

The missing information can be related to the data and are categorized by Little

and Rubin (2002) in three groups as follows:

• Missing completely at random (MCAR): Here the missingness does not depend on

any value of the data. Each missing observation is just as likely to be missing as

any other piece of data. Such missingness can be ignored when making inference

to the population.

• Missing at random (MAR): Here the probability of missingness depends only on

the observed components. Since this is less restrictive than a MCAR assumption,

MAR is a common assumption in statistical analysis. It is commonly found in

studies where the missingness is due to design, such as the expensive covariate

problem discussed in section 1.1. Here, the expensive covariate is purposefully
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observed for a sample of individuals selected from the total population or cohort.

Selection into this sample is based on variables that have been fully observed for

the entire cohort, so that information is MAR.

• Missing not at random (NMAR): Here the probability of missingness depends in

part on the missing values of the data. It is quite common in real problems and

results in biased inference. Non-response regarding family income, for instance,

usually depends on the size of that income, resulting in a sample MNAR.

In real data problems we cannot really tell whether the missing data are MAR or

MNAR, but we can in principle distinguish between MCAR and MAR. If the missing

observations are MNAR, there is not much that can be done apart from forms of sensi-

tivity analysis. For convenience, the missingness is usually assumed to be independent

of the missing observations (MAR), enabling the modelling of missingness as an input

to making inferences. This will be the case discussed throughout this thesis.

1.3 Basic methods

We now introduce a few methods still commonly used in real data problems to

handle missing data. These methods are easy to implement and use standard complete-

data statistical software to make inference to the entire population. In what follows we

will focus on complete case analysis and multiple imputation.

1.3.1 Complete-case analysis

The simplest and most commonly used approach to missing is the so-called complete-

data analysis. Here, the partially observed units are discarded so that only the com-

pletely observed subjects are used together with a standard method of analysis. This
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is valid for the MCAR case, but otherwise may lead to inconsistent estimates and be

seriously inefficient, particularly if the missingness depends on the response variable.

Consider, for example, a survey where people with high income are less likely to report

their income level. The MCAR assumption is clearly not valid and by considering only

completely observed units, the resulting inference will be biased in favour of patterns

amongst those with lower incomes.

Complete-case analysis should also be avoided if there is appreciable missingness

and partial information is available from the partially observed subjects. Otherwise,

information is being discarded leading to inefficient estimates. Valid applications of

complete-case analysis tend, therefore, to be limited to a small class of problems.

1.3.2 Single and multiple imputation

A broader approach that makes better use of the data is imputation. Single imputa-

tion consists in estimating one value for each missing observation, leading to a complete

dataset composed of the observed elements and the estimated ones. The parameter of

interest can be easily estimated by conducting a standard analysis for complete data.

Different methods can be used to estimate the missing values. Mean imputation, for

example, replaces the missing values for a variable by the mean of the observed values.

Regression imputation uses the observed values to fit a regression model and predict the

missing values. Note that in both cases only a single value is estimated for each missing

unit. The imputed values are then treated as if they were known values, ignoring a

source of uncertainty and thus leading to an underestimation of the variance.

Multiple imputation (Rubin, 1987) on the other hand, accounts for imputation un-

certainty. Instead of filling in each missing observation with only one value, it generates

multiple values reflecting prediction uncertainties given an imputation model. Multi-
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ple imputation analysis are easy to implement but it demands an intensive computing

effort, since we have to impute many data sets, estimate β, the parameter of interest,

from each one and combine the results into one summary. The method work as follows.

M values are generated (see Shieh (2003)) for each missing observation, resulting in

M completed datasets and in M estimates of β and its variance. These M estimates

are combined using “Rubin rule’s” (see Little and Rubin (2002)) to produce a single

combined estimate to be used for inference. Further applications can be found in Zhou

et al. (2001), Shen (2007) and Stuart et al. (2009).

The success of multiple imputation, however, relies on the model assumed to impute

the data and a wrong model can lead to biased estimates. Another criticism sometimes

made is that it “creates data” instead of using only the observed data.

1.4 Multiphase sampling

Multiphase sampling is useful when collecting full information from all subjects in

the study may be too expensive or even unfeasible. It can be used as a way to reduce

costs while improving statistical efficiency. A 2-phase sampling scheme consists, for

example, in collecting information on variables that are cheap or easy to measure for a

large sample or even entire finite population, and additional variables for a subsample.

The phase-1 data consist of all-subjects information on always-observed variables. The

phase-2 sample consists of those subjects selected for further data collection.

The 2-phase sampling scheme was first introduced in the context of case-control

studies by White (1982). Here the goal was to study an association between a binary

response and a binary exposure variable, adjusted for discrete covariates. The author

proposed to sample individuals from each stratum defined by the combination of re-

sponse/exposure and measuring covariate information for the sampled subjects. Since
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then, 2-phase sampling schemes have become widely used for cost savings, particularly

when some covariates are expensive or hard to measure.

2-phase sampling schemes can also be used for efficiency gains. Zhao et al. (2012), for

example, discuss analytical and numerical approaches to compare 1-phase and 2-phase

designs with respect to their efficiency. The authors assume that the response, as well

as a X-surrogate variable, were fully observed at phase-1 and that X, the expensive

covariate, was only measured for a sample selected from the phase-1 individuals. If

the phase-2 sample is obtained via a simple random sampling taken from the phase-1

population, Zhao et al. (2012) show that the 2-phase sampling scheme is, in general,

more efficient than the 1-phase sampling design. It is especially more efficient when

the relative cost, defined as

R= CI
CC

,

where CC and CI are the cost for observing the complete (response, X andX-surrogate)

and incomplete datasets (individuals with only response and X-surrogate measured),

respectively, is low and the X and its surrogate are strongly correlated. Moreover,

assuming only discrete variables, they also show that a stratified 2-phase design (where

the phase-2 sample is random selected from each stratum defined by the response

and the X-surrogate variables) is more efficient than the “balancing design”, where

the probability of selecting individuals into phase-2 are proportional to the inverses

of stratum sizes (Breslow and Cain, 1988), and that the “balancing design” is more

efficient than the 2-phase design with a simple random sampling scheme. Gains in

efficiency are greater when fine X-surrogates are observed for the phase-1 sample.

Non-response problems can also be viewed as 2-phase problem in cases where the

response is assumed to be random with a probability that depends only on information

available for the phase-1 population. Thus, whether the data is missing by design or
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by happenstance, the same techniques can be applied to solve both problems.

Multiphase sampling is an obvious extension of the 2-phase sampling, where more

detailed information is collected at each phase from a sample of subjects selected from

the previous phase. Subsamples, as pointed out by Lawless et al. (1999) are often

selected based on one of the following schemes:

1. Basic stratified sampling (BSS) : Here the study population is divided in K

strata and a pre-specified number of subjects or a pre-specified fraction of subjects

from each stratum is selected for the next phase.

2. Variable probability sampling (VPS) : Here units are inspected sequentially

as they arise independently and are selected for the next phase with probability

π. For a stratified VPS, each unit has its stratum identified and when the ith

unit belongs to stratum Sj , it is selected for the next phase with probability πj .

Note that, for BSS the sample size nj selected from stratum Sj is considered fixed given

the Njs, the total number of individuals in stratum Sj , while for the VPS the njs are

random. Following the same argument given in the Appendix B of Scott and Wild

(2001), in the stratified sampling case both methods lead to the same likelihood which

is described in the next section.

1.4.1 Sampling scheme

In most of what follows, we are interested in explaining the response Y in terms

of potential covariates X = (X1,X2), assuming a parametric model for the conditional

distribution f(y|x;β), termed the model of interest. The vector parameter β will be

termed the parameter of interest.

Consider the following 2-phase sampling scheme (see figure 1.1). Let (Y ,X1) be
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Figure 1.1: Sampling scheme for a 2-phase study, where the response Y and a covariate X1 are
fully observed at phase-1, but another covariate X2 is only measured at phase-2.

fully observed for all N individuals, which either is, or is regarded as, a sample from an

infinite population. This population or cohort is termed the phase-1 sample. A phase-2

sample is taken from the phase-1 sample with selection depending upon Y and possibly

on X1 as well and X2 is observed. That is, X2 has only been partially observed and full

information regarding (Y ,X1,X2) is only available for those individuals selected into

phase-2. Denote by Ri an indicator variable that is equal to 1 if the ith unit has been

selected for full observation and 0 otherwise and let πi = π(xi,yi) be the probability of

observing Ri = 1 and (X ,Y ), and 1−π(xi,yi) the probability of observing Ri = 0 and

(X1,Y ).

The complete or full likelihood LF which encompasses both complete and incom-

plete data under the missing at random assumption is given by

LF =
∏
i

[π(xi,yi)f(yi|xi;β)g(x2i|x1i)]Ri [(1−π(xi,yi))f(yi|x1i)]1−Ri

where

πi = pr(Ri = 1|xi,yi) = E(Ri|xi,yi), f(yi|x1i) =
∫

x2
f(yi|x2,x1i;β)g(x2|x1i)dx2,

and g is the conditional distribution of X2 given the observed X1 with cumulative
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distribution function G. Notice that the likelihood depends on the selection probability

π(xi,yi), the probability that the ith individual is selected for full observation, which

is assumed to be greater than zero (πi > 0) for all units in the population. If the

probability of selecting a subject depends on the outcome, the sampling scheme is

called response-selective, response-biased or outcome-dependent, which will be the case

throughout this thesis.

Since the selection probability does not involve β and we can write the full likelihood

as

LF (β,g)∝
∏
i

[f(yi|xi;β)g(x2i|x1i)]Ri
[∫

f(yi|x2,x1i;β)g(x2|x1i)dx2

]1−Ri
(1.1)

and its score function SF (β,g) with respect to β is given by

SF (β,g) = ∂

∂β
logLF (β,g)

=
∑

i:Ri=1

∂

∂β
logf(yi|xi;β) +

∑
i:Ri=0

∂

∂β
log
∫
f(yi|x2,x1i;β)g(x2|x1i)dx2.

By setting S i = ∂ logf(yi|xi;β)/∂β, we have that

SF (β,g) =
∑

i:Ri=1
S i(β) +

∑
i:Ri=0

∫
x2

S i(β)f(yi|x2,x1i;β)g(x2|x1i)dx2∫
x2
f(yi|x2,x1i;β)g(x2|x1i)dx2

=
∑

i:Ri=1
S i(β) +

∑
i:Ri=0

E [S i(β)|y,x1] . (1.2)

The first term of equation (1.2) is the score function of the completely observed data and

the second one uses additional information obtained from the incomplete observations.

If all models are correctly specified, methods that are based on equation (1.1) are more

efficient than the methods discussed previously and will be presented next. Use of (1.2)

requires either g known or some sort of consistent estimation of g.
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1.5 Likelihood based methods

Working with the full likelihood (1.1) will generally result in more efficient estimates

than obtained via previous methods. If all data were known, we could just maximize

the likelihood or solve
∑
iS i(β) = 0 which does not involve g so inference would be

straightforward. For the case of missing data, the second term of equation (1.2) depends

on the conditional distribution g(x2|x1), which is usually unknown. One way to work

is to treat the likelihood (1.1) non-parametrically with respect to g(x2|x1).

In a seminal paper, Robins et al. (1994) defined Augmented Inverse-Probability

Weighted (AIPW) estimators, a class of estimators that solve the weighted estimating

equation
N∑
i=1

Ri
πi

S i(β) +
N∑
i=1

(
1− Ri

πi

)
Ai(β) = 0, (1.3)

where S i(β) is defined as before and Ai is an arbitrary function of the phase-1 data.

The most efficient choice for Ai is

Ai = E(S i(β)| observed data) (1.4)

which is equivalent to the second term of (1.2). It can be derived in some cases, but

generally it is hard or even unfeasible to obtain. Methods that are efficient or nearly

efficient and can be implemented are thus of interest. We discuss here pseudo-likelihood

and the empirical likelihood methods.

1.5.1 Pseudo-likelihood methods

Also known as estimated likelihood, the pseudo-likelihood method consists of re-

placing G in likelihood (1.1) by an empirical version and solving the associated score



12 Chapter 1. Introduction

function for β.

Weaver and Zhou (2005) developed an estimator for outcome-dependent sampling

designs with a continuous response. They used a similar sampling scheme to the one

presented earlier, but without a known X1 (so X = X2). Thus, only the response

variable Y was known for the phase-1 population. It was used to define strata from

which samples are selected for full observation. In order to define these strata, the

response variable was divided into K mutually exclusive intervals Ck, k = 1, . . . ,K. A

biased sample will be generated and so a simple global empirical distribution cannot

be used to estimate G(x). But since

G(x) = pr(X ≤ x) =
∑
k

pr(y ∈ Ck)pr(X ≤ x|y ∈ Ck),

an estimative G∗ for G can be given by

G∗(x) =
K∑
k=1

Nk

N
Ĝk(x),

where Nk/N is the proportion of elements in the kth interval and Ĝk(x) is the empirical

cumulative distribution function of X given that it belongs to the kth interval. Lawless

et al. (1999) considered a similar method, but for a slightly different likelihood. They

assume that stratum membership information would be retained for the whole data,

not for only the units in the sample, resulting in a slightly different likelihood but the

same procedure is used to estimate G.

A more sophisticated method was developed by Chatterjee et al. (2003). The re-

quirement of a positive selection probability for every unit in the sample is no longer

necessary, but they assume that
∫
π(y,x)dy > 0 and f(y|x) > 0, almost surely, in a

neighbourhood of the true parameter values. Their method is computationally simple
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for both continuous and discrete outcomes when X1 is discrete. It consists in solving

the pseudo-score function

SP (β;π) =
∑

i:Ri=1
S i(β) +

∑
j:Rj=0

∑
i:Ri=1

Sj(β)h(yj ,x2i,x1j ;β)I(x1j = x1i)∑
l:Rl=1h(yj ,x2l,x1j ;β)I(x1j = x1l)

= 0 (1.5)

where

h(y,x;β) = f(y|x;β)
π(x)

and I(X1j = X1l) is an indicator variable equal to 1 if X1j = X1l and 0 otherwise. Note

that the second term in equation (1.5) is, in a sense, a weighted version of the score

function S. Although this equation can be solved by a Newton-Raphson algorithm,

the authors suggest a different algorithm that, under regularity conditions and starting

with a known consistent estimate, converges to a solution of SP (β;GN , π̂) = 0, where

π̂ is an estimate of π. This method is also almost fully efficient in their simulations, as

shown by Chatterjee et al. (2003) and Zhao et al. (2009), except for extreme parameter

values.

Both methods are most useful when the phase-1 variables are discrete, since G

can be easily estimated. For more general situations, McLeish and Struthers (2006)

suggest using kernel density estimators and Monte Carlo methods to estimate (1.4),

using X generated from a suitable family of distributions and averaging the results or

evaluating the integral using the observed values of X . Chatterjee and Chen (2007),

following Chatterjee et al. (2003), suggested estimating β by solving an estimating

equation given by

SP (β;π) =
∑

i:Ri=1
S i(β) +

∑
j:Rj=0

E
{

Sj(β)h(yj |x1,x2;β)|x1j ,R= 1
}

E
{
h(yj |x1,x2;β)|x1j ,R= 1

} = 0 (1.6)

using the kernel smoothing approach to estimate the conditional expectations. Their
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approach is similar to the one developed by Carroll and Wand (1991), except that

Chatterjee and Chen propose to partition X1 into a fixed number of strata and to

apply the kernel smoothing approach within each stratum separately.

1.5.2 Semiparametric maximum likelihood methods

Semiparametric maximum likelihood methods are usually the most efficient ones,

achieving full semiparametric efficiency in some important special cases. The idea

behind this approach is to estimate G non-parametrically and solve the resulting score

functions obtaining consistent estimates for β, the regression coefficients.

Zhang and Rockette (2005) studied two different ways to maximize the complete

likelihood function considering the covariate distribution unspecified. The first one,

denoted by the global maximum likelihood estimates (MLE), is obtained by maximizing

(1.1) over G and β simultaneously, which might be very difficult, since G can be

distributed in rather arbitrary ways. A simpler approach is to consider a restricted

MLE, where the covariate distribution is restricted to the set of probability measures

concentrated on the observed values. The existence of both MLEs was shown under

simple conditions, and some asymptotic results were established. The authors showed,

for example, that both estimators are strongly consistent, asymptotically normal and

semiparametric efficient (Zhang and Rockette, 2005, 2007), which makes the restricted

MLE a good option in semiparametric maximum likelihood estimation.

As pointed out by Zhao et al. (2009), there are three choices for the support of

G(x2i|x1i):

• the whole sample space X (resulting in the global MLE);

• the observed sample X = {xi :Ri = 1} (resulting in the restricted MLE);
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• the observed sample given that X1i = x1, i.e., X = {xi : Ri = 1 and X1i = x1}

(resulting in the so-called doubly restricted MLE).

All three supports are very similar if X is discrete and contains only a few categories

and so the first support can be used to maximize g. Otherwise, if X is continuous

or discrete with too many levels, it is better to choose the second or third ones as

the support of G(x2i|x1i). From Zhang and Rockette (2005), we have that all three

supports are asymptotically equivalent if X1 is discrete. McLeish and Struthers (2006)

use Monte Carlo simulations to estimate the integral (1.4), using the global MLE and

the restricted MLE. The authors show that these two methods are closely related. Zhao

et al. (2009) use the EM algorithm for computation and compared the performance of

the restricted and doubly-restricted likelihood for a finite sample size in situations

where certain variables are difficult or expensive to measure. The authors discuss

three different situations: the “expensive covariate” setting, where partial information

is measured only for a sample of the phase-1 data; the “expensive response” problem,

where only partial covariates and an auxiliary variable related to Y are measured at

the phase-1 and X is observed only for selected individuals; and finally a combination

of both situations. The authors noticed that the results were very similar and so there

is hardly any difference between using the restricted or the doubly-restricted likelihood.

Empirical likelihood

By restricting the support of G to the observed values, we are, in a sense, using

an empirical estimate of it. This is closely related to the empirical likelihood method

introduced in biased sampling problems by Qin (1993). It soon became an alternative

method for solving response-selective and missing data problems. Qin and Lawless

(1994), for example, studied estimating functions and empirical likelihood in problems
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related to incomplete information in semiparametric models and Zhou et al. (2002,

2007) proposed a new estimator based on the empirical likelihood approach for response-

selective problems.

The idea of the empirical likelihood is to maximize

lf = logLF =
∑

i:Ri=1
log(f(yi|xi;β)) +

∑
i:Ri=1

log(g(x2i|x1i)) +
∑

i:Ri=0
log(f(yi|x1i)) (1.7)

over g under the following constraints

g(xi|x1i)> 0,
∑
i

g(x2i|x1i) = 1 and f(yi|x1i) =
∫
f(yi|x1i,x2;β)g(x2|x1i)dx2.

(1.8)

Maximization of g should be carried over all distributions whose support contains

the observed values but, following Owen (1988, 1990), only discrete distributions with

jumps at each of the observed points need to be considered.

The regression coefficients are obtained by maximizing the resulting likelihood

L(β, Ĝ) over β, where Ĝ is an estimate of G. It avoids the estimation problem of

an infinite-dimensional parameter by transforming it into a problem of a finite number

of parameters, which is, in the worst case, of the same size as the sample.

Wang and Zhou (2006) use the empirical likelihood method to derive fully efficient

estimates for the following 2-phase outcome dependent problem. Let Y = {1, . . . ,L} be

a categorical response, X = {X1, . . . ,XJ} the covariate matrix and X1d = {1, . . . ,K} a

categorical auxiliary variable for X1. All variables are known for every subject in the

study, except for X1, which is observed only for a phase-2 sample selected from the

phase 1 subjects. This sample is obtained by a simple random sample of size n0 from

all of phase-1 population plus an additional sample from each strata {Y = l,X1d = k}
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of size nlk, for l = 1, . . . ,L and k = 1, . . . ,K. The resulting likelihood is given by

L(φ,G(x,x1d)) =
{∏
i∈V

f(yi|xi;β)
}{∏

i∈V
g(xi|x1di)

}{
K∏
k=1

L∏
l=1

hlk
−nlk

}
,

where V denotes the set of all individuals selected into phase 2, nlk =
∑
i I(Y i =

l,X1di = k), for i ∈ V , and hlk ≡ pr(y = l|x1d = k) =
∫

pr(y = l|x)dG(x|x1d = k). In

order to estimate φ = (β,hlk)′, we first profile the above likelihood with respect to

pik = g(xi|x1di = k) over all distributions whose support contains the observed X val-

ues, with the constraints (1.8). That is, we maximize

H(φ,pik) =
∑
i∈V

logf(yi|xi) +
K∑
k=1

∑
i∈Vk

logpik−
K∑
k=1

L∑
l=1

nlk loghlk+

+
K∑
k=1

tk

1−
∑
i∈Vk

pik

+
K∑
k=1

λk
∑
i∈Vk

pik (hik−f(yi|xi)) ,

where tk and λk are the two Lagrange multipliers from the two constraints (1.8). Using

the fact that pik is a probability, we get

tk = nk and pik = 1
nk

1
1 +λk (f(yi|xi)−hlk)

,

with restriction
1
nk

∑
i∈Vk

f(yi|xi)−h1k
1 +λk (f(yi|xi)−h1k)

= 0, (1.9)

where λk = n1k/(nkh1k)−n2k/(nkh2k). Since λk is not centred around zero, the authors

make the change of variable νk = λk−n1k/(nkh1k) +n2k/(nkh2k) so that νk is centred

around zero. Estimates can now be obtained solving the score equations ∂ logL/∂β= 0,

∂ logL/∂h= 0 and ∂ logL/∂ν = 0.

Wang et al. (2009) follows the same procedure, but for a slightly different likelihood.

They consider that stratum membership is known for every subject in the study so that
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the exponent of hlk is Nlk−nlk, where Nlk is the total number of subjects with Y = L

and X1d = k.

Scott and Wild approach

A close related procedure was used by Scott and Wild (1997, 2001, 2006) to obtain

fully efficient estimators (see Lee and Hirose (2010)) for response-selective problems

for empty X1. The authors suggest maximizing the likelihood (1.1) over pj , where

pj = g(xj), under the constraint
∑
j pj = 1, and then maximize the resulting function

over β. Their work focuses on the case where both response and covariates are discrete

and derive fully efficient estimates. We will now explain this approach in some detail.

The simplest version consists of N individuals divided into two strata according to their

disease-status. Random samples of sizes n1 and n2 are selected from the diseased and

disease-free groups, respectively. Let Y = 1,2, . . . , I. The likelihood is given by

L=
I∏
i=1

ni∏
j=1

pr(xij |y = i),

which can be written as

L=
I∏
i=1

ni∏
j=1

pr(y = i|xij ;β)g(xij)
pr(y = i)

=
I∏
i=1


ni∏
j=1

pr(y = i|xij ;β)g(xij)


{∫

pr(y = i|x;β)dG(x)
}−ni

. (1.10)
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If stratum membership is known for each element and supposing that the total popu-

lation is composed of N1 cases and N2 controls, the likelihood can be written as

L=
I∏
i=1


ni∏
j=1

pr(xij |y = i)

pr(y = i)Ni

=
I∏
i=1


ni∏
j=1

pr(y = i|xij ;β)g(xij)


{∫

pr(y = i|x;β)dG(x)
}Ni−ni

Note that, in both cases the likelihood depends on g(x), which is of no interest in its

own right, as we have noted, and usually too complicated for modelling. The standard

form of analysis results from Anderson (1972) and Prentice and Pike (1979). They have

shown that, for the binary logistic regression model with an intercept (later extended

to a broader class called “multiplicative intercept models” by Scott and Wild (1997)),

maximum likelihood estimates for all regression coefficients except for the intercept can

be obtained by ignoring the case-control scheme, i.e., the case-control problem can be

treated as a prospective one. The intercept, as shown by Scott and Wild (1986), can

subsequently be adjusted by using an offset α given by

α= β+ke,

where β is the vector of logistic regression parameters, e= (1,0)T and k is the log-ratio

of the selection probability of cases to those of controls.

Scott and Wild (1997) derived fully efficient estimates based on the restricted likeli-

hood for simple and stratified case-control studies, later extended to include situations

where additional information from subjects selected for the case-control study is avail-

able (Scott and Wild, 2001). Both papers present an algorithm to obtain estimates of

β, which is also discussed and improved in a later work (Scott and Wild, 2006). Here,

in addition to estimating β for problems involving missing data and response-biased
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sampling, they discuss computational issues regarding estimation of G and propose

different parametrizations that take care of constraints and that also reduce computa-

tional costs. The authors, for example, show that by just profiling the likelihood (1.7)

with respect to G, we may end up with a very large array, which is of the dimension of

X or, in the worst case where X has no replicated data or is continuous, of the same

size of the data. For a discrete response, however, they show that a great reduction in

dimensionality can be obtained. If X is also discrete and K is the multiplicity of Y , it

can be shown that the problem is now reduced to (K−1)-dimensions, which is usually

much smaller than the dimension of X .

Equivalence between Empirical likelihood and Scott and Wild’s approach

Scott and Wild’s approach and the Empirical Likelihood method for dealing with

G seem to be essentially the same except for the constraints used to maximize equation

(1.7) with respect to g(x2i|x1i). The latter method uses an extra constraint regarding

the expected value of f(yi|x1i) and so it is worth verifying if both methods are essen-

tially the same. That is, we want to check if this extra constraint is already satisfied

using Scott and Wild’s approach.

Notice that the likelihood used by Wang and Zhou (2006) reduces to the one used

by Scott and Wild (2006) when n0 = 0 (no SRS sample) and no auxiliary variable. In

such a case, the restriction (1.9) obtained by Wang and Zhou becomes

1
n

∑
i∈V

(
f(y1|xi)−h1

1 +λ{f(y1|xi)−h1)

}
= 0, (1.11)

or, after some algebra,

1
n

∑
i∈V

(
f(y1|xi)−h1

n1
nh1

f(y1|xi) + n2
nh2

f(y2|xi)

)
= 0, (1.12)
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where hi = pr(y = i), i = 1,2, n is the number of individuals selected for phase-2 and

f(yi|xi) = pr(y = 1|xi). We want to show that this equation is already satisfied by

Scott and Wild’s approach.

Scott and Wild maximize the likelihood (1.10) with respect to pj = g(xj) subject

to the constraint
∑
j pj = 1, obtaining the restriction

∑
j

(
n

µi
f(yi|xj)

1∑
lµif(yi|xj)

)
= ni where µi = ni∑

j pjf(yi|xj)
. (1.13)

So, for i= 1, we have that

∑
j

(
n
n1
h1
f(y1|xj)

1∑
l
nl
hl
f(yl|xj)

)
= n1

which reduces to ∑
j

(
f(y1|xi)−h1

n1
h1
f(y1|xj) + n2

h2
f(y2|xj)

)
= 0.

This is equivalent to (1.12). Scott and Wild’s method is therefore equivalent to the

empirical likelihood method.

In general, if the outcomes of interest Y and X1 are both discrete, most methods

described before can be fully or nearly fully efficient. If X1 is continuous, the usual

approach is to discretize it into different categories and use the exact values only at the

second phase of the study. This clearly leads to losses of efficiency and is slight worse

than using the kernel approach discussed earlier after equation (1.6) (Chatterjee and

Chen, 2007).

Next we consider another two other methods that have an intuitive appeal: the

Horvitz-Thompson estimator and the calibration method. Both methods belong to a

much broader class of estimators, defined by Robins et al. (1994) as the Augmented
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Inverse-Probability Weighted (AIPW) estimators, previously discussed. Both methods

are commonly used in survey sampling and will also be considered throughout this

thesis.

1.5.3 Weighted method

The weighted method, also known as the Horvitz-Thompson method (Horvitz and

Thompson, 1952) or the inverse probability weighting IPW, is a common choice in

practical use because it is easy to implement and robust under model misspecification, in

the sense that it estimates the same quantities that we would be estimating if applying

the same models to data from the full cohort.

This method consists in weighting each unit by the inverse of its probability of being

selected for full observation. The weights can be seen as the number of times that each

sampled unit should be replicated to represent the entire population and are usually

known by design. For a 2-phase study the pseudo-loglikelihood function can be written

as

lw(β) =
∑

i:Ri=1

1
πi

logf(yi|xi;β)

The weighted approach is also commonly used in multi-phase studies since it can be

easily generalized. For example, consider a study with J+1 phases. The probability of

a unit being selected for full observation is πi = π1i×π2i×·· ·×πJi, i= 1, . . . ,n, where

πji is the probability of the ith subject currently in phase j being selected for phase

j+ 1, j = 1, . . . ,J . For a 2-phase study, J = 1 and πi = π1i.

To make inferences about β, the parameter of interest, we have to solve the score

function

Sw(β) =
∑

i:Ri=1

1
πi

∂

∂β
logf(yi|xi;β) =

∑
i

Ri
πi

S i(β).
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Note that this method uses only the completely observed data ignoring the incomplete

ones and so it can give quite inefficient estimates in some cases.

1.6 Calibration

Calibration is a common technique in survey sampling when the survey is affected

by non-response and estimation of population totals is required (Estevao and Sarndal,

2006). Calibration has gained popularity in real applications because it relies on natural

constraints and provides estimates that are easy to interpret and approximately unbi-

ased. It makes use of auxiliary information to adjust the sampling weights, providing

more precise estimates of β, the parameter of interest.

Calibration is more easily understood in terms of the estimation of population totals.

Here we are interested in estimating the population total of a variable y, which was

only observed for individuals in a selected sample. Let, as before, Ri be an indicator

variable equals to 1 if the ith was selected and 0 otherwise.

The Horvitz Thompson estimator, here denoted by TH , is

T̂H =
∑

i:Ri=1

1
πi
yi.

It gives unbiased but often inefficient estimates of the population total T =
∑
i yi. The

calibration method uses an auxiliary variable X which is related to Y and whose pop-

ulation total is known to modify the weights so that the weighted sample-total of

X-values gives the known population total exactly. That is, the calibration weights hi

must satisfy the calibration constraints

∑
i:Ri=1

wix1i =
∑
i

x1i, (1.14)
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where wi = hi/πi. The calibration weights make the total estimated and known pop-

ulation totals for X agree. As discussed by Lumley (2010), hi will give more weight

to cases where the weighted sample total is too small and downweight large values of

X when the weighted sample total is too large. The calibration estimator T̂C is then

given by

T̂C =
∑

i:Ri=1
wiyi (1.15)

and is related to the Horvitz-Thompson estimator as

T̂C = T̂H +
∑

i:Ri=1
(wi−di)yi.

Here di is the design weight 1/πi and calculation of the wis has yet to be discussed.

Since the weighted estimator is unbiased, the resulting bias for the calibrated method

is given by

E(T̂c)−Y = E

 ∑
i:Ri=1

(wi−di)yi

 .
Thus, provided that there are small deviations between the calibrated weights and the

design weights, the resulting estimates are nearly unbiased. Therefore, the goal is to

obtain {wi} to minimize some distance function, Q(wi,di), such that (Sarndal, 2007),

for every wi > 0, i= 1, . . . ,N ,

• Q(wi,di)> 0;

• Q(di,di) = 0;

• Q(wi,di) is strictly convex;

• q(wi,di) = ∂Q(wi,di)/∂wi, where q is continuous.

Different distance functions lead to different sets of calibration weights. The function

Q(wi,di) =
∑
i(wi− di)2/2divi, for instance, where vi is a positive scale factor, leads
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to so-called regression estimator method. The calibration constraints are satisfied for

any choice of positive scale factors vi, but different vis lead to different estimators. For

example, if xi is a positive scalar and if vi = 1/xi, we get the ratio estimator (Sarndal,

2007).

Some estimators may lead to negative weights, which can be avoided by using

raking or post-stratification. If variables with known population totals were not used

to stratify the study population, post-stratification adjusts the design weights d by

correcting group sizes as they would be in stratified sampling. If there is more than

one variable, however, we may not be able to perform post-stratification since a cross-

classification of the variables would be required, generating many groups and increasing

the chance of having no subject belonging from a specific group. We are then unable

to adjust the weights. Raking solves this problem by post-stratifying on each set of

variables at a time and repeating this process until the weights stop changing. It

allows multiple grouping variables to be used without constructing a complete cross-

classification (Lumley, 2010).

