http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
Palynology and Tephrostratigraphy of Quaternary coverbed sequences of the Auckland area, New Zealand

Anna Sandiford

A Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

School of Environmental and Marine Sciences
University of Auckland
2001
ABSTRACT

This thesis presents the results of detailed palynological and tephrostratigraphic investigations of five sites around the Auckland Isthmus, which collectively contain a fragmented record spanning approximately the last 1.2 million years. A range of additional methods were applied including, radiometric dating, palaeomagnetism, identification of other palynomorphs and fossil wood, and calculation of deposition rates.

Study of two late Quaternary sites provided information on the Last Glacial Maximum (LGM) environment of the Auckland Isthmus. This suggested LGM forest was spatially restricted, dominated by beech forest with minor podocarp elements and contained within extensive shrub- and grassland. Late Quaternary sites were more easily studied than early to mid Quaternary sites because the depositional environment in which they were found provided greater palynological and tephrostratigraphic detail. Detailed published late Quaternary tephrostratigraphy also allowed for tight chronological control, accurate interpolation of ages of uncorrelated tephra and assessment of the accuracy of radiocarbon dates. Forty late Quaternary tephra layers were identified, adding to the record of eruptions sourced from the Auckland Volcanic Field, Taupo Volcanic Zone and Taranaki Volcano. Since c. 24 ka the frequency of Late Quaternary tephra-forming events of significant volume to be recorded in the sediments on the Auckland Isthmus is 1 every 600 years.

Study of early to mid Quaternary sites was hampered by lack of published tephrostratigraphic records for correlation. Last appearance data for four extinct taxa were tentatively extended. Significant depositional hiatuses were noted; the period between c. 1.0 Ma and c. 44 ka was particularly unsatisfactorily recorded. Three key tephra markers and nine previously undocumented tephra layers were documented. Spatial variation and alternating vegetation structure characterised cooler and warmer environments of the early to mid Quaternary record. Extensive high diversity conifer-angiosperm forest occurred during warmer periods while reduced diversity beech-dominated forest contained within extensive shrub/grassland characterised the cooler periods. Certain combinations of taxa occurred during glacial/stadial and interglacial/interstadial periods and an attempt was made to generalise these. It was apparent the extremes of the LGM were not reached during this time, and that climate oscillated between cool and warm periods sometimes characterised by vegetation assemblages without modern analogue.

Extensive depositional hiatuses at one site, deposition of extremely thick, reworked, homogenous marine silt at a second site, and dipping bedding planes at a third site suggest sea level variation and/or tectonism were influential in the Quaternary depositional history of the Auckland Isthmus. However, not enough evidence was present to quantify this.
Many people have assisted in the creation of this thesis, all of whom I wish to thank for their efforts. J. Ogden, R. Newnham, B. Alloway - supervisors; I am eternally grateful for their help and advice. M. Horrocks - initial training in pollen identification; P. Shane - initial glass chemistry identifications; B. Alloway - ITPFT dates and training to use the electron microprobe; B. Pillans - palaeomag data.

Many other people provided important contributions to this thesis including A. Hogg (free 14C dates re: Rotoehu tephra), D. Mildenhall (confirmation of fossil pollen identification), D. Jenkinson, P. Augustinus, S. Nichol, D. Prangley (all for assistance drilling Pukaki crater), D. Lowe (unpublished tephra data), G. Wilson (dinoflagellate identification), L. Kermode (volcanic history of Mt. Richmond), M. Lichtwark (secretarial and moral support), M. Large (megaspore identification), M. McGlone (pollen identification confirmation), N. Moar (pollen identification confirmation), N. Powell (financial and moral support), P. Froggatt (unpublished tephra data), R. Harland (dinoflagellate advice), R. Sims (EMP technician), R. Jessop (provision of CD-ROM maps), R. Wallace (macrofossil identification, Takanini).

