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Abstract  

The number of people aged over 65 years is increasing worldwide, and this is placing increased 

demand on healthcare services. Engineers have proposed that eldercare robots may be able to meet 

the increasing healthcare needs of the aging population; however eldercare robots have not yet been 

widely adopted. Reasons for this are likely multifaceted, but one reason may be insufficient attention 

to the psychological aspects of the human robot interaction (HRI) in eldercare.  

Technology acceptance models indicate that people’s perceptions of technology attributes 

(particularly perceived usefulness) predict technology acceptance more strongly than more objective 

design parameters. However, little research to date has investigated the importance of perceptions to 

the acceptance of eldercare robots. The central thesis of this PhD is that older people’s perceptions 

will influence their acceptance of healthcare robots. Specifically, three main perceptions are studied - 

older people’s perceptions of their own unmet needs, their attitudes towards robots in general, and 

their perceptions of the robot’s mind. It is proposed that more positive attitudes and perceptions of 

robots will predict better acceptance of healthcare robots.  

This thesis contains four peer reviewed publications. One is a discussion paper on the importance of 

assessing the unmet needs of eldercare stakeholders in order to develop more useful and acceptable 

robots. Three publications present the results of three different Human Robot Interaction (HRI) trials 

conducted with prototype healthcare robots. All three studies employed autonomous service-type 

robots and older participants, and two of the three HRI trials were conducted within real-world 

eldercare environments.  
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The key findings of the HRI studies were that people’s perceptions of robots and ‘robot mind’ 

predicted robot acceptance. In all three studies, participants’ ‘pre-interaction’ generic robot attitudes 

predicted acceptance of specific robots. This suggests that even people who have never used robots 

before can hold mental models of robots that influence robot acceptance. Additionally, people’s robot 

attitudes improved after interacting with the robot, and these changes also predicted robot 

acceptance. This suggests that a positive HRI is important for robot acceptance. Compared with 

people who perceived robots as possessing more mind, people who perceived robots as having less 

mind were more likely to use a robot. Furthermore, despite robot-users perceiving less robot-mind at 

baseline, they perceived the robot to have even less mind after interacting with it. While this result 

suggests that people may hold unrealistically high perceptions of a robot’s mind which may be a 

barrier to acceptance, it also suggests that these perceptions are revised downwards after actually 

experiencing a robot’s capabilities.  

In conclusion, older people’s perceptions and attitudes towards robots do predict eldercare robot 

acceptance. Future implications of this work are that building robots that meet the specific unmet 

needs of older people and paying more attention to users’ perceptions of robots may increase the 

acceptance of eldercare robots. Future research should investigate whether interventions designed 

to promote realistic and adaptive perceptions of robots in older people can increase the acceptance 

of eldercare robots. 
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and independence – of having to ask other people to do every little thing for you; to brush your teeth, 
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Prologue 

 

Conversation between the PhD candidate and a rest home resident 

 

Location: Kerridge Rest Home, Selwyn Village, Auckland, New Zealand. 

Year: 2012 

 

PhD candidate:  Can I ask why you don’t want to use the robot? 

Rest home resident:  It’s too much effort to learn how to use it 

PhD candidate: But it’s quite easy to use. I’ll show you how 

Rest home resident:   But it doesn’t do anything that’s of use to me  

PhD candidate: So you don’t see it being worth your time and energy learning how to use the robot, as 

you don’t see it as being of any use to you - is that right? 

Rest home resident:  Yes 

PhD candidate:  So what would the robot need to do, for you to go to the effort of learning how to use it? 

Rest home resident:  (pause).....................your robot would need to spring-clean my brain before I could 

answer that question 
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It is 2013……. 

 

There seems to be something significant about the year 2013 - at least from an HRI perspective. 

Microsoft’s Bill Gates is often (mis)quoted as saying there will be a robot in every home by 2013. In his 

Scientific American article titled “A robot in every home” (Gates, 2006), Gates cites the plan of the South 

Korean Ministry of Information and Communication to have a robot in every [South Korean] home by 

2013.  

In his 2006 article, Gates stated that although it is impossible to tell exactly how robots of the future will 

be employed, possibilities include physical assistance and even companionship for the elderly. He 

describes a futuristic scenario of an office worker who remotely controls a network of household robots 

from his computer. Via his networked P.C., the office worker monitors his home security, delegates 

domestic chores, and even supervises the care of his bedridden mother. Regarding robot appearance, 

Gates thought it was unlikely future robots would look like the humanoid C3PO of Star Wars fame; rather 

that they would be so specialised and ubiquitous that they would not even be referred to as robots.  

Gates was not the only technology expert to look ahead to 2013. In 1988 The Los Angeles Times hired 

more than 30 futurists and technical experts to collaborate on describing a day in the life of a family 25 

years hence – in 2013 (Yorkin, 1988). In the futuristic family scenario, 11 year old Zach has ‘Max’ – a 

robo-pet smarter than the family dog. Max taught Zach to read and now helps him with his homework. 

However the robo-star of the family is ‘Billy Rae’- a US$5,000 four foot tall domestic robot. After some 

early teething problems, such as serving the family cat-food for breakfast, Billy Rae is now an 

irreplaceable part of the family’s lives.    
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The engineers and academics that collaborated on the futuristic article were confident mobile domestic 

robots would be established in homes by 2013. Beham Bavarian, then assistant professor and director 

of the UC Irvine Robotics Research Lab, proposed these domestic robots would be doing everyday 

chores such as cooking and cleaning. Robot capabilities would include speech generation and 

perception. Bavarian projected that robots “could look like anything from R2D2 from Star Wars, to a 

cylindrical thing with two arms and light sensors” (Yorkin, 1988, p. 18). 

The experts’ confidence about the state of 2013 robotics appears derived from optimistic extrapolations 

from the (then) current state of robotic science. Robotic projects already underway in 1988 included a 

fully autonomous robot destined for Mars, a robotic prison guard, a horse robot, a companion robot for 

frail older citizens, and a robot nurse that could talk, monitor a patient’s condition, and call for assistance. 

The technology experts proposed robots would be the next technology item made for households after 

the PC. 

It is now 2013 and eldercare robots are not widespread. We do have some robots. We have surgical 

robots Zeus and Da Vinci (Pott, Scharf, & Schwarz, 2005), robotic vacuum cleaners (Hornyak, 2012), 

and robots are commonplace in industry (Gates, 2006; Shibata & Wada, 2010) and the military 

(Sparrow, 2007). NASA’s robot, Explorer, has exceeded its expected life span on Mars and is now 

entering its 10th year (Webster, 2013). But eldercare robots are far from commonplace. The seal robot 

Paro makes an effective eldercare companion (Robinson, MacDonald, Kerse, & Broadbent, 2013) and 

has sold a promising 1,500 units (Shibata & Wada, 2010), but this is a negligible proportion of potential 

demand.  
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These predictions of a 2013 eldercare robot utopia appear partly driven by an assumption that 

mainstream robot production will be enabled by technology progress, anticipated labour shortages, and 

the increasing costs of maintaining aging populations. However, not only are eldercare robots not 

commonplace, but these assumptions of the necessity and desirability of robotic care for older people 

are not universally accepted. Some people find the idea of robots looking after older people 

unacceptable on some levels (Flandorfer, 2012; Neven, 2011; Sharkey & Sharkey, 2011; Sparrow & 

Sparrow, 2006; Turkle, 2012).  

This thesis examines the assumptions of the necessity of eldercare robots, as well as the reasons why 

they are not commonplace as anticipated by some. Methods of increasing the acceptance of eldercare 

robots are considered, including an overview of research on theoretical models of technology 

acceptance. Little research has been done on psychological aspects related to eldercare robots in this 

regard. The thesis presents three studies and a review on psychological aspects of robot acceptance in 

eldercare.  
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 Eldercare robots - Are they necessary, useful, Chapter 1.

or even wanted? 

  

As this thesis explores psychological determinants of eldercare robot acceptability, the first task is to 

define some key terms. ‘Acceptability’ in an eldercare robot context has been defined as the robot being 

willingly incorporated into the older person’s life (Broadbent, Stafford, & MacDonald, 2009). The next key 

term to define is ‘robot’. The definitions below, from both popular and scientific sources, show the variety 

of conceptual understandings of the agents known as robots.  

 

Etymology: robot 

From Czech robot, from robots (“drudgery, servitude”). Coined in the 1921 science fiction play R.U.R. 

(Rossum’s Universal Robots) by Karel Čapek and taken into the English translation without change 

(Wicktionary, 2013) 

robot (plural robots) 

n 1 a machine programmed to perform specific tasks in a human manner, esp. one with a human 

shape.  2 a person of machine-like efficiency (Collins Paperback Dictionary, 2003, p. 713)  

 

The physical manifestation of a system in our physical and social space (Duffy, 2003, p. 177) 

 

1 a machine that looks like a human being and performs various complex acts (as walking or talking) 

of a human being; also: a similar but fictional machine whose lack of capacity for human emotions is 
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often emphasized. 2 an efficient insensitive person who functions automatically. 3 a device that 

automatically performs complicated, often repetitive, tasks. 4 a mechanism guided by automatic 

controls (Merriam Webster Dictionary, 2013, online) 

 

1 A machine built to carry out some complex task or group of tasks, especially one which can 

be programmed.  2 (chiefly science fiction) An intelligent mechanical being designed to look like a 

human or other creature, and usually made from metal. 3 (figuratively) A person who does not seem 

to have any emotions. 4 A style of dance popular in disco whereby the dancer impersonates the 

movement of a robot (Wicktionary, 2013, online) 

 

A very powerful computer with equally powerful software housed in a mobile body and able to act 

rationally on its perception of the world around it (Ichbiah, 2005, p. 9) 

 

 

Chapter outline 

The first section of this chapter, 1.1, explores if eldercare robots are actually necessary. Trends in the 

aging population are examined, as are gaps in eldercare. Section 1.2 assesses if robots are sufficiently 

useful to address eldercare resource gaps. The next section 1.3, questions whether, regardless of 

whether robots can usefully bridge the gap, do people want them to? An extension of this question 

examines what eldercare stakeholders want, and do not want, in a robot and robot functions. The last 

section, 1.4, looks at possible reasons eldercare robots are not as commonplace as predicted.   

 

http://en.wiktionary.org/wiki/machine
http://en.wiktionary.org/wiki/programmed
http://en.wiktionary.org/wiki/mechanical
http://en.wiktionary.org/wiki/figuratively
http://en.wiktionary.org/wiki/person
http://en.wiktionary.org/wiki/emotions
http://en.wiktionary.org/wiki/dance
http://en.wiktionary.org/wiki/disco
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1.1. Are eldercare robots necessary? 

A clinical psychologist with a distinguished Human-Robot Interaction (HRI) pedigree1, Professor Sherry 

Turkle from MIT, observes that it is standard for presentations about the necessity of eldercare robots to 

begin with a United Nations slide on global population aging (Figure 1). This slide is used to illustrate the 

inability of the dwindling proportion of younger people to care for the growing proportion of older people. 

 

Figure 1. Proportion of population aged 60 or over: world, 1950-2050 (United-Nations,2010) 

Turkle (2012) believes these slides dramatise the impact of the aging population2, but she does not 

question the slides’ contents. Turkle questions the leap from the slides’ contents to the inevitability of 

                                                

1 Sherry Turkle witnessed the inception of the ELIZA psychotherapy software programme. Professor 

Turkle has also worked with Cynthia Breazeal’s socially interactive robot Kismet, and conducted 

eldercare HRI studies with companion robots; the seal-like Paro and the lifelike My Real Baby.   