Each method is associated with a specific distance function and specific calibrated

weights. As point out by Lumley (2010), these methods, as well as linear regression,

have been used before the theory was formulated, but it is interesting to note that

calibration encompasses not only these methods but many more. Further discussion

regarding different distance functions and their relations can be found in Deville and

Sarndal (1992).

1.6.1 Calibration for a 2-phase study

Calibration can also be applied to 2-phase problems where partial information is

available for a finite population and full observations are provided for only a sample of
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units (Deville and Sarndal, 1992; Breslow et al., 2009).

As noted by Lumley et al. (2011), the regression estimator

T̂yreg =
∑
i

Ri
πi
yi+

(
1− Ri

πi

)
x1iβ̂,

results in the augmented inverse-probability weighted (AIPW) estimator proposed by

Robins et al. (1994) (see equation (1.3)) if yi is replaced by Si(β). The optimal choice

for the auxiliary variable which minimizes the variance of the parameter estimates is

E {S(β)|y,x1}, as given by equation (1.4), where Y and X1 are variables known for

every subject in the study. However, since these optimal auxiliary variables depend on

the marginal distribution of X , they are not generally available and must be estimated.

Breslow et al. (2009) describe a plug-in method for approximating the conditional

expectation credited to Kulich and Lin (2004), which works as follows:

1. The first step consists in developing predictive models for each missing variable

given variables known for all, using a linear or logistic regression model fitted by

IPW to the phase two data.

2. Using the models from step 1, estimated values for the missing variables are

imputed from the phase-1 data, resulting in a “complete” dataset formed by the

estimated and the true values.

3. The model f(yi|xi;β) is fitted to the “complete” dataset.

4. Use the influence functions from the model fitted in step three as auxiliary vari-

ables in calibration. These are the estimates of the optimal auxiliary variables

discussed before and are used to construct the calibration equations. Adjusted

weights wis are function Q obtained by minimizing a given distance
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5. Estimate β from the phase two data using the adjusted weights wi obtained in

step four.

Note that only step three requires iteration. Unlike previous methods, no iteration is

required to estimate β, since the parameters are estimated after the adjustment of the

weights has been done.

1.7 Outline

Most of the work proposed in the literature for missing data is concerned with

discrete response or discrete phase-1 variables. In this thesis we propose a new method

that is more flexible in the sense that it does not require a discrete distribution for

the fully observed variables. Unlike most methods that discard extra cheap and easy

to observe variables that were not used for selecting the final sample nor fitting the

model of interest, our proposed method makes use of all available information in a

fairly simple way. It may also lead to large gains in efficiency. Zhao et al. (2012), for

example, show that cheap surrogates can substantially improve efficiency of a stratified

2-phase design and conclude that ”developing computation software for the stratified

2-phase sampling design is valuable”. Our work attempts to overcome this issue.

The flexibility of the proposed method allows it to be applied to non-response

problems, under the MAR assumption, and more generally to situations where the

phase-2 sample was not obtained from a stratified sampling scheme. That is, the

proposed method allows us to fit a saturated model for the selection probability, making

use of the entire information available in the study.

This thesis is set out as follows. In chapter 2 we discuss a semiparametric estima-

tor due to Scott and Wild (2011). Their work was restricted to the discrete response
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problem and the authors did not discuss asymptotic properties of the proposed esti-

mator. In this chapter we extend Scott and Wild (2011) approach, deriving unbiased

estimating equations for both discrete and continuous responses and we conclude this

chapter by deriving asymptotic results of the proposed estimator.

In chapter 3 we discuss the proposed method for 2 and 3-phase problems, assuming

that the response is binary. We perform a more detailed analysis than previously done

by Scott and Wild (2011), using simulated data to compare its performance with that of

several commonly-used estimators on a variety of scenarios that had not been previously

considered. We also discuss its performance under the assumption of correctly specified

and misspecified models. Finally, the proposed method is used, for the first time, to

analyse a real dataset from the Women Health Initiative study (Rossouw et al., 2002).

In chapter 4 we assume that the response Y is continuous, following a generalized

normal, skew-normal or a T-distribution, and study its efficiency through simulations.

Its robustness is also analysed through simulations, but a more theoretical approach is

also considered. If all models are correctly specified, likelihood based methods can be

fully efficient but slight model misspecifications lead to increasing bias. Thus, following

Lumley (2013) approach, we compare the proposed method against the best AIPW

(Robins et al., 1994) estimator using nearly-correct model, so that we could obtain

a threshold where the more robust AIPW estimator becomes more efficient than the

proposed one.

Chapter 5 discusses the similarities and differences between the proposed method

and the propensity score approach. We start by reviewing how propensity scores have

been applied in the literature and conclude the chapter by combining both approaches

in order to increase robustness.

Chapter 6 generalizes previous chapters by considering a broader sampling scheme.
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Here we allow the response Y to be partially observed, but a correlated variable V to

be fully observed for all individuals. Unlike in Neuhaus et al. (2006) and Jiang et al.

(2006) where both Y and V were considered discrete, we allow each or both variables to

be continuous. We develop estimating equations for the more general sampling scheme

and conclude this chapter by analyzing another real dataset.

In chapter 7 we study the efficiency of the proposed method for both discrete and

continuous responses. We start by showing its equivalence to the Scott and Wild (1997)

method for binary responses, concluding that the proposed method is thus fully efficient

in this case. We also derive the efficiency bounds for any semiparametric estimator and

use it to study the asymptotic efficiency of the proposed method in different scenarios.

In chapter 8 we give a general conclusion of this dissertation and discuss some

potential topics to extended the propose methods in future research.
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2
Conditional Maximum Likelihood

In this chapter we study another technique to deal with missing response-selective

data, the so-called conditional maximum likelihood method (CML), which is often a

simple and efficient way to deal with missing information. Some advantages are its easy

implementation, especially for the important binary case, and the fact that it can be

fully efficient if some assumptions are satisfied.

We start by presenting the CML method and discussing the extensions made by

Scott and Wild (2011). The proposed method is shown to be very flexible, making

use of information that is usually discarded by more common approaches, and thus

producing better estimates, as will be shown through simulations in chapters 3 and 4.

Later we extend Scott and Wild (2011) approach by first deriving unbiased esti-

mating equations for not only the discrete response case, as done by the authors, but

also for the continuous case, and by deriving asymptotic properties for the proposed

estimator.

31
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2.1 Introduction

Suppose that we observe a response Yi, i= 1,2, . . . ,N , generated from the joint dis-

tribution f(x,y) = f(y|x;β)g(x), where X is a set of covariates and N is the population

size. The disease-status Y (Y = 1 denoting a case and Y = 2, a control) and exposure

history are observed for all N individuals (know as phase-1 data). These individuals

are further classified into different strata Sj , j = 1, . . . ,J,, based on the disease/exposure

combination and samples (known as phase-2 sample) of size nij are taken from each

stratum and the remaining information is measured. Note that only the phase-2 sample

was fully observed. Our goal here is to predict the response Y in terms of the covariates

X .

To this end, Breslow and Cain (1988) suggest estimating the regression coefficients

β using an adaptation and extension of the conditional likelihood method of Manski

and McFadden (1981). The authors work with a pseudo-likelihood function based on

the conditional probability of being a case (i=1) or control (i=0) given that a member

from stratum j, with regression variables X , was selected for the phase-2 of the study.

Using Bayes theorem, this conditional probability can be rewritten as

nij
n pr(x|S = j,Y = i, sampled at phase-2)∑
l
nlj
n pr(x|S = j,Y = l, sampled at phase-2)

. (2.1)

Wild (1991) shows that the resulting likelihood from (2.1) is actually a conditional

likelihood not for the standard case-control sampling but for a slightly different condi-

tional sampling scheme. Instead of taking samples of fixed size ni from each group, as in

Breslow and Cain (1988), we first choose Y = i with probability ni/n, where n=
∑
ini,

and then sample X from pr(x|Y = i), resulting in samples of random rather than fixed

size. The likelihood utilized by Breslow and Cain (1988) can be obtained by noticing
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that they considered the finite population also to be a case-control sample rather than

a prospective one.

Note that the probability (2.1) considers only the completely observed data and

that the selection probability was estimated by the ratio of elements in stratum (i, j)

among all individuals. By Bayes theorem, a more general equation can then be written

as

fc = pr(Yi = 1|Ri = 1,xi;β) = π(yi,xi)f(yi|xi;β)∑
lπ(yl,xi)f(yl|xi;β) , l = 0,1 (2.2)

where

π(yi,xi) = pr(Ri = 1|yi,xi)

and Ri is an indicator variable that equal to 1 if the ith unit has been selected into

the next phase of the study or 0 otherwise. Here, and for everything that follows, we

assume that each unit is independently selected for inclusion into the next phase of the

study (i.e., Ri for i= 1, . . . ,N are independent) and that each individual has a positive

probability of being selected for further observation (i.e., π(y,x)> 0).

Notice that in the important case of a logistic regression model, logit{pr(Y =

yi|xi;β)}= xβ, the conditional probability still follows a logistic distribution, but with

an offset added. That is, for a binary response,

pr(Yi = 1|Ri = 1,xi;β) = eoi+xTi β

1 +eoi+xTi β
, (2.3)

where oi is an offset given by

oi = log
(
π(Yi = 1,x1i)
π(Yi = 0,x1i)

)
(2.4)

where X1 is a covariate fully observed at phase-1. The remaining covariate X2 is
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observed only at phase-2. It was assumed that π(y,x) = π(y,x1), i.e., the selection

probability depends only on variables fully observed at phase-1. The selection proba-

bility π in many cases is controlled by the researcher and so inferences can be made by

using standard logistic regression software that allows the inclusion of offsets. We can

estimate the parameters of interest by solving

S0(β,π) =
∑
i

S0i = ∂

∂β
`(β,π) = 0, (2.5)

for β, where S0 is the score function and `= log
∏
i f , the log-likelihood.

Hsieh et al. (1985) showed that, with fixed π, the estimates are consistent and

asymptotically normal with variance ACov given by

ACov(β) = III−1
00 CCC00III−1

00 (2.6)

where III00ij = E{−∂S0i/∂β
T
j }, the element (i, j) of the information matrix III00, and

CCC00ij = Cov{S0i,S0j}.

2.2 Selection probabilities unknown

Suppose now that we are interested in estimating the selection probability π. Robins

et al. (1994) showed that gains in efficiency can be obtained by estimating selection

probabilities π even if they are known by design. This result is not as paradoxical

as it seems; by estimating the πs we are actually using extra information from the

incomplete data that are not used when the true fixed-by-design probabilities are used.

As noticed by Lumley et al. (2011), we introduce some error while estimating these

probabilities, but the gain in precision is large enough to overcome this error so that

this approach will be at least as efficient as using the true selection probabilities. This
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result is particularly interesting for the weighted and conditional likelihood methods

since both methods estimate β by solving the score equations of the form

S0(β,π) =
∑
i

RiWi(yi,xi;β,π) =
∑
i

S0i, (2.7)

where

Wi(yi,xi;β,π) =


1
πi

∂
∂β logf(yi|xi;β), for the weighted method

∂
∂β logf(yi|Ri = 1,xi;β,π), for the conditional likelihood method

Both approaches depend on the selection probability π and their efficiencies can be

improved by estimating the selection probabilities.

2.2.1 Modelling the selection probabilities

To facilitate discussion of estimating selection probabilities, we assume a parametric

model πi(α) = π(x1i,yi;α), where X1 and Y are observed for all phase-1 population

so that α can be estimated from the completely-observed data. The remaining variable

X2 is only observed at phase-2.

We now need to estimate both the parameter of interest β and also α, the parameter

of the selection model π. We do this by combining the estimating equation (2.7) with

another estimating equation for α. This allows us to incorporate the uncertainty in the

estimation of α when estimating the variance of β̂. We further assume that units are

selected for full observation independently. Since a unit is selected for full observation

according to a Bernoulli distribution with parameter πi(α), its score function S1 can
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be written as

S1(α) = ∂

∂α

∑
i

[Ri logπi+ (1−Ri) log(1−πi)] (2.8)

=
∑
i

[ (Ri−πi)
πi(1−πi)

∂πi
∂α

]

=
∑
i

S1i,

and we estimate α by solving S1(α) = 0. The resulting combined estimating equations

are then given by

S(φ) = S(β,α) =

 S0(β,α)

S1(α)

 (2.9)

and estimates φ̂T = (β̂T ,α̂T ) are obtained by setting S(φ̂) = 0. The resulting estimators

are consistent and asymptotically normal under mild regularity conditions (Scott and

Wild, 2011). The asymptotic covariance ACov(φ) matrix is given by

ACov(φ) = III−1CCC
(
IIIT
)−1

.

Here,

III = E

{
∂S
∂φ

}
=

 III00 III01

0 III11

 ,
and

CCC = Cov{S}=

 CCC00 CCC01

CCC10 CCC11

 .
The asymptotic covariance matrix for β̂ is given by

ACov(β̂) = III−1
00 CCC00III−1

00 −III
−1
00 CCC01III−1

11 CCC
T
01III−1

00 . (2.10)
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Expression (2.10) can be simplified using the following result due to Scott and Wild

(2011)

Result 2.1 (Scott and Wild (2011)). Let S0 and S1 be defined as in equations (2.7)

and (2.8), respectively. Then, Cov(S0,S1) = III01, where III01 =−∂S0/∂α1.

Applying result 2.1, (2.10) becomes

ACov(β̂) = III−1
00 CCC00III−1

00 −III
−1
00 III01III−1

11 III
T
01III−1

00 . (2.11)

The first term of the equation (2.11) is obtained when the known πis are used (see

equation (2.6)) and so the second one represents the effect of estimating the selection

probability. The last term is non-negative definite which means that the asymptotic

variance will be, at worst, equal to the one obtained when the known selection proba-

bilities are used. In other words, we are better off estimating the πis instead of using

the true values, even if they are known by design.

Insights about the role of including additional variables in the selection model follow

from writing equation (2.11) as

ACov(β̂) = III−1
00 CCCRIII

−1
00 , where CCCR = CCC00−III01III−1

11 III
T
01. (2.12)

As noticed by Scott and Wild (2011), CCCR is the covariance matrix of the residual vector

when S0(φ) is regressed on S1(φ), i.e., CCCR = infBCov{S0−BS1}. The reduction

depends not on the effect of estimating π, but on the predictive relationship between

the score function from the selection model and S0. So, if X can take only a finite

number of values, the optimum solution would be to include a saturated model of all

variables into the selection model and this can be done if sample sizes are large enough

so that over-parametrization is not an issue.
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These results can be extended to a three-phase sampling problem. Here, partial

information on the response variable as well as some covariates, X1, say, are known

from all members, termed the phase-1 sample, constructed or treated as a sample of

an infinite population. A sample is then taken from the phase-1 data and additional

information, X2, say, is measured. A phase-3 subsample is finally taken from the

phase-2 sample and the remaining information is collected. Note that there are now

two selection probabilities to be estimated (phase-1 R1=1−→ phase-2 R2=1−→ phase-3) and

only individuals with R1R2 = 1 will be fully observed. As before, we fit a parametric

model for pr(R1 = 1|y,x1;α1), which we will write as π1(α1) = π1(y,x1;α1) and for

pr(R2 = 1|y,x1,x2,R1 = 1;α2), which we will write as π2(α2) =π2(y,x1,x2;α2). Fitting

these two binary regression models results in score functions

S1(α1) =
∑
i

(
R1i−π1i
π1i(1−π1i)

∂π1i
∂α1

)
and S2(α2) =

∑
i

(
R2i−π2i
π2i(1−π2i)

∂π2i
∂α2

)
.

The parameter φ= (βT ,αT1 ,αT2 )T can then be estimated by solving

S(φ) = S(β,α1,α2) =


S0(β,α1,α2)

S1(α1)

S2(α2)

=
∑
i

S i = 0. (2.13)

With the same argument as in result 2.1, we can also show that Cov(S0,S2) =III02 and

III =


III00 III01 III02

0 III11 0

0 0 III22

 .
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The asymptotic covariance matrix can now be written as

ACov(β̂) = III−1
00 CCC00III−1

00 −III
−1
00 III01III−1

11 III
T
01III−1

00 −III
−1
00 III02III−1

22 III
T
02III−1

00 .

As before, the first term is obtained when the true values of πis are used and the last two

are due to estimating both selection probabilities. Again, both terms are non-negative

and so it is always better to estimate the πis rather than using the true values.

2.3 Additional information

In previous sections we estimated the parameter of interest β by setting S(φ) = 0.

Notice, however, that we have not used the entire information provided by the data.

Since both the weighted and the conditional maximum likelihood methods depend on

α through π, the quantity

S̃1 = ∂ logfc
∂α

(2.14)

for the CML, where fc= f(yi|Ri = 1,xi;β,α), and

S̃1 = ∂

∂α

logf
π

(2.15)

for the weighted method, where f = f(yi|xi;β), can be used to improve our estimates.

An important point that rises is how this extra information should be added. Scott

and Wild (2011) use a linear combination, resulting in the estimating equation

Sλ = S +λS̃, where S̃ =

 0

S̃1

 , (2.16)
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for a 2-phase sampling scheme, where λ is assumed to be a scalar and S is given by

(2.9). By checking for asymptotic efficiency, Scott and Wild (2011) showed that the

optimum value of λ is -1. Their result, however, is only valid when the response is

discrete. Here we provide a more general result, which is valid whether the outcome is

discrete or continuous. We also provide asymptotic results that were not considered in

Scott and Wild (2011). We will consider the two approaches, CML and the weighted

method, separately.

2.3.1 CML method

Our goal here is to find λ that minimizes the asymptotic variance, allowing the re-

sponse Y to be discrete or continuous. Semiparametric efficiency will then be discussed

later in chapter 7.

By using the estimating equations Sλ = S +λS̃, the information and covariance

matrix are given by

IIIλ =

 III00 III01

III10 +λĨII10 III11 +λĨII11

 , (2.17)

where ĨII10 = ∂S̃1/∂β and ĨII11 = ∂S̃1/∂α, and

CCCλ =

 Cov(S0,S0) Cov(S1 +λS̃1,S0)

Cov(S1 +λS̃1,S0) Cov(S1 +λS̃1,S1 +λS̃1)

 (2.18)

respectively. The asymptotic covariance matrix ACovλ is now given by III−1
λ CCCλ

(
IIITλ
)−1

and the optimum value of λ is given by the following proposition.

Proposition 2.1. The asymptotic covariance matrix ACovλ is minimized for λ=−1.

Proof. For proof the proposition, we need two results.
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Result 2.2. Let fc = f(y|x,R= 1;β,α) and S0 and S̃1 be given as in (2.5) and (2.14),

respectively. Then, Cov
(
S0, S̃1

)
= III01.

Proof. For the proof, first note that

∂2 logfc
∂β∂α

= ∂

∂α

( 1
fc

∂fc
∂β

)
= −1
f2
c

∂fc
∂α

∂fc
∂β

+ 1
fc

∂2fc
∂β∂α

. (2.19)

Now,

Cov
(
S0, S̃1

)
= E

(
S0S̃1

∣∣∣ x)
=
∫
∂ logfc
∂β

∂ logfc
∂α

pr(R= 1,y|x; )dy

=
∫
π
∂ logfc
∂β

∂ logfc
∂α

f (y|x;β)dy

=
∫
π

(
−∂2 logfc
∂β∂α

+ 1
fc

∂2fc
∂β∂α

)
f (y|x;β)dy (from equation (2.19))

=−
∫
π
∂2 logfc
∂β∂α

f (y|x;β)dy+
∫
π

fc

∂2fc
∂β∂α

f (y|x;β)dy.

For the first term, we have that

∫
π
∂2 logfc
∂β∂α

f (y|x;β)dy = E

(
R
∂2 logfc
∂β∂α

∣∣∣∣∣ x
)

=−III01,

and so we just have to show that the second is zero. This follows because

∫
π

fc

∂2fc
∂β∂α

f (y|x;β)dy =
∫

∂2fc
∂β∂α

pr(R= 1|x)
f (y|R= 1,x)dy = π(x;α) ∂2

∂β∂α

∫
fcdy = 0.

Result 2.3. Cov
(
S1, S̃1

)
= ĨII11.
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Proof. Since

E
(
S̃1
∣∣∣ x)=

∫
∂ logfc
∂α

πf (y|x;β)dy = 0,

we have that

∂

∂α
E
(
S̃1
∣∣∣ x)=

∫
∂2 logfc
∂α2 πf (y| x)dy+

∫
∂ logfc
∂α

∂π

∂α
f (y|x;β)dy = 0.

The first term of the right-hand side above can be written as

∫
∂2 logfc
∂α2 πf (y|x;β)dy = E

(
R
∂2 logfc
∂α2

)
= E

(
∂S̃1
∂α

∣∣∣∣∣ x
)

=−ĨII11,

and the second one, as

∫
∂ logfc
∂α

∂π

∂α
f (y|x;β)dy =

∫
∂ logfc
∂α

1
π

∂π

∂α
πf (y|x;β)dy

= E
(
R
∂ logfc
∂α

1
π

∂π

∂α

∣∣∣∣ x)
= E

(
R
∂ logfc
∂α

(
R

π
− 1−R

1−π

)
∂π

∂α

∣∣∣∣ x)
= E

(
S1S̃1

∣∣∣ x)

Hence,

Cov
(
S1, S̃1

)
= ĨII11.

From results 2.2 and 2.3, we can rewrite the covariance matrix (2.18) as

CCCλ =

 III00 III01 +λIII01

IIIT01 +λIIIT01 III11 +λ
(
2ĨII11 +λĨII11

)
 .
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The inverse of IIIλ (see equation (2.17)) is

III−1
λ =

 III∗00 III∗01

III∗10 III∗11


where

III∗00 = III−1
00 +λIII−1

00 III01AAA−1ĨII10III−1
00 ,

III∗01 =−III−1
00 III01AAA−1,

III∗10 =−λAAA−1ĨII10III−1
00 ,

III∗11 =AAA−1

and

AAA=−λĨII10III−1
00 III01 +III11 +λĨII11.

The upper left-hand block of III−1
λ CCCλ

(
IIITλ
)−1

is then equal to

III∗00III00 (III∗00)T + (1 +λ)III∗00III01 (III∗01)T + (1 +λ)III∗01III10 (III∗00)T

+ III∗01III11 (III∗01)T +λIII∗01(2ĨII11 +λĨII11)(III∗01)T

which is minimized with respect to λ. From this, we get λ=−1.

The problem corresponds to maximizing the pseudo-loglikelihood

`(β,α) =
∑
i

Ri log(fc)−
∑
i

(
Ri log(πi) + (1−Ri) log(1−πi)

)
. (2.20)

We propose to estimate the parameters of interest by solving the estimating equations

associated to the pseudo-likelihood (2.20) so that we use the extra information regarding

S̃ (see equation (2.14)) in the most efficient way. We denote this new estimator by
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CML+S̃.

2.3.2 Weighted method

For the weighted method, the score function S0 with respect to β is also a function

of α. We could, in principle, use the extra information in the same way as used for the

CML method. First, we obtain

S̃1 = ∂

∂α

∑
i

(
Ri
πi

logf(yi|x1i;β)
)

=−
∑
i

Ri

(1−πi
πi

)
logf(yi|x1i;β)zi

and the estimating equation for α is now given by setting to zero

S1 +λS̃1 =
∑
i

(Ri−πi)zi−λ
∑
i

Ri

(1−πi
πi

)
logf(yi|x1i;β)zi

=
∑
i

[
(Ri−πi)−Riλ

(1−πi
πi

)
logf(yi|x1i;β)

]
zi.

The optimum value of λ is not necessarily the same as the one obtained before, but

should be obtained in a similar way: by minimizing the asymptotic variance. To this

end, we need equivalent results to results 2.2 - 2.3. These results, however, are not

valid for the weighted case. That is, since

E
(
S̃1|x

)
=
∫

∂

∂α

( logf
π

)
πf (y|x;β)dy 6= 0,

neither results 2.2 nor 2.3 hold and so the optimum value of λ for the weighted method

is not −1. In fact, there is no scalar and constant λ such that E
(
S1 +λS̃1|x

)
= 0 and,

for this reason, only the CML+S̃ method described previously will be considered for

simulations in the following chapters.
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2.3.3 Asymptotics

The proposed estimator, denoted by CML+S̃, takes into account, through S̃ (see

equation (2.14)), extra information provided by the data. We now show that this

estimator is consistent and asymptotically normal, whether the distribution of Y is

discrete or continuous. Let φ= (βT ,αT )T be a vector with dimension p and let Φ be

the parameter space. In addition to assuming the independence of Ri and πi(z;α)> 0,

for i= 1, . . . ,N , we also assume the following regularity conditions:

(A) Φ is compact and φ0, the true value of φ, is an interior point of Φ. The covariate

space is a compact subset of Rq, for some integer q ≥ 1.

(B) fc(y|x;φ) is continuous in Y and in φ, and strictly positive for all (Y ,X ,φ). In

addition, its first and second partial derivatives with respect to φ exist and are

continuous for all (Y ,X ,φ).

(C) Interchanges of differentiation and integration of f(y|x;φ) are valid for both first

and second partial derivatives with respect to φ.

(D) E
[
−∂2 logfc(y|x;φ)

∂φ∂φT

]
is finite and positive definite at φ0.

(E) There exists a δ > 0 such that

E

[
sup
Aδ

∣∣∣∣∣∂2 logf(y|x;φ)
∂φ∂φT

∣∣∣∣∣
]
<∞

for Aδ = {φ ∈ Φ : |φ−φ0| ≤ δ}.

(F) The derivatives
∂

∂βj

∫
π(y,x)fj(y|x)dy, for j = 1, . . . ,p,

are linearly independent.
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(G) Similarly, the derivatives

∂

∂αj

∫
π(y,x)fj(y|x)dy, for j = 1, . . . ,p,

are also linearly independent.

Consistency

To show consistency we are going to use the following lemma presented in Lu (2009),

which is due to Weaver (2001), a more general restatement of Foutz (1977).

Lemma 2.1. Let {fN (φ)} be a sequence of continuous random vector-valued functions

of φ ∈Φ⊂Rp. Suppose that, for all N , the partial derivatives of fN (φ) with respect to

φ exist and are continuous in Φ; let f ′N (φ) be the p×p dimensional matrix containing

these partial derivatives. Let H(φ) be a p×p dimensional matrix whose elements are

continuous functions of φ such that H−1(φ∗) exists for some φ∗ ∈ Φ. Suppose that

f ′N (φ) p−→ H(φ) as N −→∞ uniformly for φ in an open neighbourhood around φ∗.

Furthermore, assume that fN (φ∗) p−→ 0. Then, there exists a sequence {φ̂N} such that

P
(
fN (φ̂N ) = 0

)
−→ 1, as N −→∞, (2.21)

and

φ̂N −→ φ∗. (2.22)

If another sequence φ̄N also satisfies (2.21) and (2.22), then

P
(
φ̂N = φ̄N

)
−→ 1 as N −→∞.
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By the Law of Large Numbers,

1
n

∂`(φ)
∂φ

p−→ E

(
∂`(φ)
∂φ

∣∣∣∣x) .

For CML+S̃, the loglikelihood can be written as

`(β,α) =
∑
i

[Ri logfci−Ri logπi− (1−Ri) log(1−πi)]

and at the true values, we have that

E

(
∂`

∂β

∣∣∣∣x)= E

(
∂

∂β
logfc

∣∣∣∣x)
=
∫ (

∂

∂β
logf −

∫
∂

∂β
log
(∫

πfdy
))

πfdy

=
∫
f ′πdy−

∫ ∫
πf ′dy∫
πfdy πfdy

=
∫
f ′πdy−

∫
f ′πdy

= 0.

and that

E

(
∂`

∂α

∣∣∣∣x)= E

(
∂

∂α
R logfc−

∂

∂α
R logπ− ∂

∂α
(1−R) log(1−π)

∣∣∣∣x)
=
∫
π
∂

∂α
log(π)fdy−

∫
∂

∂α
log
(∫

πfdy
)
πfdy

−
∫
π
∂

∂α
log(π)fdy−

∫
(1−π) ∂

∂α
log(1−π)fdy

=−
∫ ∫

π′fdy∫
πfdy πfdy+

∫ (1−π)
1−π π′fdy

=−
∫
π′fdy−

∫
π′fdy

= 0,
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also evaluated at the true value of φ= (βT ,αT )T .

Thus,
1
n

∂`(φ0)
∂φ

p−→ 0.

In addition, by the Law of Large Numbers,

1
n

∂2`(φ0)
∂φ∂φT

p−→ EX

(
∂2`(φ0)
∂φ∂φT

)
.

where

EX

(
∂2`(φ0)
∂φ∂φT

)
= EX


∂2`(β0,α0)
∂β∂βT

∂2`(β0,α0)
∂β∂αT

∂2`(β0,α0)
∂α∂βT

∂2`(β0,α0)
∂α∂αT

= III

and EX denotes the expected value conditioned on X = x. We can show that III is

positive definite and hence invertible. Since

III00 = EX

(
∂2`(β0)
∂β∂βT

)
=−EX

(
∂`(β0)
∂β

∂`(β0)
∂βT

)
,

we have that

aTIII00a= 0

⇐⇒
∑
i

ai
∂i`(β0)
∂βi

= 0

⇐⇒
∑
i

ai

[
∂

∂βi
logf(y|x;β0)− ∂

∂βi
log
(∫

π(z;α0)f(y|x;β0)dy
)]

= 0

⇐⇒
∑
i

ai

∫
π(z;α0)f ′(y|x;β0)dy = 0

Thus, since
∫
π(zj ;α0)f ′(y|xj ;β0)dy are, by assumption (F), linearly independent,

aTIII00a= 0⇐⇒ a= 0 and III00 is invertible. Using similar arguments, with assumption



Chapter 2. Conditional Maximum Likelihood 49

(G) replacing assumption (F) above, we can show that

III11 = EZ

(
∂2`(α0)
∂α∂αT

)

is also invertible and so, III is nonsingular.

Hence, letting φ∗ = φ0,

fN = 1
n

∂`(φ)
∂φ

f ′N = 1
n

∂2`(φ)
∂φ∂φT

and

H(φ) = EX

(
∂2`(φ)
∂φ∂φT

)

all conditions of lemma 2.1 are satisfied and we conclude that there is an unique φ̂ such

that fN (φ̂) = 0 with probability going one as N −→∞ and φ̂−→ φ0.

Normality

Since φ̂ is consistent, using a Taylor expansion for ∂`(φ̂)/∂φ around the true pa-

rameter φ0,
∂`(φ̂)
∂φ

= ∂`(φ0)
∂φ

+ ∂2`(φ)
∂φ∂φT

(
φ̂−φ0

)

where φ= κφ0(1−κ)φ̂, for some κ ∈ [0,1]. The left-hand side is equals to zero because

the estimator has been shown to be consistent. Then, rearranging the above equation,

we have that
√
n
(
φ̂−φ0

)
=−

[
1
n

∂2`(φ)
∂φ∂φT

]−1 [ 1√
n

∂`(φ0)
∂φ

]
. (2.23)
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And since φ̂ p−→ φ0, φ
p−→ φ0. By using the Law of Large Numbers,

−
[

1
n

∂2`(φ)
∂φ∂φT

]
p−→III,

where

III = EX

(
∂2`(φ0)
∂φ∂φT

)
,

and by applying the Central Limit Theorem to the second term of the right-hand side

of equation (2.23), we have that

1√
n

∂`(φ0)
∂φ

d−→N(0,CCC),

where

CCC = Var
(
∂`(φ0)
∂φ

)
.

Finally, by combining the asymptotic results for both terms of the right-hand side

of equation (2.23) and using the Slutsky’s theorem, we have that

√
n
(
φ̂−φ0

)
d−→N(0,Σ),

where

Σ = IIICCCIII.