Apart from the assistance proffered by the abovenamed, there are all the other people who endured my years as a PhD student with good grace and tolerance. Much appreciation is extended to Jason, Nick and Khristie, not just for putting up with my geological rantings but for taking my mind off it with talk of horses, bananas and baked beans – I would not have got where I am now if not for them. Thanks also go to Claire Coomer (MSc mud, 1998), who knew my spell-casting ability would see me through. Rosemary Barraclough provided much needed work avoidance tactics and Tasha Black warned me that it would be tough going at the end, or words to that effect. I also thank the staff at the NZ Engineering, Printing & Manufacturing Union: G. Bell, M. Sentch, M. Sweeney and P. Patel; working with the Union put a whole new perspective on life.

This PhD was financially supported by a Marsden research grant to B. Alloway and R. Newnham (UoA 609), NZPMU, Forensic & Industrial Science Ltd, School of Environmental & Marine Sciences and Department of Archaeology, Khristie Baker, Lesley Sandiford, and Jim & Trixie Sandiford. Many thanks to all funding sources! Finally, I thank my mum Lesley and my gran Trixie. They have provided me with the means, both emotional and monetary, to complete this study.

This thesis is dedicated to the memory of

my grandpa, JAMES,

who would be proud to see there is another physical scientist in the family; and

DR KENN TORRANCE

who believed I could do it, even before I thought about it.
Table of Contents

Abstract
Acknowledgements
Table of Contents
List of Plates
List of Figures
List of Tables

Section 1

Chapter 1 Introduction

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Scope and Area of Study</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Aims</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Research Strategy and the Study of Quaternary Sediments</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>Thesis Structure</td>
<td>4</td>
</tr>
<tr>
<td>1.5</td>
<td>The Quaternary Period</td>
<td>6</td>
</tr>
<tr>
<td>1.6</td>
<td>Sediments</td>
<td>7</td>
</tr>
<tr>
<td>1.7</td>
<td>Palynology</td>
<td>8</td>
</tr>
<tr>
<td>1.7.1</td>
<td>Pollen Production</td>
<td>9</td>
</tr>
<tr>
<td>1.7.2</td>
<td>Pollen Sources and Input</td>
<td>9</td>
</tr>
<tr>
<td>1.7.3</td>
<td>Preservation Factors</td>
<td>11</td>
</tr>
<tr>
<td>1.7.4</td>
<td>Pollen Representation</td>
<td>12</td>
</tr>
<tr>
<td>1.7.5</td>
<td>Pollen Rain and Modern Vegetation</td>
<td>12</td>
</tr>
<tr>
<td>1.7.6</td>
<td>Climatic Interpretation of Pollen Diagrams in New Zealand</td>
<td>13</td>
</tr>
<tr>
<td>1.7.7</td>
<td>Summary</td>
<td>13</td>
</tr>
<tr>
<td>1.8</td>
<td>Tephrostratigraphy</td>
<td>14</td>
</tr>
<tr>
<td>1.8.1</td>
<td>Impacts of Tephra Deposition</td>
<td>15</td>
</tr>
<tr>
<td>1.9</td>
<td>Additional Dating Techniques</td>
<td>15</td>
</tr>
<tr>
<td>1.9.1</td>
<td>Radiocarbon dating</td>
<td>15</td>
</tr>
<tr>
<td>1.9.1.1</td>
<td>Application and Reporting of Dates</td>
<td>16</td>
</tr>
<tr>
<td>1.9.1.2</td>
<td>Calibration</td>
<td>17</td>
</tr>
<tr>
<td>1.9.2</td>
<td>Fission Track Dating</td>
<td>17</td>
</tr>
<tr>
<td>1.9.3</td>
<td>Magnetostratigraphy</td>
<td>18</td>
</tr>
<tr>
<td>1.10</td>
<td>Climate Change</td>
<td>18</td>
</tr>
<tr>
<td>1.10.1</td>
<td>Oxygen Isotope Chronology</td>
<td>19</td>
</tr>
<tr>
<td>1.11</td>
<td>Nomenclature</td>
<td>21</td>
</tr>
</tbody>
</table>