2 Indeed, in their survey of the economic costs of population aging, (Denton & Spencer, 2000) concluded 

the effects of population aging are predictable, slow, and some time off. Further, old age dependency  

ratios are based on the simplistic assumption that all people aged 15 - 64 are in the work force and all 

people aged 65+ are not. 
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robots caring for older people. The assumption is that eldercare resource gaps arise from the inability of 

decreasing numbers of younger people to care for increasing numbers of older people. However the 

internationally rising unemployment rates (Allen & Wearden, 2013) suggest eldercare personnel gaps 

arise more from a lack of funding to train and pay for caregivers, rather than insufficient numbers of 

younger people per se. This argument is further undermined by the fact that sometimes older people get 

insufficient care for reasons other than insufficient numbers of carers. In some cases there are sufficient 

eldercare resources, but the needs of older people go unmet due to inadequate access to, and 

distribution of these resources (e.g. Horrocks, Somerset, Stoddart, & Peters, 2004). 

Population trends 

Examining the trends and issues of the aging population may shed further light on this argument. 

A global portrait of an aging population 

The current global population aging is a result of declines in both mortality and fertility. In almost all 

developed countries the fertility rate is below replacement level. In less developed countries the fertility 

decline started later than in developed countries, but has since declined at a faster rate. In all regions 

people are increasingly likely to survive until older ages, and, once there, they tend to live longer than 

previously (United-Nations, 2010). Despite regional differences, the old-age dependency ratio is 

increasing globally (Figure 2). Internationally, fewer younger people are supporting more older people, 

and at an increasing rate. Implications include higher taxes and other demands on the working 

population (those in the economically active ages of 15-64) in order to maintain a stable flow of benefits 

to the older group (typically aged 65 plus).  
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The fertility decline has meant a corresponding sharp decline in the proportion of dependent-young (the 

number of children in a population under the age of 15 years, per 100 people aged 15-64 years). 

However, as supporting the dependent-old generally costs more than supporting the dependent-young 

(United-Nations, 2010), cost savings from reduced youth dependency may not be sufficient to offset the 

increase in costs of old age dependency. However, another demographic shift, the increasing disability-

free life expectancies (how many years of life are spent in good health) may help offset the relative cost 

of old-age dependency (Sanderson & Scherbov, 2010).  

Other trends associated with global aging include more family caring for aging parents, a gender 

imbalance, and elder under-employment. Increasing numbers of young-old adult children (64-74 years) 

are caring for one or more oldest-old (85+) family member. The aging gender imbalance is reflected in 

older women outnumbering older men in most countries. This imbalance is particularly marked in the 

oldest-old population. Elder under-employment is increasing as labour force participation amongst older 

people is declining worldwide. Although this is usually a sign of higher levels of social security coverage, 

lower elder-employment also results from a shortage of employment opportunities, discrimination against 

older workers and job seekers (Bendick Jr, Brown, & Wall, 1999) and obsolete skills and knowledge. As 

unemployment is associated with adverse health outcomes (Jin, Shah, & Svoboda, 1995; Price, Choi, & 

Vinokur, 2002) this may be a future eldercare issue. 

Successfully meeting the challenges of unprecedented global aging will allow all people to age with 

dignity and security, and continue to participate in their societies with full rights (United-Nations, 2010). 

Amongst other solutions, this means more eldercare facilities and services are required. Public eldercare 

facilities are most common in developed countries, but they are becoming more common in less 
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developed countries (United-Nations, 2010). And while the rate of aging increase is predicted to 

decelerate after 2035, Lutz, Sanderson, and Scherbov (2008) suggest there is still a need for institutional 

adjustments to cope with the unprecedented global aging.  

A New Zealand portrait of an aging population  

The New Zealand statistics department provides snapshots of the lives of older New Zealanders based 

on national census results and other surveys (Statistics-New-Zealand, 2013). New Zealand’s population 

profile reflects the international trend for decreasing mortality and fertility. The old age dependency ratio 

increased gradually from 14 older people per 100 working age people in the mid-1960s, to 20 per 100 in 

2011. The ratio is projected to increase to 36–39 older people per 100 younger people in 2026, and 39–

51 per 100 in 2061. This demographic transition also means that older people are getting older. The 

biggest change is found in the old-old group (85+ years). In 1996 this group made up 4.8% of the total 

elderly population, in 2051 this group is projected to make up 22.3% of the elderly population; bringing 

the number of people aged 85+ to 255,000 people.  

The global gender imbalance in older people is also reflected in New Zealand. The gap is narrowing 

slightly but the female dominance is particularly marked in the old-old group. The 2051 gender 

projections for the 85+ group are 162 women for every 100 men. While both men and women are 

tending to live longer; in 1996 an average 65 year old man and woman could expect to live another 15.4 

and 19.0 years respectively – a 3.6 year advantage to women. 
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Figure 2. Old-age dependency ratios (the number of people aged 65+ for every 100 people of working age, 15-64) in major 

areas in 2009, and the projected ratios for 2050 (United-Nations, 2010) 

 

The place of origin of older New Zealanders is changing. In 1996 almost a quarter of older respondents 

indicated they had not been born in New Zealand. The most common place of origin for these people 

was the United Kingdom or Ireland. In contrast, in the younger generations, fewer people come from this 

region and more come from the Pacific Islands and Asia. Consequently there will be a shift in the cultural 

and ethnic profile of New Zealand older people as younger people become older.  

In 2001 a quarter of New Zealand’s older population lived in Auckland (115,000) followed by Canterbury 

(66,500), and Wellington (46,900). Because Auckland’s population is over a million; although 26% of 

older people live there, they only account for 1 in 10 Auckland people. In other areas with smaller 
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general populations, a smaller proportion of older people than in Auckland can make a dramatic 

difference to a region’s age profile. An increasing trend is that, compared with younger people, older 

people are more likely to live in urban rather than rural areas. Living in urban areas typically allows better 

access to eldercare services.  

New Zealanders of today are dying of different health conditions than they did 50 years ago. Better 

control of health risks such as respiratory tuberculosis, anaemia, and hypertension, means people are 

now unlikely to die young from these conditions. Now people are more likely to die of cancer, heart 

disease and cirrhosis of the liver - conditions more prevalent in old people (Prosser, 1998).   

However, a disturbing cause of death in older people is the high rates of suicide. The latest report from 

New Zealand’s Chief Coroner states that men over the age of 85 have the highest rates of suicide of the 

entire New Zealand population (Anderson, 2013). With a view to preventing suicide in older people, an 

investigation is underway to better understand the reasons behind these disproportionately high rates. 

However, preliminary research indicates that, over and above depression, social isolation is the biggest 

predictor of older men killing themselves (Tolley, 2013). 

The main New Zealand census does not cover disability details; however, the household disability 

survey (not including residential care) - conducted as part of the 1996 New Zealand census - does. 

Disability was defined as any long term limitation in activity resulting from a condition or health problem. 

People were not considered disabled if their limitation was nullified by the use of an assistive device 

such as a hearing aid. There was little difference between older and younger people in self-reported 

intellectual or psychiatric disability, but older people reported about three times as many sensory and 

physical disabilities as younger people. 
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Where do older people live? Who do they live with?  

Types of elder accommodation could be broadly divided into eldercare facilities or ‘aging in place’. The 

latter category usually refers to older people continuing to live in the home they lived in during their 

working years. The subcategory of Independent living usually refers to a domestic environment where an 

older person or couple can cater for their own needs without substantial assistance or caregiving. This 

may refer to both an older person who is aging in place and one who is living independently within some 

form of eldercare facility, residential care, or retirement village. Eldercare facilities may cater for a wide 

range of older people from independent living through to hospital and dementia care. However, many 

older people prefer to stay living in their own homes (Barba, 2002; Lawton, 1985).  

Reflecting this preference, most older people are living in their own homes - whether by themselves or 

with other people. In 1996, 53.9% of older New Zealanders reported living independently with a spouse 

or partner (this percentage is almost unchanged from 10 years previously), 10% of older people were 

living with their children, and 6.9% were living with non-related people. The latter includes living in 

eldercare facilities and hospitals. Even in the old-old category, only one in four people were living in 

residential care. This shows both the diversity of living arrangements and also that the majority of older 

people are not living in eldercare facilities. Consequently older people who are independent living and/or 

aging in place should not be neglected as potential eldercare robot consumers. 

In 2001 333,000 older New Zealanders were living by themselves. This is an increase from the one in 

five older people living alone in 1966, and is projected to increase to 482,000 people in 2021. As women 

tend to outlive their husbands, they are more likely to be living by themselves. As the old-old are more 

likely to have disabilities that require more care; people in their 90s are less likely to be living alone. 
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Fewer older people are living with their children or other relatives – a downward trend that started in the 

1960s. Reasons for this shift may include a greater proportion of older people being healthier and more 

able to live on their own, less cohesive family ties – both socially and geographically, and increased 

eldercare services. In 1996 only 2% of older people were in hospitals. This number has deceased over 

the decades as hospital care is replaced with residential care.  

Community living vs. eldercare facilities 

Aging in place or community living is generally preferred to moving to eldercare facilities. Eldercare 

facilities can be seen as ‘a last port of call’; a place where elderly dependent people go to await death 

(Nay, 1995). There are many advantages to aging in place. Continuity of domestic environments is 

considered key to adaptive identities (Twigger-Ross & Uzzell, 1996). Other advantages include 

familiarity of routines that are adapted to the older person and social support from friends and family (J. 

A. Hancock, 1987). Moreover, moving home can be a major life stressor (Nay, 1995), and many people 

may simply not wish to move at all. Resistance to change is a human characteristic not restricted to older 

people (Samuelson & Zeckhauser, 1988). If older people do move from their own homes, certain 

characteristics predict who will make a smoother transition to eldercare facilities. These characteristics 

include having had more choice in the decision to move (Mikhail, 1992), being less frail and stressed 

(Horowitz & Schulz, 1983), and having sufficient support and resources (Eckert, 1983).   

Aging in place may be a popular option, but is not without its problems. Necessary infrastructures may 

not be available or are no longer accessible. Older people may have altered physical, sensory, and 

cognitive needs through illness or normative aging, which may necessitate home help. Even if sufficient 

home support can be obtained, support from other people can be counterproductive. Home help can feel 
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intrusive, and older people receiving home help may feel a loss of autonomy and self-esteem (Scopelliti, 

Giuliani, & Fornara, 2005). As being independent and “not being a burden” is important to many older 

people (Hirsch et al., 2000) even receiving help from friends or family can be challenging. Independent 

living older people may enjoy emotional support from their social networks, but find it harder to ask for 

practical support (Lewis, 1997). 

There are important eldercare issues specific to independent living and residential care, but there are 

some eldercare issues common to both. An eldercare problem represents an opportunity for eldercare 

robots to assist. 

Common eldercare issues 

Loneliness and depression 

In 2010 a New Zealand survey found 11% of older people reported feeling lonely all, most, or some of 

the time (Statistics-New-Zealand, 2010). Older women were more likely to report feeling lonely than 

men. Compared with living alone, or even living in a larger household, both men and women were least 

likely to be lonely when they lived in a two-person household. There was an inverse correlation between 

loneliness and age. The older people were, the less likely they were to report feeling lonely. An 

international review of depression in community-living older people found women and those with 

financial difficulties were more severely affected than others (Beekman, Copeland, & Prince, 1999). 

Overall, the review authors concluded that depression in older people was common with an average 

prevalence of 13.5% - although the prevalence in the reviewed studies ranged from 0.4 - 35%.  