Therefore, the asymptotic covariance matrix can be written in the same way as in

equation (2.10), replacing CCC01 and III11 by C̃CC01 and ĨII∗11, respectively, where

C̃CC01 = Cov
(
S0,S1− S̃1

)
and ĨII

∗
11 = III11−ĨII11.
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In addition, using results 2.1-2.3, the asymptotic covariance matrix can also be rewritten

as (2.12), where CovR = infBCCC{S0−B
(
S1− S̃1

)
}. The reduction of adding a new

variable into the selection model depends now on the relationship between the score

S1− S̃1 of the added variable and S0.

2.4 Summary

In this chapter we extended Scott and Wild (2011) approach by showing that the

optimal value for λ is still -1 whether the outcome Y is discrete or continuous. This new

set of estimating equations are more general than those derived in Scott andWild (2011)

and can thus be applied to a wider range of problems. We also extended previous paper

by deriving asymptotic properties for the proposed estimator, under mild conditions.

In chapters 3 and 4 we discuss the proposed method (CML+S̃) through simulations,

for both discrete and continuous outcomes. We compare it against well-known methods

discussed in chapter 1 and apply it to a real dataset for the first time.
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3
Conditional Maximum Likelihood

for discrete response

In this chapter we study the performance of the method proposed in chapter 2, for

a discrete response. It is applied to a variety of situations that were not considered

in Scott and Wild (2011) and is thus a much more detailed analysis of the proposed

method. While Scott and Wild (2011) discussed only a few 3-phase scenarios, we con-

sider here 2 and 3-phase sampling schemes, comparing the performance of the proposed

method with well-known methods, under both correct and misspecified models. We also

discuss, through simulations, how different models for estimating the selection proba-

bilities affect the final estimate. The method is also applied to a real dataset for the

first time. The real data was part of the Women Health Initiative program (Rossouw

et al., 2002) and the analysis led to the paper Breslow et al. (2013).

53
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3.1 Introduction

Here we study the performance of the conditional likelihood method for logistic

binary-response models, with and without adding S̃, and compare these with the

weighted method and multiple imputation in several situations. We will use mean

squared error (MSE) for efficiency comparisons.

In most of what follows, data for a population of N individuals were generated

as follows. Covariates X1, . . . ,Xp were generated from independent standard normal

distribution. The response variable Y is a Bernoulli variable, with success probability

logit(pr(Y = 1|x;β)) = xβ. We first work with a 2-phase sampling scheme, which was

not considered in Scott and Wild (2011). Here the phase-1 population consists of all

N individuals. The response Y, X1 and a binary coarsening of X1, X1d = I(X1 < 0) or

0 otherwise, were considered known for every subject in phase-1. X2 and thus also its

binary coarsening X2d (equals to 1 if X2 < .5 or 0 otherwise) were treated as observed

only for a subsample of the phase-1 population, termed the phase-2 sample. The choice

of the thresholds are the same as those used in Scott and Wild (2011). Later we also

consider a 3-phase sampling scheme, performing a much more detailed analysis than

previously discussed in Scott and Wild (2011). The sampling scheme is similar to the

2-phase problem problem, but here the covariate X2 is only observed for the phase-3

sample, a subsample taken from the phase-2 sample.

In both 2-phase and 3-phase cases, extra information from partially observed vari-

ables can be used to obtain more efficient estimates. Even though measuring certain

variables for all individuals may be prohibitively expensive, some cheap variable cor-

related to that partially observed one may be obtainable for all or nearly all subjects

and could be used to improve the estimates of interest.
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The flexibility of adding variables into the selection models allows us to fit saturated

models and large models when saturated models are not possible, thus bringing in extra

information from variables that are not necessarily part of the selection process. We

have also the flexibility to incorporate continuous or discrete variables, thus using all

information available in a very simple manner. This extra information may have a

great impact on S̃, as shown in the following simulated studies, leading to much more

efficient estimates obtained via the CML+S̃ method.

3.2 Simulations

The following methods are compared with respect to their mean square errors

(MSE), bias and coverage.

• Ordinary logistic regression based on the full data (full), where it is assumed that

there were no missing observations so that we can see the amount of information

lost;

• Ordinary logistic regression based on the fully observed units only (Samp), ignor-

ing the missingness mechanism;

• Multiple imputation (Imp), using the R (R Development Core Team, 2011) pack-

age Hmisc (Harrell, 2002). Here, bootstrap samples are drawn and outcomes

are predicted from a “flexible” model. It predicts each variable from each of the

others. Since the partially observed variable was continuous, we used the regres-

sion method to predict the missing values, and used a linear model with all fully

observed variables;

• The weighted method (Weighted), where the weights are the inverse of the prob-

ability of being selected for the following phase of the study;
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β cor(Y,X1) cor(Y,X2) Prop. of cases Sample size of
(Y = 1,X1d = 1,R1 = 1)

(-2.5,1,.5) 0.278 0.214 ∼ 0.112 100
(-3,1,.5) 0.238 0.218 ∼ 0.075 100
(-3,1,1) 0.241 0.390 ∼ 0.091 200
(-3,1,2) 0.225 0.578 ∼ 0.145 400

Table 3.1: Range of β and correlation between Y and X .

• Conditional maximum likelihood without (cml) and with (cml+s) S̃ added.

We worked with a series of simulations varying the parameters of interest as well

as the selection mechanisms. We also worked with a misspecified model of interest in

order to investigate the robustness of the proposed methods.

3.2.1 2-phase

We start our simulations with a 2-phase sampling design, using different values of β,

the coefficient of interest. We varied the coefficient of the partially observed variable X2,

increasing the effect of X2, while keeping a moderate effect of X1 (β1 = 1, fixed). If the

coefficient associated to X2 is zero, the partially observed variable has no impact on the

outcome and an ordinary logistic regression should be applied. However, as the effect

of X2 increases, the partially observed variable becomes more important in explaining

the outcome of interest. Our goal here is thus to investigate the relative performance

of the methods as β2 increases, while keeping the proportion of cases relatively low (see

Table 3.1).

Since the model of interest is logit(pr(Y = 1|x,β)) = β0 +β1X1 +β2X2, fixing X1

and increasing X2 by 1 unit results in the odds of the outcome being multiplied by

exp{.5} ≈ 1.65 when β2 = .5 or by exp{2} ≈ 7.39 when β2 = 2.

For all simulations in this chapter, unless stated otherwise, we worked with a total
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Figure 3.1: Sampling scheme for a 2-phase study, where the response Y, a covariate X1 and
a surrogate variable X1d for X1 are fully observed at phase-1, for 1000 datasets
simulated. An extra covariate X2 is observed only at the phase-2 of the study

population of N = 15,000 and a phase-2 sample taken from each of the four strata

defined by the combinations of the categories of (Y,X1d). Four hundred subjects were

taken from each stratum, except for the smallest stratum, (Y = 1,X1d = 1). Here we

took varying numbers of individuals (see Table 3.1) determined using the typical size

of this stratum in the generated population. Fig. 3.1 illustrates this sampling scheme.

Both X1 and X2 followed a standard normal distribution and the correct model of

interest was fitted in all simulations. We fitted two different selection models for the

selection probabilities πi(z) = pr(Ri = 1|z;α), where Z must be contained in (Y,X1,X1d)

to ensure unbiased estimating equations for β.

Model (i): logit(π)∼ y ∗x1d

and

Model (ii): logit(π)∼ y ∗x1d ∗x1.

Here and in everything that follows, a∗ b corresponds to a linear regression on a, on b,

and on the interaction ab. Notice that model (i) corresponds to the actual selection

mechanism while model (ii) is a larger model containing model (i), but also bringing

in information on X1 for all individuals. From equation (2.12), we see that adding

X1 into the selection model will never increase and may even decrease the asymptotic
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covariance. Our goal is to see how adding this extra variable might affect the final

estimate. The results are presented in Table 3.2.

From our simulations we see that, apart from the simple logistic regression and the

multiple imputation method, all methods provide essentially unbiased estimates with a

ratio between estimated (Est.SE) and empirical (Emp.SE) standard errors close to 1 and

coverage close to the nominal value. As the coefficient of the partially observed variable

X2 increases (and the correlation between Y and X2 increases), all methods become

less efficient when compared to using full data. Multiple imputation shows similar

estimates to the weighted method, when the selection model (i) is used. When the

selection model (ii) is used, the weighted method becomes considerably more efficient

than MI especially for estimating β1.

As expected from the theoretical results, CML+S̃ is the most efficient method

whether we use model (i) or model (ii) to model the selection probability π(z). When

model (i) is used, CML+S̃ gives a much better estimate than other methods, especially

with respect to β1. When model (ii) is used (and so a saturated model for the selection

probability is fitted), CML is remarkable close to the fully efficient CML+S̃ method

and both methods provide nearly the same estimates.

The weighted method is less efficient than the CML-based methods. The weighted

method can be almost 2 times less efficient than the CML+S̃ method (MSE 1.85 times

higher) for estimating β1, when the same selection probability is used, or more than

3 times less efficient (MSE 3.23 times higher) for estimating β1, when the selection

probability (i) for the weighted and the selection probability (ii) is used in the CML+S̃

estimation.

Comparing model (i) with model (ii) for the parameters of interest, we see that

by adding the continuous variable X1 into the selection model, the MSE of β1, the
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coefficient associated with X1, is substantially reduced. This is because the residual

variance when S0 is regressed on S1 is reduced (see equation (2.12) and comments

that follow). The intercept is also affected, but in lower degree. The MSE of β̂2

is unchanged, perhaps unsurprisingly, since we are not using any extra information

related to this variable.

Assume now that X2d was also fully observed at phase-1. As shown by equation

(2.12), adding X2d into the selection model we will never increase, and may even de-

crease, the mean squared error. Therefore, in order to use the entire information

available at phase-1, we fitted another selection model, denoted as model (iii), given by

logit(π)∼ y ∗x1d ∗x1 ∗x2d.

Note that model (iii), unlike model (ii), takes information with respect to X2 into

consideration and Table 3.3 shows the impact on the estimates when models (ii) and

(iii) are fitted.

From our simulations we see that adding X2d into the selection model improves

the estimation of β2, the coefficient associated to the X2 variable, reducing its MSE by

almost 50%. As discussed before, this happens because adding an extra variable into the

selection model will never increase and may even decrease the asymptotic variance of

β̂, even though the real selection mechanism is left unchanged. The reduction depends

on the predictive relationship between the score of the added variable and S0.

The CML and the CML+S̃ methods are also not as similar as before. CML+S̃

makes use of the extra information in a more efficient way, resulting in much smaller

MSE. For example, when β = (−3,1,2)T , CML produces a MSE for β̂2 that is almost

1.30 times larger than the one given by CML+S̃ and almost 1.81 times larger when

β = (−2.5,1, .5)T . When compared to the weighted method, this ratio varies from 1.75
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to almost 1.95.

Comparing models (ii) and (iii) in Table 3.3, we see that the ratio between them,

which shows the impact of adding X2d into the selection model, is even greater. The

MSE for β2 obtained from the CML+S̃ method when model (ii) is used is about 3.37

times the one obtained when model (iii) is used and can be almost 4 times more efficient

than the weighted method. Even information as minimal as a binary coarsening of X2

has huge efficiency advantages for estimating β2.

Model misspecification

We continue to work in the context of missingness by design. In such cases, the

“true” selection model for π is controlled by the researcher and so, for studying robust-

ness of the proposed method, we concentrate on a misspecified model of interest. We

assume that the true probability of being a case, i.e., Y = 1, is specified by

logit(pr(Y = 1|x)) = β0 +x1β1 +x2β2 +x3β3

where X1 and X2 are again independent and identically distributed, following a standard

normal distribution, as before. and let X3 be a quadratic term given by

X3 = X2
2.

We assume that the fitted model is the same as before: logit(pr(Y = 1|x)) = β0 +

x1β1 +x2β2. We expect to observe bias due to the omitted quadratic term and it is

of interest to see, for different values of β3, how far from the more robust weighted

method the efficient estimator CML+S̃ would be. The results for a 2-phase study are

shown in Table 3.4.
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We ran simulations for β = (−3.5,1, .5, .1)T and β = (−3.5,1, .5,1)T . For β3 = .1, a

stepwise regression on the fully observed (phase-2) sample “detects” a quadratic effect

in X2, about 60% of the time, at the 5% level of significance. The intercept and β̂2 are

slightly biased. CML+S̃ is still the most efficient method for estimating β1 and β2 and

shows nearly the same efficiency as the weighted method for estimating β0.

For the more extreme case in Table 3.4, when β3 = 1, all methods are strongly biased

but the model misspecification was always detected. The CML+S̃ heavily depends on

the model and is thus greatly affected by model misspecification. The more robust

weighted method is the only one that was able to estimate the parameter β2 correctly,

in the sense of giving the same result we would get if we had full data on everything

but X3. Its bias is 7 times lower than the one given by the CML+S̃ method, resulting

in a lower MSE for β2.

3.2.2 3-phase

We consider now a 3-phase sampling design for different values of β, performing a

more detailed study than discussed in Scott and Wild (2011). We allow the param-

eters of interest to vary in a wide range of values and consider problems with model

misspecifications.

We first start by varying the coefficient of the partially observed variable X2 while

keeping the first two coefficients fixed. Later we vary β0 in order to simulate a more

rare disease. The β−values used are given in Table 3.5.

For all simulations throughout this chapter, unless stated otherwise, we worked

with a total population of N = 15,000 and the sampling scheme shown in Fig. 3.2.

That is, the phase-1 data was considered to be all individuals with (Y,X1d) observed.

These subjects were stratified based on the four combinations of (Y,X1d) and a sub-
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β cor(Y,X1) cor(Y,X2) Prop. of cases Sample size of
(Y = 1,X1d = 1,R1 = 1)

(-2.5,1,.5) 0.388 0.084 ∼ 0.112 100
(-3,1,.5) 0.391 0.085 ∼ 0.075 100
(-3,1,1) 0.283 0.158 ∼ 0.091 200
(-3,1,2) 0.118 0.260 ∼ 0.145 400

Table 3.5: Range of β and correlation between Y and X .

Figure 3.2: Sampling scheme for a 3-phase study, where the response Y and a surrogate variable
X1d for X1 are fully observed at phase-1. At phase-2, X1 and a surrogate X2d are
observed and X2 observed only for those individuals selected into phase-3.

sample from each stratum was taken. That results in our phase-2 sample, where

(Y,X1d,X1,X2d) have now been observed (400 from each stratum except for the smaller

stratum (Y = 1,X1d = 1), where different sample sizes were taken - see Table 3.5).

Subsamples from the phase-2 data were then taken from each stratum defined by

(Y,X1d,X2d), resulting in our phase-3 data (50 units from each stratum, except for

the smaller strata (Y = 1,X1d = 1,X2d = 1) and (Y = 1,X1d = 1,X2d = 1) where only 25

units were randomly chosen). X2 is now observed for these individuals. Notice that we

have 2 indicator variables R1 and R2 denoting which units were selected for phase-2

and phase-3, respectively. Thus, only individuals with R1R2 = 1 will have been fully

observed.

As before, both X1 and X2 variables followed a standard normal distribution and

the correct model of interest was fitted in all simulations. We considered the following
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selection models. For the first model,

logit(π1)∼ y ∗x1d,

which is the actual selection model. For the second model we considered two models

Model (i): logit(π2)∼ y ∗x1d ∗x2d

and

Model (ii): logit(π2)∼ y ∗x1d ∗x2d ∗x1.

Here, model (i) is the actual selection model and model (ii) is included to see the impact

of adding X1 into the selection model for R2. The results are presented in Table 3.6.

The same pattern observed in the 2-phase study can be seen here. Apart from the

ordinary logistic regression, all methods are essentially unbiased, with similar empirical

and estimated standard errors and coverage close to the nominal value. CML+S̃ is still

the most efficient method and the weighted method is the least efficient, compared to

the other likelihood-based approaches.

Unlike in the 2-phase simulation, we see that CML and CML+S̃ are no longer of

comparable efficiencies. Under the same selection probability model, the latter can be,

for example, more than 2 times more efficient than CML when estimating β1 and about

30% more efficient when estimating β2.

Comparing the weighted and the CML+S̃ methods, the improvement is even higher.

For the first scenario, where β = (−2.5,1, .5)T , the weighted method produces a MSE

that is almost 5 times greater than the one obtained by the CML+S̃ method, under

the same selection model. Comparing different selection models, we see that this ratio
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can be as large as 6.54, when estimating X1.

We also see a great reduction in the MSE of all methods when the continuous

variable X1 is added into the second selection model, i.e., when we change from model

(i) to model (ii). For the weighted and CML methods, the MSE is reduced by almost a

half, while for CML+S̃ the MSE is reduced by almost 40%. Again, since both models

(i) and (ii) carry the same amount of information with respect to X2, the MSE of β2

is essentially unchanged.

Next, as in the 2-phase simulation, we assume that X2d was also known at phase-1,

but not used for selecting the phase-2 sample. We worked with two set of models for

R1 and R2:

Model (ii) : logit(π1)∼ y ∗x1d

logit(π2)∼ y ∗x1d ∗x2d ∗x1

and

Model (iii) : logit(π1)∼ y ∗x1d ∗x2d

logit(π2)∼ y ∗x1d ∗x2d ∗x1.

Simulation results are shown in Table 3.7.

From our simulations we see that adding X2d into the first selection may lead to

estimates that are almost 3 times more efficient than not using this extra information.

Comparing CML+S̃ (under model (iii)) against the weighted method (under model

(ii)), we see that the first CML+S̃ can be almost 6 times more efficient than the latter

one, while estimating β2. Notice also that the CML+S̃ method makes a better use
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of the extra information, when compared to CML. While the CML+S̃ method was

slightly more efficient before when X2d was assumed unobserved at phase-1, now this

difference is substantially higher.

Model misspecification

As in the 2-phase study, we ran a few simulations in order to investigate robustness

of the proposed method against an omitted quadratic term in the model of interest. As

in section 3.2.1, we assumed that true model of interest was given by

logit(pr(Y = 1|x)) = β0 +x1β1 +x2β2 +x3β3

where

X3 = X2
2.

As before, we fitted the model: logit(pr(Y= 1|x)) = β0 +x1β1 +x2β2, with the same

selection probability models (i) and (ii). Our results are shown in Table 3.8.

For β3 = .1, a stepwise regression “detects” a quadratic effect in X2 about 38% of

the time, at the 5% level of significance. In such case, all methods show a small bias

for β2, but the CML+S̃ method is still the most efficient approach. As the model

misspecification increases, the model misspecification is readily detectable. CML+S̃

shows larger bias for β2, resulting in estimates with higher MSE than those given by

the CML and the weighted methods.
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3.3 Non-response

Even though we have only discussed cases where data are missing by design, the

same idea can be applied to non-response problems. The main difference is that the

selection probability, i.e., the probability of observing an individual in the next phase

of the study, is no longer controlled by the researcher and must be estimated.

Ghosh and Dewanji (2011) discussed non-response in a 2-phase sampling scheme

with a fully observed phase-1 population. Here, the phase-1 subjects have X1 observed

and are “asked” to provide information regarding Y and X2. Next, either (1) all phase-1

population have X2 measured or (2) a simple random sample is taken from the phase-1

subjects and have (X2,Y,R) measured. In case (1), all phase-1 subjects have (X1,X2)

measured and only the respondents (R1 = 1) have (X1,X2,Y) observed. In case (2), all

phase-1 subjects have X1 measured and all respondents (R1 = 1) and only a sample of

non-respondents (R1 = 0) have (X1,X2,Y) observed. Fig. 3.3 represents both designs.

Case (1) corresponds to Z1 = (X1,X2), Z2 =Y and empty Z3 and case (2) corresponds

to Z1 = X1, Z2 = Z3 = (X2,Y).

Here we consider the following sampling scheme, where information on (Y, X1, X2,

X3) is of interest. However, only (Y,X1) have been fully observed for all subjects,

known as the phase-1 population, and additional information with respect to X2 is

observed only for a sample drawn from the phase-1 subjects. Phase-2 individuals are

“asked” for information on other variables of interest. Some of them respond, providing

information on X3, while others do not. A follow-up sample is then taken from the

non-responding units and the remaining variables, measured.

Suppose now that the probability of responding depends on variables not measured

in the original study, say X4. If we do not adjust for this variable, the estimates will be
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Figure 3.3: Nonresponse sampling scheme used in Ghosh and Dewanji (2011). Here, π1(.)
corresponds to the (unknown) probability of responding (dashed line) and π2(z1) is
the probability of providing extra information regarding Z3, given that this subject
did not respond R2 = 0.

biased. So, we must collect information on X4 for both groups: respondents and non-

respondents. In other words, we need to perform two follow-up studies and measure the

remaining variable of interest. This sampling scheme generalizes that used in Ghosh

and Dewanji (2011), explained before, and Jiang et al. (2011), who assumed that all

respondents had X4 observed and so only a sample of non-respondents needed to be

selected for follow-up.

In order to deal with this more general sampling scheme, let the indicator variables

R1i be equal to 1 if the ith unit was selected into phase-2, R2i = 1 if it responded

and R3i = 1 if it was selected for follow-up. Let also π1 = π1(α1) be the selection

model from phase-1 into phase-2 (R1 = 1). This is known by design and thus controlled

by the researcher. Let π2 = π2(α2) be the (unknown) probability of responding and

π3 = π3(α3) the probability of being selected into the follow-up part of the study. This

sampling scheme is illustrated in Fig. 3.4.

Even though this sampling scheme seems to be equivalent to the multi-phase prob-

lems discussed so far, they are not quite the same. For instance, in the regular multi-
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Figure 3.4: Nonresponse sampling scheme used in this chapter. Here, π2(.,x4) corresponds to
the (unknown) probability of responding (dashed line) and π3(y,x1,R2 = i), for
i= 1 or 2, is the probability of being selected for follow up, given that it responded
R2 = 1 or did not respond R2 = 0. Only individuals selected for follow-up have been
fully observed.

phase problem, only individuals with R2 = 1 could be selected into phase-3, which is

not the case here. Individuals are selected for follow-up here whether R2 = 1 or 0. That

is, R2 can be seen as a binary outcome of a case-control study, where R2 = 1 denotes

“cases” and R2 = 0, “controls”. In other words, this sampling scheme can be seen as an

embedded case-control study: The outcome of the “larger” study is Y, while R2 can be

seen as the response variable for the embedded case-control study. The selection prob-

ability π2 can then be estimated via the conditional likelihood method in the same way

we have done so far. From Bayes theorem, the conditional probability of responding

given that it was selected for the next phase of the study (here, selected for follow-up)

is

pr(R2i = 1|R1i = 1,R3i = 1,xi,yi) =

pr(R3i = 1|R1i = 1,R2i = 1,xi,yi)pr(R2i = 1|R1i = 1,xi,yi)∑
j=0,1 pr(R3i = 1|R1i = 1,R2i = j,xi,yi)pr(R2i = j|R1i = 1,xi,yi)

.
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The associated estimating equation is

S∗2 =
∑
i

R1iR3i

(
(R2i−π∗2i)
π∗2i(1−π∗2i)

∂π∗2i
∂α2

)
,

where

π∗2i = pr(R2i = 1|R1i = 1,R3i = 1,xi,yi)

is the probability of responding among individuals selected for follow-up.

Letting logit{π2i}= zT2α2, where Z2 = (X1,Y), we have that

π2i = e(zT2iα2)

π3i+e(zT2iα2)
= e(zT2iα2+o2i)

1 +e(zT2iα2+o2i)

where

o2i = logπ(1)
3i − logπ(0)

3i .

Here,

π
(0)
3i = pr(R3i = 1|R1i = 1,R2i = 0,xi,yi)

and

π
(1)
3i = pr(R3i = 1|R1i = 1,R2i = 1,xi,yi).

are the probabilities of the ith subject being chosen for follow-up giving that it did and

did not respond, respectively. We wrote an R function for the general sampling scheme

showed in Fig. 3.4 that estimates the parameters of interest by setting the enlarged

estimating equation system to zero.
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3.3.1 Simulation

Following Jiang et al. (2011), the disease incidence was generated from the model

logit(pr(Y = 1|x;β)) = β0 +β1x3 +β2x4,

with β = (−7.9,1, .5)T , X3 following a standard normal distribution and X4 following

a Bernoulli distribution with success probability 0.2 if X3 < 0 and 0.5 if X3 ≥ 0. This

results in 0.1% population being cases and we used a population of N = 1,000,000

individuals. That is our phase-1 population.

The phase-2 sample was obtained as a sample taken from our phase-1 data, as

follows. We first defined an indicator variable X1 equal to 1 if X3 ≥ .5 and 0 otherwise

and selected samples of size n= 300 from each stratum defined by (X1,Y). Notice that

the selection here is due to design so the “true” selection probability π1 is controlled

by the researcher. The response indicator R2 was generated from the model

logit(π2(z2)) = α20 +α21y+α22x4 +α23yx4,

where α2 = (.75,0,0, .75)T and Z2 = (X4,Y), so that the response rate is independent

of X1 and is approximately 70% for controls and 85% for cases when X4 = 1 and 70%

when X4 = 0.

Jiang et al. (2011) assumed that only a fraction of non-respondents (R2 = 0) had

provided information regarding X4 while all respondents had had X4 observed. Here

we allow X4 to be missing in both groups. Since X4 is related to non-response, ignoring

this variable will lead to a misspecified model for π2 and thus to biased results. We

need, therefore, to select samples for follow-up from both groups (respondents and non-
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respondents) and measure X4 for these sampled individuals. This sampling scheme is

illustrated in Fig. 3.4, for empty X2.

We varied the percentage of subjects in the non-respondents group selected for

follow-up (25, 50, 75 and 90%) and kept the number of subjects in the respondents

group selected for follow-up constant and equal to 70% of the total of respondents.

That is, we assume that only 70% of the respondents (R2 = 1) provided information

regarding X4. The results are shown in Table 3.9.

In our simulations we assumed that all models were correctly specified, resulting in

unbiased estimates. The first row of Table 3.9 shows the results when X4 is observed

for all respondents. Here CML+S̃ is the most efficient method especially when we

are interested in estimating β1. The CML+S̃ method is about 30% more efficient

than CML and almost 100% more efficient than the weighted method. However, if

we are interested in estimating β0 or β2, the extra term S̃ does not carry appreciable

information and the two methods, CML+S̃ and CML, show similar results.

For the next three rows we assume that a fixed proportion of 70% of the respondents

provide information regarding X4 and a varying proportion ρ (.90, .75, .50 and .25) of

the non-respondents provide information about X4. We see that as the non-response

increases, the MSE of all methods increase. When X2 is observed for only 75% of

the non-respondents, the efficiency of all three methods decrease by about 25% while

estimating β2 and about 50% when ρ= .25.

CML+S̃ is generally the most efficient method among the three. It shows, however,

a large loss of efficiency when estimating β1, with a MSE varying from 1.58 when

ρ = 1 to 3.18 ρ = .25. In fact, at this extreme case where hardly any non-respondents

provide extra information regarding X4, both CML and CML+S̃ show nearly the same

efficiency.
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3.4 Application to Women’s Health Initiative data

The data we use here come from the Woman’s Health Initiative (WHI) study and

was collected from September 1993 and December 1998. Our subset consists of the

27,347 postmenopausal women aged between 50 and 79 years old. With the purpose

of preventing coronary heart disease (CHD), all individuals were randomized into one

of two trials of hormone therapy (HT): 16,608 women with an intact uterus were ran-

domized to a combination of estrogen plus progestin (E+P) versus placebo, while the

remaining 10,739 women with prior hysterectomy were randomized to estrogen alone

(E) versus placebo. Both trials had to be stopped early because of an increase in CHD,

stroke and venous thromboembolism (VTE) among those receiving treatment or lack of

CHD benefit and an increase in stroke. Three case-control studies were then conducted

to investigate the mechanisms through which HT might increase the risk of each of

the cardiovascular events: CHD, stroke and VTE. Here we are only concerned with

the CHD case-control study. See Rossouw et al. (2002) for more details regarding the

dataset.

The case-control study of CHD involved 359 cases (Rossouw et al., 2008). The 817

controls, matched by date of randomization, trial (E vs E+P), age, and prevalence of

the particular cardiovascular disease (CVD) at baseline, were a pool drawn from all

three case control studies. Blood samples stored at baseline were assayed for inflam-

matory, lipid, thrombotic and genetic markers for cases and controls. The data were

analysed by ordinary logistic regression, with case-control status as the outcome and

each of the biomarkers in turn as the primary risk factor. All analyses were adjusted

for baseline age, trial, body mass index, waist-hip ratio, smoking, alcohol, physical

activity, diabetes, history of high cholesterol, prevalent CVD, left ventricular hypertro-
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phy, systolic blood pressure (SBP), use of anti-hypertensive medications, aspirin and

statins.

Among the more interesting findings in Rossouw et al. (2008) was a positive in-

teraction between HT and low density lipoprotein cholesterol (LDL), such that the

increased CHD risk for high LDL levels was even greater with treatment, and a nega-

tive interaction between HT and high density lipoprotein cholesterol (HDL), such that

the decreased CHD risk for high HDL levels was even lower with treatment. The genetic

polymorphism GpIIIa leu33pro (C/C+C/T vs T/T) was also associated with increased

risk. Preliminary analyses showed that a model with main and interactive effects for the

log(LDL/HDL) ratio fit nearly as well as the model with main and interactive effects

for both log(LDL) and log(HDL) (deviance difference 0.55, 2 degrees of freedom). Con-

sequently, as a single comprehensive model for our methodological studies, we selected

as variables of primary interest the log(LDL/HDL) ratio (centred at log 3), HT, their

interaction and the GpIIIa leu33pro polymorphism. For adjustment we used seven of

the fifteen variables mentioned above. The other eight variables were retained for use

as design or auxiliary variables. Unfortunately, the necessity that values for all of them

be known reduced the main cohort size from 27,347 to 23,301, including 276 cases.

Twenty-eight more cases and a proportionate number of controls were dropped due to

missing values for the lipid levels or genotype, leaving 248 cases and 617 controls in the

case-control analysis sample. Results of the standard analysis are shown in Table 3.10.

The data can be viewed as a two-phase sample, where the main cohort is the phase-1

sample, assumed to have been drawn by simple random sampling from a “superpopu-

luation”, i.e., from a logistic regression model for CHD risk. The phase-2 sample is the

case-control sample, drawn by outcome dependent stratified sampling from the phase-1

sample. A particular feature of the WHI study, however, invites consideration of a more
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complex design. In order to assess adherence to treatment, the investigators selected a

8.6% cohort random sample, stratified on trial and ethnicity, for assay of baseline and

subsequent blood samples for selected biomarkers (Anderson et al., 2003). Baseline

LDL and HDL levels were thus available for an additional 2,158 controls not sampled

for the case-control study. The resulting data may be regarded as having arisen from a

three phase design, with the main cohort as phase-1, all subjects with known LDL and

HDL levels as phase-2 and the case-control sample, for which genotype is also known,

as phase-3.

2 and 3-phase approaches

Table 3.10 shows the results of the standard (STD) case-control analysis in compari-

son with those for each of the basic 2-phase methods. These were obtained using the tps

procedure in the R-package osDesign that implements the Breslow-Holubkov approach

to maximum likelihood (which is, in this setting, equivalent to the CML+S̃ method,

as shown in chapter 7) estimation (Breslow and Holubkov, 1997; Haneuse et al., 1997).

The more general program bin2stg in Chris Wild’s missreg package is available as an

alternative.

All three 2-phase methods corrected for the serious bias in the control sample with

respect to age and prevalent CVD. Consequently, the regression coefficients for these

variables were considerably higher, and the standard errors lower, than for the standard

method, reflecting the information contained in the phase-1 stratum frequencies Nij .

