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ABSTRACT: With the recent high levels of earthquake activity experienced throughout 
New Zealand there is a growing awareness of the need for quick and reliable 
determination of whether buildings are safe to work and live in. In parallel, on-going 
advances in sensor technology worldwide have resulted in the potential for new and 
innovative sensing systems which could change the way that civil infrastructure is 
monitored, controlled and maintained. A number of data sets from computational and 
laboratory analyses are readily available that provide information on the seismic response 
of buildings, but there are a limited number of data sets currently available worldwide 
that have building response records from real ground motions.  

Following the 21 July 2013, MW 6.5 Cook Strait earthquakes, a number of buildings in 
the Wellington Central Business District (CBD) were instrumented with low-cost 
accelerometers. During the period from 19 July - 16 August, 2013 there were more than 
2500 aftershocks in the magnitude range of 2.0 - 6.6, and these sensor arrays were able to 
collect high quality building response data sets. A summary of the data analysis for six 
structures that were instrumented during the Cook Strait earthquake sequence are 
presented, along with the major challenges and opportunities related to the future 
monitoring of existing civil infrastructure. 

1 INTRODUCTION 

Civil infrastructure such as bridges, buildings, pipelines and dams are a central component necessary 
for a functional society, playing an important role in providing safety and security to the community. 
Buildings are one element of the built environment that are continually subjected to a combination of 
irregular dynamic and static forces. These forces influence the structural integrity and overall 
performance of the structure. It has been found that many buildings are undergoing structural decay 
due to age, lack of repair, and in some cases because they were not designed for the current loading 
demands (Ren & De Roeck, 2002). The need to evaluate the real-time health and performance of 
buildings is an area of particular interest to engineers and building owners, especially at this time in 
New Zealand following the 2010-2011 Canterbury earthquake sequences and the more recent July 
2013 Cook Strait and January 2014 Eketahuna earthquake sequences. 

During seismic excitations, the actual response and damage sustained to a building does not always 
replicate the designed response. It is a difficult task to determine the actual performance of a building 
due to variations arising during construction, the lack of structural drawings for older buildings and the 
unknown quality and type of materials used. Currently there are no quick and reliable diagnostic tools 
available to determine the in-place integrity of infrastructure and no effective and proven way to 
validate the assumed design parameters once construction is complete. Instead, the standard practice to 
determine the integrity of a structure involves inspections where highly qualified personnel must 
visually inspect the building. Structural damage frequently propagates from within the structure itself, 
meaning that indicators of loss of integrity may be hidden from the human eye and consequently go 
unseen. Traditional visual inspections are often expensive, time consuming, and result in a subjective 
opinion. In combination with visual inspections, the installation of a system of sensors to monitor and 
record the in-place performance of a structure has the potential to provide a new, quick and reliable 
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inspection method for existing infrastructure. 

Damage to a building can be defined as a change in dynamic characteristics of the building (Ren & De 
Roeck, 2002). Non-destructive techniques can be used to help determine the performance and detect 
damage sustained to a building. There are two different levels of monitoring that can be performed on 
a structure, which are categorised at the local and global level. Monitoring at the global level is 
associated with understanding the behavioural performance of the whole building, whereas monitoring 
at the local level is associated with the behaviour of an individual element inside a building, such as a 
concrete beam, and the performance of the materials that constitute that specific element. Non-
destructive techniques at the global level involve detecting changes in dynamic characteristics of a 
building, which include modal frequencies, mode shapes, modal curvatures and frequency response 
functions. Local detection techniques include the use of acoustic emission, ultrasonic and eddy current 
scanning and x-ray inspections. The experimental use of local detection techniques were outside the 
scope of the reported study, and instead a method for monitoring structures at the global level is 
examined.  

2 MONITORING EXISTING CIVIL INFRASTRUCTURE 

The change in modal parameters of a structure provides an indication of structural damage, and 
therefore the accurate determination of natural frequencies, mode shapes, and modal damping is a 
necessary and important task in the seismic design of civil engineering structures (Farrar & Worden, 
2007). The ability to determine the dynamic behaviour of existing structures will enhance the 
reliability of seismic vulnerability analyses, which currently need to rely on estimations via visual 
screening and generic values extrapolated from tables (Michel, Guéguen, & Bard, 2008).  Research 
has shown that vibration-based damage detection techniques are useful for the structural health 
monitoring (SHM) of civil engineering structures. There are a number of possible vibration-based 
methods that can be used to excite and determine the dynamic characteristics of an existing structure, 
which include ambient vibration tests, forced vibration tests, free vibration tests, and earthquake 
response measurements (Beskhyroun, Wotherspoon, Ma, & Popli, 2013; Hans, Boutin, Ibraim, & 
Roussillon, 2005).  

Vibration-based techniques detect damage on the global scale by monitoring any changes in vibration 
frequencies (natural frequencies) and spatial distribution of vibration response amplitudes (mode 
shapes) (Beskhyroun et al., 2013). Several studies have highlighted associated challenges and 
limitations when using vibration-based techniques for detecting damage. A major setback is that 
frequency shifts are highly sensitive to changes in temperature and other environmental conditions and 
are therefore often insensitive to damage (Salawu, 1997; Yan, Kerschen, De Boe, & Golinval, 2005). 
More research is required to fully understand how changing environmental conditions affect the 
dynamic characteristics of an existing structure.  

The ability to record and analyse data on an actual structure from earthquake response measurements 
is a challenge in itself, due to the fact that actual earthquakes of reasonable magnitude are needed to 
occur at a close proximity to the structure being tested. One of the key advantages of collecting data 
from actual earthquake excitations is that the measured building response is most realistic because the 
source of excitation occurs naturally and therefore eliminates the need for many assumptions. The July 
2013 Cook Strait aftershock sequences provided a unique opportunity to experimentally examine the 
dynamic performance of existing buildings from earthquake response measurements. Once data is 
collected, there are a range of different methods available that can be used to analyse and extract 
critical modal information. The effectiveness of different methods for determining the dynamic 
properties of existing structures subjected to natural excitations was investigated, as reported below.  