One possible explanation for the wide range in prevalence of reported loneliness is that people tend to 

underreport potentially stigmatising issues. Reasons for this include not wishing to be perceived as 
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weak, needy, or incompetent (Hirsch et al., 2000; Neven, 2011). This human predisposition for socially 

desirable responding, or impression management, can vary between individuals, generations, and 

cultures (Lalwani, Shavitt, & Johnson, 2006). There is some evidence that older people are more 

predisposed to certain types of socially desirable responding than younger people (Sherbourne & 

Meredith, 1992). Despite the possibility that self-reported rates of elder-loneliness are lower than the true 

rates, the self-reported rates are strongly correlated with worse physical and mental health. This 

association is so strong some researchers consider that reducing loneliness should be an important 

therapeutic target (Luanaigh & Lawlor, 2008). However due to possible underreporting, the association 

between elder-loneliness and health may be even stronger than is currently realised. 

Eldercare personnel 

A rationale for eldercare robots often mentioned in conjunction with aging populations is a shortage of 

eldercare personnel (Oulton, 2006; Super, 2002). Although this is not uniform globally (Fleming, Evans, 

& Chutka, 2003; Simonazzi, 2009), the personnel shortages include caregivers and medical 

professionals (Sargen, Hooker, & Cooper, 2011).  Causes of this eldercare shortage include the ageing 

population – with fewer younger people to look after increasing numbers of care-intensive older people, 

financial pressures, increased consumer demand, family fragmentation and the bureaucratisation of long 

term eldercare (Simonazzi, 2009). 

Carers can abuse 

A common objection to robot eldercare is that it is likely to be inferior to human care (e.g. Sparrow & 

Sparrow, 2006; Turkle, 2012). However, while it is important to acknowledge the many caring and 

dedicated caregivers, rates of elder-abuse by caregivers can be high. A review of elder-abuse found 6% 
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of older people reported experiencing physical abuse in the previous month, and nearly a quarter 

reported psychological abuses (Homer & Gilleard, 1991). Another study found sixteen percent of 

eldercare facility staff admitted psychologically abusing residents (Cooper, Selwood, & Livingston, 2008).  

Elder abuse is not restricted to eldercare facilities. The most likely abusers of older people were those 

with whom they were living (Kleinschmidt, 1997). This means that, of reported cases, abusers were most 

likely to be spouses of the older person, followed by adult children. However, much elder abuse goes 

unreported (Cooper et al., 2008). Reasons for non-reporting by victims include not recognising 

maltreatment, guilt or embarrassment, being unaware of available resources, or a belief that help will not 

be forthcoming even if they do report the abuse (A. Moon & Williams, 1993). 

Carers can be abused 

It is not just older people with unmet eldercare needs. Some caregivers may abuse older people, but 

caregivers can be subject to abuse from older people (Phillips, de Ardon, & Briones, 2001). Mental and 

physical health issues such as dementia, psychiatric conditions, and alcohol abuse can create 

behavioural problems that make high-needs older people challenging to care for (Homer & Gilleard, 

1991). A nursing home study found assistants were physically assaulted on average 9.3 times per month 

and verbally abused 11.3 times per month (Goodridge, Johnston, & Thomson, 1996). A rest home study 

found almost 14% of residents had abused staff. The most common form of abuse was hitting (56.7% of 

incidents), followed by kicking (13.3%), punching (10%), biting (6.7%), and scratching (6.7%). Abusers 

were more likely to be male, need assistance in activities of daily living, and have a degree of confusion 

(Meddaugh, 1987). 
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Carer stress 

Spouses and adult children often provide unpaid caregiving for frail or unwell older family members. 

Often when one member of a couple has dementia, it is common for the healthier spouse to (at least 

initially) care for their partner. Caring for people with dementia can be demanding and distressing. A 

systematic review found dementia caregivers have high rates (22.3%) of depressive disorders (Cuijpers, 

2005). Compared with younger carers, the health of older carers may be more adversely affected by the 

demands of caring for people with dementia (Pinquart & Sörensen, 2007).  

Carers have high rates of psychological distress and low rates of support to address their distress 

(Goodridge et al., 1996; K. Walters, Iliffe, Tai, & Orrell, 2000). Up to a third of caregivers report health 

consequences such as sleep deprivation and fatigue. They also report prioritising their caregiving 

responsibilities over their own medical needs. However, some protective factors have been identified. 

Adverse effects of caregiving appear to be offset by higher education, access to resources, being 

employed, and being able to take breaks or access respite care (Arnsberger, Lynch, & Li, 2012; Colin, 

Caranasos, & Davidson, 1992). 

High levels of eldercare needs 

As older people tend to have higher levels of care needs compared with younger adults (United-Nations, 

2010), assessments of elder needs may help indicate if eldercare robots are a necessity or not. 

Additionally, detailed information on eldercare-needs may indicate the areas where robotic assistance 

could be of most value. Widely used measures of the needs of older people are the Activities of Daily 

Living (ADLs: Katz & Akpom, 1976) and Instrumental Activities of Daily Living (IADLs: Lawton & Brody, 

1969). ADLs assess limitations in daily living such as bathing, transfer from bed, and toileting. IADLs 
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assess limitations in routine activities such as shopping, housekeeping, and using the telephone. 

However, as the ADL and IADL measures are oriented to assessing elder needs that can met by the 

available services of eldercare organisations (Reynolds et al., 2000), they may not fully represent an 

older persons unmet needs.  

To help redress this, British researchers conducted a study to determine the needs of community-based 

older people and carers (K. Walters et al., 2000). The 24 most common elder needs related to; 

accommodation/looking after the home, food, self-care, company/intimate relationships, daytime 

activities, abuse/neglect, intentional and unintentional self-harm, managing finances, medical 

information, mobility/falls, incontinence, eyesight/hearing, memory, psychological distress, psychotic 

symptoms, alcohol, behaviour, and caring for someone else. The two most common carer needs were 

information and psychological distress. 

Older people not only tend to have many care needs, they also tend to have high rates of unmet needs. 

However, in order to develop or deploy resources to effectively meet elder needs, first the needs must be 

identified. Correctly identifying and prioritising unmet elder-needs can be difficult. One barrier to effective 

prioritisation of elder-needs is the differing perceptions held by different eldercare stakeholders. For 

example, a British study found older people reported their three most frequent unmet needs related to 

eyesight/hearing, psychological distress, and incontinence. In contrast, carers considered the top three 

unmet elder needs related to mobility, eyesight/hearing, and accommodation: and health professionals 

considered the top three unmet elder needs related to daytime activities, accommodation, and mobility 

(K. Walters et al., 2000). 
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In summary, the necessity of eldercare robots is debatable (Neven, 2011; Turkle, 2012); but it is less 

debatable that there are concerning discrepancies between eldercare needs and eldercare resources. It 

is possible these discrepancies could be met by non-robotic means, such as more investment in 

eldercare personnel (Turkle, 2012) and better allocation of existing resources (Horrocks et al., 2004). 

However, these discrepancies exist now, and are likely to worsen as the world’s population continues to 

age. This strongly suggests there is a need for supplementary eldercare both now and in the future. 

However, can eldercare robots usefully supplement eldercare? And do people want them to?  

1.2. Are eldercare robots useful?  

People want useful robots. Participants rated the most important characteristics of a domestic robot as 

being practicality and usefulness (Lohse, 2011). The most frequent comments people made about 

CHARLEY, a companion humanoid robot that was on public display, were (apart from the robot being 

creepy), queries about how was the robot useful (M. Walters et al., 2012). Over 100 respondents to a 

mail survey indicated they would be willing to have a robot in their homes as long as it was useful and 

easy to use (Ezer, Fisk, & Rogers, 2009). 

In determining if eldercare robots are useful, it is important to determine which type of eldercare robot is 

being referred to. The range of robots that could potentially help older people is extensive. Even a robot 

vacuum cleaner could be considered an eldercare robot if it helped an older person maintain their 

independence (Broadbent, Stafford, et al., 2009). In an emerging field such as eldercare robotics, an 

initial lack of nomenclature is likely inevitable, but can be confusing. 
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In recognition of this, several reviews have provided definitions for different categories of assistive social 

eldercare robots. Broekens et al. (2009), while acknowledging there may be overlap between categories, 

initially divided robots that are designed to support older people into two groups. The first group consists 

of robots that provide physical assistance, e.g. smart wheelchairs and exoskeletons. This group are 

usually not intended to be perceived as social entities.  

The second group are the ‘social robots’ that can be perceived as social entities that communicate with 

the user. Broekens et al. subdivided these social eldercare robots into a further two types. The first type 

of social robot is referred to as a service-type robot. Such robots are intended to support older people in 

their daily functions, such as eating, bathing, toileting, getting dressed, mobility, household maintenance, 

and safety monitoring. The second type of social robot is a companion type robot. The primary purpose 

of companion robots is to enhance mental health and psychological well-being. These categories have 

since become widely adopted into the HRI literature.  

But can these eldercare robots fill the current and projected eldercare gap? Several reviews of assistive 

robots and their effectiveness have been published in the last 10 years (e.g. Fong, Nourbakhsh, & 

Dautenhahn, 2003). While some of these reviews have focused on socially assistive eldercare robots,   

the use of differing selection criteria demonstrates the incomplete agreement of the concept of ‘eldercare 

robot’ (Herstatt, Göldner, Tietze, & Rehder, 2012). Some reviews include all robots that might help older 

people stay in their own homes (e.g. Broadbent, Stafford, et al., 2009). Other reviews have excluded 

companion robots (one of these reviews did not give a rationale for this exclusion - Pearce et al., 2012; 

whereas another stated that companion robots were excluded as they do not promote an older person’s 
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independence - Flandorfer, 2012).  In contrast, some eldercare robot reviews focus exclusively on 

companion robots (e.g. Shibata & Wada, 2010).  

 Of the reviews that included both service type and companion eldercare robots, most of the located 

studies consisted of companion robot studies (notably Paro the seal robot), with few service-type robot 

studies located (Bemelmans, Gelderblom, Jonker, & de Witte, 2010; Broekens et al., 2009). Despite 

variation in the eldercare robot selection criteria; there was considerable consensus in the reviews’ 

findings. The most notable being that there is little empirical evidence for the effectiveness of eldercare 

robots (Bemelmans et al., 2010; Broekens et al., 2009; Flandorfer, 2012; Pearce et al., 2012). Other 

review findings include that many of the reviewed robots are still in the developmental phase. Fully 

developed robots described in the reviews are either research platforms, such as Phillip’s robotic iCat, or 

commercial products. Of the commercialised robots, a few, such as Paro are still commercially available, 

but others, such as the Sanyo’s robot dog Aibo, Mitsubishi’s Wakamaru – a socially assistive domestic 

robot, and Sanyo’s Hopis – an eldercare vital signs device, have been discontinued (Borland, 2006; 

Foulk, 2007; Miller, 2007). 

While most of the eldercare HRI studies included in the reviews reported positive outcomes, the review 

authors concur that the data validity is compromised by methodological limitations - including 

generalisability issues.  As cultural differences have been found in responses to robots (Bartneck, 

Nomura, Kanda, Suzuki, & Kennsuke, 2005; Cortellessa, Koch-Svedberg, et al., 2008) it may be a 

limitation that most studies have been conducted in Japan (Bemelmans et al., 2010; Broekens et al., 

2009). Most studies with older participants were situated in care-intensive eldercare facilities which may 

limit generalisability of results to independent living older people (Broekens et al., 2009). Further, the 
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common use of images of robots in studies, rather than actual robots, may also limit generalisability of 

results to real-world HRI contexts. People may respond differently when interacting with a robot 

compared with viewing pictures and videos of robots (Flandorfer, 2012; Kidd & Breazeal, 2010). 