The weighted method produced a noticeably smaller estimate of the interaction between

HT and the log(LDL/HDL) ratio. It also produced standard errors that were generally

larger than those for the other methods, including even the standard method, reflecting

the well-known and often serious loss of efficiency of the weighted method in comparison
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Model STD Weighted CML CML+S̃
term Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.

log(LDL/HDL) 0.83 0.35 0.98 0.38 0.82 0.35 0.83 0.35
HT 0.16 0.17 0.07 0.18 0.16 0.17 0.15 0.17
HT*log(L/H) 0.97 0.49 0.56 0.50 0.99 0.49 0.99 0.49
GpIIIa 0.43 0.18 0.44 0.19 0.44 0.18 0.43 0.18
Age/10 0.07 0.14 0.56 0.13 0.58 0.12 0.59 0.12
Current smoker 1.45 0.24 1.49 0.25 1.42 0.24 1.42 0.24
Diabetes 1.30 0.28 1.52 0.28 1.35 0.28 1.35 0.28
Prevalent CVD 0.64 0.21 1.19 0.19 1.18 0.17 1.18 0.17
SBP/100 2.30 0.49 2.41 0.56 2.29 0.49 2.35 0.49
Statins 0.67 0.25 0.60 0.27 0.64 0.25 0.65 0.25
Trial E+P 0.24 0.17 0.10 0.16 0.11 0.15 0.13 0.15

Table 3.10: Results of standard case-control and two-phase analysis: phase-1 variables limited
to indicators of strata used for sampling, for 1000 datasets simulated.

with ordinary logistic regression for case-control samples. Otherwise, the results for the

four analyses were remarkably similar. The 2-phase methods only reduced standard

errors for variables used in the phase-1 stratification.

We have also done a 3-phase analysis and the results are shown in Table 3.11. Recall

that the phase-2 sample in the 3-phase design consisted of subjects with known LDL

and HDL levels. Most of these were from the 8.6% cohort random sample that was

stratified on trial and ethnicity. The inclusion model for phase-2 had as predictors:

the three-way combination of outcome, trial and ethnicity; the four way combination

involving the sampling strata and outcome and used to obtain the results in Table 3.10;

and age, treatment, smoking, prevalent CVD, diabetes, SBP, statins plus the product

of each with the case-control indicator. The inclusion model for phase-3 added to these

terms the three way combination of outcome, treatment and log(LDL/HDL). The idea

was to try to bring into the analysis the information available from both phases on

marginal associations between outcome and each of the covariates. Incorporation of the

additional information on LDL and HDL from the 8.6% sample had a noticeable effect

on precision for the three variables of prime interest, namely, log(LDL/HDL), HT and
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Model Weighted CML CML+S̃
term Coef. SE Coef. SE Coef. SE

log(LDL/HDL) 1.18 0.36 0.99 0.31 1.03 0.31
HT 0.09 0.16 0.21 0.15 0.16 0.15
HT*log(L/H) 0.63 0.47 1.08 0.42 1,00 0.43
GpIIIa 0.45 0.20 0.46 0.18 0.45 0.18
Age/10 0.68 0.13 0.63 0.12 0.65 0.12
Current smoker 1.40 0.21 1.26 0.19 1.26 0.19
Diabetes 1.27 0.22 1.12 0.20 1.02 0.19
Prevalent CVD 1.11 0.19 1.13 0.18 1.11 0.18
SBP/100 1.89 0.51 1.71 0.43 1.85 0.43
Statins 0.61 0.23 0.67 0.21 0.68 0.21
Trial E+P 0.09 0.17 0.08 0.15 0.13 0.15

Table 3.11: Results of three-phase analysis: stratum indicators plus additional covariates at
both phases.

their interaction. In comparison with results from Table 3.10, SEs for these variables

were reduced for all three methods (Weighted, CML, CML+S̃). There was stronger

evidence from CML and CML+S̃ for an interaction between HT and log ratio; the

results from the weighted method were still inconclusive. The SEs for the adjustment

variables decreased for the weighted method whereas several increased slightly for the

CML and CML+S̃ methods in comparison with the 2-phase results. Consequently,

the loss of precision from using the weighted method relative to CML/CML+S̃ was

reduced.

3.5 Summary

Here we analyzed the proposed CML+S̃ method through simulations, for both 2

and 3-phase problems. The 2-phase design was not considered in Scott and Wild (2011)

and for the 3-phase design a more detailed analysis was performed. We also discussed

robustness against model misspecification for both 2 and 3-phase problems.

In short, both 2 and 3-phase problems produced similar patterns. If all models are
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correctly specified, the CML+S̃ method is the most efficient, with respect to MSE,

among those considered here. It can be readily applied to non-response problems, as

long the missing at random (MAR) holds. The CML+S̃ method is even more appealing

when there is extra information that was not used in any part of the study, but is

available for part of the population of interest. This extra information, maybe a cheap

or an easy-to-measure covariate (represented in our simulations by a binary coarsening),

is usually ignored by other efficient methods, such as Scott and Wild (1997) or Wang

and Zhou (2006). CML+S̃, on the other hand, makes use of this extra observation in

a fairly simple way, reducing the MSE by a significant amount.



4
Conditional Maximum Likelihood

for Continuous Response

In chapter 3 we considered cases where the response was discrete. Often, however,

the response follows a continuous distribution. One approach is to discretize the re-

sponse Y into K mutually exclusive intervals and define a discrete variable as a vector

of size K and entries equals to 0, 1, 2, . . . , K−1. The problem is then similar to before

and all methods discussed in 3 can be applied for this new discrete response. However,

discretizing Y into K intervals may lead to loss of information. In addition, differ-

ent discretizations may lead to different conclusions and so it is of interest to obtain

methods that does not depend on the cut-off points chosen.

We start this chapter by reviewing a few methods that deal with continuous outcome

and present a new approach based on results derived on chapter 2. As in previous

chapters, the proposed method is shown to be more flexible than those available in

the literature, especially when there are extra information that have not been used for

selecting the phase-2 sample. These extra information are treated non-parametrically,

87
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improving its robustness against model misspecification. We work with different error

distributions and study efficiency and robustness through simulations. Finally, based on

Lumley (2013), we discuss the performance of the proposed method under nearly-true

models.

4.1 Related research

Discretizing Y into K mutually exclusive intervals has been widely considered in the

literature (Zhou et al., 2002; Wang and Zhou, 2006; Song et al., 2009). These authors

define K−1 cut points, say c(y)
i , i= 1, . . . ,K−1, for Y, to produce a discrete variable

Yd. For example, if K = 2, we have only 1 cut point and Yd is the binary coarsening

taking values 0 if Y< c
(y)
1 or 1 otherwise.

Zhou et al. (2002), for example, assumes that the domain of Y is given by the union

of K mutually exclusive intervals Ck = (c(y)
k−1, c

(y)
k ), k = 1, . . . ,K, defined by the cut

points c(y)
0 = −∞ < c

(y)
1 < · · · < c

(y)
k−1 <∞ = c

(y)
k . Their data is obtained via a simple

random sample of size n0 and an additional simple random sample of size nk from each

one of the K intervals Ck, and work with the observed likelihood

L(β,g) =
{
n0∏
i

f(yi|xi;β)g(xi)
}
×


K∏
k=1

nk∏
j

f(ykj ,xkj |ykj ∈ Ck;β)

 . (4.1)

The first term relates to the random sample and the remaining term corresponds to

the joint density function of {(xkj ,ykj), j = 1, . . . ,nk}, conditional on ykj ∈Ck, for each

k.

Using the fact that

f(ykj ,xkj |ykj ∈ Ck;β) = f(ykj |xkj ;β)g(xkj)
pr(Y ∈ Ck;β)
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and

pr(Y ∈ Ck;β) = F (c(y)
k ;β)−F (c(y)

k−1;β),

where F is the cumulative distribution of f , they rewrite the likelihood (4.1) as

L(β,g) =


n0∏
i

f(yi|xi;β)×
K∏
k=1

nk∏
j

f(ykj |xkj ;β)
F (c(y)

k |xkj ;β)−F (c(y);β
k−1 |xkj ;β)


×


n0∏
i

g(xi)×
K∏
k=1

nk∏
j

F (c(y)
k |xkj ;β)−F (c(y)

k−1|xkj ;β)
F (c(y)

k ;β)−F (c(y)
k−1;β)

×g(xkj)


= L1(β)×L2(β,g)

where L1(β) and L2(β,g) denotes the quantities in the first and second brackets, respec-

tively. To estimate β, the parameter of interest, Zhou et al. propose a semiparametric

empirical likelihood approach, maximizing the likelihood L2(β,g) for β fixed to obtain

the empirical likelihood of g over all distributions whose support contains the observed

x-values. The resulting likelihood L1(β)×L2(β, ĝ) is later maximized with respect to

β.

Song et al. (2009) discuss a similar problem but for a 2-phase sampling scheme.

Here, the authors assume that the outcome Y was observed for all individuals (consid-

ered the phase-1 population), but X was observed only for a sample of subjects taken

from the phase-1 population, via a stratified sampling scheme (with strata defined by

discretizing Y into mutually exclusive intervals). The full likelihood is

L(β,G) =
∏

i:Ri=1
f(yi|xi;β)g(xi)

∏
j:Ri=0

∫
f(yj |x;β)dG(x),

where R= 1 if X has been observed. The loglikelihood is maximized over a discrete g,

where the probability is concentrated at each of the observed x-values. This provides

a fully efficient approach. Let δi = pr(X = xi). Since the response is continuous, how-
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ever, the number of δis increases as the sample size increases, and hence the number

of parameters is potentially as large as the sample size. In order to avoid this com-

putational problem, the authors suggest to maximize the restricted loglikeliohood (see

section 1.5.2) using a mixed Newton method. Except for computational details, this is

the same approach as Jiang (2004) and Scott and Wild (2006) who deal with a more

general class of 2-phase sampling.

Notice that if there is additional information available for all individuals (x-surrogates,

for example), neither Zhou et al. (2002) nor Song et al. (2009) make use of this addi-

tional data to get more efficient estimates. A new method that caters for this extra

information is then required. Zhou et al. (2011) propose a semiparametric estima-

tor for a 2-phase sampling scheme, with an auxiliary covariate. They assume that

the continuous outcome Y as well as a continuous (or discrete) auxiliary variable W

were fully observed for all individuals (phase-1 population) and additional information

regarding X were obtained only for subjects sampled from each stratum defined by

the partition of the domain of Y×W. The authors treat the marginal distribution

of W non-parametrically, but assume a parametric model for the conditional distribu-

tion G(x|w). However, since X is usually high dimensional, modelling its distribution

may be hard or even infeasible so that less parametric approaches are also of interest,

particularly if we want to cope with multidimensional W.

4.2 CML approach

Here we propose a semiparametric estimator that takes into account all extra infor-

mation obtained for the phase-1 population. Unlike in Zhou et al. (2011), our approach

does not require any assumption regarding the conditional distribution of X |W and only

the model of interest f(y|x,β) and the selection model π = pr(R= 1| phase-1 data) are
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treated parametrically. Recall that under 2-phase designs these probabilities are known,

being set by the study designer. The models we use are “supermodels” containing these

known probabilities.

We use the conditional maximum likelihood (CML) method, which works for both

discrete and binary W, without using a Kernel estimator that is intrinsically dependent

on the bandwidth chosen. As will be seen in our simulations (in section 4.3.2), we are

able to improve our estimates by a significant amount when extra information is used.

Since we do not assume a stratified sampling scheme, the proposed method also works

for non-response problems, as long the missing at random (MAR) assumptions holds.

The proposed method is similar to that discussed in chapter 2, but for a continuous

response. And since all the methods laid out in that chapter do not make any assump-

tion regarding the distribution of Y, they are all readily extended to this case. We now

work with the conditional loglikelihood

`c(β;α) =
∑
i

Ri logfc(yi|xi;β,α), (4.2)

where

fc(yi|xi;β,α) = πi(zi;α)f(yi|xi;β)∫
πi(zi;α)f(yi|xi;β)dy ,

f(yi|xi;β) is the model of interest, πi(zi;α)) = pr(Ri = 1|zi;α) and Z is a function

of all variables fully observed at phase-1. We note that Z must contain all variables

used for selecting the phase-2 sample to ensure unbiased estimating equations for β.

As discussed in chapters 2 and 3, we can extract more information from the complete

observed data {i :Ri = 1} by calculating

S̃1 = ∂`(β;α)
∂α

.
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For a 2-phase problem, the parameters φ= (βT ,αT )T are estimated by setting the

enlarged estimating equations

S(φ) = S(β,α) =

 S0(β,α)

S1(α)− S̃1(β,α)


to zero, where

S0 = ∂`(β;α)
∂β

,

S1 = ∂

∂α

∑
i

(
Ri log(πi(zi;α)) + (1−Ri) log(1−πi(zi;α))

)

as in equation (2.8) and S̃1 as given by equation (4.2). As discussed in chapter 2, this

is equivalent to working with the pseudo-loglikelihood

`(β;α) =
∑
i

Ri log(fc(yi|xi;β,α))−
∑
i

(
Ri log(πi(zi;α)) + (1−Ri) log(1−πi(zi;α))

)
.

4.2.1 Distributions covered

Here we work with the linear model

Y = xβ+σε,

assuming different distributions for the error ε and, without loss of generality, σ= 1. We

initially used a normal error distribution, but as discussed by Hampel et al. (1986) and

Hill and Dixon (1982), analysis of real data usually rejects the normality assumption

and thus models that are not quite normally distributed are also of interest. To this

end, we also worked with three more error models: the generalized normal, skew-normal

and t-distribution.
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Generalized normal distribution

The generalized normal distribution (Subbotin, 1923; Box, 1953) is a symmetric

generalization of the normal distribution, obtained by adding a shape parameter to the

function. Its density function is given by

θ

2σΓ(1/θ) exp
{
−
( |y−µ|

σ

)θ}

where µ is the location, σ is the scale and θ is the shape parameter. Note that this

family of distribution reduces to

• the normal distribution with mean µ and variance σ2 when θ = 2;

• the Laplace distribution when θ = 1;

• the uniform distribution U (µ−σ,µ+σ) when θ→∞.

Applying the generalized normal to our problem, we have that the expected value

µ is equals to xβ and the loglikelihood is

`(β,σ,θ,α) =
∑
i

Ri log(fc(yi|xi;β,σ,θ,α)−
∑
i

(
Ri log(πi(zi;α))+(1−Ri) log((1−πi(zi;α)))

)
(4.3)

and the estimates are obtained by setting the enlarged estimating equations

S(φ) = S(β,σ,θ,α) =



S0(β,σ,θ,α)

S1(β,σ,θ,α)

S2(β,σ,θ,α)

S3(α)− S̃3(β,σ,θ,α)


, (4.4)
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where

S0 = ∂`(β,σ,θ,α)
∂β

, S1 = ∂`(β,σ,θ,α)
∂σ

, S2 = ∂`(β,σ,θ,α)
∂θ

and

S3(α)− S̃3(β,σ,θ,α) = ∂`(β,σ,θ,α)
∂α

.

In particular,

S0(β,σ,θ,α) =
∑
i

xiθ( 1
σ

)θ ((y−xiβ)2
)θ/2

y−xiβ
−xi

∫
π1ig

′(yi|xi)dyi∫
π1ig(yi|xi)}dyi

 , (4.5)

where

g = exp
{
−
( |y−xβ|

σ

)θ}

and

g′ = θ

( 1
σ

)θ
(yi−xiβ)((yi−xiβ)2)(θ−2)/2 exp

{
−
( 1
σ

)θ
((yi−xiβ)2)θ/2

}
.

To calculate the integral (4.5), we used the Gauss-Hermite quadrature, which is a

numerical method for approximating Gaussian integrals. It works as follows:

∫ ∞
−∞

exp{−t2}f(t)dt≈
n∑
i=1

wif(ri),

where n is the number of sample points used for the approximation, ris are the roots

of the Hermite polynomial Hi(x), for i= 1, . . . ,n, and the weights wis are given by

wi = 2n−1n!
√
π

n2 (Hn−1(xi))2 .
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Note that this method can be used more generally, for any function g(t). That is,

suppose that our goal is to calculate
∫
g(t)dt, for t ∈ (−∞,∞). We can use the Gauss-

Hermite quadrature method by simply multiplying the integrand g(t) by exp{−t2}exp{t2},

resulting in the integral
∫

exp{−t2}h(t)dt, where h(t) = g(t)exp{t2}. This method pro-

duces accurate results if the integrand can be approximated by a polynomial of degree

2n−1.

In our case, by doing a change of variables ui = (yi−xiβ)/
√

2, we get

∫
π1i(yi,xi)exp{−(yi−xiβ)2/2}(yi−xiβ)dyi = 2

∫
π1i((

√
2ui+xiβ),xi)exp{−u2

i }uidui

and

∫
π1i(yi,xi)exp{−(yi−xiβ)2/2}dyi =

√
2
∫
π1i((

√
2ui+xiβ),xi)exp{−u2

i }dui

for the two integrals of equation (4.5). Using the Gauss-Hermite quadrature, we have

that

∫
π1i(yi,xi)exp{−(yi−xiβ)2/2}(yi−xiβ)dyi≈ 2

n∑
j=1

wjπ1i((
√

2rj+xiβ),xi)exp{−r2
i }ri

and

∫
π1i(yi,xi)exp{−(yi−xiβ)2/2}dyi ≈

√
2

n∑
j=1

wjπ1i((
√

2rij+xiβ),xi)exp{−r2
i },

and so the first term of the sum of (4.5) can be approximated. An advantage of working

with Gauss-Hermite quadrature in R is that calculations can be vectorized so that all of

the integrations can be performed simultaneously with a single summation loop. We can

now solve the set of estimating equations equation (2.9), where the Newton-Raphson
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method can be used for convergence.

The unknown shape parameter θ was also estimated by maximum likelihood, as

shown by the estimating equations above, via the Newton-Raphson method. For the

initial value we follow the procedure developed by Domínguez-Molina et al. (2001),

which uses the method of moments. The authors first show the existence of the method

of moments estimator and, by considering the first two absolute moments and using

some properties of the generalized normal distribution, derive the formula

M(θ̂) =M(y), where M(y) =

(
1
N

N∑
i=1
|yi−µy|

)2

1
N

N∑
i=1
|yi−µy|2

and Y follows a generalized normal distribution. Then, θ̂ =M−1
[
M(y)

]
, where M(θ)

can be approximated by a proposed functionM∗(θ) that can be inverted in a wide range

of values of θ. Using their approximation we are then able to get a first approximation

to the parameter θ and use the Newton-Raphson method until convergence.

Skew normal distribution

The Skew normal distribution was first introduced by O’Hagan and Leonard (1976)

and has density function f(y|x) given by

f(y|x) = 1
σπ

exp
{
−(y−µ)2

2σ2

}∫ κ( y−µ
σ )

−∞
exp

{
− t

2

2

}
dt,

where µ,∈ R is a location, σ ∈ R+ a scale and κ ∈ R, a shape parameter. Note that

κ controls the skewness: for κ > 0, the distribution is right skewed and for κ < 0, left

skewed; for κ= 0, it reduces to the usual normal distribution.

The loglikelihood is given by equation (4.3) and the enlarged estimating equations
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system is given by equation (4.4), with θ replaced by κ.

In particular,

S0(β,σ,κ,α) =
∑
i

xi
yi−xiβ

σ
− κ
σ

exp
{
−
(
κ(yi−xiβ)

σ

)2}∫ κ

(
y−xiβ
σ

)
−∞

exp
{
− t

2

2

}
dt

−1−
xi
∫
π1ig

′(yi|xi)dyi∫
π1ig(yi|xi)}dyi

)
,

where

g(yi|xi) = exp
{
−
(
yi−xiβ

σ

)2}∫ κ( y−µ
σ )

−∞
exp

{
− t

2

2

}
dt

and

g′(yi|xi) =
(
yi−xiβ
σ2

)
exp

{
−
(
yi−xiβ

σ

)2}∫ κ( y−µ
σ )

−∞
exp

{
− t

2

2

}
dt−

κ

σ
exp

{
−
(
yi−xiβ

σ

)2}
exp

{
−
(
κ(yi−xiβ)

σ

)2}
.

Gauss-Hermite quadrature was again used to approximate the integrals, for the en-

larged system of estimating equations. The estimated coefficients were later computed

using the Newton-Raphson algorithm.

T-distribution

We also derived estimating equations for the T-distribution

Γ
(
υ+1

2

)
σ
√
υπΓ

(
υ
2
) {1 + 1

υ

(
y−µ
σ

)2
}−υ+1

2

.

The loglikelihood follows the same structure as (4.3), resulting in an enlarged estimating

equations system that is similar to (4.4).
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In particular,

S0(β,σ,υ,α) =
∑
i

xi(υ+ 1
υ

) (yi−xiβ)
σ2

{
1 + 1

υ

(
yi−xiβ

σ

)2}−υ−1
2

−xi
∫
π1ig

′(yi|xi)dyi∫
π1ig(yi|xi)dyi

 ,
where

g(yi|xi) =
{

1 + 1
υ

(
yi−xiβ

σ

)2}−(υ+1)/2

and

g′(yi|xi) =
(
υ+ 1
υ

)
(yi−xiβ)

[
1 +

{
1
υ

(
yi−xiβ

σ

)2}]−(υ+3)/2

.

4.3 Simulations

We evaluate the performance of the proposed method against more common ap-

proaches in many different scenarios. For comparison, we used the following methods:

• Full data analysis (full), where the entire data was used as if there were no

missing data. This corresponds to the ideal situation where there are no missing

information and is used here as a measure of how much efficiency, with respect

to mean square error (MSE), the missing values lead to.

• The complete case analysis (sample), where only the fully observed variables were

used to fit the model of interest. As discussed in chapter 1, this approach can be

seriously biased in case of an outcome-dependent sampling scheme or if there are

a large percentage of missing values.

• Multiple imputation (MI ), where the package Hmisc from R was used, as in

chapter 3, to generate and analyse the imputed dataset;

• The calibration method (cal), as discussed in section 1.6.1. That is, we first used
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a linear model to predict the missing values using the fully observed variables.

We then fitted the model of interest f(y|x;β) using the complete data and the

influence functions as auxiliary variables to estimate the coefficients of interest β.

For the analysis we used the survey package from R.

• The weighted (wgt) and the CML (cml) methods;

• The CMLmethod with the additional information S̃ added, considering all (cml+S)

or just the discrete variables actually used in the selection model (cml*+S). This

is done so that we can investigate the impact of adding continuous variable and

other variables into the selection model for π.

For the simulations, we used a 2-phase sampling scheme in which Y (and its “surro-

gate” Yd) and X1 (and its surrogate X1d) had been fully observed at phase-1. Here, X1d

is a discrete version of X1, being equal to 1 for extreme values of X1 and zero otherwise.

Extreme is defined as values smaller or greater than the 15th and 85th quantiles, re-

spectively. Yd, the “surrogate” of Y was defined as an indicator variable equals to if Y

less or equal than its 15th percentile. The phase-2 sample was taken from each stratum

defined by (Yd,X1d) and the remaining variable X2, observed. Figure 4.1 illustrates

the sampling scheme just described. For the simulations that follow, we analysed using

the Generalized-Normal-errors algorithm, which estimates the shape parameter θ. The

results for the skew and t-distribution are given in appendix A.

4.3.1 Varying the parameter of interest

In this section we ran a series of simulations varying the parameter of interest β in

order to investigate how the efficiency of each method is affected by different degrees of

association between the response Y and the covariates X1 and X2. We discuss situations
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Figure 4.1: Sampling scheme for a 2-phase study, where the response Y, a covariate X1 and a
surrogate variable X1d for X1 are fully observed at phase-1. An extra covariate X2
is observed only at the phase-2 of the study

β = (β0,β1,β2)T cor(Y,X1) cor(Y,X2) Phase-2 sample size

(1,.5,.5) 0.414 0.445 800
(1,1,1) 0.589 0.592 800
(1,2,2) 0.670 0.661 800
(1,1,.5) 0.673 0.374 800
(1,1,2) 0.412 0.827 800
(1,1,3) 0.302 0.922 800
(1,.5,1) 0.329 0.688 800
(1,2,1) 0.816 0.389 800

Table 4.1: Range of β and correlation between the Y and X1 and between Y and X2.

where Y and X1 or Y and X1 are weakly or strongly correlated. The range of values

covered as well as the phase-2 sample size, are shown in table 4.1.

For all simulations in this chapter, unless stated otherwise, we ran 1000 simulations

and compared each method based on their MSE, using a total population of N = 15,000

and phase-2 data containing 800 units. Notice that the true selection probability π1 is

a function of (Yd,X1d) but we can use more information by including the fully observed

variables Y and X1 into the selection model.

For the weighted, CML and CML+S̃ method, we fitted the selection model

logit(π)∼ yd ∗x1d+y ∗x1.

In order to see the impact of adding the continuous variables Y and Xi in π, we used
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the CML+S̃ method with the minimal selection model

logit(π)∼ yd ∗x1d.

Recall that yd ∗x1d is equivalent to y+x1d+yx1d and similarly for yd ∗x1. We denoted

this method by CML*+S̃. The model of interest is correctly fitted in all cases and the

results for 1000 simulations are shown in table 4.2.

The complete case analysis, which does take the biased sampling into consideration,

gives biased estimates, large MSE and poor coverage. The remaining methods are all

approximately unbiased because all models are correctly specified. The full data method

gives much better estimates in the sense that the MSE is about 10 or 15 times lower

than the second most efficient approach. That shows that the amount of information

lost due to missing observations can significantly impact the estimates of interest.

The most efficient methods are multiple imputation and CML+S̃. MI gives better

estimates for β1 and β0 when the effect of and X2 is small, but become less efficient

than the CML+S̃ method as the X2-effect increases. Recall that X2 is the variable that

is missing at phase-1. With respect to β2, both methods give estimates with similar

MSE, but as β2 increases, CML+S̃ becomes much more efficient than MI.

As expected, CML+S̃ is significantly more efficient than the weighted method. The

CML+S̃ method is also more efficient than calibration, but only slightly more efficient

than CML. That is, the extra term S̃ is not carrying a large amount of information

here, but enough to produce better estimates. The former method is usually 10% more

efficient than the latter when β2 is small, but almost equally efficient for large β2.

Compared to CML*+S̃, however, we see that CML+S̃ is far more efficient, espe-

cially when β2 is small. That is, even though we are fitting the right selection model
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(which is a function of Yd and X1d only), by adding the continuous variables Y and

X1 we are able to get much better estimates. When β2 = .5, for example CML+S̃ is

about 2 times more efficient for estimating β0 or β1 than CML*+S̃, but only about

10% when β2 is large.

Apart from the MI method, all others methods show good standard error estimates.

While MI seems to underestimate the standard error, for the remaining methods the

ratios between the estimated (Est.SE) and empirical (Emp.SE) standard errors are

close to 1. This also results in poor coverage for MI and coverage close to the nominal

value for the other methods.

Recall that the Generalized Normal Distribution, which was used to fit the model

of interest, reduces to the usual Normal distribution when the shape parameter θ is

equals to 2. Therefore, in order to quantify the amount of precision lost while using

this larger model instead of the simple normal model, we performed a simulation study

using the same parameters (population size, sample size and selection model) as above.

The results are presented in Table A.1. Thus, for these settings, the estimates obtained

through the larger and thus more robust Generalized Normal are almost as efficient as

fitting a simple Normal distribution. The differences between them are never bigger

than 10%.

Finally, we performed another simulation studied, varying not only the parameter

β but also the error distribution. Results for the skew and t-distribution are given in

appendix A, for the same settings as here, and follow the same pattern as obtained

from the Generalized Normal Distribution.
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4.3.2 Adding extra information

We will now bring in observation of a binary coarsening of X2 at phase-1. Let

the indicator variable X2d, which is equal to 1 if X2 < .5 and 0 otherwise, be fully

observed at phase-1. The selection model is the same as before, i.e., depends only on

(Yd,X1d), and the error is again normally distributed. Our goal here is to use this extra

information and see the impact of adding this variable into the selection model even

though it was not actually used for selecting the phase-2 data. The selection model

used for the weighted, CML and CML+S̃ methods is then given by

logit(π)∼ yd ∗x1d ∗x2d+y ∗x1 ∗x2d

while the selection model for CML*+S̃ is

logit(π)∼ yd ∗x1d ∗x2d.

We ran 1000 simulations for three different values of β2, the parameter associated

with X2 so that we could see how would affect the estimation of β when Y and x2 were

weakly or strongly correlated. The results are shown in table 4.3.

Consider first estimating the parameter β1. In the first case where β2 = .5, MI

is the best method with a MSE that is only 2 times larger than the one obtained if

there was no missing data. It is also about 40% lower than the MSE obtained by the

calibration method and almost 70% lower than CML+S̃. As β2 increases, however, the

CML+S̃ method becomes more efficient than MI. For β2 ≥ 1, for example, CML+S̃ is

already the most efficient method, being between 1.5 and 2 times more efficient than

the weighted method and between 1.3 and 2.5 times more efficient than the CML*+S̃
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method for estimating β1.

Regarding the estimation of β2, we see that CML+S̃ is the most efficient approach

in all cases. For example, for β2 = .5, the CML+S̃ method is almost 3 times more

efficient than the weighted method and about 2 times more efficient than MI, CML and

calibration. For large β2, the differences between the MSEs are not as large as before,

but CML+S̃ is still considerably better than the other approaches. For example, for

β2 = 2, CML+S̃ is about 1.11 times more efficient than CML and about 1.55 times

more efficient than the weighted method.

4.3.3 Model misspecification

For data missing by design, as considered so far in this chapter, the selection prob-

ability π is controlled by the researcher and thus, known. Therefore, in order to inves-

tigate the robustness of the proposed method under a continuous response, we work

with misspecified models of interest. We assumed that the true model was now given

by

Y = β0 +β1x1 +β2x2 +γx3 + ε,

where X3 = X2
1 + εx3 , for εx3 ∼N(0,10−2). We work with the same sampling scheme as

in section 4.3.1, assuming that the extra variable X3 have also been fully observed at

phase-1. As before, all variables are normally distributed with zero mean and variance

1. Table 4.4 shows the results for γ = (.01, .025, .05, .075), indicating small and moderate

model misspecifications.

The residuals plots for fitting y ∼ x1 +x2 for each value of γ, based on the phase-2

sample, are shown in Fig. 4.2. For γ = .01, a stepwise regression detects the model

misspecification in about 37% of the time. For γ = .025, it was detected approximately
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63% of the time. For γ = .05 and for the more extreme case γ = .075, the quadratic

term was detected in 93% and 99% of the time, respectively.

From table 4.4 we see that as the model misspecification increases (i.e., γ increases),

calibration and the weighted methods become the best alternatives to estimate the

intercept and β1. This is because both methods are more robust and show smaller

bias when compared to the other methods, especially while estimating β1. Since the

misspecification is not related to β2, the CML+S̃ method is still the best approach

among all considered here, showing small MSE in all cases.

4.4 Nearly true models

It is well-known that the efficiency of maximum likelihood methods is strongly re-

lated to how well the model of interest is specified. If the model of interest is correctly

specified, under mild conditions, maximum likelihood estimates (MLE) will be unbiased

and fully efficient. However, as seen in previous sections, if the model is slightly mis-

specified these estimates will become biased, resulting in poor estimates that are, some-

times, even worse than the estimates obtained via the more robust weighted method.

The question, therefore, is to determine how much misspecification is need before MLE

become worse than the weighted ones and understanding this threshold is the goal of

this section. Of course, in real life problems, this threshold is impossible to determine

since we do not know the true model. The results in this section are, therefore, mainly

for theoretical purposes, but serves as an alert for analysts since the true model is

almost never known.

Model misspecification and robustness have been objects of study for about 50 years

now. Tukey (1952) and Huber (1964) are considered the ones who laid the modern

foundations of such a field. Robust methods are usually less efficient than the MLE
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(a) (b)

(c) (d)

Figure 4.2: Residual plot for different values of γ. Figure (a) corresponds to γ = .01, (b) corre-
sponds to γ = .025, (c) to γ = .05 and figure (d) to γ = .075.
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if all assumptions are satisfied, but become more efficient if small deviations from the

model are present. Some methods, however, can also be asymptotically fully efficient

as Robins et al. (1994), where the authors derive robust AIPW estimates that achieve

the semiparametric efficiency bound asymptotically.