Chapter 2 Contemporary & Quaternary Environments of New Zealand

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Physical Setting</td>
<td>23</td>
</tr>
<tr>
<td>2.2</td>
<td>Geological Setting</td>
<td>24</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Pleistocene and Holocene Variation</td>
<td>25</td>
</tr>
<tr>
<td>2.2.1.1</td>
<td>Early to Mid Pleistocene tephra beds (c.1.6 Ma – c. 65 ka)</td>
<td>26</td>
</tr>
<tr>
<td>2.2.1.2</td>
<td>Early to Mid Pleistocene Volcanic Centres</td>
<td>27</td>
</tr>
<tr>
<td>2.2.1.3</td>
<td>Late Pleistocene to Holocene Volcanism (<65 ka)</td>
<td>28</td>
</tr>
<tr>
<td>2.3</td>
<td>Climate</td>
<td>31</td>
</tr>
<tr>
<td>2.4</td>
<td>Soils</td>
<td>31</td>
</tr>
<tr>
<td>2.5</td>
<td>Vegetation Structure</td>
<td>33</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Forest Structure</td>
<td>34</td>
</tr>
<tr>
<td>2.5.1.1</td>
<td>Nothofagus forest</td>
<td>34</td>
</tr>
<tr>
<td>2.5.1.2</td>
<td>Conifers and angiosperms</td>
<td>35</td>
</tr>
</tbody>
</table>
2.5.1.3 Agathis australis

2.6 HUMAN INFLUENCES

2.7 VEGETATION HISTORY AND CLIMATE CHANGE
2.7.1 Early to Mid Quaternary
2.7.2 Last Glacial Maximum to Holocene
 2.7.2.1 The Last Glacial Maximum (c. 22 ka to c. 14 ka)
 2.7.2.2 Late Glacial
 2.7.2.3 Younger Dryas Event
 2.7.2.4 Holocene (10 ka to Present)

2.8 SEA LEVEL CHANGE
2.8.1 New Zealand Sea Level Variation

CHAPTER 3 THE STUDY AREA

3.1 CONTEMPORARY SETTING

3.2 GEOLOGICAL SETTING
 3.2.1 Mesozoic Basement (Late Triassic to Jurassic)
 3.2.2 Late Eocene to Late Miocene
 3.2.3 Pliocene to Holocene
 3.2.4 Quaternary Volcanism and the Auckland Volcanic Field (AVF)
 3.2.4.1 Composition of the basalts
 3.2.4.2 Dating of the AVF

3.3 CLIMATE

3.4 SOILS

3.5 VEGETATION

3.6 VEGETATION HISTORY

3.7 SEA LEVEL CHANGE

3.8 SITE SELECTION

CHAPTER 4 METHODS

4.1 POLYNOLGY
 4.1.1 Sampling Procedure
 4.1.2 Laboratory Procedure
 4.1.3 Pollen Identification
 4.1.4 Pollen Grain Classification
 4.1.5 The Pollen Sum and Pollen Concentration Calculations
 4.1.6 Pollen Data Preparation and Presentation

4.2 ADDITIONAL POLYNOMORPHS
 4.2.1 Pediastrum – Family Hydrodictyaceae
 4.2.2 Botryococcus – Family Botryococcaceae
 4.2.3 Unidentified Freshwater Algae
 4.2.4 Family Zygnemataceae
 4.2.5 Dinoflagellates – Division Pyrrhophyta
 4.2.6 Fungi

4.3 POINT COUNTING

4.4 TEPHRA ANALYSIS
 4.4.1 Sampling and Preparation
 4.4.2 Data Preparation and Interpretation
 4.4.2.1 Early to Late Pleistocene Tephra (c. 1.6 Ma to c. 65 ka)
 4.4.2.2 Late Pleistocene to Holocene Tephra (c. 65 ka to Present)

4.5 RADIOCARBON DATING SAMPLE COLLECTION AND PREPARATION
SECTION II SUMMARY

II.1 TEPHROSTRATIGRAPHY
 II.1.1 Taupo Volcanic Zone-derived Tephra
 II.1.2 The Auckland Volcanic Field

II.2 VEGETATION HISTORY
 II.2.1 The Onset of the LGM, and the LGM Environment in Auckland
 II.2.2 Late Glacial
 II.2.3 Holocene

