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ABSTRACT: Ports are an important part of a country’s infrastructure, both in terms of 
facilitating trade and aiding recovery immediately following an earthquake. In New 
Zealand ports facilitate the transfer of up to 99% of all exports and imports by volume 
and thus are important to the success of the country’s economy. Past earthquakes have 
demonstrated that port facilities suffer extensive damage due to poor foundations and 
backfill soils that are common in waterfront environments. In collaboration with New 
Zealand port authorities, generic wharf configurations representative of New Zealand 
structural and geotechnical characteristics have been developed. This paper presents the 
modelling approach and preliminary results for two common wharf configurations 
founded in three non-liquefiable soil profiles. The numerical models were created using 
OpenSees, a non-linear finite element analysis program and subjected to static nonlinear 
pushover analyses and dynamic time-history analyses. The wharf and the soil-pile 
interface have been modelled in order to account for the effects of nonlinear behaviour of 
pile elements and their connections to the wharf deck, and effects of nonlinear dynamic 
pile-soil interaction. The models were then used to develop fragility curves that are used 
to predict the probability of a model reaching a defined damage state given a PGA For 
low intensity earthquakes there was limited variability in performance between the 
different wharf models. However as earthquake intensity increased there was a 
pronounced difference between models with a raked-pile configuration and ones with a 
tie-back configuration, with the tie-back configuration having lower probabilities of 
damage. There appears to be no clear pattern with regards to the raked-pile configuration 
located in different soil profiles.  

1 INTRODUCTION 

Ports are complex commercial and physical entities at the interface between sea and land transport. 
They have strategic significance to New Zealand’s economy, facilitating the transfer of up to 99% of 
all exports and imports by volume (New Zealand Trade and Enterprise, 2010). Further to the economic 
importance, the Civil Defence Emergency Management Act (2002) has identified ports as lifelines that 
need to be in operation following a natural hazard event. Ports have a vital role in delivering aid, 
emergency water supplies, construction materials, heavy equipment and other goods needed for 
facilitating a rapid recovery of the local region. The damage to ports as a result of natural hazards can 
result in significant short and long term losses. The effect of natural hazards on ports was evident in 
the 1995 Great Hanshin earthquake, Japan, where damage to the port in Kobe was estimated at 1 
trillion yen (NZD$15 billion) and took almost 2 years to repair. The disruption caused by the closure 
of the port was valued at 30 billion yen (NZD$453 million) per month due to the loss of port related 
industries and trade (Chang, 2000). Likewise, the 2010 Darfield earthquake in the Canterbury region 
caused $50 million worth of damage to Lyttelton Port (TVNZ, 2010). The port was further damaged in 
the 2011 Christchurch earthquake resulting in significant loss of operational capability due to wharf 
movements reaching 0.5 m vertically and 1 m horizontally (Lyttelton Port of Christchurch, 2011). 
Damage is predicted to cost in excess of $500 million to repair (Wood, 2013). 

The study reported in this paper is part of a larger research project at the University of Auckland 
aimed at determining the resilience of New Zealand port infrastructure to natural hazards. This paper 
focuses on wharves, the infrastructure used for mooring vessels and providing a level area to transfer 
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cargo to and from the vessel. Numerical models for two wharf configuration representative of a typical 
pile-supported wharf found in New Zealand were developed in OpenSees, a nonlinear finite element 
analysis software (McKenna, et al. 2000), and subjected to pushover analysis and time-history 
analyses using a suite of ground motions scaled to multiple levels of PGA. The models were placed in 
three soil profiles representative of ground conditions found in New Zealand ports. The analysis 
results were then used to develop fragility curves used for predicting the expected damage at New 
Zealand wharves. 

2 WHARF CONFIGURATIONS 

In this paper total of 6 numerical models were created to capture the variability of wharves and 
surrounding ground conditions found in New Zealand. The six models were developed using two 
structural configurations placed in three soil profiles as shown in Table 1. 

Table 1. Models used in this study 

Model Structural Configuration Soil Profile 

Model 1 Configuration 1 – Raked Pile Profile A – Soft Clay 

Model 2 Configuration 1 – Raked Pile Profile B – Stiff Clay 

Model 3 Configuration 1 – Raked Pile Profile C – Dense Sand 

Model 4 Configuration 2 – Tie-back Profile A – Soft Clay 

Model 5 Configuration 2 – Tie-back Profile B – Stiff Clay 

Model 6 Configuration 2 – Tie-back Profile C – Dense Sand 

2.1 Structural 

The deck in both configurations was a cast-in-situ reinforced concrete slab with a thickness of 
600 mm, a width of 10.4 m and a concrete compressive strength of 38 MPa. The reinforced concrete 
piles have 500 mm square sections, constant lengths, 38 MPa compressive strength concrete and 300 
MPa reinforcing. The properties adopted in this study were extracted from wharf drawings constructed 
between 1960 and 1980. The transverse sections were assumed to repeat every 5 m in the longitudinal 
direction. The lateral loads are resisted by the moment resisting pile-deck connection and raked pile in 
Configuration 1 and the tie-back in Configuration 2.  