This bias-variance trade-off is discussed in great detail in Claeskens and Hjort (2008)

and our approach follows a similar idea, applied to a 2-phase sampling scheme, as done

by Lumley (2013). This bias-variance trade-off was analysed by Lumley (2013) for

nearly-true models, i.e., models that are close enough to the true one in such a way

that their misspecification cannot be reliably detected by available tests or diagnostics.

Lumley defines two measures P and Q related to the true and nearly true (misspecified)

models and is interested in testing the likelihood ratio L = dQ/dP , with the purpose

of detecting any departures from the true model. Lumley relies on the theorem known

as LeCam’s Third Lemma (LeCam, 1960). Let Dn denote some statistic of interest.

Lemma 4.1. If

(
Dn, log dQn

dPn

)
d−→N


 µ

κ2/2

 ,
 σ2 τ

τT κ2




under Pn, then

Dn
d−→N

(
µ+ τ,σ2

)

under Qn.

That is, going from the true to the nearly-true model, there is a shift in the distri-

bution but no change in scale. Note that τ can be written in terms of the correlation

ρ, so that the shift is equals to ρκσ. Lumley (2013) rewrites this result in terms of βeff
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and βAIPW (estimators obtained via the efficient and AIPW methods), as

√
n
(
β̂AIPW−β∗

)
d−→N(0,σ2 +ω2)

and
√
n
(
β̂eff−β∗

)
d−→N(κρσ,σ2)

under Qn and β∗ is the true parameter under Qn. The author defines β∗ as “the value

to which the outcome-model point estimator would converge with complete data as

N →∞”.

Note that, in terms of MSE we can now obtain a threshold where the AIPW becomes

more efficient than the usual efficient approach. That is, if κ2ρ2 > 1, βAIPW is more

efficient (smaller MSE) than βeff and the worst case possible is when ρ= 1.

In order to create sequences of probabilities with ρ≈ 1, Lumley (2013) suggests to

define a parametric family Q̃δ by

dQ̃δ
dP

= Cδ exp{δ(V̂ − Û)},

so that the correlation is 1 asymptotically and where Cδ is a normalizing constant and

V̂ and Û are the influence functions for the efficient and AIPW estimators, respectively.

Lumley discusses a 2-phase study with binary response. Here we work with a

continuous response. We also consider a 2-phase design, where the phase-1 data consists

of N subjects with known response Y and a covariate x is observed at phase-2. For

simplicity, we consider only a single x. As before, we divide Y into 3 mutually exclusive

intervals: I1 = (−∞, c1); I2 = (c1, c2); I3 = (c2,∞), where c1 and c2 are the 15th and 85th

percentiles of Y, and select n1, n2 and n3 units from each interval with probabilities p1,
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p2 and p3, respectively. This results in a phase-2 data of n= n1 +n2 +n3 fully observed

units.

The complete likelihood L is given by

N∏
i=1

(πi(yi)f(yi|xi;β)g(xi))Ri
N∏
i=1

(
(1−πi(yi))

∫
f(yi|x;β)g(x)dx

)1−Ri
, (4.6)

where πi(yi) = pr(Ri = 1|yi;α) is the probability that the ith unit is selected for full

observation and g is the density of X .

As discussed in section 1.5, the most efficient augmented inverse-probability weighted

estimator is obtained by solving

∑
i

Ri
πi
Ui(β) +

∑
i

(
1− Ri

πi

)
A∗i (β) = 0

where

A∗i = E(Ui(β)|y).

Note that, since the term A∗i differs from zero, the IPW estimator is no longer

the best AIPW estimator. Robins et al. (1994) show this best estimator exists, but

implementing it while keeping the distribution of X unspecified is not simple and goes

beyond the scope of this section. We will assume, instead, that the distribution of X is

known so we can calculate A∗i , keeping in mind that asymptotically this assumption will

cause minor interferences in the results as the best AIPW estimator is asymptotically

fully efficient. According to Tsiatis (2006), its influence function is

Û(β) = E (Sβ)−1
[
RiSβ
πi

+
(

1− Ri
πi

)
E (Sβ|y)

]
,

where Sβ = ∂ logf(yi|x′iβ)/∂β.
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For the efficient ML estimator, since the selection probabilities π depend only on Y,

by Chen (2004) or Zhang and Rockette (2005), the semiparametric estimator (MLE)

derived at Scott and Wild (2006) is fully efficient (see chapter 7), with influence function

V̂ (β) =
(
IIIββ−IIIβαIII−1

ααIIIαβ
)

Sβ,

where III stands for the expected information matrix and

Sφ = ∂

∂φ
log
(

π(yi;α)f(yi|xi;β)∫
π(y;α)f(y|xi;β)dy

)
, φ=

 β

α

 .

The misspecified model was constructed as before. Let bδ = Cδe
δ(V̂−Û) so that

dQ(y|x)
dF (y|x) = bδ → dQ(y|x) = dF (y|x)bδ,

where Q is the misspecified model and F the correct one. When F is normally dis-

tributed with mean xβ and variance 1, dQ(y|x) is also normally distributed with the

same variance but mean (xβ)bδ. Moreover, as for the binary case, as n→∞ the corre-

lation between dQ(y∗|x)/dF (y∗|x) and V̂ − Û tends to 1. In this “worst case scenario”,

ρ ≈ 1, we focus our attention on k, the variable that defines the threshold where the

AIPW estimator becomes more efficient (in terms of the MSE) than the MLE. Our goal

is to see if at this point, where both MSE are close, we have enough power to detect

the misspecification.

The simulations consist of basically three steps, which are also shown in figure

4.3: (1) generating an iid population of size N with cdf Q and calculate the influence

functions; (2) estimating the mean of the true and misspecified models; (3) estimating

the power of detecting departures from the correctly specified model.
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Figure 4.3: Simulation scheme.

Figure 4.4 shows the MSE of the AIPW and the MLE with respect to the power

of the Neyman-Person test. The red line corresponds to the best AIPW estimator and

the dark line, to the MLE method. Notice that, even when the power for detecting

model misspecification is small (30 or 40%), the AIPW is more efficient than the MLE

method. When we the power large enough for detecting model misspecification, the

MLE method is considerably less efficient than the best AIPW estimator. This raises

concern to the use of the MLE method in real problems, where the power of detecting

model misspecifications is even smaller than the ones reported here. Unless the model

can be considered correctly fitted, the MLE method should be avoided.

4.5 Summary

Here in this chapter we extended the CML+S̃ method for the continuous case and

analyzed its performance through simulations. Unlike other methods discussed (see

section 4.1), the CML+S̃ does not require any parametric model for extra variables

fully observed at phase-1 and not used for selecting the phase-2 sample. The method

can also be applied to situations in which fitting a saturated model for the selection
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Figure 4.4: MSE of MLE (dark line) and MSE of AIPW (red line).

probability is not possible and makes use of the whole data in a fairly simple way.

Regarding the simulated studies, we note that if all models are correctly specified

and the variable that goes missing has little effect than MI and calibration estimate

the effects of the remaining variables more efficiently. If it has a reasonable large effect,

CML+S̃ is most efficient for all variables and in particular for β2. As in the binary case,

the CML+S̃ method makes use of additional variables (denoted in our simulations by

a binary coarsening) that was not used in any part of the study in a simple and efficient

way. However, as discussed in previous section, small departures from the true model

may lead to large bias and, consequently, large mean squared errors. Therefore, the

CML+S̃ method should be used with extreme care in in real problems, otherwise a

more robust approach as the weighted or calibration methods are a better choice.



5
Treatment Effects and

Propensity Scores

There are strong connections between using estimated weights and many applica-

tions of the propensity score concept. Both rely on estimating the probability of a

response, often binary, given known covariates and can be considered equivalent under

some conditions.

In this chapter we will describe how the propensity score is used to estimate treat-

ment effects and how it is related to the estimated weights approach. We start by re-

viewing the propensity score theory, discussing its application in the literature, mainly

though simulated studies. Later we run a series of simulations with estimators based

on both techniques, propensity scores and estimating weights, and see how they behave

under a variety of scenarios.

119
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5.1 Treatment effect

The term “treatment effect” comes from the medical literature where interest lies

in assessing the efficacy of a new treatment or procedure (Park et al., 2011). This term

was later extended to parallel applications in other areas, for example, in economics to

assess whether or not using a new training technique will result in an increase of sales.

Here training would be the treatment variable and the treatment effect would be given

by the comparison between the sales of the treated and untreated groups (Ashenfelter,

1978).

We will generally be discussing a binary treatment (1 for treated and 0 for un-

treated), but everything that follows can be extended to treatment variables with more

than 2 levels. The only requirement here is that different groups receive different treat-

ments. Interest lies in measuring the effect of treatment on the outcome of interest.

Letting y1i be the potential outcome of the ith subject if it was treated and y0i be the

potential outcome of the same ith subject if it was untreated, the treatment effect TEi

is defined as

TEi = y1i−y0i.

Let Ti = 1 if the ith individual is treated, 0 otherwise. Normally we observe only one

of these outcomes. In other works, we observe yi = y1iTi+y0i(1−Ti). It is impossible,

therefore, to obtain the real treatment effect at the individual level. Holland (1986)

called this the Fundamental Problem of Causal Inference. To address this problem, the

author gives two alternatives: the scientific solution and the statistical solution.

In the scientific solution the scientist exploits invariance or homogeneity assump-

tions to overcome the Fundamental Problem of Causal Inference. For example, the

researcher may believe that the value of y0i does not vary over time and the value of
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y1i is not affected by prior exposure. We can then measure the response y0i for the ith

individual before giving him/her the treatment of interest and observing y1i afterwards.

Here the invariance assumption was used. The homogeneity assumption is used when

y1i is believed to be equal to y1j and y0i = y0j , for two units i and j. The treatment

effect can be observed as y1i−y0j .

For the statistical solution, we calculate the average treatment effect ATE by

ATE = E(Y1)−E(Y0). (5.1)

These quantities, however, are not observed. The observed treatment effect OTE is

OTE = E(Y1|T = 1)−E(Y0|T = 0), (5.2)

which takes into consideration only the values that were actually observed. Note that

for (5.2) only part of the population is used, while for (5.1) the entire population is

taken into consideration. Thus, (5.2) is not necessarily equal to (5.1). They become

equal when the individuals are randomly selected into the treated or untreated group.

If this assumption holds, E(Y0) = E(Y0|T = 0) and E(Y1) = E(Y1|T = 1), so that OTE

= ATE.

For randomized experiments, where the study population is randomly assigned to

the treatment group, background covariates (measured or unmeasured) will be similar

for participants in both groups in such a way that the only systematic difference between

them will be the treatment status. We can then establish a causal relationship between

the treatment T and response the Y .

On the other hand, if independence between treatment assignment and background

covariates does not hold, the covariates will no longer be evenly distributed between the
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groups and so the treatment group may be systematically different to the control group

in ways other than treatment. This occurs in non-randomized observational studies.

Here, if we use equation (5.1) to estimate the average treatment effect, we will usually

get biased results because we cannot be sure that T is the only variable affecting Y .

Although randomized experiments are the ideal form of study, they cannot be per-

formed in every situation. Suppose, for example, that we want to study the effect of

smoking on developing lung cancer. For ethical reasons, we cannot randomly assign

people to the smoking or non-smoking groups and so a randomized experiment cannot

be performed. As a result we cannot claim a causal relationship because unobserved

covariates such as genetics that are not balanced between the two groups may be re-

lated to lung cancer in some way and so direct comparisons in observational studies

between treatment and control groups may lead to biased results.

5.2 Propensity score

The propensity score (e) method was developed by Rosenbaum and Rubin (1983)

as a way to reduce bias in observational studies in attempting to estimate the average

treatment effect ATE. The propensity score is defined as the probability of being treated

given a set of observed covariates xi,

e(xi) = pr(Ti = 1|X i = xi). (5.3)

It is usually estimated by a logistic regression model but some other methods have been

proposed and will be discussed later in this chapter.

The strong ignorability assumption of T given X plays an important role in propen-

sity score theory and is defined by the following two properties:
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• Y (1),Y (0)⊥ T |X , that is, potential outcomes under treatment Y (1) and under

no treatment Y (0) are independent of the treatment assignment T given X . This

assumption is also known as unconfoundedness, since it assumes that there are no

unobserved covariates associated with the potential outcomes and the treatment

besides those already measured.

• 0 < pr(T = 1|x) < 1, for all x, which is known as the overlap assumption. It

assumes that the conditional distribution of X |T = 0 overlaps with the conditional

distribution of X |T = 1, so that for each treated subject with specific background

covariates, an untreated subject with similar characteristics should have also been

observed.

We say that treatment is strongly ignorable if both assumptions hold.

Propensity scores are widely used because of the following properties derived in the

seminal paper by Rosenbaum and Rubin (1983). They show that the propensity score

is the simplest, coarsest function of X that is a balancing score, where a balancing

score b(x) is a function of the observed covariates such that X ⊥ T |b(x). Moreover,

it is shown that estimates of a balancing score also behave as a balancing score and

if treatment assignment is strongly ignorable given X , it is also strongly ignorable

given any balancing score. In other words, the use of propensity scores creates a quasi-

randomized experiment in the sense that exact matching on e(xi) will tend to balance

the X distributions in the treated and control groups (Rosenbaum and Rubin, 1985).

Propensity scores, however, will only balance the observed covariates. As Rubin stated,

“it is important to keep in mind that even propensity score methods can only adjust

for observed confounding covariates and not for unobserved ones” (Rubin, 1997). In

addition, e(xi) is rarely ever known and therefore must be estimated from the avail-

able data. This estimated propensity score may not be able to remove all bias if the
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covariance adjustment method (see below) is used (Hade and Lu, 2013).

Propensity scores can also be used to improve efficiency, as noticed by Hahn (1998)

and Heckman et al. (1999). Rosenbaum (1987) and Rubin and Thomas (1996) show

that more efficient estimates can be obtained by using estimated propensity scores

instead of the true values and Hirano et al. (2003), based on Robins et al. (1995), show

that by using propensity score as weights the semiparametric efficiency bound can be

achieved.

Theorem 4 of Rosenbaum and Rubin (1983) shows that a balancing score can be

used to obtain unbiased estimates of the average treatment effect and corollaries 4.1-

4.3 in particular show that balancing scores can be used in matching, stratification

and covariance adjustment in order to provide estimates which are unbiased under the

assumption of T being strongly ignorable given X . The only exception is for the co-

variance adjustment method, where it is required that the conditional expectation of

T given the balancing score b(x) should be linear in addition to the strong ignora-

bility assumption of T given X . We assume throughout that the strong ignorability

assumption is met and, additionally the linearity assumption is met when discussing

the covariance adjustment method.

Matching

In the context of treatment effects, a matched study consists of matching subjects

that received the treatment to a set of untreated subjects, where the matching step is

based on the observed covariates. That is, subjects with equal or nearly equal observed

covariates are matched together and so the treatment effect can be correctly estimated

under the assumption of unconfoundness. A clear drawback occurs when there are

a large number of covariates so that finding individuals in the treated and untreated
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groups with similar background variables becomes very difficult.

Many matching techniques have been developed (Stuart, 2010) and a common choice

is to use the Mahalanobis metric to match treated and untreated subjects (Baser, 2006),

as follows. First, all treated subjects are randomly sorted and the Mahalanobis distance

between the first treated unit and all controls are calculated. Then, the one with the

smallest distance is considered a match for that first treated subject and we move to

the second treated individual, and so on, until all treated subjects are matched.

Propensity scores can be used for matching in a much simpler way. It can be seen as

a summary of many observed covariates represented in only one number and based on

the fact that people with similar propensity score will tend to have similar background

variables as discussed earlier. We can use the propensity score for matching instead of

using the observed covariates. Thus, a k-dimensional problem, where k is the dimension

of the covariates, becomes a 1-dimensional problem.

Rosenbaum and Rubin (1983) also suggest three ways of using propensity scores for

matching: nearest available matching on the estimated propensity score, Mahalanobis-

metric matching including the propensity score and nearest available Mahalanobis-

metric matching within calipers defined by the propensity score.

One drawback of matching is that we may discard a large number of untreated

individuals because not all of them will be matched to the treated ones and that im-

perfect matching may lead to some residual bias (Hill, 2008). Despite this, matching

with propensity scores is still a popular method and is commonly applied in medical

statistics (Waernbaum, 2011).
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Stratification

Stratification (or subclassification) is also commonly used in estimating treatment

effects in observational studies (e.g. Rosenbaum and Rubin (1984); Rosenbaum (1991);

Hansen (2004)). Here, individuals are divided into strata based on their observed

baseline covariates so that treated and control individuals can be compared for each

stratum. A large number of covariates can make stratification infeasible since it may

result in a large number of strata with some containing just a few, or even no individuals

at all or having subjects from only one group making comparison between treated and

untreated individuals impossible.

Propensity scores can be used as a way to reduce the number of covariates used

to create the strata, as follows. First, the propensity score ei for each individual is

estimated and the vector e = (e1, . . . ,eN ), where N is the size of the population, is

divided into k intervals. The average treatment effect is then estimated within each

stratum and the overall treatment effect is estimated as a weighted mean of the previous

estimates.

Weighting and covariance adjustment

Propensity scores can also be used as weights to obtain unbiased estimates for the

average treatment effect. Under the strong ignorability assumption,

E

{
Y T

e(X)

}
= E

{
E

[
Y T

e(X)

∣∣∣∣y,x]}= E

{
Y

e(X)E [T |y,x]
}

= E (Y1) .

and the ATE can be estimated by weighting observations in each group by the inverse of

its propensity score (Rosenbaum, 1998). Notice that this estimator is an IPW estimator

and falls into the broader class of AIPW discussed in Robins et al. (1994) (see section
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1.5).

Propensity scores can also be used in regression as an adjustment variable (covari-

ance adjustment). Thus, propensity scores can be seen as data reduction methods,

where a two-step procedure is performed, as discussed in D’Agostino (1998): The first

step consists of fitting a very complicated propensity score model and adjust for the

propensity score in the model of interest. The covariance adjustment is generally more

efficient than simply using propensity scores as weights, but can perform poorly if

the sample linear discriminant based on covariates is not a monotone function of the

propensity score (Rosenbaum and Rubin, 1983). Moreover, for the linear model

E (yi|Ti,x1, . . . ,xk) = β0 +β1Ti+f(x1, . . . ,xk)β2,

where k is the number of covariates and f(.) is how the covariates affect the response

(which may not be linear), Hade and Lu (2013) show that replacing f(x1, . . . ,xk) by

the estimated propensity score e(x1, . . . ,xk) may produce a biased treatment-effect es-

timator. If the true propensity score is used instead, the treatment effect estimator is

unbiased.

5.2.1 Estimating the propensity score

Propensity scores are usually estimated by fitting a parametric (usually logistic)

model for the treatment assignment given the covariates, i.e., estimating pr(T = 1|x)

by fitting a model pr(T = 1|x;η). However, slightly misspecifications may lead to

biased estimates of the estimated treatment effect (Kang and Schafer, 2007) and might

also result in poor covariate balance. Achieving covariate balance is, in fact, the main

criterion to decide whether an estimated propensity is or is not appropriate (Imai et al.,

2008).
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The balance of the covariates can be assessed in many ways: A simple two sample t-

test for the mean difference of each of the covariates is among the most common methods

(Imai et al., 2008); the cross-match test (Rosenbaum, 2005); or a permutation-type test

(Hansen and Bowers, 2008) are also alternatives for testing if the background covariates

are balanced. Rosenbaum and Rubin (1985) give a standardized bias expression to

measure the overall covariate imbalance and Rosenbaum and Rubin (1984) and Rubin

(1997) suggest a cyclic process of checking for balance and reformulating the propensity

score model.

In order to avoid problems with model misspecification, non-parametric models for

estimating the propensity score have been studied (McCaffrey et al., 2004), but as

the dimension of X increases, the non-parametric approach becomes more challeng-

ing. Some work has then been done on double robustness methods (Tan, 2010) or on

achieving the balancing property. Imai and Ratkovic (2014) give a good overview of

several methods that estimate the propensity score while keeping the balancing prop-

erty and also propose a new method called the covariate-balancing propensity score

(CBPS). Their method is based on the fact that by using the inverse propensity score

as weighting we should ideally achieve the balancing property. That is, after weighting,

all groups should ideally have similar means

E

{
TiX̃ i

e(X i)
− (1−Ti)X̃ i

1− e(X i)

}
= 0,

where X̃ i = f(X i), for any function f specified by the researcher. The authors also add

another constraint regarding the equality of second moments and use the generalized

method of moments (Hayashi, 2000) or the empirical likelihood approach (Owen, 2001)

to obtain the estimated propensity scores. They run simulations in order to examine

how different methods of estimating the propensity score affect commonly weighting
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estimators (such as the IPW method described earlier). According to their simulations,

if the propensity score model is correctly specified, all methods used to estimate the

propensity, in particular the CBPS method and the simple logistic regression, produce

nearly the same results. Thus, since for everything that follows we assume that the

true propensity score model is a submodel of the fitted model, we can use a simple

logistic regression to estimate e(x).

5.3 Covariance adjustment

Because of its nice properties and ease of implementation, methods based on propen-

sity scores have become very popular among clinical researchers, with an exponential

increase in publications reporting or exploiting propensity scores for multivariate ad-

justment, reaching nearly 2,000 publications in the period 2005-2009 (Biondi-Zoccai

et al., 2011). But as its use increases, concern with its misapplication is also increasing.

Pattanayak et al. (2011) call attention to the dangers of using regression adjustment

in observational studies. According to the authors, the most important flaw of regres-

sion adjustment is that study design is not separated from outcome analysis. In fact,

the design phase of randomized experiments is set prior to seeing any outcome data

and since “an observational study should be conceptualized as a broken randomized

experiment” (Rubin, 2007), the design phase of an observational study should often be

done before seeing the data. More formally, the design of an observational study should

follow three steps, known as the Rubin Causal Model (Holland, 1986): the first step

consists of defining causal effects as a comparison between the potential outcomes of a

treatment and a control on a common set of units; the second step consists of defining

an assignment mechanism using a probabilistic model for T given (X ,Y (0),Y (1)); and

the third step, which is optional, consists of specifying a model for pr(X ,Y (0),Y (1)).
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The propensity score is used at step 2 with the purpose of reconstructing a randomized

experiment and so, with no outcome data available at this stage, matching, weighting or

stratification on propensity scores are natural ways of eliminating bias due to observed

covariates.

Pattanayak et al. (2011) also show concern regarding the covariance adjustment

method when there is hardly any overlap between the distributions of covariates in the

treated and untreated groups. Note that in this case the strong ignorability assumption

of T given X does not hold (see section 5.2).

Based on the fact that all mean bias is along the propensity score, Rubin (2001)

discusses three basic distributional conditions that should be used simultaneously for

regression adjustment to be trustworthy:

(i) Unless the distributions are nearly symmetric, have nearly the same variance and

nearly the same sample sizes, the difference in the means between the propensity

scores of each group must be less than half of a standard deviation;

(ii) The ratio between the variance of the propensity score in the two groups must be

close to one;

(iii) After adjusting for the propensity score, the ratio of the variances of the residuals

of the covariates must also be close to one.

Notice that these conditions implicitly assume that the covariates are normally dis-

tributed or following distributions that can be summarized by means and variances.

These conditions, however, are usually ignored in many applied fields and if at least one

condition does not hold, the difference between the distributions of the covariates in

the two groups must be considered as substantial and the regression adjustment should

be considered unreliable (Rubin, 2001). Moreover, covariance adjustment is a paramet-
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ric approach so that unless the conditional distribution of Y given the covariates can

be correctly modelled, non-parametric methods such as propensity scores matching,

stratification or weighting should be used.

5.3.1 Covariance adjustment in linear regression

Freedman and Berk (2008) also call attention to the fact that many researchers

have used propensity scores without fully understanding the costs of misapplying this

technique. For a treatment T and confounders X = (X1,X2) correlated with T , the

authors use a linear model

Y = β0 +βTT +β2x1 +β3x2 + ε (5.4)

or a Bernoulli response with success probability defined by setting

logit(pr(Y = 1|T,x;β)) = β0 +β1T +β2x1 +β3x2

to compare the performance, with respect to the mean squared error (MSE), of the

unweighted and weighted regressions. They ran regressions of Y on T and X, with no

adjustment and a weighting adjustment, using the inverse propensity scores as weights.

Thus, since the true propensity score is e(x) = pr(T = 1|x1,x2), subjects with T = 1 re-

ceive weight 1/ê and subjects with T = 0 receive weight 1/(1− ê). The weighted regres-

sion minimizes the weighted sum of squares. The authors assume that the propensity

score model is correctly specified and run both weighted and unweighted regressions

of Y on T and (X1,X2); Y on T and X1; Y on T alone, in order to see the trade-off

between variance and bias incurred when making the weighting adjustment.

Their simulations show that when the model of interest is correctly specified, there
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is no bias to reduce and unnecessary weighting by propensity scores increases the MSE

error as might be expected. However, it may provide more efficient estimates when

covariates are not included in the model of interest, but are included in the propensity

score model. Still regarding the weighted regression, their simulations show some small-

sample biases and some substantially underestimated standard errors. Worryingly,

these were about 3 times smaller than the empirical standard errors (Emp.SE) obtained

(through 250 simulations). It is of interest, then, to see if the covariance adjustment

method, not considered by Freedman and Berk, also underestimates the standard error

while estimating the treatment effect.

To this end, we simulated the same scenario as in Freedman and Berk (2008). That

is, consider the linear continuous response given by equation (5.4) with coefficients

β = (1,1,1,2)T and let

T =


1, if η0 +η1x1 +η2x1 +ν > 0

0, otherwise

with η = (.5, .25, .75)T . In addition let ε∼N(0,1) and ν ∼N(0,1) and X = (X1,X2) be

bivariate normal, with E(X1) = .5, E(X2) = 1, Var(X1) = 2, Var(X2) = 1 and correlation

ρ = .5. We estimated the propensity score using a probit model, correctly specified,

and ran the same regressions as before, but including the estimated propensity score

as an extra covariate.

The results are presented in table 5.1. Regression adjustment for the propensity

score removes bias in βT , which is expected since we are fitting the correct model

for e(x). With respect to the standard errors, the situation is reversed. The nominal

standard errors of βT are somewhat overestimated by the covariance adjustment method

by a factor of about 1.3 (i.e., the estimated standard errors (Est.SE) were conservative).
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Table 5.1: Results for the covariance adjustment, for 500 datasets simulated.

Bias Emp.SE/Est.SE

β0 βT β2 β3 β0 βT β2 β3

Y on (T,X1,X2) -0.030 0.002 -0.004 0.002 1.047 1.007 1.037 0.975
Y on (T,X1) -4.409 0.008 0.174 2.257 0.781 1.653
Y on (T ) -8.984 0.012 3.426 0.724

Notice that in the simulation above as well as in both scenarios studied by Freedman

and Berk (2008), each variable was either fully observed or not observed at all; no

partially observed variables were considered. Our goal here is to fill this gap, by allowing

some variables to be missing by happenstance so that only a sample of the population

will have been fully observed. We ran a small simulation to understand how this partial

information affects the results previously obtained.

Consider the following scenario. Let logit(π(x)) = 1 +x1 be the logit of the proba-

bility of providing information regarding X2 while the remaining variables are known

for all subjects in the study. We work with a similar model to (5.4), but with the extra

variable Z =X2
1 + εz added into the model, i.e.,

Y = β0 +β1T +β2x1 +β3x2 +β4z+ ε

where εz ∼N(0,1). The reason for adding Z is that a missed quadratic term is perhaps

more likely than an extra unmeasured covariate.

For the remaining variables, let the treatment indicator variable T take the value 1

with probability

e = pr(T = 1|x;η) = exp(xη)
1 + exp(xη)

and let X = (X1,X2) be multivariate normal centred around 0, with variances 1 and

correlation ρ = .5. Following Freedman and Berk (2008), we ran regressions of Y on
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(T,X ,Z), Y on (T,X) and Y on (T ), comparing three methods: unweighted least

squares with (Adj) and without (Lin) adding the propensity score as an extra covariate

and the propensity score weighted adjustment (wgt). The regression models are:

• Model 1: Y = β0 +βTT +β2x1 +β3x2 +β4z;

• Model 2: Y = β0 +βTT +β2x1 +β3x2;

• Model 3: Y = β0 +βTT +β2x1;

• Model 4: Y = β0 +βTT ,

with η = (1,−2,−2)T and β = (5,5,1,1, .3)T . Model 1 is the true model that generates

the data and so the remaining models are also used to fit the data. We estimated

the propensity score using a logistic model correctly specified, expecting that it would

correct the omitted-variable bias of the three last misspecified models. We ran 500 sim-

ulations and the results for bias, empirical (Emp.SE) and estimated (Est.SE) standard

errors and coverage are shown in Table 5.2.

Our interest is in the treatment effect βT . If the complete model is fitted, there is

no bias to be adjusted, and the simple linear regression, which makes no use of propen-

sity scores, has the lowest variance. In the other three scenarios, a similar pattern is

observed to that obtained by Freedman and Berk. Methods based on propensity scores

result in much less biased results than the simple linear regression, resulting in sub-

stantially smaller MSEs. The weighted regression again has a small-sample bias while

estimating βT and the nominal standard error is again substantially underestimated.

Covariance adjustment leads to smaller standard errors while keeping the estimates

nearly unbiased in all scenarios. For the last two cases where (X2,Z) and (X1,X2,Z),

respectively, are not included in the model of interest, the nominal standard error is
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Table 5.2: Results for βT only, for 500 datasets simulated

Regressions Method Bias Emp.SE Est.SE MSE % Coverage

Y on (T,X1,X2,Z)
wgt -0.006 0.352 0.165 0.352 0.645
Adj -0.007 0.252 0.255 0.252 0.947
Lin -0.006 0.229 0.232 0.229 0.959

Y on (T,X1,X2)
wgt 0.002 0.375 0.179 0.375 0.654
Adj -0.002 0.267 0.284 0.267 0.966
Lin 0.079 0.258 0.256 0.264 0.940

Y on (T,X1)
wgt -0.257 0.445 0.222 0.511 0.575
Adj -0.018 0.274 0.320 0.274 0.974
Lin -0.939 0.273 0.276 1.155 0.075

Y on T
wgt -0.698 0.714 0.312 1.201 0.305
Adj -0.004 0.280 0.358 0.280 0.988
Lin -2.614 0.282 0.293 7.113 0.000

slightly overestimated, but this error is not nearly as large as in the weighting adjust-

ment.

Hade and Lu (2013) discuss using the estimated propensity score as a regression

covariate to remove bias in observational studies and express strong concern with its

use in specific situations regarding the overlap between the distributions of X |T = 1

and X |T = 0. Notice, however, that this overlap must be controlled in order to satisfy

the strong ignorability assumption of T given X . They worked with different response

functions and different overlaps through simulations. The method recommended by

these authors depends on the type of overlap between the covariates. Their simulation

study works as follows: they first generate the treatment and control groups and assign

X t and Xc for each group, respectively. For the linear model and a univariate X, they

generate data from

Y = β0 +βTT +β2f(x) + ε

where f(x) can be linear, quadratic, exponential or a step function, ε follows a standard



136 Chapter 5. Treatment Effects and Propensity Scores

normal distribution and X = (XtT,Xc(1−T )), where Xt and Xc are two independent

normals with means (µt,µc) varying from 20-30 and variances (σ2
t ,σ

2
c ) varying from

3-5. They used β = (1,10,1)T and used a logistic regression of T on X to estimate the

propensity score. The model Y ∼ T is fitted to the data so that the unadjusted linear

regression will have omitted-variable bias and methods that use propensity scores are

expected to perform better. The goal here is to compare all methods with respect to

the relative bias of the estimated treatment effect.