Other common methodological limitations described in the reviews include small sample sizes 

(Broadbent, Stafford, et al., 2009; Broekens et al., 2009; Pearce et al., 2012), short duration of trials, a 

lack of equivalent control groups, and a lack of randomisation (Bemelmans et al., 2010; Fong et al., 

2003; Shibata & Wada, 2010). Although there were some exceptions where older people were able to 

use the robots alone (e.g. Kidd, Taggart, & Turkle, 2006), generally researchers were present when an 

actual robot was being deployed. The presence of researchers during HRI studies meant the Hawthorne, 

or measurement effect, may be a confound (Broekens et al., 2009), and people may have been 

responding to the presence of the researchers rather than the robot. The typically short trial duration also 

means novelty effects cannot be ruled out. This may be particularly true of eldercare facilities where 

there is insufficient variety in the recreation options. Another common limitation of eldercare HRI studies 

is insufficient assessment of sociodemographics that may be important to robot acceptance. These 

include age, ethnicity/culture, education and technology experience (Flandorfer, 2012).  

However methodological issues are not unexpected in an emerging field such as eldercare robotics. 

Consequently the reviewers suggest the limited but promising results, combined with the eldercare 

resource gap, warrant further research on eldercare robots. In addition to recommending the HRI 

method limitations be addressed, the eldercare HRI reviewers recommend future research on a range of 

HRI aspects including more assessment of sociodemographic variables that impact acceptance of robots 

(Flandorfer, 2012); replication of existing studies and more assessment of service-type robots (Broekens 
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et al., 2009; Pearce et al., 2012); further development of psychometric measures to better assess the 

effectiveness of eldercare robots; more research on how existing user perceptions influence robot 

acceptance; and in-depth assessment of the needs and expectations of a range of eldercare 

stakeholders (Broadbent, Stafford, et al., 2009; Flandorfer, 2012). However, Flandorfer (2012) advises 

being mindful of aging stereotypes when assessing elder needs. The views of older robot study 

participants may be different from those of younger robot designers.   

What eldercare robots are there? What can they do? 

A description of all eldercare robots that have been developed and are under development is beyond the 

scope of this thesis - readers should refer to reviews on this topic for more detail (e.g. Broadbent, 

Stafford, et al., 2009; Broekens et al., 2009; Diehl, Schmitt, Villano, & Crowell, 2012; Flandorfer, 2012; 

Fong et al., 2003; Nejat, Sun, & Nies, 2009; Pearce et al., 2012; Shibata & Wada, 2010). However, 

some examples of eldercare robots from Broeken’s categories are provided below. 

Paro appears to be the most studied of the eldercare robots (Kolling et al., 2013). The companion seal 

robot has pressure-sensitive sensors covered with soft white anti-bacterial fur. It responds to touch, 

makes crying noises, and can ‘learn’ its name. A number of studies have found benefits from the use of 

Paro. Older people’s use of Paro was found to decrease their levels of urinal stress hormones (Saito, 

Shibata, Wada, & Tanie, 2002). A year-long Paro study in an eldercare facility found the robot facilitated 

communication between the residents (Wada, Shibata, Saito, Sakamoto, & Tanie, 2005a). Residents 

also continued to use Paro throughout the year - demonstrating the robot’s functionalities had enduring 

appeal beyond any initial novelty. A recent randomised controlled study showed use of Paro significantly 

reduced loneliness in older rest home and hospital residents, compared with people in an active control 
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group (Robinson et al., 2013). Considering the strong association between elder-loneliness and poor 

health, this is an important finding. 

One controlled Paro study found older people responded less to a switched-off Paro than to a switched-

on Paro (Taggart, Turkle, & Kidd, 2005); suggesting the robot’s movements, responsiveness, and 

vocalisations add to its effectiveness as a companion. In contrast, a similar controlled study using a 

different robot companion, the robot cat NeCoRo, found both the robot cat and a non-robotic version had 

a calming effect on patients with dementia (A. V. Libin & Libin, 2004). However, compared with the more 

impaired people, higher functioning people played for longer with the robotic cat. 

Commercial industry may dominate in number of robot patents filed in the last 30 years, but university 

publications dominate the robotic literature (Herstatt et al., 2012). Numerous universities internationally 

are running their own robotics projects. Some eldercare robot examples include researchers at the 

Georgia Institute of Technology developing a robotic nurse to bathe older people. Carnegie Mellon 

researchers are developing HERB - short for Home Exploring Robot Butler. HERB is designed to do 

domestic cleaning, as well as to fetch and carry household objects. Another robot, Hector, is being 

developed by the University of Reading in England. Hector is being designed to issue medication 

reminders, help people find missing objects, and provide assistance in the event of a fall (Bilton, 2013). 

Australia’s La Trobe University is trialling NECs PaPeRo robots with older people with mild dementia. 

The small robot can transport itself and move its head, light up its eyes, and play music and Bingo. It is 

programmed to recognise up to 10 faces and detect if people have low mood - in which case it can alert 

family or caregivers (La-Trobe-University, 2013). Results of the trial are not yet available.  

http://topics.nytimes.com/top/reference/timestopics/organizations/g/georgia_institute_of_technology/index.html?inline=nyt-org
http://www.ri.cmu.edu/publication_view.html?pub_id=6510
http://www.companionable.net/
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The commercially available benchtop robot Autom is an interesting example of non-stigmatising 

marketing. The intentionality of this marketing strategy is unclear, but despite the robot being trialled with 

older people, Autom is marketed as a lifestyle robot, rather than an eldercare robot (Biggs, 2012). Autom 

has speech production, a moving head and eyes, a camera, and a colour touch screen. The benefits of 

Autom were assessed in a controlled weight loss study with independent living older people. The 

participants in the Autom condition lost no more weight compared with controls over the six week study 

period, but they developed a stronger relationship with the robot, and adhered to Autom’s dietary and 

lifestyle advice for longer than people in the computer or paper log conditions (Kidd & Breazeal, 2008).  

Phillips robotic research platform, the cartoon-like iCat, has been used in a number of studies to assess 

the association of a range of HRI variables with robot acceptance. Human HRI variables assessed 

included demographics and attitudes: Robot HRI variables assessed included perceived personality (e.g. 

Bartneck, Van Der Hoek, Mubin, & Al Mahmud, 2007; Heerink, Kröse, Evers, & Wielinga, 2010). For 

example, older people who used an iCat programmed with good social skills were more expressive and 

felt more comfortable, compared with people who used an iCat with poor social skills (Heerink, Krose, 

Evers, & Wielinga, 2006). 

Compared with the number of publications on companion robots, there are relatively few publications on 

trials with service-type robots. One such publication describes the service-type robot, ‘Nursebot Pearl’, a 

result of a multidisciplinary collaboration between the University of Pittsburgh and Carnegie Mellon 

University. Pearl is a mobile robot designed to remind people of routine daily activities such as taking 

medications, eating, drinking, and toileting, and guide them to appointments. Features of the 1.2 metre 

tall robot include an actuated head, touch screen, stereo camera, and speech production and 
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recognition. Pearl prototypes have been piloted in an eldercare environment (Pollack et al., 2002), 

however the project is no longer active (Carnegie-Mellon-Robotics-Institute, 2013). 

The Care-O-bot, part of the European Commission funded SRS project, is another service-type robot. 

Early prototypes were not intended for eldercare (Parlitz, HÃgele, Klein, Seifert, & Dautenhahn, 2008), 

but later models of the Care-O-bot has been piloted in an eldercare facility (Fraunhofer, 2011). The 

robots primary task in the pilot study was to ensure residents were hydrated. However data has not been 

provided about the robots effectiveness at this task. The latest version of the networked Care-O-bot3 is 

designed to fetch and carry objects, facilitate human-human communications, act as a healthcare portal, 

and attend someone if they fall. Functional limitations of the robot are bridged by human teleoperators. 

Recently, brief trials of the Care-O-bot3 have been conducted in real home and smart home 

environments (SRS-project, 2013).  

In summary there are very few developed eldercare robots that are commercially available (Kolling et al., 

2013). There is evidence for the usefulness or effectiveness of companion robots in eldercare (albeit 

mainly Paro), but little evidence for the usefulness of socially assistive service-type robots. One reason 

for this is there are few fully developed service-type eldercare robots to assess. Another reason is that 

the little available data on eldercare robot effectiveness is often compromised by research method 

limitations.  

To help progress the development of effective eldercare robots, researchers have sought to gather data 

on what eldercare stakeholders would find useful in such a robot. However, a precursor to that question 

is – do eldercare stakeholders actually want eldercare robots? 
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1.3. Do older people and other eldercare stakeholders want eldercare 

robots? 

Sherry Turkle (2012) is uneasy that people do appear to want robots - even to the extent of preferring 

robots to people. She observed some older people develop deep attachments for Paro and the My Real 

Baby robotic dolls. However Turkle considers the robots provide an unauthentic poor quality relationship,   

and is concerned they may displace authentic human companionship. However Turkle has no concerns 

about functional [service-type] robots that assist older people and keep them safe. Turkle considers 

tasks such as delivering medications, reaching for groceries on high shelves, and monitoring human 

safety, as acceptable for eldercare robots.  

However, when assessing if people want eldercare robots, it is important to consider what type of people 

might want them. Regardless of how useful a robot may be, older people are unlikely to be the 

purchasers (Mahoney, 1997; Schulz et al., 2013). As older people are often embedded in complex social 

environments, the needs of all stakeholders in the eldercare environment should be considered (Hirsch 

et al., 2000). Eldercare stakeholders can include older people, their family and friends, formal and 

informal caregivers, health professionals, and eldercare facility staff. At a more removed but still 

important level, the public, governments, and other investors are also eldercare stakeholders. This 

distinction is important as different eldercare stakeholder groups may not only vary in whether they do or 

do not want eldercare robots; but also vary in their reasons for wanting or not wanting them.  

Turkle’s concerns about a human predilection for robots may be unfounded. Regardless of which 

eldercare stakeholder groups are the primary purchasers of assistive technology; poor sales of fully 

developed assistive robots do not suggest strong demand. A review of the viability of ten commercially 
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available rehabilitation robots (three mountable wheelchairs, five vocational workstations, and two mobile 

bases), concluded none of the robots have been a commercial success (Mahoney, 1997).  

At the time of the report’s publication 225 robots had been sold at an average price of US$19,020 

(Mahoney, 1997). The number of devices sold is low considering the estimated 100,000 to 500,000 

people in the United States of America who could benefit from rehabilitation robots. This small market 

share is not restricted to rehabilitation robots. Since the commercial launch of Paro in 2005, 1,500 units 

have been sold (of which an estimated 1,300 have been sold in Japan: Shibata & Wada, 2010). While 

Paro’s sales figures are promising, they are unlikely to represent market share.  

It is difficult to decipher from the available literature the reasons for the relative lack of commercial 

success of assistive robots. As most of the rehabilitation robots reviewed by Mahoney (1997) were not 

being actively marketed, it is possible the relatively poor sales represent lack of consumer awareness 

rather than lack of consumer demand. There are examples of robots that have either been used in or 

intended for use in eldercare that are no longer commercially available. One such example is Hopis - a 

furry toy-like robot marketed as being suitable for older people. The robot was capable of measuring vital 

signs such as blood sugar, blood pressure and temperature. However poor sales have led Sanyo to 

withdraw Hopis from the market (Foulk, 2007). Yet poor sales did not seem to be the reason behind 

Sony’s withdrawal of the robot dog Aibo. Sony has sold 150,000 Aibo units since its market release in 

1999. While not specifically designed for eldercare, results from HRI trials with older people suggest Aibo 

was beneficial as a companion robot (Banks, Willoughby, & Banks, 2008). Yet, along with the more 

humanlike robot Qrio, Sony withdrew the robot dog from commercial sale in 2006.  
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Despite the relative lack of commercial success, a reader could acquire an impression from some HRI 

literature and mainstream media that the prevalence of some eldercare robots is higher than it is. This 

may be due to the sometimes uncritical relaying of promotional information supplied by robot developers 

(Paepcke & Takayama, 2010). For example, a recent review of eldercare robots portrayed Mitsubishi’s 

small yellow humanoid robot, Wakamaru, as an example of a “developed and tested socially assistive 

robot” (Flandorfer, 2012). The review lists Wakamaru’s social interaction capacities as the ability to 

speak in “natural conversation” and shake hands. Wakamaru’s functionalities are described as reminding 

users to take their medications and call for help. However, sometimes more detailed information on the 

commercial fate of robots can be obtained from the grey literature. An online source elaborates that of 

the one hundred $14,000 Wakamaru robots Mitsubishi manufactured, orders were only received for 25 

of these. Furthermore, sales were not completed on all orders (Miller, 2007).    