SECTION III – MID TO LATE QUATERNARY SITES

CHAPTER 7 TAKANINI

7.1 INTRODUCTION
7.2 SITE STRATIGRAPHY
7.3 TEPHROSTRATIGRAPHY
7.4 PALYNOLOGY
 7.4.1 Palynological interpretation
7.5 DISCUSSION
7.6 CONCLUSIONS

CHAPTER 8 POINT ENGLAND

8.1 INTRODUCTION
8.2 SITE STRATIGRAPHY
8.3 TEPHROSTRATIGRAPHY
 8.3.1 AT-1
 8.3.2 AT-2
8.4 PALYNOLOGY
 8.4.1 Palynological Interpretation
8.5 DISCUSSION
8.6 CONCLUSIONS

CHAPTER 9 ST. KENTIGERN’S

9.1 INTRODUCTION
9.2 SITE STRATIGRAPHY
9.3 TEPHROSTRATIGRAPHY
 9.3.1 Interpretation and Conclusions
9.4 MAGNETOSTRATIGRAPHY
9.5 PALYNOLOGY
 9.5.1 Palynological Interpretation
 9.5.2 Palynological Summary
9.6 DISCUSSION
9.7 CONCLUSIONS

SECTION III SUMMARY EARLY TO MID QUATERNARY SITES

III.1 TEPHROSTRATIGRAPHY
III.2 PALYNOLOGY
 III.2.1 Vegetation Assemblages and Inferred Climatic Variation
 III.2.2 Local and Regional Correlation of Sites
 III.2.3 Extinct Taxa
III.3 SUMMARY
List of Plates

Chapters 1 to 4, 10, 11

No plates

Chapter 5 – Mt Richmond

5.1 Aerial photo of Mt Richmond volcano and location of profiles 71

Chapter 6 – Pukaki Crater

6.1 Aerial photograph of Pukaki Crater 86

Chapter 7 – Takanini

7.1 Oblique view of Takanini beach section 140
7.2 Profile of the section exposed at Takanini 141

Chapter 8 – Point England

8.1 Photograph of beach section at Pt. England 154

Chapter 9 – St Kentigern’s

9.1 St. Kentigern’s beach section 168
List of Figures

Chapter 1 - Introduction

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Map of Auckland Isthmus</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Time subdivision of the Tertiary</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Composite benthic foraminifer 18O isotope record Stages 43–1, c. 1.3 Ma to present</td>
<td>6</td>
</tr>
<tr>
<td>1.4</td>
<td>Standard New Zealand palaeomagnetic timescale, chronostratigraphic and biostratigraphic stages</td>
<td>20</td>
</tr>
</tbody>
</table>

Chapter 2 - Contemporary & Quaternary Environments of New Zealand

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The regional setting of New Zealand</td>
<td>23</td>
</tr>
<tr>
<td>2.2</td>
<td>Map of New Zealand showing location of major fault lines and arc volcanoes</td>
<td>24</td>
</tr>
<tr>
<td>2.3</td>
<td>Location of major Quaternary North Island volcanic centres, Wanganui Basin and the Kermadec Trench</td>
<td>25</td>
</tr>
<tr>
<td>2.4</td>
<td>Geographical locations referred to in the text</td>
<td>32</td>
</tr>
</tbody>
</table>

Chapter 3 - The Study Area

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Location of investigation sites on the Auckland Isthmus</td>
<td>45</td>
</tr>
<tr>
<td>3.2</td>
<td>Map of the Auckland Volcanic Field</td>
<td>49</td>
</tr>
</tbody>
</table>