Their simulations show that biases are related to the distributional overlap of the

covariates and also to the relationship between Y and f(X). When f(X) =X, adding

the propensity score as covariate is enough to remove nearly all bias, but as the rela-

tionship between f(X) and Y departs from linearity, the relative bias increases. When

the distribution of Xt is contained in the distribution of the control group and f(X)

is quadratic or defined as a step function, the relative bias is approximately 500% and

100%, respectively. The model misspecifications they were using, however, were so

strong that they would be detected essentially 100% of the time, at the 5% level, with

a standard regression. In fact, as used in Hade and Lu, with 400 (or 2,000) individuals

allocated into the treatment group and 100 (or 500) allocated into the control group,

a quick analysis is enough to strongly detect all model misspecifications used in their

paper. As X is used to estimate the propensity score, we ran a regression of Y on

(T,X) and the residual plots for N = 500 are shown in figure 5.1, for f(X) quadratic,
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exponential and equals to the step function

f(X) =



(X−25)2 + 1 if X ∈ (∞,25]

14(X−25) + 1 if X ∈ (25,26)

−5(X−26) + 15 if X ∈ [26,27)

10 if X ∈ [27,29)

−5(X−29) + 10 if X ∈ [29,30)

15(X−30) + 5 if X ∈ [30,31)

20 otherwise.

To see whether these effects were still evident with moderate misspecification, we

weakened the relationship between Y and f(X) by decreasing the coefficient β2 so that

the residual plot (Fig. 5.2) does not show such severe model misspecification and thus

better reflecting reality. Also, the same argument used by Freedman and Berk should

be applied in this setting: if X is used to estimate the propensity score, X is also likely

to be included in the model of interest. Then, for linear f(X), all methods including

the unadjusted linear regression, are able to remove all bias. Table 5.3 shows the result

for quadratic f(X) and for the same scenario discussed above: 400 subjects allocated

into the control group, 100 allocated into the treatment group and (Xc,Xt) are both

normally distributed with mean (20,25), variance (5,3) and correlation ρ = 0. Data

were generated from the true model

Y ∼ β0 +βTT +β2x
2
1

and the propensity score was estimated by a logistic regression. The estimated and

true propensity scores are shown in figure 5.3.
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(a) (b)

(c)

Figure 5.1: Residual plot for f(X) equals to a (a) quadratic, (b) exponential and (c) step
function.
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Figure 5.2: Residual plot for quadratic
f(X) and β2 = .004.

Figure 5.3: True (black line) and estimated
(red line) propensity scores.

We fitted the model

Y ∼ β0 +βTT +β2x1 (5.5)

to obtain the results in Table 5.3 and ran 1,000 simulations with β = (1,10, .004)T .

Note that (5.5) is misspecified and the quadratic term was detectable in about 80% of

the time. The residual plot is shown in Fig. 5.2.

Even with a weak relationship between Y and f(X), the unadjusted linear regres-

sion shows a bias that is about 20 times bigger than that obtained by the propensity

score covariate adjustment, but nearly the same MSE. That is, adding the estimated

propensity score into the regression model does not help estimating the treatment ef-

fect. Moreover, as in previous simulations, the propensity score weighted adjustment

underestimates the standard error while for the covariance adjustment method the ra-

tio between the empirical and nominal standard error was close 1. Most of the bias

was removed by the covariance adjustment method and the coverage was close to the

nominal value. Clearly, omitting X1 from the fitted model (5.5) will increase the bias in

all cases, especially for the unadjusted linear regression, but the covariance adjustment
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Table 5.3: Results for the covariance adjustment for quadratic f(X), for 1000 datasets simu-
lated.

Regressions Method Bias Emp.SE/Est.SE

β0 βT β2 β0 βT β2

Y on (T,X)
wgt -1.792 -0.074 0.171 1.412 1.519 1.531
adj -0.636 -0.001 0.095 0.993 0.964 1.017
Linear -1.561 0.023 0.159 1.052 0.972 1.041

MSE % Coverage

β0 βT β2 β0 βT β2

Y on (T,X)
wgt 4.623 1.524 1.560 0.001 0.730 0.000
adj 1.397 0.964 1.026 0.607 0.958 0.030
Linear 3.489 0.973 1.066 0.000 0.952 0.000

method continues as the best estimator.

As in Hade and Lu (2013), we also ran simulations when the covariates (Xt,Xc)

are normally distributed with mean (30,20) and variances (3,5) so that there is some,

but not too much overlap between the two distributions. In this scenario, however, the

ratio between the propensity scores of the treated and untreated groups is around 3.1

which goes against the suggestions of Rubin (2001), discussed in the beginning of this

section. Moreover, there is a very weak overlap between the estimated propensity scores

of the two groups, with values being close 1 (maximum value equals to 0.9999988) and 0

(minimum value equals to 0.0000000), and thus failing to satisfy the second property of

propensity scores (as discussed in section 5.2). Following the Rubin (2001) suggestions,

regression adjustment should not be trusted and so these results are not reported here.

5.4 Multiphase studies

Propensity scores and the estimated weights method are closely related, especially

for the propensity score weighting adjustment method. In both cases each unit is
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weighted by a function in order to create balance between the sampled (treated) and

not sampled (untreated) groups. In both cases, the weights are usually estimated by a

logistic regression and the resulting estimating equations and asymptotic variance have

the same structure. Also, if they are correctly applied and all models are correctly

specified, both methods lead to unbiased estimation.

However, they do differ in their definition. While estimated weights were originally

mainly used to estimate population totals (Horvitz and Thompson, 1952), the propen-

sity score was created as a way to approximate or replicate a randomized experiment

when designing an observational study. And since in randomized experiments the out-

come data is not available at the design phase, propensity scores are a function of

the observed covariates only and not of the outcome data. The method was created to

match individuals on a set of particular covariates in order to remove confounder-caused

bias (under the unconfoundedness assumption) and not intended to increase precision

(Rubin, 2007).

Throughout this thesis we have been working with a multi-phase sampling scheme

where selection into the next phase was a function of the response and some covariates of

interest. Propensity scores cannot be used alone in this setting because it does not take

biased sampling into account and must be used along with a way of catering for biased

sampling such as the estimated weights method in order to provide unbiased estimates.

In this section we discuss methods that combine both approaches while estimating

treatment effects in an outcome-dependent sampling scheme and using propensity scores

as protection against model misspecification. We will discuss situations that are more

likely to be found in real problems and emphasize likelihood based methods to produce

efficient estimates.
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5.4.1 Estimating equations

Apart from the methods discussed in previous chapters, we consider the following

methods in our simulations:

(i) Replacing the weights. The first method we considered replaces the weights 1/π1

by e(xi)/π(xi,yi), where π(xi,yi) = pr(Ri = 1|xi,yi). Notice that since e is a

function of X only, when applied to the CML method, these new weights do not

make an impact since the numerator cancels out and the weights becomes 1/π1,

as before.

(ii) Weighted CML. Propensity scores can also be used to produce a weighted version

of the CML method. That is, we maximize the following pseudo-loglikelihood

`(xi,e(xi);φ) =
N∑
i=1

1
e(xi)

logfc(yi|xi,Ti).

where φ= (βT ,αT ,ηT )T .

(iii) Propensity score covariate adjustment. Finally, we also considered adjusting for

the propensity score for both weighted and CML methods, where the fitted model

µ(x;β) is now replaced by µ= xβ+ eβps+ ε.

In all cases, under correctly specified models, all estimators produce unbiased es-

timates and the same idea used in chapter 2 can be used here to derive estimating

equations and the asymptotic covariance matrix. Since we are now estimating both

π(x,y) = pr(R = 1|x,y;α) and ei(xi) = pr(T = 1|x;η), the enlarged estimating equa-
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tions system is

S(φ) = S(β,α,η) =


S0(β,α,η)

S1(α)

S2(η)


where S0 and S1 are given by equations (2.7) and (2.8), respectively, and

S2 = ∂

∂η

∑
i

(
Ti log(ei(xi)) + (1−Ti) log(1− ei(x))

)
.

Estimates φ̂ are obtained by setting S(φ̂) = 0. Reasoning as in section 2.2, the asymp-

totic variance is given by

ACov(β) = III−1
00 CCC00III−1

00 −III
−1
00 CCC01III−1

11 CCC
T
01III−1

00 −III
−1
00 CCC02III−1

22 CCC
T
02III−1

00 , (5.6)

where the first and second terms are, as in section 2.2.1, due to estimating β and π1

and so the third term is what we get by estimating ẽ. We can still show that CCC01 =III01,

but we can no longer guarantee that CCC02 = III02. All methods were implemented in R

and the maximization is carried out by the Newton-Raphson method.

5.4.2 Simulations

For the following simulations we considered the 2-phase design shown in Fig. 5.4.

Here the goal was to estimate the treatment effect βT . To this end, we assumed that

information on (Y,T,X1) was collected for all individuals, known as the phase-1 data,

and that the remaining information was observed for only a sample of them. The

sampling was based on (Y,T ), where Y can be continuous or discrete and T is the
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Figure 5.4: Sampling scheme for a 2-phase study, where the Y,X1 and the treatment T are fully
observed at phase-1 and the remaining variable X2 is observed only at phase-2.

treatment indicator, and the true model of interest used to generate the data is

logit(pr(Y = 1|T,x;β)) = β0 +βTT +β1x1 +β2x2 +β3x3, (5.7)

for a binary response or

y = β0 +βTT +β1X1 +β2x2 +β3x3 + ε, (5.8)

for a continuous response. In both cases, X1 and X2 are independent random variables

following a standard normal distribution, X3 = X2
1 and T is a binary variable taking

the value 1 with probability e, where

logit(e(x;η)) = η0 +η1x1 +η3x3. (5.9)

We ran 1000 simulations for each scenario and compared all methods described in

previous chapters as well as those methods described in section 5.4.1 which make use

of propensity scores, with respect to their bias and efficiency for different treatment

effects and also under slightly misspecified models. These methods are:

• Complete data analysis (complete data), which uses only data from phase-2;
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• Multiple imputation alone (MI );

• Weighted method used throughout this thesis, with corrected weights 1/π and

with (wgt+ps) and without (wgt) the propensity score included as an extra co-

variate into the regression model of interest;

• Conditional likelihood method with (cml+ps) and without (cml) the propensity

score included as an extra covariate into the regression model of interest;

• CML weighted by propensity score (cml reg);

• CML with the extra information S̃ added (cml+S̃).

For the following simulations, let X = (X1,X2) be normally distributed with mean

0 and variance Σ = I, where I is the 3× 3 identity matrix, and let ε ∼ N(0,1). We

considered a fixed treatment effect and ran 1,000 simulations varying the coefficient β3,

the coefficient of the missing variable.

Binary response

Table 5.4 shows the results for a discrete response with parameters η= (η0,η1,η3)T =

(1,−1,1)T and β = (β0,βT ,β1,β2,β3)T = (−4.5, log(2),2,2,β3)T . Here both covariates

X1 and X2 have strong effects and the treatment effect has an odds ratio of 2. From

a total population of N = 15,000 individuals with observed (Y,T,X1), n = 100 were

sampled from each stratum generated by (Y,T ) and X2 observed. The true model of

interest and the true propensity score are given by equations (5.7) and (5.9), respec-

tively. We assumed that the quadratic term X3 included in the fitted models, that is,

we fitted the models

logit(pr(Y = 1|T,x,β)) = β0 +βTT +β1x1 +β2x2
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and

logit(e(x)) = η0 +η1x1.

to the data. Both models are then misspecified and the degree of misspecification is

controlled by the coefficients β3 and η3, from equations (5.7) and (5.9), respectively.

Table 5.4 shows the results for four scenarios based on different values of β3. We

started with a reasonably strong correlation between X3 and Y and later decreased

the coefficient β3 so the misspecification is unlikely to be detected. For β3 = .05 we

detected departures from β3 = 0 34% of the time, while for β3 = .1, the detection rate

was 69%, at the 5% level.

From Table 5.4 we see that by using propensity scores as covariates we are able to

remove most of the bias due to the omitted quadratic term X3, even in situations where

the model misspecification is unlikely to be detected. When the model of interest is

correctly specified, i.e., β3 = 0, all methods, with the exception of the complete data

and MI methods, result in unbiased or nearly unbiased estimates. The most efficient,

as expected, is the CML+S̃ method, followed by the CML method.

As the misspecification increases, the CML+ps and the wgt+ps methods are still

able to remove almost entirely the bias, while the other methods show a relative bias,

which is defined as

∆ = βT − β̂T
βT

,

that varies from 0 to almost 10%. When β3 = .1, for example, the CML+S̃ method

shows a relative bias of about 9%, but at the same time still has the lowest MSE among

all methods analyzed. It is about 45% lower than the wgt+ps method and about 9%

lower than CML+ps.
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Continuous response

Table 5.5 shows the results for a continuous response with parameters β= (1,5,5,1,β3)T

and η = (−1,1,1)T . We used N = 15,000 units with observed (Y,T,X1) from which

n = 100 subjects were sampled from each stratum generated by (Yd,T ), where Yd is

equals to 1 if Y < c (c is 30th percentile) and 0 otherwise. X2 was observed only for the

sampled units. The true model of interest and the true propensity score are given by

equations (5.8) and (5.9), respectively, but, as before, we assumed that the quadratic

term X3 was not included in the fitted model and thus fitted the models

y = β0 +βTT +β1x1 +β2x2

and

logit(e(x)) = η0 +η1x1.

to the data.

Table 5.5 shows the results for β3 = 0, .05 and .1. For β3 = .05 we detected departures

from β3 = 0 59% of the time, while for β3 = .1, the detection rate was 94%, at the 5%

level. That is, for β3 = .1, we are very likely to detect the model misspecification.

As expected, when there is no model misspecification (β3 = 0), all methods are

essentially unbiased and CML+S̃ is the most efficient method. As the model misspec-

ification increases, all methods become slightly biased and the CML+S̃ method turns

out to be almost twice as biased as CML+ps and about 3 times as biased as wgt+ps.

The relative biases are still small for all methods, but enough to affect the MSE. For

example, when β3 = .05, MI is the most efficient method, followed closely by the wgt

method. When β3 = .1, all biases are even greater and the wgt+ps method, which shows

the smallest bias, is the most efficient method. CML+ps is also able to remove most

bias and, as a result, its MSE is 43% lower than the one obtained from the CML+S̃
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method (without propensity scores corrections).

5.5 Generalized propensity score

Note that the propensity score in section 5.3.1 was a function of (X1,X2), where

X2 had been partially observed. Thus, it could not be estimated for the entire data,

but only for the fully observed sample. Unless we use the extra information provided

by the partially observed data, we are likely to get inefficient estimates. Some research

has been done on how to estimate propensity scores with missing data

This problem was first noticed by Rosenbaum and Rubin (1985), where they intro-

duced the generalized propensity score method. Here, the probability of being treated

is now conditioned on all observed covariates as well as on the response indicator Ri.

In other words, if we denote by Xobs and Xmis the observed and missing covariates,

the generalized propensity score ec is defined as

ec = pr(Ti = 1|xobs,Ri) .

The authors suggest using a “pattern mixture model” (Little, 1993) to estimate the

propensity score with missing covariates. They suggest that ec can be estimated by a

separate logit model for each pattern of missing data, using the fully observed covariates

in each case. However, as the number of patterns of missing data increases, some of them

might have very few observations, which would then make this technique infeasible.

D’Agostino and Rubin (2000) suggest modelling the joint distribution of (T,X ,R)

using the EM algorithm. This approach can be hard to implement and simpler and effi-

cient techniques are still of interest. A common approach is to use multiple imputation

(MI), as done by Song et al. (1999) and Crowe et al. (2010).
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Crowe et al. (2010) compared four imputation techniques to obtain p̂: treatment

mean imputation, where the missing value is replaced by the mean of the observed

values, within treatment; a MI model using only the covariates; a MI model using the

covariates and the treatment; and another MI model including all observed variables,

including treatment and outcome. Through simulations the authors showed that the

best model appears to be the last one, which is also in agreement with Song et al.

(1999).

Qu and Lipkovich (2009) developed the Multiple Imputation Missingness Pattern

(MIMP) method, which also uses MI to handle missing data while estimating the

propensity score. Here, the authors first use MI to obtain the imputed data and later

regress T on the covariates and on a new variable containing the missingness pattern,

obtaining p̂.

Stumer et al. (2007) considered a 2-phase design with a non-monotone missing

pattern. In their design Y , T and X1 are observed for a population of size N while

an extra confounder X2, say, is observed for another population together with Y and

T . T is correlated with X = (X1,X2) and, in order to get unbiased estimates for the

propensity score, the authors define two propensity scores based on each population and

use MI to create a complete propensity score and regress Y on T and both propensity

scores.

We will return to the generalized propensity score in the next chapter, where it will

be studied from a more general point of view and will be estimated using the CML

method.
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5.6 Summary

Here we have discussed regression adjustment with propensity scores and derived

new estimating equations for estimating treatment effects in a multiphase study.

Unlike in most approaches discussed in the literature, we take into account vari-

ability in estimating the propensity score. From our simulations, we see that if the

regression model of interest is correctly specified, adding propensity scores as an ex-

tra covariate leads to losses in efficiency. It can, however, be used as a protection

against model misspecification in a few situations. For example, suppose that there

are measured confounders that for some reason cannot be included into the model of

interest, but could be included into the propensity score model. Then, including the

estimated propensity score as an extra covariate into the model of interest will reduce,

or even avoid, the omitted-variable bias. Moreover, if the true regression model is not

linear on X , but the fitted model is, propensity scores may be used as a way to reduce

bias. In our simulations, however, we noticed that for a quadratic X and moderate

misspecifications (deletion rate lower than 50%), propensity scores did not improve the

MSE. Including all variables into the regression of interest, when possible, seemed to

be the best choice. Finally, even though it looks appealing, to add all variables and

their interactions into the propensity score model in order to minimize omitted-variable

bias might not be the optimum solution, especially if X is of high-dimension. Deciding

which variables should and should not be included into the model is, however, outside

the scope of this study and the interested reader is referred to Clarke et al. (2011).



6
Beyond the Simple 2-phase

Design

So far we have only worked with multiphase designs where interest was centred on

fitting a regression model for Y , known for all at phase-1, on a set of covariates X

that could potentially be correlated with the missingness as long the MAR assumption

was valid. We now discuss more general designs, where an auxiliary variable V is fully

observed at phase-1, but is not part of the model of interest. Such designs general-

ize those discussed in previous chapters and also incorporate the secondary analysis

problem discussed in Neuhaus et al. (2006) and Jiang et al. (2006). We also present a

new and more general semiparametric estimator that copes with these different designs,

whether V and Y are continuous or discrete, discuss its performance under different

scenarios, and apply it to a real dataset.

153
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6.1 More general designs

In chapter 5 we were interested in estimating the treatment effect in a 2-phase

design, where units were selected for further observation based on the response Y and

the treatment indicator T . Here we consider a more general framework: suppose that

V is an additional (discrete or continuous) variable observed for all at phase-1. We are

concerned with two cases:

(i) The response Y is also observed for all at phase-1 and the selection into phase-2

is a function of (Y ,V ,X1), where X1, a component of X , is also observed for all

at phase-1 (see figure 6.1);

Figure 6.1: Sampling schemes for case (i). (Y ,V ,X1) are fully observed while X2 is observed
only at phase-2.

(ii) Y , which could be correlated to V , is only observed at the phase-2 and the

selection model depends on (V ,X1) (see figure 6.2).

Figure 6.2: Sampling schemes for case (ii). Here the response of interest Y and X2 are only
observed at phase-2 while a design variable V as well as X1 are fully observed at
phase-1.
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Notice that when V is null, case (i) is reduced to the simple 2-phase problem with

a fully observed response Y and partially observed covariate X . This problem has

been discussed throughout this thesis and the Woman’s Health Initiative program (see

section 3.4) is an illustration of such a design.

In addition to the simple 2-phase problem, case (i) also generalizes a number of

other situations as follows.

• Propensity scores: The propensity score and the generalized propensity score

approaches discussed in chapter 5 are special cases of (i), with V replacing T .

Under the additional assumption of V being strongly ignorable given X , case

(i) is formally equivalent to the 2-phase treatment effect problem discussed in

chapter 5, with V replacing T .

• The expensive covariate problem: In large studies, collecting full information for

the entire population or cohort is often expensive or even unfeasible. Some char-

acteristics are then only partially observed, being measured for a small percentage

of the total cohort. Let X2 be this expensive or hard to observe variable. Even

though X2 is not available at phase-1, an approximate surrogate V for X2 may

be available and this extra information can be used to produce more efficient esti-

mates. This problem was also discussed in Zhou et al. (2011), where the authors

use the empirical likelihood method to derive efficient estimators that require a

parametric model for the conditional distribution of X |V .

• Missing by design problem with extra variable included into the selection model:

Sometimes V can also be used to select the phase-2 data, without being used

as a predictor in the model of interest. For example, if V is an approximate

surrogate for X2 (as in the expensive covariate problem), it may be used just to

select the phase-2 data. Wang et al. (2009), motived by a lung cancer biomarker
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study, also discuss this problem. Here, a patient is selected into the subset based

on the outcome of interest Y (tumour response) and on an surrogate variable

V (the likelihood score of epidermal growth factor receptor inhibitors mutations)

for an expensive covariate X (related to genotyping the epidermal growth factor

receptor genes). This surrogate variable, however, is only used for selecting the

phase-2 data and is not included in the model of interest.

• Missing by happenstance problem with extra variable included into the selection

model: Note that, in the previous case, including V into the selection model

was a design decision. A similar idea is used in the missing data context, more

specifically when data is missing not by design, but by happenstance. This missing

data problem can also be seen as multi-phase problem as long as the missingness

follows a monotonic pattern (see chapter 1). And if V is thought to be associated

with the non-response, it must be included into the selection model whether or

not it is part of the model of interest.

• Adding variables into the selection model to increase efficiency: As discussed in

chapter 3, including more variables into the selection model will never decrease

and may even increase asymptotic efficiency, even if these extra variables are not

predictors of the true selection model. This was also discussed in Scott and Wild

(2011) and in chapters 3 through simulations and while analysing the WHI data

(see section 3.4).

Even though case (ii) can also be re-formulated as a 2-phase problem, it is slightly

different from the previous ones considered so far. Here, the response of interest Y is

observed only at phase-2 and extra information regarding V and X1, say, are available

for all data. Note that all examples discussed above are special cases of this design as

well as some important problems that are now discussed.
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• Approximate surrogate for Y: Suppose that the response Y is expensive or hard

to measure for the entire study population. If we can measure some extra variable

V that is closely related to Y , we can use it to select the phase-2 data where the

response of interest Y is then observed. An example (which is due to Clayton

et al. (1998)) can also be seen in Zhao et al. (2009), where the goal is to estimate

the prevalence of dementia in the elderly. Here, a definitive diagnosis of dementia

(response of interest, Y ) is difficult and expensive to make so that it is available

for only a subsample of the total population. However, a Mini-Mental State

Examination, which provides a score that is an imperfect measure of dementia

status is administered to each person. The authors use the profile likelihood

method with the EM algorithm to estimate the parameters of interest. This

problem is also discussed in Neuhaus et al. (2006) and Neuhaus et al. (2013),

where the authors deal with a longitudinal binary response and discrete V and

suggest working with the full or with the conditional likelihood

• Secondary analysis: Another important example of case (ii) is the secondary anal-

ysis problem. Here, we are interested in performing a secondary analysis, where

V is a design variable that was used for data collection (e.g., V was the response

variable collected for the primary analysis) and is correlated to the outcome Y .

This has been discussed by Jiang et al. (2006), where a variety of methods are

compared while performing secondary analysis of case-control data. The au-

thors work with a semiparametric approach based on Scott and Wild (2006) with

Y ∗ = (Y ,V ) as well as fully non-parametric approach and parametric modelling

of the conditional distribution of V |(Y ,X). It is also discussed by Lee et al.

(1997), where data from a case-control study on Sudden Infant Death Syndrome

(SIDS) is analysed. The main design variable here V is an indicator of being or

not being a SIDS victim but interest in the secondary analysis is in modelling the
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chance that a child would receive the standard childhood inoculations (Y ).

In this chapter we develop estimating equations that cope with both cases (i) and

(ii). The proposed method is semiparametric in the sense that the distribution of the

covariates X is treated non-parametrically. That is, unlike the approach discussed in

Zhou et al. (2011) with respect to the expensive covariate problem, we do not assume

any model for the conditional distribution of X |V and information regarding V is

still taken into account. We also allow the outcome of interest Y and the additional

variable V to be correlated and to be either continuous or discrete. This extends the

work done by Lee et al. (1997), Neuhaus et al. (2006) and Jiang et al. (2006), where

only discrete Y and V was considered.

As we are now dealing with a more general design that is different from those

discussed in previous chapters, we need to derive new estimating equations that cope

with both cases (i) and (ii) presented earlier in this chapter.

6.2 General approach

Let f(y|x;β) be the model of interest, where X = (X1,X2), and h(v|y,x,w;ζ) the

conditional probability density function of V given (Y ,X ,W ). Here W is a variable

used only to predict V , but not Y . For example, in the secondary analysis problem

discussed in previous section, W can be an extra covariate for the primary analysis

(when V was the outcome), but it is not included into the model of interest f(y|x;β).

Let, in addition, (Y ,V ,W ,X1) be fully observed at phase-1 and Z be a function

of the variables fully observed at phase-1. Suppose that X2 is observed only at phase-2

and let, as before, Ri be an indicator variable denoting which unit was selected into

phase-2.
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Under the MAR assumption, the full likelihood LF for case (i) is

LF ∝
∏

i:R1=1
f(yi|xi,wi;β)h(vi|yi,xi,wi;ζ)g(xi,wi)

∏
i:R1=0

f(yi,vi,wi,x1i),

where

f(yi,vi,wi,x1i) =
∫
f(yi|wi,x;β)h(vi|yi,wi,x;ζ)g(wi,xi)dx2. (6.1)

A similar expression can be derived for case (ii), noticing that the integral (6.1) is also

calculated with respect to Y .

Unless W and Y are conditionally independent given X , we would not be working

with the model of interest f(yi|xi), but with f(yi|wi,xi). Thus, for everything that

follows we consider that f(yi|wi,xi) = f(yi|xi), that is, W and Y are conditionally

independent given X . If we are not prepared to make such assumption, this variable

should be included in V .

Finally, notice that the full or complete likelihood depends on the distribution of

(W ,X) and, as discussed in previous chapters, modelling its joint distribution may be

hard or even infeasible since these variables are usually high dimensional. We consider

then the semiparametric conditional maximum likelihood method (CML), which was

already discussed in chapters 3 and 4 and will be used here to develop estimating

equations for the parameter of interest β.

6.2.1 Conditional maximum likelihood

In addition to the models defined in previous section, let π(z, ;α) =E (Ri| z;α) be

a parametric model for the probability of being selected into phase-2 and assume that

the missing at random (MAR, see section 1.2.2) assumption holds. The conditional
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likelihood is given by

Lc =
∏
i

f(yi,vi|xi,wi,R1i = 1;β,α,ζ)

=
∏
i

h(vi|yi,xi,wi,R1i = 1;α,ζ)f(yi|xi,wi,R1i = 1;β,α)

=
∏
i

h(vi|yi,xi,wi,R1i = 1;α,ζ)f(yi|xi,R1i = 1;β,α),

since W and Y are conditionally independent given X . Thus, we have that

Lc =
∏
i

π(vi,yi,wi,xi;α)h(vi|yi,wi,xi;ζ)∫
π(v,yi,wi,xi;α)h(v|yi,wi,xi;ζ)dv

πv(yi,wi,xi;α,ζ)f(yi|xi;β)∫
πv(y,wi,xi;α,ζ)f(y|xi;β)dy

= L1(α,ζ)L2(β,α,ζ), . (6.2)

Writing the likelihood as above is convenient for programming. L1 and L2 have a similar

structure, which also resembles those obtained in chapter 2. The selection probability

π = pr(R= 1|y,v,w,x;α) and

πv(y,w,x, ;α,ζ) = E [π(Y,V ,W,X;α)|y,w,x] =
∫
π(y,v,w,x;α)h(v|y,w,x;ζ)dv.

Later in simulations we will investigate the effect of using π(y,v,w,x;α) without taking

the expectation over V given (Y ,W ,X). We will call this naive CML.

Note that if V is not used for selecting the phase-2 data and is not used as part of

the selection model (e.g., to gain efficiency), that is, if π(y,v,w,x;α) = π(y,w,x;α),

we have that πv(y,w,x;α,ζ) = π(y,w,x;α) and the conditional likelihood Lc can be

factorized into L1(ζ)L2(β,α). The parameter of interest β can then be estimated

without assuming a model for h(v|y,w,x).

Consider now the case where V is fully observed at phase-1 and used to select the
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phase-2 data. The outcome of interest Y can be fully observed, which corresponds to

case (i) discussed earlier in this chapter, or observed only at phase-2, corresponding

to case (ii). One advantage of working with the CML method over the full likelihood

is that, unlike in the latter where each case results in different likelihoods and thus

different estimating equations, CML handles these both cases (i) and (ii) in a similar

way. The only difference between case (i) and (ii), with respect to the CML method,

is related to the selection probability π. The estimating equations have the same

structure whether Y has been fully observed at phase-1 or not. That is, in both cases

the coefficients of interest can be estimated by solving the enlarged estimating equations

system

S(β,α,ζ) =


S0(β,ζ,α)

S1(α)

S2(β,ζ,α)


where

S0(β,α,ζ) = ∂ logLc(β,α,ζ)
∂β

, (6.3)

S2(β,α,ζ) = ∂ logLc(β,α,ζ)
∂ζ

.

As before (see equation (2.8), for instance), S1 is the estimating equation associated

with the selection probability π(z;α) and is given by

S1(α) =
∑
i

(
R1−π(z)

π(z)(1−π(z)
∂π

∂α

)
,

where Z contains the phase-1 variables used in the selection model. Thus, (i) and (ii)

only differ on Z and so both cases can then be treated together.
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Finally, the information matrix is given by

III =


III00 III01 III02

0 III11 0

III20 III21 III22

 ,

where

IIIkl = ∂Sk

∂φk∂φ
T
l

,

for k= 0,1,2, l= 0,1,2 and φ= (β,α,ζ)T . The asymptotic covariance and the estimates

of interest can then be obtained following the same steps as in chapters 2 and 4.

In particular, for discrete V , the ascertainment-corrected model of interest can be

written as

f(yi,vi|wi,xi,R1i = 1;β,α,ζ) = π(vi,yi,wi,xi;α)h(vi|yi,wi,xi;ζ)∑
j π(vj ,yi,wi,X i;α)h(vj |yi,wi,xi;ζ)

× πv(yi,xi,wi;α,ζ)f(yi|xi;β)∫
πv(yj ,xi,wi;α,ζ)f(y|xiβ)dy .

If we further assume that Y and V are both binary and logistic regression models

pr(V = 1|Y = j,wi,xi;ζ) = logit(h(v1|yi,wi,xi;ζ)) = kTi ζ

and

pr(Y = 1|xi;β) = logit(f(y1|xi;β)) = xTi β,

for j = {0,1} and K = (Y,W ,X), we have that

f(yi,vi|wi,xi,R1i = 1;β,α,ζ) = eo1i+kTi ζ

1 +eo1i+kTi ζ
eo2i+xTi β

1 +eo2i+xTi β
.
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The two offsets are given by

o1i = log
(
π(v(1)

i ,yi,wi,xi;α)
π(v(0)

i ,yi,wi,xi;α)

)
and o2i = log

(
πv(y(1)

i ,wi,xi;α,ζ)
πv(y(0)

i ,wi,xi;α,ζ)

)
,

where π(v(l)
i ,yi,wi,xi;α) = pr(R1i = 1|vi = l,yi = 1,wi,xi;α). The second offset, how-

ever, is still a function of vi and since it is a binary variable, o2i can be calculated

as

o2i = log
(
π(v(1)

i ,y
(1)
i ,wi,xi)h(1) +π(v(0)

i ,y
(1)
i ,wi,xi)(1−h(1))

π(v(1)
i ,y

(0)
i ,wi,xi)h(0) +π(v(0)

i ,y
(0)
i ,wi,xi)(1−h(0))

)

where h(l) = h(vi|Yi = l,wi,xi;ζ), for l= {0,1}. The coefficients of interest can then be

estimated by solving the enlarged estimating equations system given above.