2.2 Geotechnical 

The generic slope profile adopted in this study, shown in Figure 2, was a simplified representation of 
typical profiles found surrounding New Zealand wharves. A typical slope consists of several soil 
layers varying both in thickness and composition but for the purpose of this study the slope has been 
simplified into three layers representing three distinct composition types. The top layer was assumed 
to be a fill layer 9 m in thickness, underlain by a shallow layer composed of the local soil deposit and 
6 m in thickness. This in turn was assumed to be underlain by a deep stiff layer.  

Three soil profiles were fitted to this generic slope as shown in Table 2. Profile A is common for older 
type wharves in which dredged material was used to reclaim land on which wharves were built. This 
construction technique results in the fill layer having the same properties as the local shallow layer 
(either loose sand or soft clay). Profile B and C represent modern construction in which the fill layer is 
engineered to ensure good quality material is used. In each profile, layer 3 was assumed to be very 
stiff resulting in high pile tip bearing forces. These generic soil profiles were developed based on an 
analysis of the available geotechnical data relating to wharves in New Zealand, both collected from 
ports and supplemented by geological studies found in the literature.  
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4.2 Ground Motions 

Each wharf model was subjected to two suites of ground motions consisting of 14 motions extracted 
from the suites of motions recommended by Oyarzo-Vera et al. (2012) for time-history analysis for 
structures in the North Island. The recommended ground motions were developed based on a seismic 
zonation study that divided the North Island into 5 zones with similar seismic hazard. For the purpose 
of this study 14 ground motions (7 earthquake events using both horizontal motions) were used to 
analyse wharves assumed to be located in the Auckland region (Zone A)  and the other 14 used to 
analyse wharves assumed to be located in the Wellington region (Zone NF). Table 3 shows the 
motions chosen for each suite. Each ground motion was scaled to a a range of PGAs from 0.2 to 0.9g. 
Each model was therefore subjected to 224 simulations resulting in a total of 1344 simulations. The 
NeSI Pan Cluster (High Performance Computer) at the University of Auckland was utilised to 
complete these simulations. 

Table 3. Earthquake events used for the time-history analysis 

Zone A Zone NF 

El Centro, Imperial Valley, USA El Centro, Imperial Valley, USA 

Delta, Imperial Valley, USA El Centro #6, Imperial Valley 

Chihuahua, Victoria, Mexico Caleta de Campos, Mexico 

Corinthos, Greece Yarimka YPT, Kocaeli, Turkey 

Kalamata, Greece TCU 051, Chi-Chi, Taiwan 

Westmorland, Superstition Hill, USA Arcelik, Kocaeli, Turkey 

CHY101, Chi-Chi, Taiwan La Union, Mexico 

4.3 Damage States 

The International Navigation Association (PIANC) proposed qualitative criteria for judging the degree 
of damage to a pile-supported wharf based on the peak responses of the piles. Four damage states were 
determined corresponding to serviceable, repairable, near collapse and collapse levels of a wharf 
structure. In contrast, RiskScape, a multi-hazard loss assessment tool developed for New Zealand 
(King & Bell, 2006) defines 5 damages states as shown in Table 4. In this study the RiskScape damage 
states definitions have been adopted. The insignificant damage state was defined as the point at which 
the concrete cover below ground first cracks. Damage prior to this point will usually be very minor. 
The light damage state was defined as the point at which the reinforcement in the pile first yields 
above ground. Prior to this point the structure will not have suffered any structural damage with only 
some concrete cover cracking. The limit of the moderate damage state was defined as the point in 
which the reinforcement first yields below ground. Yielding below ground is significantly harder to 
detect and remedy, therefore this sort of damage should be considered severe. The limit for the severe 
damage state was defined as the point in which the concrete reaches its ultimate strain indicating 
crushing of the concrete and loss of structural integrity. Any model subjected to a greater demand was 
assumed to have reached the collapse damage state. It is important to note that actual collapse a 
structure will be dependent on the overall redundancy of the system however for the purpose of this 
study the point at which one pile reaches the ultimate concrete capacity was assumed to be the start of 
the collapse damage state. 

4.4 Probability Analysis 

The response of the models was assumed to be a lognormal distribution with a probability density 
function as follows:  = √ −  (1) 

where  and  are the two parameters of the lognormal distribution of the random displacement 
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variable X. Accordingly the fragility curve for each damage state is the conditional probability that the 
wharf has a state of damage exceeding the damage state,  at a specific PGA level, as shown below: > | = > | = 1 − Φ  (2) 

where Φ .  is the standard normal cumulative distribution function and  is the upper bound limit for 
. The calculated probabilities at each PGA and for each damage state are then plotted to form a 

fragility curve. The curves are then further simplified by fitting them to a lognormal cumulative 
distribution function defined by two parameters calculated using regression analysis on the lognormal 
of the PGA values and the standard normal variable (Chiou et al., 2011). 