Chapter 4 - Methodology

No figures

Chapter 5 - Mt Richmond

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Stratigraphic column of Profile 1, Mt Richmond showing pollen, tephra and radiocarbon sample positions</td>
<td>72</td>
</tr>
<tr>
<td>5.2</td>
<td>Sediment depth (tephra-free)-age (radiocarbon and calibrated) curves illustrating sedimentation rates</td>
<td>75</td>
</tr>
<tr>
<td>5.3</td>
<td>Pollen percentage diagram for Profile I, Mt Richmond</td>
<td>76</td>
</tr>
<tr>
<td>5.4</td>
<td>Decorana ordination of 30 samples from Mt Richmond Profile I showing zones and percentage axial variance accounted for by first two ordination axes</td>
<td>77</td>
</tr>
<tr>
<td>5.5</td>
<td>Decorana species ordination diagram for Mt Richmond Profile I, with percentage variance explained by the first two axes</td>
<td>77</td>
</tr>
<tr>
<td>5.6</td>
<td>Composite stratigraphic diagram of Profiles I, II, III and IV from Mt Richmond showing tephra and radiocarbon sample positions</td>
<td>83</td>
</tr>
</tbody>
</table>
CHAPTER 6 – PUKAKI CRATER

6.1 Pukaki core stratigraphy
6.2 Average glass composition (normalised) of each tephra bed from Pukaki core plotted on a TAS diagram (after Le Bas et al. 1986)
6.3 FeO (total) vs CaO of three key tephra marker beds from Pukaki core compared to those tephra of known identity
6.4 Composition of individual glass shards within A: Tongariro-derived tephra and B: Taranaki-derived tephra in Pukaki core
6.5 Composition of andesitic/dacitic glass shards in Pukaki core compared to compositional trends of Taranaki (Tk) and Tongariro (Tg) centres based on whole rock pyroclastic and lava data
6.6 Individual glass shard analyses of basaltic tephra beds in the Pukaki core
6.7 Sediment-depth age curve
6.8 Pollen percentage diagram for Pukaki core
6.9 Pollen percentage diagram for the lacustrine sediments from Pukaki core
6.10 Decorana ordination of 88 samples from Pukaki Crater showing zones and percentage axial variance accounted for by first two ordination axes
6.11 Decorana species ordination diagram for Pukaki core, with percentage variance explained by first two axes
6.12 Decorana species ordination diagram for the lacustrine samples from Pukaki core, with percentage variance explained by first two axes.
6.13 Summary diagram of Pukaki crater infill history

SECTION II SUMMARY

II.1 Variation diagrams of mean and standard deviations for AVF-derived basaltic tephra from Mt. Richmond, Pukaki Crater and selected published data

CHAPTER 7 – TAKANINI

7.1 Stratigraphic column of the exposed section at Takanini showing pollen and tephra sample locations and ITPFT date
7.2 Composition of individual glass shards from AT-6, Fordell Ash, Mt Curl Tephra Rangitawa Tephra and Kupe Tephra using selected major elements.
 A: SiO₂ wt % against K₂O wt %; B: FeO wt % against CaO wt %
7.3 Pollen percentage diagram for the exposed section at Takanini
7.4 Decorana ordination of 23 samples from Takanini showing zones and percentage axial variance accounted for by first two axes
7.5 Decorana species ordination diagram, with percentage variance explained by first two axes
CHAPTER 8 – POINT ENGLAND

8.1 Stratigraphic column of the Pt. England beach section showing pollen, tephra and ITPFT date sampling points

8.2 Composition of individual glass shards from AT-1 and Potaka Tephra using selected major elements. A: SiO$_2$ wt % against K$_2$O wt %; B: FeO wt % against CaO wt %

8.3 The composition of individual glass shards from AT-2, resampled AT-2, Rotoehu Tephra, Rotoma Tephra and Whakatane Tephra.
A: FeO wt % against CaO wt %; B: SiO$_2$ wt % against K$_2$O wt %

8.4 Decorana ordination of 29 samples from Pt. England showing zones and percentage axial variance accounted for by first two axes

8.5 Pollen percentage diagram for the Pt. England sequence

8.6 Decorana species ordination diagram, with percentage variance explained by first two axes

CHAPTER 9 – ST KENTIGERN’S

9.1 Stratigraphic column of the exposed beach section at St. Kentigern’s showing tephra, ITPFT dates and palaeomagnetism sample positions

9.2 Composition of individual glass shards from tephra layers exposed in the St. Kentigern’s beach section. A: SiO$_2$ wt % against K$_2$O wt %, and B: FeO wt % against CaO wt %