The same idea is applied for continuous V and all results are directly extended.

Now,

f(yi,vi|wi,xi,R1i = 1;β,α,ζ) = π(vi,yi,wi,xi)h(vi|yi,wi,xi)∫
π(vj ,yi,xi)h(v|yi,xi)dv

πv(yi,xi,wi)f(yi|xi)∫
π(yj ,xi,wi)vf(y|xi)dy

,

and for binary Y , the offset is

o2i = log

(∫
π(y(1)

i ,v,wi,xi;α)h(v|yi,wi,xi;ζ)dv∫
π(y(0)

i ,v,wi,xi;α)h(v|yi,wi,xi;ζ)dv

)
.

Finally, as in previous chapters, we can extract more information from the fully

observed data by obtaining S̃1, so that the problem is equivalent to maximizing the
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pseudo-likelihood

L(β,α,ζ) =
∏
i

π(vi,yi,wi,xi;α)h(vi|yi,xi,wi;ζ)∫
π(v,yi,wi,xi;α)h(v|yi,wi,xi;ζ)dv

πv(yi,wi,xi;α,ζ)f(yi|xi;β)∫
πv(y,wi,xi;α,ζ)f(y|xi;β)dy

×
(
π(vi,yi,wi,xi)R1i (1−π(vi,yi,wi,xi))1−R1i

)−1
.

In general, the likelihood above cannot be written as L1(α,ζ)L2(β,α) and so the co-

efficients must be jointly estimated. However, if we add restrictions on the relationship

between V and Y we can get unbiased estimates without modelling the conditional

distribution of V given W as we now show.

Conditional independence

Suppose first that V is a surrogate variable for X that brings no additional in-

formation to the outcome once X has been provided, i.e., Y and V are conditionally

independent given X . Then, from equation (6.3), at the true values of φ= (β,α,η),

E (S0|x) =
∫ (

∂

∂β
logf(y|x)− ∂

∂β
log
(∫

πf(y|x)h(v|x)dydv
))

πvf(y|x)dy

=
∫ (

∂

∂β
logf(y|x)− ∂

∂β
log
(∫

πvf(y|x)dy
))

πvf(y|x)dy

=
∫
πvf

′(y|x)dy−
∫
πvf

′(y|x)dy

= 0.

That is, the S0 estimating equation is unbiased regardless of the distribution of h(v|x),

subject to regularity conditions that allow us to interchange the order of integration

and differentiation.
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Correlated outcomes

Consider now the case where V and Y are not conditionally independent, but V is

still observed for everyone in phase-1. Consider also that the phase-2 data was selected

based on (Y ,V ,W ,X1). Then, the result shown in previous section, which corresponds

to the estimating equation based on the conditional likelihood method, does not hold

anymore and fitting a model for the conditional distribution f(y|x) ignoring the extra

variable V leads to biased estimates. This will show up strongly in the simulations

that follow.

However, there are still two alternative methods by which we can get unbiased

estimates. We can work with a new response Y ∗= (Y ,V ), as done by Lee et al. (1997),

or work with π(yi,wi,x1i;α,ζ) =
∫

pr(R1i = 1|yi,x1i,vi)h(vi|yi,wi,xi)dvi instead. In

either case we must take V into account in order to get unbiased estimates. Here we

consider the second alternative and work with Y ∗ = (Y ,V ). We assume parametric

models for the two conditional distributions f(y|x) and h(v|y,w,x).

6.2.2 Weighted likelihood

We can always get unbiased estimates whether V and Y are correlated or inde-

pendent given X without modelling the conditional distribution of V |(Y ,W ,X), if we

used a weighted method similar to the weighted approach discussed in previous chap-

ters. Here, the weights are the inverse of the probability of being selected into phase-2,

i.e., 1/π(y,v,w,x), and the weighted loglikelihood `w is given by

`w(β,α) =
∑
i

R

π(yi,vi,wi,xi;α) logf(y|x;β).
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At the true values of β and α,

E(S0|x) =
∫ ∫

∂ logf(yi|xi)
∂β

1
πi(yi,vi,wi,x1i)

pr(Ri = 1,yi,vi|wi,xi)dyidvi,

where π1i = pr(Ri = 1|yi,vi,x1i,wi) and

E(S0|x) =
∫ ∫

∂ logf(yi|xi)
∂β

1
πi(yi,vi,wi,x1i)

πi(yi,vi,wi,x1i)h(vi|yi,wi,xi)f(yi|xi)dyidvi

=
∫ ∫

∂f(yi|xi)
∂β

h(vi|yi,wi,xi)dyidvi

= ∂

∂β

∫ ∫
f(yi|xi)h(vi|yi,wi,xi)dyidvi

= 0

for any function h(vi|yi,wi,xi), assuming regularity conditions that allow us to in-

terchange the order of integration and differentiation. Notice that we get unbiased

estimates without taking E [π|y,w,x], so we do not need to model h(vi|yi,wi,xi) and

the method is then not exposed to risks of model misspecification.

6.3 Simulations

Here we consider a 2-phase sampling scheme, focusing on the secondary analysis

problem. The sampling scheme is defined as follows. At phase-1, complete information

regarding the auxiliary variable V as well as X1 is collected while information with

respect to Y and X2 is observed only for a sample of the phase-1 data (see figure 6.3).

This sample consists of n individuals taken from each stratum defined by V (for discrete

V ) or Vd (for continuous V ), where Vd = 1 if V < c and 0 otherwise and c is the 15th

percentile of V . Interest lies in estimating the parameters β of f(y|x,β).

We will work with three cases:
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Figure 6.3: Sampling scheme for the secondary analysis problem: the response of interest Y is
observed only at phase-2 while a design variable V associated to Y is fully observed.

• Case (i): continuous V and binary Y

Y is binary and was generated from a Bernoulli distribution with success proba-

bility

logit(pr(Y = 1|x)) = β0 +β1x1 +β2x2.

The auxiliary variable now follows the linear model

V = η0 +η1y+η2yx1 +η3yx2 + ε.

• Case (ii): binary V and continuous Y

Here the response Y is continuous and we assumed the linear model

Y = β0 +β1x1 +β2x2 + ε.

The auxiliary variable is discrete and generated from a Bernoulli distribution with

success probability

logit(pr(V = 1|x,y)) = η0 +η1y+η2yx1 +η3yx2

• Case (iii): continuous V and continuous Y

Finally, in the third case both variables are continuous and were generated from
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the linear model

Y = β0 +β1x1 +β2x2 + ε and V = η0 +η1y+η2yx1 +η3yx2 + εv.

where ε and εv are independent.

In all cases, X1, X2, ε and εv followed a standard normal distribution, and the total

population size was N = 5000 for cases (i) and (ii) and N = 3000 for case (iii). Phase-2

data consisted of n = 300 subjects for the first two cases and n = 200 for the third case.

We ran 1000 simulations for different values of η in order to see how the resulting bias

is affected by which variables are included in the conditional model of h(v|y,x). For

example, by varying η2 from 0 to 1, we expect to see how much bias is introduced while

using the naive CML method and its impact on the MSE. Results for cases (i), (ii) and

(iii) are shown in tables 6.1, 6.2 and 6.3, respectively. We use the weighted method

(wgt) and two versions of the conditional maximum likelihood method for comparisons:

cml*, which fits a parametric model for the conditional distribution of V |(Y,X), and

naive cml, which does not take the expectation over V when calculating π into account.

Overall, the estimated standard errors (Est.SE) are close to the empirical (Emp.SE)

ones and all unbiased estimating equation methods show coverage close to the nominal

value. CML* is the most efficient method, producing smaller MSE when compared to

the weighted and the naive CML methods. Even though in some cases the CML* and

the weighted methods show similar MSEs (first row, table 6.2), CML* is usually 10%

more efficient than the weighted method, and in some cases about 20% (fifth row, table

6.1) more efficient.

With respect to bias, in all cases the weighted method, which does not require

modelling the conditional distribution of V |(X ,Y ), gives essentially unbiased estimates,
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as expected from theoretical results. CML*, which assumes a parametric model for

h(v|x,y), also give unbiased estimates as long all models are correctly specified. Naive

CML, on the other hand, which does not take EV [π|y,w,x] and therefore does not

assume a parametric model for h(V |X ,Y ), gives biased estimates for all coefficients

whose corresponding variables are correlated to V . That is, if both η2 and η3 are

different from 0, β̂1 and β̂2 are biased and, in addition, if η1 6= 0, so is the intercept.

Naive CML shows even more severe bias when both variables are continuous. In

this case, if either η1, η2 or η3 are different from zero, the estimates are biased, resulting

in poor coverage and large MSE. In fact, the resulting biases from the CML method

are usually large enough to produce MSEs that are higher than the ones obtained via

the weighted method, making naive CML (using π(y,v,w,x;α) without taking the

expectation over V ) the least efficient method.

Model misspecification

Since the CML* method depends on the joint modelling of (V,Y ), it is also of interest

to see how misspecified models affect these estimates. We first fitted a misspecified

linear model for the conditional distribution of V |(X ,Y ) and later a misspecified error

distribution. The results are shown in table 6.4. We compared the weighted, naive

CML and CML* methods with respect to bias, standard error, MSE and coverage, for

five model misspecification, assuming a discrete V and continuous Y . The true models

are the same as before, i.e., we generated data from the following models

Y = β0 +β1x1 +β2x2 + ε
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and

logit(pr(V = 1|x,y)) = η0 +η1y+η2yx1 +η3yx2.

In the first three cases shown in table 6.4 we assumed that ε was normally distributed

and fitted a misspecified linear model for V |(X ,Y ). The conditional distribution of Y |X

was correctly modelled. For the last two cases, we generated data from the same models

given above, but for ε following a T-distribution with 5 and 10 degrees of freedom. Then

we fitted the right model for V |(Y,X), but a normally distributed model for Y |X . The

model misspecifications considered here are not easily detectable by a simple plot of

residuals and we see that they may lead to very biased estimates.

In general, we see from table 6.4 that the weighted method is unbiased because it

does not assume a model for V and is robust under V -model misspecification. It also

shows good estimated standard errors (Est.SE) and good coverage. The naive CML

method, which does not take E[π|y,x] and therefore does not assume a parametric

model for h(V |X ,Y ), is biased in all cases, as also seen in previous results.

CML*, on the other hand, assumes a model for the conditional distribution of

V |X ,Y and thus lead to unbiased estimates as long all models are correctly specified.

In the first case where the interaction term Y ×X2 is not included in the model for

V |X ,Y , the parameter β2 is strongly biased. When both interaction terms Y ×X1 and

Y ×X2 are missing, β1 and β2 are biased, and finally all estimates are biased if Y is

not included in the model for V |X ,Y . Finally, CML*, not surprisingly, can perform

poorly when one of the models is misspecified.

For the last two cases, the correct model for V |X ,Y was fitted, apart from a mis-

specified error ε distribution assumed for the model of interest Y |X . If ε is heavy-tailed,

CML* is slightly affected, resulting in approximately unbiased estimates but with poor
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coverage. It is still more efficient than the weighted method for both β1 and β2. When

the true distribution becomes more similar to the normal distribution, the fitted and

true models are more similar and the CML* method produces better estimates. They

are still unbiased, with coverage close to the nominal value and lower MSE when com-

pared to the other two approaches. It shows, however, slightly overestimated standard

errors.

We performed another simulation study, but for case (i) discussed earlier. We

worked with misspecified error distributions for the conditional distribution of V |(X,Y ).

Results are similar to the previous one obtained for case (ii), with CML* more efficient

than the other methods, and are shown in Table A.5.

6.4 Application to the Auckland Collaborative Birthweight

Study

Here we work with the Auckland Collaborative Birthweight Study, discussed in

Jiang (2004) and Jiang et al. (2006). This study was conducted between October 1995

and November 1997 and the goal was to find potential risk factors for the condition of

low birthweight in newborn babies, where low birthweight was defined as birthweight

equal to or below the sex-specific 10th percentile for gestational age in the New Zealand

population (Thompson and Michell, 1994). It was designed as a case-control study,

where newborns with low birthweights (cases) were termed as small for gestational age

(SGA) and the remaining (controls) appropriate for gestational age (AGA). The data

consists of 1714 completed interviews (844 SGA and 870 AGA).

Another response of interest was the ponderal index variable, which is available for

only a sample of the total study population. Ponderal index, due to Rohrer (1921),
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Table 6.5: Relevant covariates used in the Auckland Collaborative Birthweight Study.

Variable Definition

occ Mother’s social-economic status (high, medium, low)

mstrat Mother’s marital status (married, defacto, never married and
separated, divorced or widowed)

ethnic Mother’s ethnicity (european, pacific, maori, indian, chinese,
other asian, others)

hyper Mother’s hypertension status (yes, no)

smoked Mother’s smoking status during pregnancy (yes, no)

smokemar Mother’s marijuana use (yes, no)

primi Mother’s parity status (primi, multi)

mumwt Mother’s weight (in kg)

mumht Mother’s height (in cm)

agepreg Mother’s age at this pregnancy

gest Gestational age (in weeks)

is defined as weight in grams divided by the cube of height in centimetres. The two

outcomes ponderal index and SGA are associated and so standard logistic regression is

not valid.

Instead of working with the continuous ponderal index, Jiang (2004) and Jiang

et al. (2006) used an indicator variable where the cut-off point was the 10th percentile

and conducted a secondary analysis fitting two logistic regression models. The authors

derived fully efficient estimating equations and compared their method to several others,

such as the ordinary logistic regression, the weighted approach, among others. However,

since these approaches consider only two discrete variables, they may lead to loss of

information. Moreover, inference may be sensitive to the cut-off chosen and so we

decided to work with the continuous variable using then all of the information available.

Note that this study falls into the case (ii) discussed before: discrete phase-1 data and

continuous phase-2 data. We use the weighted and the naive CML methods to estimate
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the parameters of interest. Recall that none of these methods take into account a model

for the ponderal index variable. The CML* method, as presented in previous section,

fits a parametric model for the distribution of SGA (V -variable) and the ponderal index

(Y -variable) and is also used here to analyse the data.

In our analysis we first modelled the conditional distribution h(v|y,x), where X is

a set of covariates shown in table 6.5, by fitting an ordinary logistic regression. We

used the same model as Jiang et al. (2006), which includes occupational class, ethnicity,

smoking, hypertension, primi, a quadratic in mother‘s weight and mother‘s height as

covariates. For CML*, we assumed that the conditional distribution Y |X was normally

distributed and the fitted model included marital status, ethnicity, smoke marijuana

and age of pregnancy as covariates.

We fitted a logistic model for the selection probability π(v,x), including sex, gest and

SGA (and their interactions) as covariates, and compared four methods: an ordinary

linear regression for Y |X , which ignores the biased sampling, and the weighted, naive

CML and CML* methods. The estimated coefficients and their standard errors are

shown in table 6.6.

The ordinary linear regression and the naive CML method do not use a model

for the conditional distribution h(v|y,x) and show similar results. Both methods are

known to provide biased results if the two responses Y and V are associated, which

is the case here. When compared to the robust weighted approach, the naive CML

method and the ordinary linear regression show, in most cases, biased estimates.

The CML* method, on the other hand, which does use a parametric model for the

conditional model h(v|y,x), shows estimates that are much more similar to the ones

obtained from the weighted method than those obtained by the other two methods.

For example, while estimating the parameter associated to “Ethnicity Pacifican”, naive



Chapter 6. Beyond the Simple 2-phase Design 179

Ta
bl
e
6.
6:

C
oe
ffi
ci
en
ts

(s
td
.
er
ro
rs
)
fo
r
th
e
di
sp
ro
po

rt
io
na

te
gr
ow

th
da

ta
us
in
g
an

or
di
na

ry
lin

ea
r
re
gr
es
sio

n
an

d
th
e
w
ei
gh

te
d
(w

gt
),

na
iv
e
C
M
L

(c
m
l),

C
M
L*

(c
m
l*
)
an

d
C
M
L*

*
(c
m
l*
*)

m
et
ho

ds
.

Pa
ra
m
et
er
s

Li
ne

ar
re
gr
es
sio

n
W
ei
gh

te
d

C
M
L

C
M
L*

C
M
L*

*

In
te
rc
ep

t
2.
36

8(
0.
14

4)
2.
84

3(
0.
22

9)
2.
37

8(
0.
15

7)
2.
77

05
(0
.1
69

)
2.
72

05
(0
.1
68

)

M
ar
ita

ls
ta
tu
s
(b
as
el
in
e
is

“m
ar
rie

d"
)

de
fa
ct
o

-0
.0
14

(0
.0
63

)
0.
04

2(
0.
08

6)
-0
.0
03

(0
.0
61

)
0.
03

77
(0
.0
61

)
0.
03

36
(0
.0
62

)
ne

ve
r
m
ar
rie

d
0.
06

6(
0.
08

2)
0.
12

3(
0.
12

8)
0.
08

3(
0.
08

7)
0.
12

17
(0
.0
87

)
0.
11

99
(0
.0
88

)
se
pa

ra
te
d,

di
vo

rc
ed

or
w
id
ow

ed
0.
24

7(
0.
16

6)
0.
63

8(
0.
52

8)
0.
53

82
(0
.3
15

)
0.
52

88
(0
.3
24

)
0.
48

99
(0
.3
14

)

Et
hn

ic
ity

(b
as
el
in
e
is

“E
ur
op

ea
n"
)

pa
ci
fic

an
0.
13

7(
0.
06

2)
0.
07

1(
0.
08

6)
0.
14

8(
0.
07

8)
0.
07

82
(0
.0
79

)
0.
08

45
(0
.0
79

)
m
ao

ri
0.
04

0(
0.
08

3)
0.
01

2(
0.
14

4)
0.
02

7(
0.
08

8)
0.
02

86
(0
.0
88

)
0.
03

39
(0
.0
87

)
ot
he

r
as
ia
n

0.
00

3(
0.
10

8)
-0
.0
21

(0
.1
45

)
0.
02

4(
0.
11

4)
0.
01

73
(0
.1
14

)
0.
03

00
(0
.1
15

)
ch
in
es
e

-0
.0
87

(0
.0
87

)
-0
.0
98

(0
.0
66

)
-0
.0
78

(0
.0
48

)
-0
.0
72

3(
0.
04

8)
-0
.0
63

3(
0.
04

8)
in
di
an

-0
.0
62

(0
.0
86

)
-0
.0
74

(0
.1
95

)
-0
.0
93

(0
.0
91

)
-0
.0
25

5(
0.
09

1)
-0
.0
18

0(
0.
09

6)
ot
he

r
-0
.1
95

(0
.1
50

)
-0
.2
30

(0
.1
21

)
-0
.1
77

(0
.0
95

)
-0
.1
96

4(
0.
09

7)
-0
.1
82

8(
0.
09

6)

sm
ok
em

ar
-0
.1
11

(0
.0
91

)
-0
.2
90

(0
.0
92

)
-0
.1
19

(0
.0
56

)
-0
.2
29

7(
0.
06

8)
-0
.2
00

9(
0.
06

5)
ag

ep
re
g

0.
00

7(
0.
00

4)
-0
.0
04

(0
.0
07

)
0.
00

7(
0.
00

5)
-0
.0
01

9(
0.
00

5)
-0
.0
00

3(
0.
00

5)



180 Chapter 6. Beyond the Simple 2-phase Design

CML gives an estimate that is about twice larger than the one given by the weighted

method (0.071 against 0.148), but the estimate obtained via the CML* method is nearly

the same as the weighted one. Differences are observed for the “Marital status defacto”,

“never married”, “smokemar” and for the intercept.

CML* shows a much smaller standard error than the weighted method. This re-

duction, for example, can be as small as 10%, when “Ethnicity Pacifican” is estimated,

or even more than 50%, as obtained while estimating the parameter associated with

the “Ethnicity Indian” variable.

As discussed before in section 3.4, the flexibility of the conditional maximum like-

lihood method allows us to use more information from the dataset by including more

variables into the selection model. So far only the discretized version (SGA) of the

newborns birthweight has been used for analysis. And since the birthweight has been

fully observed at phase-1, we can use this extra information to hopefully get even better

estimates. We thus fitted the old selection model plus birthweights and its interaction

with SGA and sex, and kept the same models for Y |X and V |(X ,Y ). This new method

is denoted by CML**.

However, even though CML** brings in extra information regarding the continuous

variable birthweight, this was not sufficiently large to improve our estimates. We see

that all standard errors and estimates are nearly the same whether this extra informa-

tion was used or not.

6.5 Summary

In this chapter we generalized all 2-phase designs previously discussed in this thesis,

which also covers a wide range of problems (see section 6.1). We also generalized the
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method discussed in previous chapters to cope with this more general design and the

new set of estimating equations are more general and can be applied to a much broader

class of problems.

More specifically, we notice that, if there is an extra variable which is uncorrelated to

the response of interest, all different sampling schemes were shown to be mathematically

equivalent under the CML approach. Moreover, unlike other methods, CML does not

require fitting a parametric model for this extra variable, making it robust against

model misspecification. If, however, this extra variable is correlated to the response,

modelling the selection probability naively by only using variables fully observed at

phase-1 will sometimes lead to strongly biased results, as seen from our simulations.

Instead, we should use the expected value of this selection probability given a set of

variables fully observed at phase-1, which requires assuming a parametric model for

this extra variable in order to get unbiased estimates. This increases the risks of model

misspecifications and in cases where it is only slightly more efficient than the more

robust weighted method, the latter one should be preferred.
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7
Semiparametric Efficiency

In this chapter we investigate the efficiency of the CML+S̃ method with discrete

and continuous responses. As in previous chapters, our interest centres on the 2-phase

design in which the response and possibly some covariates are fully observed at phase-

1 and the remaining information is collected at phase-2. We start with the discrete

case, showing the equivalence between the new approach with the Scott and Wild’s

method (Scott and Wild, 1997), under a number of scenarios where it is known to be

fully efficient. Next we derive the semiparametric lower bound for the variance and

investigate closeness of the variance of CML+S̃ to the lower bound in several scenarios

by simulation.

7.1 Binary response

An important property of the conditional likelihood method is the fact that it can

achieve full efficiency if some conditions are satisfied. This result makes the method

very appealing because it is easy to use and implement, unlike most other equally fully

183
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efficient methods discussed in chapter 1.

To show that the CML+S̃ method is semiparametric fully efficient, we will use the

result presented by Scott and Wild (1997), which is known to be fully efficient when

the phase-1 variables are discrete (Lee and Hirose, 2010).

Let Y be a discrete variable with I levels and X1 be also discrete taking values

{X11, . . . ,X1J}. Let also Nil and nil denote the number of units with {Y = i,X1 =X1l}

in the population and sample, respectively. Scott and Wild (1997) proves the following

theorem, which gives a method for calculating a semiparametric efficient estimator for

β.

Theorem 7.1 (Scott and Wild (1997)). Under supplemented case-control sampling,

the maximum likelihood estimate satisfies

∂L∗

∂θ
≡ ∂

∂β

∑
i

∑
j

logpr∗ (Y = i|xij) = 0,

where

pr∗ (Y = i|x) = µiPi(x;β)∑I
l=1µlPl(x;β)

,

µi = ni− ξi
Ni− ξi

,

ξi = ni−
I∑
l=1

nl∑
j=1

pr∗ (Y = i|xij)

for i= 1, . . . , I.

In the special case where the response is binary, using our notation Theorem 7.1

can be rewritten as follows: Since fc is a function of ω = log(π1l/π0l), the maximum
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likelihood of β satisfies

N∑
i=1

Ri
∂ logfc
∂β

= 0 and
N∑
i=1

Ri
∂ logfc
∂ω

= ξ (7.1)

subject to the constraint

log
(
n1l− ξl
N1l− ξl

)
− log

(
n0l+ ξl
N0l+ ξl

)
= ωl (7.2)

7.1.1 Equivalence to Scott and Wild

We want to see if the solutions of the equation (2.16) are the same as the ones

stated above, for a specific value of λ yet to be found. We firstly assume that we have

a saturated model for the selection probability π1 so we can choose the parameter α1

to be any one-to-one function of the cells {πjl : j = 1, . . . ,J ; l = 1, . . . ,L}. Since in our

case J = 2, let

ρ0l = logπ0l⇒ π0l = eρ0l and ρ1l = log
(
π1l
π0l

)
⇒ π1l = eρ1l+ρ0l ,

so that
∂π1l
∂ρ0l

= ∂π1l
∂ρ1l

= π1l,
∂π0l
∂ρ0l

= π0l and ∂π0l
∂ρ1l

= 0.

Setting Sλ = 0, we have that

S +λS̃ =
Ni∑
j=1

 S0

S(0)
1 +λS̃(0)

1 +S(1)
1 +λS̃(1)

1

= 0,

where S(i)
1 stands for S1 (see equation (2.8)) for Y= i, which results in three estimating

equations, one for each parameter: β, ρ1l and ρ0l.
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For β, we have that
N1∑
i=1

S0 =
N1∑
l=1

R1l
∂ logfc
∂β

= 0;

for ρ1j ,
N1∑
i=1

[(
R1lj−π1l
π1l(1−π1l)

)
∂π1l
∂ρ1l

+λR1lj
∂ logfc
∂ρ1l

]
= 0,

which implies
N1∑
i=1

R1l
∂ logfc
∂ρ1l

=− 1
λ

(
n1l−N1lπ1l

1−π1l

)
;

and for ρ0j ,

N1∑
i=1

[(
R1l−π0l
π0l(1−π0l)

)
∂π0l
∂ρ0l

+λR1l

(
−∂ logfc

∂ρ0l

)
+
(

R1l−π1l
π1j(1−π1l)

)
∂π1l
∂ρ0l

+λR1l
∂ logfc
∂ρ0l

]
= 0,

implying (
n0l−N0lπ0l

1−π0l

)
=−

(
n1l−N1lπ1l

1−π1l

)
.

If λ=−1, we can set ξl = (n1l−N1lπ1l)/(1−π1l) so that

π1l = n1l− ξl
N1l− ξl

and π0l = n0l+ ξl
N0l+ ξl

and finally,

ρ1l = log
(
π1l
π0l

)
= log

(
n1l− ξl
N1l− ξl

)
− log

(
n0l+ ξl
N0l+ ξl

)
.

7.1.2 Additional sample

The CML+S̃ method also works under a slightly different sampling scheme, namely

that used by Zhou et al. (2002) and Song et al. (2009). The authors use an additional

sample of size n0 randomly selected among all phase-1 data so that the phase-2 data

consists of n individuals, the outcome-dependent subsample sampled based on Y, plus
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the additional sample n0. We show next that both methods, CML+S̃ and the Scott

and Wild’s method, are still equivalent, despite the changes made on the design.

Under this new sampling scheme, the complete or full likelihood is

L=

∏
i

∏
j

(pijδj)nij
∏
i

(∑
l

pilδl

)Ni−ni+IA∏
i

∏
j

(pijδj)nij
IB ,

where A is the set of units with π = π(y;α) with indicator function IA and B is the set

of units with π = c, where c is a constant, with indicator function IB.

For the profile likelihood approach, we have to maximize the above likelihood with

respect to δj with the constraint
∑
j δj = 1, where j = 1, . . . ,Nt and Nt is the total

number of individuals. The loglikelihood is given by

`=

∑
i

∑
j

nij logpij +
∑
j

n+j logδj +
∑
i

(Ni−ni+) log
(∑

l

pilδl

)IA+

∑
i

∑
j

nij logpij +
∑
j

n+j logδj

IB.
By introducing a Lagrange multiplier η to take care of the constraint and after multi-

plying by δj and summing over j, we have that

(
n+i+

∑
i

(Ni−ni+)
)
IA+ (ni+)IB +η = 0 → η =−(NIA+nIB) .

Then, replacing η back into ∂l/∂δj , we get

∂l

∂δj
=
(
n+j
δj

+
∑
i

(
(Ni−ni+)∑

l pilδj
pij

))
IA+

(
n+j
δj

)
IB− (NIA+nIB) = 0

which implies

δj = n+jIA+n+jIB(
N −

∑
i(Ni−ni+) pij∑

l
pilδj

)
IA+nIB

.
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Note that δj reduces to n+j/N if i ∈B. We can rewrite δj as

δj = n+jIA+n+jIB
N
∑
iµipij

, where µi = 1− 1
N

Ni−ni∑
l pilδl

.

Now, µi = 1/N , the probability of being selected through the simple random sampling

part, if i ∈B.

Replacing δj back into the definition of µi, we have that for all i ∈A,

µi = ni− ξi
Ni− ξi

,

where

ξ = ni−
∑
l

p∗iln+l and p∗ij = µipij∑
iµipij

.

Finally, ξi can also be written as

ξi = ∂

∂µ

∑
i

∑
j

logp∗ij ,

for all i ∈A. If i ∈B, p∗ij is not a function of µi and so ξi = 0. Note that the conditions

stated on theorem 7.1 are the same for all i ∈ A and for i ∈ B, ξi = 0 and ω = 0.

Therefore, in order to show equivalence between the Scott and Wild (1997) and the

CML+S̃ methods we have only to check the expressions from CML+S̃ when i ∈ B.

And since

πi = no/Nt → fc = f → ξi = ∂ logfc
∂ω

= 0.

and

ω = log
(
π1l
π0l

)
= log(µ1/µ0) = 0,

the CML+S̃ method satisfies the conditions of theorem 7.1 and both methods are
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equivalent.

7.2 Lower bound for the variance

In this section we will calculate the lower bound for the variance of any semipara-

metric estimator of β, where a response Y has been fully observed while some covariate

X has been partially measured. We assume that the selection probability depends only

on the response, so the data is missing at random and the methods studied before can

be applied. That is, we are interested in the likelihood

N∏
i=1

(πi(y)f(y|x;β)g(x))Ri
N∏
i=1

(
(1−πi(y))

∫
f(y|x;β)g(x)dx

)1−Ri
.

Note that, by the missing at random assumption, π, the selection probability, does not

depend on β and inference concerning β is independent of whether π is completely

known or unknown. Hence, the lower bound for the variance must be same in both

situations. A representation of this lower bound has already been obtained by Robins

et al. (1995) and Zhang and Rockette (2006) in terms of an integral equation. Here

we work with the Zhang and Rockette (2006) representation, solving the integral equa-

tion and calculating the efficient information for the specific sampling design described

above.

First, however, it is important to fix some notation that is going to be used through-

out this and the following sections. In order to make it simpler and more concise, we

will consider the case where X is univariate and we will write

• f , for the conditional distribution f(y|x;β) and f ′, for f(y|x′;β);

• g (or g′) and G, for the marginal density g(x) (or g(x′)) and distribution G(x) of
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X and G0, for the true distribution G;

• S0, for the score vector with respect β, evaluated at the true distribution G and

true parameters β. That is,

S0 =R
∂

∂β
log(L(β,G0)) + (1−R)E

(
∂

∂β
log(L(β,G0))

∣∣∣∣y)

• S1, for the score vector with respect to nuisance parameter g;

• X , for the space in which X is defined;

• B, for the parameter space.

7.2.1 Efficient score

In order to calculate the lower bound for the variance, we need first to define and

derive the nuisance tangent space.

Definition 7.1 (Tsiatis (2006)). The nuisance tangent space for a semiparametric

model, denoted Λ, is defined as the mean-square closure of parametric submodel nui-

sance tangent spaces, where a parametric submodel nuisance tangent space is the set of

elements {
Mq×rSr×1

α

}
,

Sα is the score vector for the nuisance parameter Λ for some parametric submodel, and

Mq×r is a conformable matrix with q-rows. Specifically, the mean-square closure of the

spaces above is defined as the space Λ⊂H, where Λ = {hq×1 ∈H such that E
(
hTh

)
<∞

and there exists a sequence MjSαj such that

||h−MjSαj ||2→ 0 as j→∞,
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for a sequence of parametric submodels indexed by j}, where ||h||2 = E
(
hTh

)
.