The commercial situation paints a rather bleak picture of the state of eldercare robotics. But this does not 

necessarily reflect the future state. Other methods of assessing consumer attitudes may more accurately 

illustrate the future potential of eldercare robots. Indeed, a number of studies have been conducted to 

assess the opinions of eldercare stakeholders on this topic. These studies have used a variety of 

methods. Some involve people interacting with an actual robot, although most are conducted in the 

absence of an actual robot. Other methods include participants being shown photographs or videos of 

robots, or no images at all. Focus groups may be used, and/or online, or pen and paper surveys.  

Studies assessing attitudes towards eldercare robots also vary in the number of eldercare stakeholder 

groups who are canvassed. Some studies assess just one eldercare stakeholder group, such as older 

people. Others include additional groups, such as carers, family, health professionals, and eldercare 
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service and facility management. This variation in research methods provides a depth of data but can 

also produce conflicting findings.  

The findings from these studies are mixed on whether people want assistive robots. Some people are 

enthusiastic about the idea, whereas others are resistant (Giuliani, Scopelliti, & Fornara, 2005b). Some 

older people are emphatic they find the idea of robots objectionable, e.g. “If it is possible, I would prefer 

no robot at all. Anyway, I would prefer a small machine rather than simulacra [of a human]’’ (Wu, 

Faucounau, Boulay, Maestrutti, & Rigaud, 2012). Some results suggest robot attitudes are mediated by 

personal context (Scopelliti et al., 2005). One study found mixed-age people with disabilities were 

positive about generic assistive devices, but negative about the concept of robotic assistance (Dario, 

Guglielmelli, Laschi, & Teti, 1999). In contrast, another study found people with profound disabilities 

(mean age 42 years) were enthusiastic about the idea of a healthcare robot, even preferring it to human 

care. They perceived a robot would restore independence without the ‘hassles’ that can come with 

human caregivers (Mahani & Eklundh, 2009).  

Like older people, eldercare facility staff can also have mixed responses to the concept of eldercare 

robots. Focus groups conducted within a retirement village found some staff were positive. For example, 

“[if robots did basic tasks] the caregivers could spend a lot more time with the residents as well instead 

of doing these [basic tasks]. . . . That’s the place we miss out on” (Broadbent, Tamagawa, et al., 2011). 

However, other staff were more concerned about reliability; “Are [the robots] reasonably reliable, or is it 

likely to have a hissy fit and bounce off the walls at some stage?’’. And some staff were concerned about 

job losses; “And then you have to be very careful how [many] robots you need otherwise you’re just 

taking, you know, your job away..” .  
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A recent study showed a slight majority of staff participants preferred a robot to a human (Mitzner, Kemp, 

Rogers, & Tiberio, 2013). After 14 eldercare personnel watched a video of PR2, Willow Garage’s 

research robot, eight of them indicated they would prefer a robot over a human assistant. Reasons given 

for preferring a robot included “[the robot] can reduce the number of tasks…”, however five of the staff 

said they would prefer a human to a robot assistant, “...I know what humans do, but a robot, I don’t…”, 

and one staff member had no preference.  

Public attitudes towards eldercare robots are also important. As well as members of the public being 

potential eldercare robot purchasers, public opinion may influence government policy around eldercare. 

An example of public reaction to an upcoming eldercare robot study was provided in responses to an 

online article (Hill, 2011). Of the ten responses given before the comments field was closed, only one 

comment was positive; “the aim of enabling staff to spend more quality time with patients is laudable…”. 

Examples of the negative comments include; “I am of the opinion that old people are dehumanised 

enough in our society. This is just another step that shows [older people] are not even worthy of human 

contact in their declining years. Disgusting.”, “I think it's pretty unlikely that old, demented people are 

going to have an improved quality of life by being poked and prodded by robots. What old people 

want/need, just like the rest of us, is human interaction and affection”. Two comments expressed 

concern about the effectiveness of robots in eldercare, e.g. “…Not sure it is a good idea with dementia 

patients they might smash them and I bet [the robots] aren’t cheap”.  

However, despite the predominantly negative nature of these online comments, the self-selected nature 

of them should be taken into account. It cannot be assumed that self-selected commentary is 

representative of the general population. People who use the internet may differ in their robot opinions 
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than those who do not. People who visit that particular website may differ from those who do not. People 

who leave online comments may have stronger opinions than those who do not, and people who 

comment online later may have been influenced by other people’s earlier comments (Li & Hitt, 2008). 

There are a number of reasons why determining people’s ‘true’ attitudes towards robots can be difficult. 

Sometimes participants perplex robotocists by providing apparently conflicting information about their 

robot preferences. For example, a man with dementia reported he did not like the seal robot Paro while 

simultaneously playing with it. Wada, Shibata, Musha, and Kimura (2005) hypothesised that the man 

was conflicted as he both liked the robot but was embarrassed to be playing with what looked like a 

child’s toy. If this is an accurate interpretation, it illustrates researcher concerns that even a useful 

eldercare device may not be accepted if people perceive it as infantilising (Turkle, 2012), or stigmatising 

them as elderly, infirm, or disabled (Hirsch et al., 2000).  

Older participants can provide other types of information that may mislead eldercare HRI researchers. 

For example, older people can make positive comments about eldercare robots, yet have no desire to 

actually have one (Neven, 2011). Reasons for this can include participants not wishing to offend the HRI 

researchers by being impolite about the robot (Wu, Fassert, & Rigaud, 2012). In other cases people may 

see the robot as an interesting novelty, but do not see it usefully meeting any of their needs (Giuliani et 

al., 2005b).  

While some older people may not be enthusiastic about assistive technologies (including robots), they 

are more likely to be accepting if they perceive the benefits of use outweigh the costs (Beer et al.; Pain 

et al., 2007; Tinker & Lansley, 2005). Perceived ‘costs’ relates not only to financial cost, but also to 

psychological costs such as stigma, as well as perceived difficulty and effort involved in using the 
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technology (Hirsch et al., 2000; W. A. Rogers & Fisk, 2010; Wu, Faucounau, et al., 2012). The benefit of 

maintained or increased independence is often cited by older people as a reason to use assistive 

technologies which they otherwise would not use (Hirsch et al., 2000; Pain et al., 2007; Tinker & Lansley, 

2005). Asked to imagine a future scenario in which they were frail and needed assistance; 83% of 

survey respondents at a robotics show said they would accept a robot if it increased their independence. 

Possibly reflecting heightened concerns about loss of independence; the older the survey respondents 

were – the more likely they were to say they would accept an assistive robot (Arras & Cerqui, 2005).  

Costs and benefits of robot use may be weighted differently by different eldercare stakeholders. Older 

people may be particularly interested in robot benefits relating to independence. Adult children may buy 

robots for their aged parents if they perceive the robots will keep their parents safer and provide 

companionship (Tufel, 2013). Governments and eldercare organisations may invest in eldercare robots if 

they perceive the robots will reduce eldercare costs (Schulz et al., 2013). Eldercare stakeholders may be 

unaccepting of eldercare robots when they either perceive insufficient benefits to robot use and/or the 

costs are too high. Therefore it seems important for robot acceptance to foster adaptive perceptions of 

both costs and benefits of eldercare robot use in potential users. To do this, first an understanding is 

required of what eldercare stakeholders consider the costs and benefits of robot use. What do people 

want and not want in an eldercare robot? 

What do eldercare stakeholders want a robot to look like and do? 

While not everyone wants an eldercare robot, if they did have one - what would they like it to look like 

and do? Many older people report a preference for a smaller discreet robot (Broadbent, Tamagawa, et 

al., 2009; Scopelliti et al., 2005; Wu, Fassert, et al., 2012). Using a generative design approach, younger 
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people (mean age = 42 years) identified 99 discrete tasks they would like a domestic robot to do (Sung, 

Christensen, & Grinter, 2009). The 99 tasks were categorised into Time-consuming, Drudgeries, House-

sitting, and Personal Attendance. Participants did not want overly intelligent domestic robots. They 

wanted a robot to only be as sufficiently autonomous as required to be effective at its tasks. Older 

people also tend to prefer a robot that is not too autonomous or anticipatory, preferring a robot that only 

acts as directed by the human user (Huttenrauch, Green, Norman, Oestreicher, & Eklundh, 2004; 

Scopelliti et al., 2005). Mixed-age participants who interacted with both more and less responsive 

versions of a Peoplebot, found the more responsive robot both more autonomous and less acceptable 

(Syrdal, Dautenhahn, Koay, & Walters, 2009).  

A variety of eldercare stakeholders have also been consulted on what constitutes useful robot tasks. A 

European study asked mixed-aged people with disabilities and their carers what capabilities they wanted 

a domestic robot to have (Dario et al., 1999). The most commonly requested robot tasks were tidying 

and cleaning the kitchen, heating and serving food to a bed-ridden person, and changing bed linen. 

Mitzner et al. (2013) found eldercare staff had no preference either way for human or robot assistance 

with Instrumental Activities of Daily Living (IADLs) except they preferred robot assistance over human 

assistance with light housework tasks. Whereas for the Activities of Daily Living (ADLs) the staff 

preferred robot assistance in transfer tasks, such as transferring older people from bed to chair, but 

preferred human assistance with feeding tasks. They mostly preferred a human assistant for medical 

tasks, with the exception of preferring a robot for checking vital signs. For some tasks, such as changing 

catheters and bandages, the staff had no preference either way.  
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A retirement home study assessed the opinions of older people, their families, and staff on eldercare 

robots (Broadbent et al., 2011). Residents were more positive towards robots than their families and 

staff. Caregivers liked the idea of a robot checking on residents’ safety and helping with entertainment. 

Residents thought they would appreciate robot help with medication management and reminders. 

Managers liked the idea of a robot that could repeatedly orient forgetful residents as to time and place. 

However concerns were expressed about privacy, the robot harming and frightening psychologically and 

physically fragile residents, and the reliability of the robot. Both residents and caregivers were concerned 

about robots replacing people. From a list of possible robot tasks, all participants identified fall detection, 

summoning assistance, and monitoring people’s location as useful robot tasks. However the residents 

rated the most useful robot tasks as detecting if someone had fallen, summoning assistance, turning 

appliances off and on, making phone calls to health professionals, monitoring the location of people with 

dementia who may wander and giving medication reminders (Broadbent, Tamagawa, et al., 2009). 

Older people in differing domestic environments can have differing ideas of what constitutes a useful 

robot task. After being shown a video of the robot PR2, independent living older people were asked what 

types of domestic tasks they would like robot assistance with (Beer et al., 2012). Participants reported 

they most preferred a robot to clean, organise, and fetch objects, but they did not want a robot to sort 

mail or do the laundry or wash dishes. Showing the importance of eliciting underlying reasons for robot 

preferences, it appeared participants did not want a robot doing water-oriented tasks due to concerns 

about the robot getting wet, as distinct from not wanting assistance with these tasks.  