9.3 Composition of individual glass shards from homogenous tephra exposed in the St. Kentigern’s beach section. A: SiO$_2$ wt % against K$_2$O wt %, and B: FeO wt % against CaO wt %

9.4 Decorana ordination of 82 samples from St. Kentigern’s showing zones and percentage axial variance accounted for by first two axes

9.5 Pollen percentage diagram for St. Kentigern’s section

9.6 Decorana species ordination diagram, with percentage variance explained by first two axes

SECTION III SUMMARY

No figures

CHAPTER 10 – SYNTHESIS & DISCUSSION

10.1 Approximate positions of each site relative to the marine oxygen isotope curve and the palaeomagnetic record

10.2 Approximate Holocene sea level curve recorded in Pukaki Crater plotted with Gibb (1986) sea level curve for New Zealand

CHAPTER 11 – CONCLUSIONS & FUTURE WORK

No figures
List of Tables

Chapter 1 – Introduction
1.1 Estimated ages of oxygen isotope stage boundaries .. 20
1.2 Abbreviations used throughout the thesis ... 21

Chapter 2 – Contemporary & Quaternary Environments of New Zealand
2.1 Palynological zones established by Mildenhall & Pocknall (1986) and their relation to New Zealand stages and substages ... 38

Chapter 3 – The Study Area
3.1 Approximate ages of the Auckland volcanoes .. 51

Chapter 4 – Methodology
4.1 Summarised effects of each stage of the palynological process upon pollen grains ... 60
4.2 Electron microprobe specifications .. 67
4.3 Guidelines for the identification of Late Pleistocene to Holocene tephra 68

Chapter 5 – Mt Richmond
5.1 Mean (standard deviation) of major element glass shard analyses from tephra layers in Profile I ... 73

Chapter 6 – Pukaki Crater
6.1 Radiocarbon ages from the Pukaki core ... 90
6.2 Ferromagnesian mineral assemblages of rhyolitic tephra 92
6.3 Mean (standard deviation) of major element glass shard analyses from tephra layers in the Pukaki core ... 93
6.4 Calculated sedimentation rates for the lacustrine sediments (in calibrated and radiocarbon years) ... 98
6.5 Tephra layers identified in the Pukaki core ... 99
6.6 Comparison between Pukaki Crater core, Kohuora/Lake Waiatarua, Waikato, Taranaki and Tongariro regions between c. 6. – 23 ka; c. 6.9 – 28 ka cal yr .. 102
6.7 Comparison of AVF volcano ages with chronology of basaltic tephra in Pukaki crater ... 109
6.8 Quantitative determination of volumes of *Pediastrum*, *Botryococcus* and charcoal in the Pukaki core ... 112
SECTION II SUMMARY

II.1 Maximum eruption ages for selected volcanoes of the Auckland Volcanic Field 135

CHAPTER 7 – TAKANINI

7.1 Orientation of fossil trees exposed on the beach, Takanini 144
7.2 Mean (standard deviation) of major element glass shard analyses for (1) tephra AT-6, (2) sample from the same site (Moore 1991), (3) Kupe Tephra 144

CHAPTER 8 – POINT ENGLAND

8.1 Mean (standard deviation) of major element glass shard analyses from (1) AT-1, (2) the same unit from Moore (1991) and (3) Potaka Tephra 156
8.2 Composition of individual glass shards from tephra AT-2 and Rotoehu Tephra 157

CHAPTER 9 – ST. KENTIGERN’S

9.1 Mean (standard deviation) of major element glass shard analyses from tephra layers from the St. Kentigern’s beach section 171

SECTION III SUMMARY

III.1 Last appearance data for selected extinct taxa 190

CHAPTER 10 – SYNTHESIS & DISCUSSION

10.1 Summary data for the five investigation sites 193
10.2 Composite stratigraphic record of tephra investigated during this study 198
10.3 Data points from Pukaki Crater used for construction of Holocene sea level curve 206

CHAPTER 11 – CONCLUSIONS & FUTURE WORK

No tables