Consider a Hilbert space H generated by all measurable functions of X with mean

zero and finite variance, and with inner product 〈g1,g2〉 = E (g′1g2). The infinite-

dimensional linear subspace Λ ⊂ H generated by spanning the nuisance score vector

S1 can be constructed as follows. Define a measurable and bounded function h :X →R

under G0 and let
dGt
dG0

= 1 + t

(
h−

∫
hdG0(x)

)
,

with |t| sufficiently small so that 1+ t(h−
∫
hdG0(x))≥ 0, for all x. Moreover, we have

that ∫
dGt =

∫
dG0 + t

∫ (
h−

∫
hdG0

)
dG0 = 1

so that Gt is also a probability distribution function on X and equivalent to G0 when

t= 0. Replacing Gt back into the loglikelihood, we have that

`(β,Gt) = logf +R logdGt+ (1−R) log
(∫

fdGt

)
= logf +R log

[(
1 + t

(
h−

∫
hdG0

))
dG0

]
+ (1−R) log

[∫
f

(
1 + t

(
h−

∫
hdG0

))
dG0

]
,

and since G0 is the true distribution of X , the map t→ `(β,Gt) will be maximized at

t = 0. Taking the derivative of `(β,Gt) with respect to t and evaluating at t = 0, we

have that

Sh =Rh+ (1−R)
∫
hfdG0∫
fdG0

−
∫
hdG0 =B0h−

∫
hdG0,

where Sh is a score function and

B0h=Rh+ (1−R)
∫
hfdG0∫
fdG0

.
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Note that, for any function h∈L2(G) with mean zero and bounded second moment,

from the L2-completeness (Tsiatis, 2006, pp. 14), the space generated by B0h is a

Hilbert space with covariance inner product 〈h1,h2〉=E (h1h2). If we choose M to be

the identity matrix, B0h is an element of Λ. Finally, since any element of B0h can be

taken as a limit of mean zero functions of h, all elements of B0h are either elements of

a parametric submodel nuisance tangent space or a limit of such elements. That is,

Λ⊇ {B0h : h ∈ L2 with
∫
hdG0 = 0},

For the inverse inequality we have to show that any element of Λ can be written

as B0h, with h ∈ L2 and first moment equal to zero. Assuming a parametric model

G(x;α) for the covariates X , the score with respect to α is

RSα+ (1−R)
∫

SαfdG0∫
fdG0

,

where Sα = ∂ logg(x;α)/∂α. Note that this score can be written as B0h, with h= Sα,

which has mean zero under the true distribution of G. By the finite second moment

assumption, we have that

Λ⊆ {B0h : h ∈ L2 with
∫
hdG0 = 0}.

Now that we have derived the nuisance tangent space, we can calculate the efficient

score and, consequently, the semiparametric efficiency bound.

Definition 7.2 (Tsiatis (2006)). The efficient score is defined as the residual of the

score vector with respect to the parameter of interest after projecting it onto the nuisance
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tangent space Λ, i.e.,

Se = S0−
∏

(S0|Λ).

Definition 7.2 says that the efficient score is the projection of the score vector S0

onto ΛT , the orthogonal complement of Λ. That is, for any h ∈ Λ,

〈Se,h〉= 0,

under P. An intuitive argument is given by Nan et al. (2004). The authors say that

“when G0 is unknown, information about β can only come from that component of S0

that is statistically independent of variability in the data controlled by the nuisance

parameter. This component is Se.” Once Se has been obtained, we can use the following

theorem to get the efficiency bound.

Theorem 7.2 (Tsiatis (2006)). The semiparametric efficiency bound is equal to the

inverse of the variance matrix of the semiparametric efficient score, i.e.,

E−1
(
SeSTe

)
.

In order to obtain Se we have to find its projection onto Λ. First, however, let B∗0

be the adjoint of B0 and let Z be the space where (X ,Y ,R) are defined, h1 : Z → R
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and h2 : X → R. Then,

〈h1,B0h2〉=
∫
h1πh2fgdydx+

∫
h0

1(1−π)
(∫

h2fg

fy
dx′
)
fgdydx

=
∫
h2πh1fgdydx+

∫ (∫
h0

1(1−π)fg
fy

dx′
)
h2fgdydx

=
∫ (∫

πh1fdy
)
h2gdx+

∫ (∫ (∫ (1−π)h0
1fg

fy
dx′
)
fdy

)
h2gdx

= 〈B∗0h1,h2〉 ,

where

B∗0h1 =
∫
πh1fdy+

∫ (∫ (1−π)h0
1fg

fy
dx
)
fdy

= E (Rh1|X = x) +E (E ((1−R)h1|Y = y) |X = x) .

Finally, since

B01 =R+ (1−R)
∫
fdG0∫
fdG0

= 1,

we have that 〈B∗0B0h,1〉= 〈B∗0h,1〉= 〈h,B01〉= 〈h,1〉. That is, for h ∈ L2(G), B∗0B0h

is mean preserving. In addition, assuming for now that B∗0B0 has an inverse and noting

that 〈B0B0h,1〉= 〈B0h,B
∗
01〉= 〈B0h,1〉, its projection exists and is unique, and given

by B0 (B∗0B0)−1B∗0S0. The efficient score is then equal to

Se = S0−B0 (B∗0B0)−1B∗0S0. (7.3)

Zhang and Rockette conclude that B∗0B0 is invertible by showing that it is positive-

definite, but this result does not hold for infinite dimensional matrix (consider, for

example, the case where the eigenvalues of B∗0B0 converge to 0). We will use instead

a version of the LAX-Milgram theorem (Kress, 1999, pp. 242), which requires the
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operator to be strictly coercive.

Definition 7.3 (Coercive). A bounded linear operator A :H→H in a Hilbert space H

is called strictly coercive if there exists a constant c > 0 such that

〈Ah,h〉 ≥ c ||h||2 .

Theorem 7.3 (LAX-Milgram). In a Hilbert space H a strictly coercive bounded linear

operator A :H→H has a bounded inverse A−1 :H→H.

First, note that B∗0B0 is linear and continuous on X and so it is a bounded operator.

Now, in order to show that the operator is also strictly coercive, we have that

〈B∗0B0h,h〉=
∫ (∫

πhfdy
)
hgdx+

∫ (∫ (∫ (1−π)hfg
fy

dx′
)
fdy

)
hgdx

=
∫
πh2fgdydx+

∫ (∫
hfg

fy
dx′
)(∫

hfg

fy
dx
)

(1−π)fydy

≥
∫
πh2fgdydx

≥ c ||h||2 ,

where c = min{π(y) : y ∈ R} > 0 and satisfied by assumption. Thus, B∗0B0 is strictly

coercive and by the LAX-Milgram theorem it has a bounded inverse (B∗0B0)−1 .

Since B∗B has an inverse, we can calculate the efficient score given by equation
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(7.3). By noting that

B∗0B0h=
∫
hπfdy+

∫ (∫
h(1−π)fg

fy
dx
)
fdy

= h

∫
πfdy+

∫ (∫
h′(1−π)f ′g′

f ′y
dx′
)
fdy

= h

∫
πfdy+

∫ (∫ (1−π)f ′f
f ′y

dy
)
h′g′dx′

= hφ(x) +
∫
K(x,x′)h′g′dx′.

and that

B∗0S0 = E(RS0|X = x) +E (E ((1−R)S0|Y = y) |X = x)

=
∫
π

(
∂

∂β
logL

)
fdy+

∫ (∫
(1−π)

(
∂

∂β
logL

)
fg

fy
dx
)
fdy

= ψ(x),

we see that the function h can be obtained by solving the integral equation B∗0B0h =

B∗0S0, which can be written as

h(x)φ(x) +
∫
K(x,x′)h(x′)g(x′)dx′ = ψ(x)

and is of the form of a Fredholm equation of the second kind. The Nystrom routine is

a simple way to solve such equations and works as follows. We first approximate the

integral by any quadrature method as

h(x)φ(x) +
Np∑
i=1

K(x,xi)h(xi)g(xi)wi = ψ(x), (7.4)

where xis and Np are the points and total number of points of the chosen quadrature

method, repsectively, with weights wis. Then, by replacing x by xi in equation (7.4),
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we have that

ψ(xi) = h(xi)φ(xi) +
Np∑
i=1

K(x,xi)h(xi)g(xi)wi

where ψ(xi) and φ(xi) are the approximations for ψ(x) and φ(x), respectively, and

h(xi) is the solution of the system

(
INp×Npφ(xi) + K̃(xi,xi)

)
h(xi) = ψ(xi), i= 1, · · · ,Np,

where INp×Np is aNp×Np identity matrix and K̃(xi,xi) =K(xi,xi)g(xi)wi. Once h(xi)

is obtained, we replace it back into equation (7.4) and h(x) can then be calculated for

any value of x. Finally, the efficient information will be given by

IIIe =
∫
||S0−Bh||dP (7.5)

and the lower bound for the variance by III−1
e .

Extra covariate

We are now interested in the case where the response Y and a covariate X1 are

known at phase-1 and an expensive covariate X2 is observed only at phase-2. We are

going to work with the likelihood

L(β,g) =
N∏
i=1

(f(yi|xi;β)g2(x2i|x1i)g1(x1i))Ri
N∏
i=1

(∫
f(yi|xiβ)g1(x1i)g2(x2|x1i)dx2

)1−Ri
,

where g1 (or G1) and g2 (or G2) are the marginal and conditional pdf (or cdf) of X1

and X2|X1, and X = (X1,X2). Note that, if g2 was known, the efficient estimator of

β would be obtained by solving ∂ logL(β,g0)/∂β = 0.

The nuisance tangent space can be obtained using the same ideas as in the previous
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section. That is, by defining a measurable and bounded function h : X → R under G0,

where X is now the space where X2|X1 is defined and G0 is the conditional distribution

evaluated at the true parameters, we have that

Λ = {B0h : h ∈ L2 with
∫
hdG0 = 0}

where

B0h=Rh+ (1−R)
∫
hfg2dx2∫
fg2dx2

=Rh+ (1−R)E (h|y,x1) ,

which has the same structure as in the previous section. Similarly, by defining h1 :X →

R and h2 : X1→ R, where X1 is the space where X1 takes value, under dG10 (where

the index 0 denotes, as before, the distribution evaluated at the true parameters),

〈h1,B0h2〉=
∫
h1πh2fg1g2dydx1dx2 +

∫
h0

1(1−π)
(∫

h2fg2
fyx1

dx2

)
fg1g2dydx1dx2

=
∫
h2πh1fg1g2dydx1dx2 +

∫ (∫
h0

1(1−π)fg2
fyx1

dx2

)
h2fg1dydx1dx2

=
∫ (∫

πh1fdy
)
h2g1g2dx1dx2

+
∫ (∫ (∫ (1−π)h0

1fg2
fyx1

dx2

)
fdy

)
h2g1g2dx1dx2

= 〈B∗0h1,h2〉 ,

where

B∗0h1 =
∫
πh1fdy+

∫ ((1−π)h0
1fg2

fyx1
dx2

)
fdy

= E (Rh1|x1,x2) +E
(
E
(
(1−R)h1|y,x1

)
|x1,x2

)

is the adjoint operator. The same arguments can be used to show that B∗0B0 is invert-
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ible, resulting in

h(x1,x2)φ(x1,x2) +
∫
K(x1,x2,x′2)h(x1,x′2)g2(x′2|x1)dx′2 = ψ(x1,x2),

which is again a Freedman equation of the second kind, where

φ(x1,x2) = h

∫
πfdy,

ψ(x1,x2) =
∫
π

(
∂

∂β
logL

)
fdy+

∫ (∫
(1−π)

(
∂

∂β
logL

)
fg2
fyx1

dx2

)
fdy

and

k(x1,x2,x′2) =
∫

(1−π)g1
f ′f

f ′yx1

dy.

7.2.2 Simulations

In order to check the asymptotic efficiency of the proposed method discussed in

chapters 2 and 4, we performed a 2-phase study assuming the linear model

Y = β0 +β1x+σε,

where ε and X follow a standard normal distribution and σ = 1. We assumed that

the response Y was fully observed at phase-1 and the covariate X was observed only

at phase-2. The phase-2 data was sampled from each of the two strata defined by

Yd =I(Y < c
(y)
1 ), where I is an indicator function and c(y)

1 the 15th percentile of Y . We

kept the intercept constant (equal to 1) and ran simulations with β1 = 0.5,1.0 and 1.5,

fitting the saturated model

logit(π)∼ yd ∗y,
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where yd ∗y is equivalent to yd+y+ydy, for the selection probability and varying the

phase-2 sample sizes from 200 to 2250. For each sample size we ran 1000 simulations

and, using equation (7.5), obtained the lower bound for the variance, i.e., the smallest

MSE possible for any unbiased semiparametric estimator. This value was compared to

the MSE for β1 when using the CML+S̃ method discussed earlier in chapters 3 and

4. Our goal here is to see how far from the best possible semiparametric estimate our

estimate actually is. These results are shown in figure 7.1. Figure 7.1 also shows the

MSE when the true distribution of X is correctly fitted and under a fully parametric

approach so that we can obtain a measure, in terms of MSE, of the amount of informa-

tion lost when the distribution G(X) is treated non-parametrically. The corresponding

plots of log(MSE) are shown in Figure A.1.

Based on our simulations, we see that if the distribution of G(X) is known (solid

red line) or correctly fitted (dashed red lines) either using a smaller model denoted by

G1(X) (error normally distributed) or a larger model denoted byG2(X) (error following

a Generalized Normal distribution), these fully parametric approaches give the lowest

MSE, as expected. Using the known G(X) is slightly better than the others parametric

approaches and there is very little difference between the smaller (2-parameters) or

larger (3-parameters) fitted models. The discrepancy between these fully parametric

and the other semiparametric methods increases as the correlation between Y and X

increases. When the sample size is small, there is not enough information to estimate

the marginal distribution of X efficiently, resulting in large MSE when compared to the

fully parametric approaches. As the sample increases, the semiparametric approach is

nearly as good as those fully parametric methods.

Regarding the semiparametric approaches, we see that the MSE obtained from

CML+S̃ method appears to be approaching the semiparametric lower bound for the
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(a) β1 = 0.5 (b) β1 = 1.0

(c) β1 = 1.5

Figure 7.1: Mean squared error for β̂1 as a function of the sample size n, using the semiparamet-
ric CML+S̃ (black line) as well as the semiparametric lower bound for the variance
(orange line) and the mean squared error for β̂1 when the true distribution of X
is considered known (red line) or fitted by a smaller (G1(X), dashed red line) or
larger (G2(X), dashed red line) parametric model.
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variance as the sample size n, the proportion of individuals selected into phase-2, in-

creases. For large n, the CML+S̃ method is nearly as good as the best semiparametric

method to estimate β1, for all cases considered here. For small n, however, both curves

are considerably different, especially when β1 is small. In this case, CML+S̃ gives an

MSE that is almost 3 times higher than the one given by the semiparametric lower

bound, but decreases to about 1.5 when β1 = 1.5.

We also simulated a 2-phase study assuming the linear model

Y = β0 +β1x1 +β2x2 +σε,

whereX1, X2 and ε are independent and normally distributed with mean 0 and variance

1, and σ = 1. We assumed that (Y,X1) were fully observed at phase-1 and that X2

was only observed at phase-2, a sample taken from the six strata defined by (Yd,X1d),

where

Yd =


1, if Y < c

(y)
1

0, otherwise
and X1d =



0, if X1 ≤ c(x)
1

1, if c(x)
1 <X1 ≤ c(x)

2

2, if X1 > c
(x)
2

where c(y)
1 is the Y -15th quantile and c(x)

1 and c(x)
2 are theX1-15th andX1-85th quantile,

respectively. We also defined the binary coarsening X2d equal to 1 if X2 < .5 and 0

otherwise, which was considered known for all phase-1 individuals, but not used to select

the phase-2 sample. Notice that this sampling scheme is similar to that illustrated in

Fig. 4.1. As in chapter 4, we fitted two selection models for π = pr(Ri = 1|z,α), where
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Z must be contained in (Y,Yd,X1,X1d,X2d) so that the estimates are unbiased for β:

Model (1): logit(π)∼ yd ∗x1d+y ∗x1

and

Model (2): logit(π)∼ yd ∗x1d ∗x2d+y ∗x1 ∗x2d.

Note that model (1) is the true selection mechanism plus the interaction between the

continuous variables Y and X1. Model (2) is similar, but takes the extra information

on X2d into consideration. We used the CML+S̃ method to estimate the parameters

of interest and we use the notation CML(i) + S̃ for model (i), i= 1 or 2, to model the

selection probabilities.

We compared the CML(1) + S̃ and the CML(2) + S̃ methods with respect to MSE for

different β and phase-2 sample sizes n, against the semiparametric lower bound for the

variance and fully parametric methods assuming that the distribution of X = (X1,X2)

was known or fitted using a smaller error model (error normally distributed) and

a larger error model (errors following a Generalized Normal distribution), exactly

as in the previous case. Results for β̂1 and β̂2 are shown in Figures 7.2 and 7.3,

respectively. The log plots are shown in Figures A.2 and A.3. Notice that only

CML(2) + S̃ makes use of the available information on X2d. In both figures we used

β =
{

(1,1, .5)T ,(1, .5, .5)T ,(1, .5,1)T
}

to generate subfigures (a), (b) and (c), respec-

tively. Our goal was to calculate the MSE for cases where the correlation between X2

and Y were equal, higher or similar to the correlation between X1 and Y .

Both figures show a similar order. As in previous case (Fig. 7.1), the MSE of

CML(1) + S̃ becomes closer to the semiparametric lower bound for the variance as

the sample size increases. The difference between these curves is slightly higher for
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(a) β = (1,1, .5)T (b) β = (1, .5, .5)T

(c) β = (1, .5,1)T

Figure 7.2: Mean squared error for β̂1 as a function of the phase-2 sample size n, using the
semiparametric CML+S̃ without (solid black line) and with (dashed black line) the
extra information X2d added into the selection model, the semiparametric lower
bound for the variance (orange line) and the mean squared error for β̂1 when the
true distribution of X is considered known (red line) or fitted by a smaller (G1(X),
dashed red line) or larger (G2(X), dashed red line) parametric model.
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(a) β = (1,1, .5)T (b) β = (1, .5, .5)T

(c) β = (1, .5,1)T

Figure 7.3: Mean squared error for β̂2 as a function of the phase-2 sample size n, using the
semiparametric CML+S̃ without (solid black line) and with (dashed black line) the
extra information X2d added into the selection model, the semiparametric lower
bound for the variance (orange line) and the mean squared error for β̂2 when the
true distribution of X is considered known (red line) or fitted by a smaller (G1(X),
dashed red line) or larger (G2(X), dashed red line) parametric model.
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β2 and decreases as β2 increases. For example, when β = (1, .5,1) and n = 800, the

CML(1) + S̃ method gives an MSE that is almost 5.5 higher than the one given by

the semiparametric lower bound while estimating β2 and about 3 times higher when

β = (1, .5,1) and n = 2400. While estimating β1, this ratio varies from 1.8 (when

n= 800) to 1.6 (when n= 800)

Adding extra information regarding X2d, a simple binary coarsening, into the selec-

tion model results in much better estimates, as seen by the black dashed line in both

figures and already discussed in previous chapters. The smaller the phase-2 sample size

is, the greater the reduction is.

As expected, using fully parametric approaches where the distribution of X is known

or fitted using a correct parametric model, leads to smaller MSE in all cases. This

MSE is significantly smaller than the semiparametric approaches especially when the

coefficient β1 is large, and is still reasonably smaller for large sample size. However,

because X is often of high-dimensional, modelling its joint distribution may be hard

or even infeasible and small deviations from the true distribution G(X) may lead to

biased estimates. We conduct a small-scale investigation of this in the next section.

7.3 Parametric model for the covariates

Here we perform a small simulation study to examine the impact of a misspecified

G(X) on the MSE. Let G(X) be the distribution function for X and g(x) its probability

density function. Let X be, as before, a partially observed variable known only for a

sample of individuals selected from a larger population. Let also the response Y be

fully observed, known for the entire population, and used to select the final sample.

Finally, let R be an indicator of being selected for full observation or not.
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Figure 7.4: Density functions for X following a t-distribution.

Assume a parametric model for the conditional distribution of Y given X, f(y|x;β),

and a parametric distribution g∗(x) for g(x). The resulting estimating equation for β

is thus given by

S0 =
N∑
i=1

[
Ri logf(y|x;β) + (1−Ri) log

∫
f(y|x;β)g∗(x)dx

]
= 0, (7.6)

where N is the total population. Note that the expected value of the first term of

equation (7.6) is zero since we are assuming that model for Y |X is correctly specified,

but the second term is only zero if g∗(X) ≡ g(x). That is, we would expect that

slightly misspecified models for X lead to biased estimates and our interest here is to

see, through simulations, how large the resulting bias might be.

We ran simulations generating X from a t-distribution with υ degrees of freedom.

We fitted a fully parametric model with g∗(X) normally distributed and the conditional

distribution of Y |X , the model of interest, correctly specified. Figure 7.4 shows the

true (t-distribution) and the misspecified (Normal) distributions, for υ = (5,10,20).

We used a 2-phase sampling scheme with a total population of N = 10,000 individ-
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uals with an univariate X and a linear response

Y = β0 +β1x+σε.

Here σ = 1, β = (1,1.5)T and ε and X follow a standard normal distribution. Only the

response was considered known for all individuals and the covariate X was measured

only for a sample of units taken from the phase-1 population. Subjects were selected

from each of the two strata defined by Yd =I(Y < c
(y)
1 ), where I is an indicator function

and c(y)
1 the 15th quantile of Y .

For the simulation study, we varied the phase-2 sample size from n = 400 to n =

2,800, while fitting both the selection model and the model of interest f(y|x;β), cor-

rectly. For each sample size we calculated the MSE of β1 and compared the following

methods:

• The proposed semiparametric CML+S̃ method;

• The fully parametric approach with g∗(x), the misspecified parametric distribu-

tion, used to fit the distribution of X;

• The fully parametric approach with g(x), the correctly specified distribution;

• The semiparametric lower bound for the variance.

The results are shown in Fig. 7.5, when X was generated from a t-distribution. Values

of the log(MSE) plots are shown in Fig. A.4 When υ = 5, the true distribution of X is

heavy-tailed and the misspecified fully parametric approach results in biased estimates

and large MSE. The semiparametric method, which does not assume any distribution

for X is still unbiased and gives a much smaller MSE. The same pattern is observed

when υ = 10. The misspecified model is still biased, resulting in a MSE larger than
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(a) υ = 5 (b) υ = 10

(c) υ = 20

Figure 7.5: Mean squared error for the parametric (black line) and semiparametric (blue line)
methods, lower bounds for the variance (red line) and mean squared error when the
true distribution of X is known (orange line), for X following a t-distribution with
(a) 5, (b) 10 and (c) 20 degrees of freedom υ.
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the one obtained by the more robust approach. Finally, only when υ = 20 and the

t-distribution is very close to the normal distribution, the fully misspecified parametric

approach is more efficient than any semiparametric estimator and almost as efficient as

the optimal fully parametric approach, where the distribution of X is correctly fitted.

7.4 Summary

Here we showed that the proposed CML+S̃ is fully efficient when the response is

binary, for a wider range of scenarios than those considered in Scott and Wild (2011),

and through simulations studied its efficiency when the response is continuous. To

this end, we first derived the asymptotic lower bound for the variance by solving an

integral equation and wrote an R code for computing it numerically. Comparing this

lower bound against CML+S̃, we saw that their difference seems to decrease as the

sample size increases when the sampling depends only on Y , but at a lower rate when

the sampling depends on both Y and X1. It is still of interest to show, mathematically,

whether or not the CML+S̃ method achieves the asymptotic semiparametric lower

bound for the variance and also derive its rate of convergence.

Our simulations also showed that assuming a semiparametric approach, where the

distribution of the covariates X are treated non-parametrically and is thus not affected

by misspecification, leads to considerable loss in efficiency if compared to fitting the

correct distribution for X . However, modeling X is often hard and fairly small mis-

specifications, as shown by our simulation study, can result in a large mean squared

error.



8
Conclusions and Future Work

In this dissertation we have proposed a semiparametric approach to deal with mul-

tiphase sampling schemes that take into account all information available in the study.

Cheap surrogates, for example, which are often discarded in multiphase studies, are

considered in a fairly simple way with the purpose of increasing precision. The method

is semiparametric in the sense that it does not require any assumption regarding how

the covariates are distributed and so it is robust against such misspecifications.

The theory as well as asymptotic results were derived in chapter 2 for both dis-

crete and continuous responses, extending Scott and Wild (2011). Estimating selection

probabilities require modelling an often binary outcome given a set of variables, being

thus strongly connected to the propensity score approach. However, both approaches

do differ in their definition and intent, and their similarities and differences were dis-

cussed in chapter 5. While the propensity score was developed with the purpose of

replicating, by balancing the background covariates, a randomized experiment while

dealing with an observational study, our proposed approach was used to deal with bi-

ased or outcome-dependent sampling schemes. Therefore, unless one is willing to define

211
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an outcome-dependent propensity score and thus ignoring its balancing property, both

approaches are different.

As emphasized early, in this dissertation we worked with both discrete and contin-

uous responses. Each one was analysed separately: Discrete responses were discussed

in chapter 3 and the continuous case was treated in chapter 4. In the former, we dis-

cussed 2 and 3-phase designs with extra information that was not used in any part of

the study, but available in both first and second phases of the study. We first applied it

to situations where the missingness was due to design (controlled by the researcher and

thus known). In such cases it is often possible to fit a saturated model for the selection

probability and our simulated results showed that making use of this extra variable in

a very simple way may lead to sometimes substantial gains in efficiency. The proposed

method is always the best alternative for estimating the effects the variable that goes

missing (i.e., only observed at the final phase).

We have also discussed, through simulations, the impact of adding an extra vari-

able into the selection model when the response was continuous. Here we assumed

that the error distribution followed a Normal, Generalized Normal, Skew-Normal or

t-distribution. As for the discrete case, making use of extra variables resulted in es-

timates that were substantially more efficient, especially for estimating the effects the

variable that goes missing. Imputation and calibration can be more efficient for es-

timating the effects of the complete observed variables, especially when the partially

observed variable (observed only at the final phase) is weakly related to the outcome.

This situation, however, is reversed as the impact of the partially observed variable on

the outcome increases.

It is important to point out that, in both discrete and continuous cases, our proposed

method did not make any assumption regarding this extra variable nor its distribution,
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being thus robust against misspecifications. This is appealing because in many studies

cheap variables are often available for part of the population, but are usually ignored.

In this way we hope to encourage the collection of cheap or easy to measure variables

that may contribute to the final estimates.

The proposed method is also flexible enough to be applied to situations where fitting

a saturated model for the selection probability is not possible, which might the case

of non-response problems. Here the missingness is unknown and fitting a saturated

model might not be possible. As a result, most efficient approaches may not be applied

here. Our method comes as an alternative approach and its efficiency with respect to

the non-response rate was studied through simulations, extending the work of Jiang

et al. (2011). The missing at random assumption, of course, must be valid so that the

method can provide unbiased or nearly unbiased estimates.

This approach can in addition be applied to a variety of scenarios, which encom-

passes the expensive covariate or expensive response problems, the secondary analysis

and many others, as discussed in chapter 6. Even though the data may be obtained

via different sampling schemes corresponding to perhaps completely different problems,

the resulting estimating equations all have the same structure and so the method is

readily extended to all those scenarios. It was implemented in R for both discrete and

continuous variables, extending previous work of Neuhaus et al. (2006) and Jiang et al.

(2006), to name a few.

A drawback, however, is its lack of robustness against model misspecification. In

chapter 4 we study the worst possible misspecification and compared nearly-true models

against an alternative robust approach. We noticed that there are situations in which

even small deviations from the true model could lead to very inefficient estimates.

Dealing with levels of misspecifications that are around the level of detectability seems
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to be the right level to concentrate on. Levels that could always be detected (as in Hade

and Lu (2013)) are not relevant because an analyst would not be fitting the model in

a situation like that.

Its efficiency is discussed in chapter 7. Here we first showed that, in the discrete

case, the proposed method is equivalent to the Scott and Wild (1997) approach and

thus semiparametric fully efficient. More generally (and for a 2-phase design), we

derived the semiparametric lower bound for the variance by solving numerically an

integral equation. R code was then written to compute this lower bound and used to

study the efficiency of the proposed method in a few scenarios. From our simulations

we saw that, if the missingness depends only on the response, the proposed method

seems to converge to the best possible semiparametric method as the phase-2 sample

size increases. If the sampling depends on both the response and on some continuous

covariate, this convergence rate (assuming that there is one) seems to be much lower.

More work is required here.

Future Work

In this dissertation we have considered that the extra variable was, in most cases,

a simple binary coarsening. This information was simply used by adding it into the

selection model, but this may not be the most efficient way. As discussed in section

2.2.1, the reduction of the asymptotic variance depends on the relationship between

the score function from the selection model and the score function from the model of

interest, in the sense that the greater the correlation between them are, the greater is

the reduction of the asymptotic variance. Thus, it is of interest to examine different

ways and possible derive the most efficient way of making use of this extra information.

This is currently being investigated.
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In cases where the extra variable is correlated to the outcome, as discussed in

chapter 6, we should use the expected value of this selection probability given a set

of variables fully observed at phase-1, which requires assuming a parametric model for

this extra variable in order to get unbiased estimates. This increases risks of model

misspecifications and perhaps mixed methods that do some degree of adjustments and

adds some robustness into the estimating equations should be considered.

Another topic of work is to develop diagnostic measures for multiphase sampling

schemes. Here in this thesis we were mainly concerned on developing a set of estimating

equations for different sampling designs rather than discussing model adequacy. How-

ever, since as noticed in our simulated studies, the proposed method, which strongly

relies on the model of interest, may provide biased estimates if the model of interest is

slightly misspecified. A few papers, such as Zhu et al. (2009), Shi et al. (2009) and Zhu

et al. (2012), discuss this topic, but their approaches rely on fully parametric methods.

We expect to develop semiparametric approaches that also cover more general sampling

schemes as those discussed in this thesis.

Another potential research topic is to check if the proposed method is in fact fully

efficient when the response is continuous. Here we only studied its efficiency via simula-

tions, comparing it against the semiparametric lower bound for the variance. It is also

of interest to derive semiparametric lower bound when extra information is available.

Finally, we also plan to polish the R package implementing the methods discussed

in this dissertation and make it available on CRAN in the near future.
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(a) β1 = 0.5 (b) β1 = 1.0

(c) β1 = 1.5

Figure A.1: Log of the mean squared error for β̂1 as a function of the phase-2 sample size n,
using the semiparametric CML+S̃ (black line) as well as the semiparametric lower
bound for the variance (orange line) and the mean squared error for β̂1 when the
true distribution of X is considered known (red line) or fitted by a smaller (G1(X),
dashed red line) or larger (G2(X), dashed red line) model.
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(a) β = (1,1, .5)T (b) β = (1, .5, .5)T

(c) β = (1, .5,1)T

Figure A.2: Log of the mean squared error for β̂1 as a function of the phase-2 sample size n,
using the semiparametric CML+S̃ without (solid black line) and with (dashed black
line) the extra information X2d added into the selection model, the semiparametric
lower bound for the variance (orange line) and the mean squared error for β̂1 when
the true distribution of X is considered known (red line) or fitted by a smaller
(G1(X), dashed red line) or larger (G2(X), dashed red line) model.
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(a) β = (1,1, .5)T (b) β = (1, .5, .5)T

(c) β = (1, .5,1)T

Figure A.3: Log of the mean squared error for β̂2 as a function of the phase-2 sample size n,
using the semiparametric CML+S̃ without (solid black line) and with (dashed black
line) the extra information X2d added into the selection model, the semiparametric
lower bound for the variance (orange line) and the mean squared error for β̂2 when
the true distribution of X is considered known (red line) or fitted by a smaller
(G1(X), dashed red line) or larger (G2(X), dashed red line) model.
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(a) υ = 5 (b) υ = 10

(c) υ = 20

Figure A.4: Log of the mean squared error for the parametric (black line) and semiparametric
(blue line) methods, lower bounds for the variance (red line) and mean squared
error when the true distribution of X is known (orange line), for X following a
t-distribution with (a) 5, (b) 10 and (c) 20 degrees of freedom υ.
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