2.1 Methods used for calculating modal parameters 

The methods used to calculate modal parameters included three frequency domain based methods and 
one time domain based method. The frequency based methods used are peak picking (PP), frequency 
domain decomposition (FDD) and enhanced frequency domain decomposition (EFDD), while the time 
domain method is stochastic subspace identification (SSI). Two variations of the SSI method are used 
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(referred to later as SSI1 and SSI2), so theoretically five different methods are analysed and compared. 
These methods were identified using the System Identification Toolbox (SIT) program developed at 
the University of Auckland (Beskhyroun, 2011).  

To ensure an adequate correlation of mode shapes generated from the adopted damage identification 
methods, the modal assurance criteria (MAC) is used. MAC values corresponding to the ith mode 
shapes, ϕi and ϕi*, is defined by Equation 1, where n is the number of elements in the mode shape 
vectors (Ewins, 2000).    

         

௜ܥܣܯ   = ቂ∑ థ೔ೕథ೔ೕ∗೙ೕసభ ቃమ∑ థ೔ೕమ೙ೕసభ ∑ థ೔ೕ∗మ೙ೕసభ       (1) 

  

A perfect correlation between two mode shapes represents a MAC value of unity, whereas a value 
close to zero indicates that the mode shapes are orthogonal. MAC values greater than 0.8 indicate an 
adequate correlation.                   

2.2 Type of sensors used 

The installation of a dense array of traditional tethered sensors into a building is restricted by the high 
costs associated with wires spanning from each sensor to the central repository unit (Lynch & Loh, 
2006). The sensors used in this research each had sufficient power supply and data storage to operate 
continuously at a sampling frequency of 40 Hz for approximately three weeks. The sensors were able 
to be mounted at any location within the building, as no wiring between the individual sensors was 
required. The sensors were able to measure and record accelerations in the x, y and z planes.  

3 EXPERIMENTAL INVESTIGATION 

The aim of the investigation was to experimentally determine the modal parameters of existing 
buildings from earthquake response measurements and to compare the effectiveness of various 
methods for interpreting the data.  

The opportunity to capture data on the performance of buildings during actual ground motions arose 
after the initial MW 6.5 Cook Strait earthquake which occurred on 21 July 2013. Figure 1a shows the 
locations of the earthquake epicentres, which were approximately 50 km from Wellington CBD (GNS 
Science, 2013). Six buildings located in the Wellington CBD were instrumented during the Cook 
Strait aftershock sequence, as shown by the approximate locations in Figure 1b. Sensors were first 
installed into four buildings on 24 July, and all sensors were retrieved by 28 November, 2013. A range 
of building types were instrumented, including a variety of different construction materials, structural 
designs, soil types, number of storeys and age of building. For confidentiality reasons, the first four 
instrumented buildings are referred to in this paper as Buildings 1-4. The remaining two buildings, the 
Old Public Trust Building (Fig. 2a) and the Saint Mary of the Angels Church (Fig. 2b), were 
instrumented on 9 September, 2013.  
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Figure 1. Locations of the Cook Strait earthquakes and the approximate locations of the instrumented 
buildings in the Wellington CBD. 

3.1 Results 

Each building had a different number of sensors installed ranging from 6 to 32, based on the geometry 
and size of the buildings. At least one sensor was installed at ground level to record the earthquake 
intensity experienced at each site. The remaining sensors were placed at various levels within the 
structure and specifically at the extreme boundaries to help capture the global dynamic characteristics 
of each building.  

The sensors recorded approximately 540 earthquakes with a magnitude greater than MW 3.0 during the 
period from 24 July to 28 November, 2013. The sensors proved to be very sensitive and recorded high 
quality data sets with high signal to noise ratios. On average the level of recorded noise was 0.08 m/s2 
for each sensor. The maximum recorded peak ground acceleration (PGA) was 0.138 g, which was 
generated during the MW 6.64 aftershock on 16 August and resulted in 0.410 g recorded on level 6 of 
Building 1. The recorded site PGA values in the NS, EW and vertical directions for selected buildings 
is summarised in Table 1. 

 

 
Figure 2. Images of two buildings that were instrumented. 

 

(a) Locations of the Cook Strait earthquakes (b) Relative locations of the instrumented buildings

(b) Saint Mary of the Angels Church (a) Old Public Trust Building 
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presence of damage once any occurs.  

5 CONCLUSIONS 

A method to determine the modal characteristics of existing buildings from natural ground excitations 
was reported. The July 2013 Cook Strait aftershock sequences provided a unique opportunity to 
instrument existing buildings with sensitive and low-cost sensors to record the structural response. The 
data collected from six instrumented buildings in the Wellington CBD was of high quality and enabled 
modal characteristics to be determined with a high level of accuracy and confidence. The earthquake 
response measurements were effective in determining the fundamental frequencies and mode shapes 
of each building, which is traditionally regarded as the most important mode in the seismic design of 
engineered structures. The four system identification techniques used were successful in extracting 
modal information from the recorded data sets, and the accuracy between each technique was verified 
using the modal assurance criteria (MAC).  

With the recent high level of earthquakes in New Zealand, there is a growing demand from building 
owners to understand the health and extent of possible damage to their buildings. Installing a grid of 
sensors that is capable of monitoring and analysing the real-time performance and modal 
characteristics of a building is a solution that is accurate, reliable and low-cost. 
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