As well as providing further evidence that individual robot task preferences may depend on individual 

context and study methods, these examples demonstrate the importance of understanding the reasons 
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why people do or do not want particular robots or particular robot functionalities. Through lack of 

knowledge about robots, people may have misunderstandings about a robot’s functionalities and 

limitations. These misunderstandings may constitute barriers to acceptance of robots. Conversely, if HRI 

researchers are aware of these mistaken perceptions, it may be possible to correct them, and increase 

robot acceptance in doing so. A related issue is that researchers have noted the difficulty some older 

people and other eldercare stakeholders have in suggesting useful tasks for robots. This is considered 

likely due to a lack of understanding of robot capabilities and usefulness, and may change with 

experience (Forlizzi, DiSalvo, & Gemperle, 2004; Mitzner et al., 2013; Scopelliti et al., 2005; Wu et al., 

2013). 

Despite the variation in robot preferences reported in the HRI literature, there are some themes. One 

theme is that many (but not all) people report not wanting a humanlike robot. Of over 2,000 respondents 

attending a robotics pavilion at technology show, 47% indicated they would not like a humanoid design 

for a robot, 19% said they would, and 35% were undecided. There appeared to be an age effect: 29% of 

people under the age of 18 wanted a robot of humanoid design, compared with only 10% of people aged 

65 years plus (Arras & Cerqui, 2005). Some older people consider a robot is a machine, not a human, 

and it should look like what it is (Wu, Faucounau, et al., 2012). Other comments include older people 

disliking the ‘falseness’ of a robot that has an “unpleasant aspect of a false human’’. However, this sense 

of falseness is not restricted to humanlike robots: ‘‘to communicate with Paro is to communicate with 

nothing’’ (Wu, Fassert, et al., 2012). The presence of a face is a strong cue for humanlikeness, and 

some older people have indicated a preference for a robot without a face (Broadbent, Tamagawa, et al., 

2009; Cesta et al., 2007). This may be related to a common fear expressed by both caregivers and older 
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people that robots will replace humans (Arras & Cerqui, 2005; Broadbent, Tamagawa, et al., 2009; Wu et 

al., 2013).  

However, there may be other reasons people tend to prefer machinelike robots. People may feel more 

certain about how to interact with a clearly machinelike agent and more uncertain about how to interact 

with an unfamiliar agent that appears part machinelike and partly lifelike.  

An interaction between humanlikeness and familiarity may be seen in a study where people could 

indicate how closely two different robots could approach them (Koay, Syrdal, Walters, & Dautenhahn, 

2007). One robot was more humanlike and one more machinelike. Initially participants allowed the 

machinelike robot to approach more closely than the more humanlike one, but after five weeks 

participants had no difference in their preferred approach distance for the two robots This indicates that, 

compared with the machinelike robot, the participants may have initially been more uncertain about the 

behaviour of the more humanlike robot and thus were reluctant to let it approach them as closely as the 

more familiar machinelike robot. However over time participants may have become more familiar with 

the more humanlike robot, thus allowing it to approach as closely as the machinelike robot.    

Another theme is people want a robot’s appearance to ‘afford’, or match, its functionalities (Hirsch et al., 

2000). If a robot’s appearance is congruent with its functionalities this may improve acceptance in two 

ways. Firstly, a robot’s appearance gives users cues on how to interact with it. Cues may reduce 

aversive uncertainty. Secondly, a robot that ‘looks like what it does’ may give users confidence in both 

the robot and its functionalities. For example, after retirement village residents viewed images of different 

robots, they thought the fluffy toy-like robot ‘Hopis’ was more suitable for companionship, and the robotic 

telepresence ‘Intouch’ was more suitable for healthcare tasks (Broadbent, Tamagawa, et al., 2009). 
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Considering the commercially withdrawn Hopis is actually a robotic healthcare device, the incongruence 

between its toy-like appearance and healthcare functionalities may at least partly explain its commercial 

failure. 

A caveat to soliciting the robot preferences of users is that the most preferred robot features may not be 

the most effective. Results from an exercise robot study showed participants preferred an exercise robot 

programmed with a more fun personality compared to one with a more serious personality. However, 

participants did more exercise with the ‘serious’ robot (Goetz, Kiesler, & Powers, 2003). These findings 

suggest several HRI design considerations. One is the importance of matching robot form to function. A 

friendly personality may be the most ‘effective’ personality for a robot companion, but less effective for a 

robot where compliance with the robots functions is desirable, e.g. medication management.  

Another design consideration is that HRI studies should include objective measures of robot 

effectiveness in addition to self-report. Multiple measures of acceptance can help resolve conflicting 

data. Like the exercise robot study, the benefits of multiple measures was demonstrated in the Paro 

study where the man reported he did not like the seal robot, but video of his affectionate behaviours 

towards the robot suggest otherwise (Wada, Shibata, Musha, et al., 2005). 

Older people are diverse 

Older people can hold different views of robots from other groups of eldercare stakeholders. An Italian 

study assessed the eldercare robot views of young, middle-aged, and older people (Scopelliti et al., 

2005). Older people were found to be more concerned than younger people that a robot be unobtrusive 

and fit in with the décor. They also felt more strongly that technology would enable them to be 

independent, yet they were also more mistrustful of technology. However this type of age-related finding 
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is not universal. Broadbent, Tamagawa, et al. (2009) found older people were more positive about robots 

compared with their families and eldercare facility staff. 

Older people may have some different robot preferences from other eldercare stakeholder groups: but 

they are also a diverse group within themselves. Flandorfer (2012) cautions robotocists against the 

application of aging stereotypes in a ‘one size fits all’ design approach. To assess differences within the 

older generation that may impact technology acceptance, Giuliani et al. (2005b) examined attitudes to 

technological assistance and coping strategies in people aged 62-94 years. Showing the importance of 

perceived benefits of use, participants were found to be open to accepting assistant technologies if they 

perceived the technology as being better than alternatives, such as help from friends. However, even 

within this older age bracket, older age and lower education was associated with increased likelihood of 

putting up with unmet needs rather than attempting to problem solve with technologies. 

Older-age gender differences in robot attitudes have been found. After interacting with an iCat, male rest 

home residents were more likely than females to want to own the iCat (so they could figure out how to 

programme it!). In contrast, the female residents were more likely to express they did not want any 

assistive technology until it was absolutely necessary. They feared premature use of such devices would 

result in premature loss of independence (Heerink, Kröse, Evers, & Wielinga, 2006).   

However as the male participants also had significantly more experience with computers, it is plausible 

that these older-age gender differences detected by Heerink, Kröse, et al. (2006) may reflect prior 

experience with technology rather than gender per se. However, while Kuo et al. (2009) also found that 

men were more positive than women towards a healthcare robot, there was no significant difference 

between women and men in their self-reported computer experience.  
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However it seems likely that these reported gender differences in response to robots result from 

something other than chromosomal differences. Differing gender responses may be due to the different 

type of study robot or its functionalities, differences in the measures used, or the younger age of 

participants in Kuo et al.’s study compared with Heerink et al.’s study. Regardless of the cause, as the 

majority of older people are women, gender differences may be an important consideration for eldercare 

robot designers and should be investigated further. 

In summary, there is not a unanimously positive response to the concept of eldercare robots. While 

some eldercare stakeholder groups appear more accepting of eldercare robots than others, there is also 

a lot of variability within stakeholder groups. Despite this, there are some distinct acceptability themes 

around the concept of eldercare robots. Themes of non-acceptability include: fear of being stigmatised 

as elderly or disabled, fear of robots replacing people, and unawareness of the benefits of robot use. As 

it can be difficult to imagine the qualities of a product of which you have no experience (Beer et al., 

2012), some of the negativity may be explained by the fact that most people have not interacted with a 

socially assistive robot. People’s attitudes may become more positive if they actually experience a 

robot’s functions. Indeed, some eldercare HRI studies that have used actual robots have had positive 

responses (e.g. Pollack et al., 2002; Robinson et al., 2013; Shibata & Wada, 2010). In an extreme 

example, Sherry Turkle (2012) found some older participants formed such strong attachments to the 

companion robots Paro and My Real Baby that they did not return them at study completion. 

This suggests eldercare robots may become more acceptable if more people try using them and 

experience their benefits. However this does not explain why there are so few eldercare robots available 

for people to try in the first instance. Taking into account the facts that care-intensive aging populations 
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have been forecast for some decades, that robots are well established in factories and the military and 

even NASA’s Explorer now has its own robot companion on Mars – where are the eldercare robots?  

1.4. Why have the predictions of ubiquitous robots not come to pass?  

A recent review of eldercare robots concluded the low prevalence of such robots is simply a 

consequence of the early stage of eldercare robot development, and they are not yet sufficiently 

technologically advanced to provide eldercare services at acceptable levels (Flandorfer, 2012). However, 

the reasons for low prevalence of eldercare robots appear to be more complex than this. It is accurate 

that not many eldercare robots have been made commercially available, but a few have been. And of 

these, a number, including Wakamaru, Aibo, and Hopis, have been withdrawn from sale. Of the 

commercial eldercare robots that are still available; sales do not match expected demand. The sale of 

1,500 Paro units neither matches expected demand nor matches iRobots sales of over 6 million Roomba 

vacuum cleaners (Hornyak, 2012).  

The reasons for the low prevalence of eldercare robot are likely to be many, but one identified barrier to 

successful robot commercialisation is high price (Blackman, 2013). Paro retails for approximately 

EUR$4,500 and the flagship Roomba retails for US$500 (TopTen-Reviews, 2013). Cost is particularly 

marked as a commercial barrier when the benefits of robot use are perceived as inadequate or there are 

cheaper comparable products (D. Bernstein, Michaud, & Silvia, 2010; Mahoney, 1997). Some more 

expensive copycat versions of Roomba have been withdrawn from sale (D. Bernstein, Michaud, & Silvia, 

2010). Johnson & Johnson’s US$25,000 stair-climbing iBOT wheelchair is reportedly an exemplar of an 

otherwise desirable robotic device that is being discontinued due to being prohibitively expensive. Many 
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individuals who would benefit from the iBOT cannot afford it, and healthcare providers are unwilling to 

purchase it (Linfoot, 2011). A recent review noted that eldercare robots must be perceived as cost 

effective to be attractive to eldercare providers (Bemelmans, Gelderblom, Jonker, & de Witte, 2012). 

Understanding the reasons why formerly commercially available assistive robots have been discontinued 

may be valuable in designing acceptable robots. Unfortunately robot manufacturers rarely make this 

information available. While some robots such as Hopis, Wakamaru, and iBOT, have reportedly been 

discontinued due to lack of sales, the reasons for the withdrawal of other robots is unclear. Sometimes 

these reasons may be surmised from the grey online literature. Sony reported the withdrawal of the robot 

dog Aibo was in order to refocus on more profitable lines (Borland, 2006). An inspection of some Aibo 

blogs suggests the complex US$2,000 robot dog was somewhat unreliable (e.g. Aibo-Life-Bot-House, 

2013). The costs of servicing Aibo warranties may have eroded Sony’s profit margins. Even if 

commercial robots are still available, poor sales may still be a problem. Mahoney (1997) observed issues 

that commonly slow down or prevent a product’s commercial success appeared applicable to 

rehabilitation robotics. These issues included interfaces with poor usability, lack of real-world trials, 

robots being too expensive (and/or having inadequate cost-benefit ratios), poor business organisation, 

and insufficient capital.  