Table 4. Damage state definitions and associated limits 

Damage State RiskScape PIANC Associated Limit 

0 – Insignificant No damage, or minor 
non-structural damage 

 2 – Concrete cover 
crack below ground 
 

1 – Light Non-structural damage 
only 

Essentially elastic response 
with minor or no residual 
displacement 

3 – Reinforcement 
yield above ground 

2 – Moderate Reparable structural 
damage 

Controlled limited inelastic 
ductile response and residual 
deformation intending to keep 
the structure repairable 

6 – Reinforcement 
yield below ground 

3 – Severe Irreparable structural 
damage 

Ductile response near collapse 
(double plastic hinges may 
occur at one or limited number 
of piles 

8 – Concrete 
ultimate strain 
below ground 

4 - Collapse Structural integrity fails Beyond the severe state  

4.5 Fragility Curves  

The final output of the fragility modelling process was a set of curves for each model, as shown in 
Figure 7. The plotted dots are the raw fragility probabilities and the dotted lines are the fitted 
lognormal cumulative distribution curves. There appears to be a satisfactory fit that becomes more 
varied with increasing earthquake intensity. In future research a shifted cumulative distribution 
function will be used to improve the fit to data.    

The set of curves in Figure 7a show the fragility of a pile-supported wharf with a raked pile for lateral 
resistance, situated on soft clays and located in a high seismic region such as Wellington. In the event 
of a 0.6 PGA earthquake it is predicted that a similar wharf will be 100% likely to suffer some minor 
damage, 95% likely to suffer moderate damage, 85% likely to suffer severe damage and 15% likely to 
suffer collapse. In Figure 7b, a set of fragility curves for a pile-supported wharf with a tie-back for 
lateral resistance also situated on soft clays is shown. In the event of a 0.6 PGA earthquake it is 
predicted that this type of wharf will have a 97%, 83%, 30% and 0.1% probability of suffering light, 
moderate, severe and collapse damage, respectively. It is clear that the for the same soil profile a tie-
back structural configuration would be expected to undergo significantly less displacements and attract 
less damage in comparison to a raked-pile configuration.  

The plots in Figure 8 show fragility curves for the light, moderate, severe and collapse damage states 
for all models in a high seismic region. For the light damage state, shown in Figure 8a, there is limited 
variability between the wharf models, except Model 4 (tie-back in soft clay soil profile) which has a 
significantly lower probability of reaching the light damage state. Model 1 (raked-pile in soft clay soil 
profile) has the highest probability of being susceptible to light damage. The variability decreases 
further for the moderate damage state, shown in Figure 8b. Model 4 still has the lowest probability of 
reaching the moderate damage state. In contrast, the probability of Model 1 reaching the moderate 
damage state is lower than other models. This trend indicates that Model 1 performs more favourably 
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in moderate sized earthquakes. The plot in Figure 8c indicates there is a wider variability in predicted 
damage for the severe damage state between different wharf models. Based on that figure, there is a 
general observation that models with tie-back configurations (Models 4-6) were performing better than 
raked-pile configurations (Models 1-3). This observation was more pronounced for the collapse 
damage state (shown in Figure 8d). Further analysis on the sensitivity of these results to input 
parameters needs to be completed before a more definitive conclusion could be reached. 

Figure 7. Fragility curves. (a) Model 1 – Raked pile, soft clay soil profile, (b) Model 4 – Tie-back, soft clay 
soil profile. 

Figure 8. Fragility curves for each damage state. (a) Light, (b) Moderate, (c) Severe, (d) Collapse. 

5 FUTURE RESEARCH 

The next phase in this research is aimed at completing finite element numerical models to represent a 
two-dimensional soil slope based on the soil profiles developed thus far. Preliminary models have 
been developed and aimed at capturing site effects and slope displacements resulting from earthquake 
motions travelling through the soil profile. These soil slope models will be subjected to a set of ground 
motions at the bottom boundary and the response time-history at the location of foundation elements 
will then be used as input into the Soil Foundation Structure Interaction (SFSI) models. Fragility 
curves, similar to the ones developed in this study, will be developed and incorporated into RiskScape.   

6 CONCLUSIONS 

In this study two wharf configurations and three soil profiles were developed to represent typical New 
Zealand pile-supported wharves. The numerical modelling procedures used to model the wharves with 
realistic representation of different components were then presented. Fragility curves were developed 
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to predict the probability of a model reaching a defined damage state given a PGA. The damage states 
used in the study were adopted from the qualitative definitions provided by RiskScape. For low 
intensity earthquakes there was limited variability in performance between the different wharf models. 
However as earthquake intensity increased there was a pronounced difference between models with a 
raked-pile configuration and ones with a tie-back configuration, with the tie-back configuration having 
lower probabilities of damage. There appears to be no clear pattern with regards to the raked-pile 
configuration. Further sensitivity analysis on the numerical models needs to be completed to quantify 
the uncertainty in the results presented in this study.   
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