Lack of marketing may be one reason for poor sales. Mahoney (1997) noted of nine organisations with 

commercially available rehabilitation robots; only two were actively marketing their products. Lack of 

effective marketing may be another reason for poor sales. The influence of ineffective robot marketing 

became evident during an HRI trial with independent living older people (Neven, 2011). During the trial, 

the older participants gave researchers positive feedback about an entertainment robot, yet they were 
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not interested in having the robot for themselves. Participants reported seeing the study robot advertised 

on television as being suitable for the lonely elderly and did not wish to be associated with such a 

stigmatising product.  

Another possible barrier to the commercialisation of eldercare robots is complex regulatory eldercare 

requirements. The eldercare HRI environment is not just physically and socially complex; meeting 

eldercare regulations can be time consuming and expensive for robot developers. Some robot 

companies may have underestimated the amount of capital required, and consequently re-directed their 

research efforts into simpler markets with cheaper entry requirements. Developing a viable integrated 

system such as a domestic robot requires expertise in many sub-fields, which may be easier to 

commercialise in their own right. For example, eldercare software such as medication management 

programmes may be cheaper and simpler for companies to provide on PCs and tablets, rather than 

robots.  

Bill Gates had some ideas as to the prevalence gap between ‘real’ robots and factory robots (about one 

factory robot for every 10 human workers in automobile manufacturing). He suggested the technical 

challenges of deploying robots in more complex and variable eldercare environments, compared with 

fixed factory environments, have been underestimated. He also felt engineers have underestimated the 

difficulty a robot faces in orienting itself to objects in a room; in generating and responding to speech; in 

grasping objects of varying mass and fragility; and even replicating simple human tasks such as telling 

the difference between a window and an open door.  

However Gates (2006) was optimistic about personal robots of the future. The increased availability and 

decreasing price of processing power and hardware would help offset these robot design challenges. He 
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considered major progress had been made in the toughest robotic areas of visual recognition, navigation 

and machine learning. Gates proposed the next major barrier to robotic progress was similar to that 

faced by computing 30 years ago – a lack of standard operating software that would allow popular 

application programmes to run on a variety of robotic devices.  

Resolving technical issues is critical to robot acceptance. Robots must do what they are supposed to do, 

and do it reliably and safely. But human issues are equally critical - eldercare robots cannot be 

commercially viable unless people actually want them and their functionalities. Some eldercare 

stakeholders do want eldercare robots but many do not. Most objections to eldercare robots are 

conceptual and made in the absence of an actual robot. There are examples of older people being more 

accepting of robots after they have interacted with them. Conversely, Sony’s entertainment robot ‘IfBot’ 

is an example of an eldercare robot that older people used for a month and then rejected (Belew, 2007). 

It may be important to distinguish between acceptable robot hardware and acceptable robot software. 

Staff reported the rest home residents stopped using the IfBot because “they got bored” with it. This 

suggests that, rather than that the robot itself necessarily being unacceptable, that the robot’s 

entertainment software was insufficiently varied to entertain beyond a month-long novelty period. 

However without more detailed information this explanation cannot be verified.  

One reason people appear unwilling to accept an eldercare robot is they do not perceive sufficient 

benefits from robot use (Scopelliti et al., 2005). The inadequate matching of robots and their functions to 

user needs has been identified as a barrier to successful commercialisation (Bemelmans et al., 2010; 

Mahoney, 1997; Neven, 2011). Erin Rapacki (2011), product marketing manager for Adept Mobile 

Robots, agrees. She states that robots are extremely difficult to build well, and in order for them to be 
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profitable, they must be matched to a problem. Rapacki also suggests that if more robotics researchers 

focused on solving real-world problems, then the field of personal robotics would be further along than it 

currently is.  

Relative lack of investment may also help explain the relative lack of personal robots. As robots are 

difficult to build well, they also tend to be expensive to build well. Henrik Christensen (2011), Chair of the 

US Centre of Robotics and Intelligent Machines, has some opinions on this. In charge of setting up and 

co-coordinating robotics research in the USA and worldwide, Christensen believes the gap in prevalence 

between personal and military robots comes down to funding. Several hundred million US dollars have 

been spent on developing military robots in the US, compared with the approximately 15 million spent on 

personal robots. Christensen considers Europe to be more advanced than the US in personal robots. 

This is partly due to EU policy prohibiting the European Commission from funding research into military 

robots, and partly due to US desires to minimise human casualties in Afghanistan.  

Another robotics industry leader believes a lack of user- and solution-focused design is impeding the 

commercial progress of personal robots. Dmitri Grishin, founder of Grishin Robotics, believes the field of 

personal robots is less advanced than the available technology warrants (Grishin, 2012). He points out 

that good robot concepts, such as the robotic lawnmower, were already present in the 1960’s and 70’s, 

but were ahead of their time and had insufficient supporting infrastructure. Grishin concurs with Rapacki 

(2011) in proposing that current robot design is overly technology-focused and insufficiently solution-

focused. He suggests robot designers get user feedback early and avoid overcomplicating the 

technology. Increasing robot complexity with inadequate justification can increase cost and unreliability 

of robots without any increase in benefits for the user.  
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Benefits of robot use, or usefulness, appear important for robot acceptance. Online sources suggest 

Wakamaru’s lack of acceptance may have been due to its limited usefulness (Miller, 2007). The robot 

could not negotiate multi-story homes and its conversational abilities were limited. Despite Wakamaru 

being promoted as having eldercare medication management capabilities, it had few functions beyond 

online weather forecasts and email. Mitsubishi intended to develop an arm for Wakamaru - hoping to 

enhance the robot’s usefulness with the ability to carry drinks and open doors. To date this redesign has 

not occurred. Wakamaru robots are currently available for hire within Japan as corporate novelties 

(Mitsubishi-Heavy-Industries-Ltd., 2013). 

 

Conclusion 

Developing commercially viable robots is a complex, expensive, multidisciplinary, multifaceted 

undertaking. It is likely that all major components of an eldercare robot’s development, such as solution-

focused technology, negotiating eldercare regulations, adequate funding, and marketing, need to be 

adequately addressed to achieve an acceptable and commercially viable eldercare robot. More 

understanding of what makes robots acceptable to older people, their families, carers, health 

professionals, managers of eldercare services, and investors, is required. This information can then be 

fed into the robot design to help create more acceptable eldercare robots. 

Of the many possible variables that contribute to the development of acceptable robots, there appears to 

be a research and literature focus on the ‘R’ of the HRI: a focus on the technology and usability aspects 

of personal assistive robots. This focus reflects the engineering dominance in the HRI field (Bartneck, 

Kulić, Croft, & Zoghbi, 2009) and is critical work, but an unbalanced technology focus may be 



  

 

50 

 

inadequate for developing acceptable eldercare robots. As there appears to be a relative lack of 

research on psychological contributions to robot acceptance, it is possible robot acceptance may be 

enhanced with more focus on the ‘H’ of the HRI. 

Consequently, the next chapter examines models intended to assist designers determine what human 

aspects of the complex human technology interaction influence users to accept or reject technologies. 

The validity of these models is assessed, as is their ability to generalise to an eldercare robot context. 

Additionally the methods used and HRI variables selected to evaluate the models are examined. The 

results of some eldercare HRI studies that have used these models are also presented and discussed. 
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 Creating acceptable eldercare robots – Chapter 2.

models and evaluation of acceptability 

 

Preamble  

In order to help address the eldercare resource gaps, robots need to be developed that are acceptable 

to eldercare stakeholders. But how can researchers tell when a robot is acceptable? How can 

researchers determine which of the many aspects of a complex HRI are acceptable and which need 

improving? As HRI is an emerging multidisciplinary field, there is a need for appropriate theoretical 

models and knowledge of acceptance-related HRI variables to guide cross-discipline HRI researchers in 

developing acceptable robots. 

Chapter outline 

Section 2.1 of this chapter examines models that may be useful for improving understanding of robot 

acceptance. The focus of the section is on the seminal Technology Acceptance Model (TAM) and its 

more complex offspring; the Unified Theory of Acceptance and Use of Technology model (UTAUT). Two 

other potentially useful technology acceptance models are highlighted; the Technology Diffusion Model 

and the Expectation-Confirmation Model of continued IT usage (ECM-IT).  

There is a need for HRI researchers to better understand which of the many HRI variables contribute 

most to the acceptability or not of robots. To meet this need, several guides to HRI evaluation have been 

published in the last ten years. Several of these guides have drawn on models of technology 
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acceptance. The applicability of these evaluation methods to an eldercare HRI context is discussed in 

section 2.2. 

2.1. Technology Acceptance Models - background   

A Google Scholar check on the 12th September 2013 revealed 17,042 citations for Davis’s (1989) paper 

outlining the development of scales that predicted user acceptance of computer systems. The scales 

formed key components of a model that became known as the Technology Acceptance Model (TAM). 

The model title has become a generic label for models associated with predicting and explaining 

acceptance of technologies.  

Davis’s motivation for developing the TAM was twofold. The first motivation was the persistently poor 

uptake of information technology by white collar workers. The second was the lack of quality measures 

for key determinants of user acceptance. Davis synthesised the TAM from a range of cross-disciplinary 

theories and studies. Sources included: work on the impact of perceived usefulness on system 

utilization; expectancy models (DeSanctis, 1983; Vroom, 1964); Bandura’s self-efficacy theory (Bandura, 

1982); the cost-benefit paradigm from behavioural decision theory (Beach & Mitchell, 1978; E. J. 

Johnson & Payne, 1985); studies in the adoption of innovations; and studies on how people evaluate 

information. Davis also drew on marketing and human-computer interaction research.  

An important TAM feature is that it is users’ perceptions of a technology’s usefulness and ease of use, 

rather than more objective measures of these attributes, which are considered the critical predictors of 

acceptance. In synthesising this cross-disciplinary research, Davis (1989) proposed two key 

determinants of technology acceptance. These were ‘perceived usefulness’ of the technology and 
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‘perceived ease of use’. Davis defined perceived usefulness as “the degree to which a person believes 

that using a particular system would enhance his or her job performance”; and he defined perceived 

ease of use as “the degree to which a person believes that using a particular system would be free of 

effort”. In brief, technology acceptance was predicted by how useful and easy to use a technology was 

perceived to be.  

Davis felt existing research on human computer interaction (HCI) had neglected two key areas. One was 

the excessive focus on objective measures of usability. While objective ease of technology use is 

important, it may not be as important as users’ subjective perceptions of ease of use. The second key 

area of neglect was that research and development on technology usefulness had been minimal 

compared with research on technology ease of use3.  

Although both perceived usefulness and ease of use appear to be important predictors of technology 

acceptance, they may not be equally important. During research assessing the fit of the TAM, Davis 

(1989) found that perceived usefulness was more strongly correlated with self-reports of current and 

future system usage than perceived ease of use. This suggests that while users are willing to endure a 

difficult-to-use system that delivers important functionality, they are less willing to use an easy-to-use 

system that delivers little or no functionality.  

Despite the combined predictive power of both perceived usefulness and ease of use, Davis (1989) 

thought it likely there were more important predictor variables to be discovered. He encouraged further 

research in this area, as well as further research into determining the precursors to perceptions of 

                                                

3 The terms ‘ease of use’ and ‘usability’ are often used interchangeably. 
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technology usefulness and ease of use. Two potential precursor variables nominated for further research 

were intrinsic motivation and affective attitudes.  

Davis also called for more research into the application of technology acceptability measures in applied 

settings (1989). By this he meant an increase in the repeat use of subjective measures “throughout the 

technology development and implementation process, from the earliest needs assessment through to 

concept screening and prototype testing, to post-implementation assessment” (p. 335). Davis cautioned 

that while system evaluation is important, so is determining reasons for lack of acceptance. Both types of 

information are useful in designing interventions to improve technology acceptance.  

Following his own recommendations, Davis (1993) continued to develop the TAM. He next drew on 

Fishbein and Ajzen’s (1975) theories on attitudes, specifically drawing on their description of behavioural 

attitudes. These attitudes were conceptualised as expectancy-value model of beliefs weighted by the 

consequences. Davis proposed that a potential technology user’s ‘behavioural attitude’ mapped onto 

overall attitude toward using the system, and this in turn was the primary predictor of use. He further 

proposed that overall attitude towards use was determined by the two previously identified technology 

beliefs of perceived usefulness and ease of use.  

In turn, Davis considered that perceived usefulness and ease of use were directly influenced by the 

external stimuli of the technology’s features (i.e. what the technology looks like). As Davis considered 

features of the technology to have an indirect effect on users’ attitudes via visual perceptions of 

usefulness and ease of use, he advised designers to optimise technology acceptability by ensuring 

technologies appeared useful and easy to use. Davis proposed that perceived ease of use of a 

technology could be enhanced by making it easier to use the existing functions.  He proposed perceived 
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usefulness could be enhanced by adding additional functions. There are some possible limitations to 

these methods for promoting acceptance. It is unclear how simply adding more functions to a technology 

will increase perceived usefulness. The model also makes no allowance for the influence of ‘internal 

stimuli’, such as the possibility of users possessing pre-existing technology attitudes, or ‘pre-factual 

attitudes’ (Bagozzi, 2007), which may influence acceptance. 

 

Figure 3. Technology Acceptance Model: TAM2 (Davis, 1993)4 

 

                                                

4 From “User acceptance of information technology: System characteristics, user perceptions and behavioral 

impacts” by F.D. Davis, 1993 (Fig 1). International Journal of Man-Machine Studies, 38, p. 476, © 1993 reproduced 

with kind permission from Elsevier Press  
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Despite the addition of attitudes towards using the technology, the TAM was incomplete. In 2000 Davis 

and his colleague Venkatesh collaborated in developing an extended TAM model they called TAM2 

(Venkatesh & Davis, 2000). The variable ‘subjective norm’ was taken from the Theory of Reasoned 

Action (Fishbein & Ajzen, 1975) on the grounds that even if people do not personally wish to use a 

technology, they may do so anyway if influential people think they should. For the purposes of TAM2, the 

variable ‘subjective norm’ was defined as whether use of a new information system was perceived as 

voluntary or mandatory within a work setting.  

After conducting four IT field trials, Venkatesh and Davis found (somewhat confusingly) that when 

technology use was mandatory, ‘subjective norm’ was more predictive of technology use than perceived 

usefulness and ease of use. However when the technology use was voluntary, ‘subjective norm’ was no 

longer a predictor of use. Therefore, in a voluntary context, the key predictors of technology acceptance 

reverted to being the variables of perceived usefulness and ease of use. To clarify, this implies that when 

people feel they have to use the technology - they will use it: regardless of how useful or easy to use 

they think it is. Conversely, when technology use is voluntary, perceived usefulness and ease of use are 

important to acceptance.  

Can technology acceptance models generalise to eldercare robot acceptance?  

This operationalisation of the variable ‘subjective norm’ in TAM2 is questionable, and the findings appear 

somewhat redundant (i.e. people who have to use the technology tend to use it). Nonetheless, 

mandatory vs. voluntary use may be a useful variable to consider in an eldercare HRI context. There 

may be some potential eldercare robot users for whom the use of the robot cannot be mandated (e.g. 
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older people and their families) and some potential users who are mandated to use the robot as part of 

their employment contracts (e.g. caregivers).  

This implies that perceived usefulness and ease of use may be more important to older users who likely 

have a choice of using the robot or not, and less important for ensuring robot use amongst employees 

who are required to use the robot. However, as Davis (1993) points out, the goal of technology 

acceptance research is not to coerce people into using technologies that are ‘un-useful’ and difficult to 

use. Rather, robotocists may benefit from being mindful that if people who have little choice over their 

technology use, are using, or appear to have ‘accepted’ the technology, that does not necessarily mean 

they are finding it useful or easy to use.    

TAM strengths and limitations 

Even critics acknowledge the contribution of TAMs to furthering understanding of technology 

acceptance. The key merits of the TAM are considered to be that the TAM is both parsimonious (making 

it relatively easy to apply) and predictive of technology acceptance (e.g. Bagozzi, 2007; Legris, Ingham, 

& Collerette, 2003). Another TAM contribution is the focus on users’ subjective perceptions, rather than 

objective measures. A third TAM contribution is the determination that, of the two major predictors - 

perceived ease of use and perceived usefulness - the latter is the more important variable. However 

despite the TAMs considerable contributions to the field of technology acceptance, the model is not 

without limitations. Some TAM limitations are more general in nature, and some limitations may be more 

specific to an eldercare HRI context.  

A general limitation is the questionable operationalisation of some constructs. As discussed in the 

previous section, the variable ‘subjective norms’ may not be well defined in the TAM. Another TAM2 
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variable which may not be well operationalised is attitudes (Figure 3). In the TAM2, technology attitudes 

are defined as ‘behavioural attitudes towards technology use’. As this operationalisation relates to 

attitudes towards the use of the technology, attitudes towards the technology itself may not be 

addressed. A merit of the TAM, its parsimony, may also be a limitation. There are variables which have 

been shown to be predictive of technology acceptance, such as age of the user (Czaja et al., 2006), 

which are not included in the model.   

Another general TAM limitation is that the core construct of ‘technology acceptance’ is not defined. 

(Davis, 1989, did however present two outcomes; ’self-reported use’ and ‘self-reported continued use’, 

that presumably indicated technology acceptance.) In the absence of a firm definition of what constitutes 

‘acceptance’, different researchers have to operationalise acceptance as best they can. This may 

impede the progress of technology acceptance research in several ways. It may impair comparisons 

between studies with different operationalisations of technology acceptance. Secondly, if acceptance is 

inadequately operationalised it may invalidate study findings.  

Issues around the operationalisation of ‘acceptance’ highlight another possible TAM limitation. Despite 

Davis proposed the variables of ‘use’ and ‘continued use’ were related but discrete outcomes (i.e. there 

were some differences between the variables that predicted whether someone would start using a 

technology, and the variables that predicted whether they would continue to use the technology). These 

differences included perceived ease of use being a significant predictor of use for naïve users, but not 

for current users (Venkatesh & Davis, 2000). However the TAM does not accommodate these 

differences. As currently the vast majority of older people and eldercare stakeholders are not current 
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robot users, this lack of consideration of these differences may be a limitation in the application of the 

TAM to the development of acceptable eldercare robots.  

There are also research method issues that may limit the generalisability of TAMs to an eldercare 

context. One is that the majority of TAM studies have been conducted with young people and with 

simpler technologies such as cell phones, computers and information systems, rather than robots 

(Bagozzi, 2007; Flandorfer, 2012; Heerink et al., 2010). Another issue is that most of the studies have 

been conducted in work settings with employees as participants. This may generalise well to an 

eldercare robot context where robots are intended for deployment in an eldercare service environment, 

and the intended users are employed caregivers or health professionals. But it may be a limitation if the 

eldercare robot is intended for a non-organisational environment and the intended users are older 

people. 

The Unified Theory of Acceptance and Use of Technology (UTAUT) 

Perhaps mindful of some TAM limitations, Davis and Venkatesh continued searching for ways to 

enhance the prediction of technology acceptance. The next stage was to synthesise eight models of 

user acceptance into one. The resulting model was termed the Unified Theory of Acceptance and Use of 

Technology (UTAUT:Venkatesh, Morris, Davis, & Davis, 2003).  

In addition to the TAM, the eight models the UTAUT is derived from include the Theory of Reasoned 

Action (Fishbein & Ajzen, 1975), the Motivational Model (Vallerand, 1997), the Theory of Planned 

Behaviour (Ajzen, 1991), the Model of Personal Computer Utilisation (Thompson, Higgins, & Howell, 

1994), and the Innovation Diffusion Theory (E. M. Rogers, 1995). A number of other variables that might 

moderate or mediate technology acceptance were selected from the literature. Potential moderators 
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added to the UTAUT were age, gender, technology experience, and the variable ‘subjective norm’ (from 

TAM2). A further four UTAUT additions were the potential mediating variables of voluntariness, 

performance expectancy, effort expectancy, facilitating conditions and social influence.  

However, some of the ‘new’ UTAUT variables appear similar in construct to the TAM and TAM2 

variables. Venkatesh et al. 2003 defined performance expectancy as the degree to which a person 

believes that using a particular system will enhance his or her job performance. Effort expectancy is 

defined as the degree of ease of system use. The variable of facilitating conditions was defined as the 

degree to which an individual believes that an organisational and technical infrastructure exists to 

support use of the system, and the variable of social influence was defined as the degree to which an 

individual perceives that other influential people believe he or she should use the system.  

These UTAUT definitions for performance expectancy and effort expectancy are almost identical to 

those given for, respectively, perceived usefulness and perceived ease of use from TAM (Davis, 1989). 

Although not explicitly stated, it appears as though existing TAM constructs have been relabelled rather 

than all new constructs created. Confusingly, and possibly reflecting a lack of construct validity, 

examination of the definitions of voluntariness and social influence suggest both constructs have been 

operationalised in a way similar to that of subjective norm from TAM2.  

To validate the new UTAUT, Venkatesh et al. (2003) conducted four workplace IT adoption studies. 

Results showed that the addition of the four moderators and four mediators did increase the proportion 

of usage variance explained. The finalised UTAUT model (Figure 4) accounted for 70% of the variance 

in intention to use the technology (the percentage of variance in actual usage behaviours accounted for 

by the UTAUT was not reported). The study results also indicated that, like the TAM, some initially 
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significant predictors of usage (e.g. effort expectancy aka perceived ease of use) became non-significant 

over time. 

Despite some possible overlap in the constructs of voluntariness and subjective norms, Venkatesh et al. 

(2003) retained both variables in the UTAUT. Variables not retained in the final version of the UTAUT 

include ‘attitude toward using a technology’. Similar to the TAM operationalisation of attitude, the UTAUT 

attitude construct is defined as an individual’s overall affective reaction to using a system. The rationale 

given for removing ‘attitude’ is that despite it being typically the strongest predictor of intention to use the 

technology, Venkatesh et al. found that the attitude variable (as operationalised by them) only 

significantly predicted acceptance when other constructs related to performance and effort expectancies 

are not included in the model. Venkatesh et al. conclude this indicates that any significant associations 

detected between ‘attitude’ and technology usage are spurious only, and result from the omission of 

other key predictors. However an alternate explanation is that the UTAUT ‘attitudes’ construct has been 

mis-operationalised as being very similar to performance and effort expectancy, and thus contributes 

little unique variance to the model.  



  

 

62 

 

 

Figure 4. The UTAUT research model (Venkatesh et al., 2003) 5 

 

Age and gender effects were detected amongst the results of the UTAUT validation studies. Specifically 

performance expectancy (aka TAM perceived usefulness) was found to be more important to men and 

younger workers. In contrast, effort expectancy (aka TAM perceived ease of use) was found to be more 

important to women and older workers, but this importance decreased with increasing technology 

                                                

5 From “User acceptance of information technology: Toward a unified view” by V. Venkatesh, M.G. Morris, G.B. 

Davis, and F.D. Davis, 2003,  MIS Quarterly, (Fig 3) p. 447,  © 2003  reproduced with kind permission of the 

regents of the University of Minnesota 
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experience. It is possible the relationship between age, gender and technology acceptance was 

moderated by technology experience (i.e. if older males had more prior technology experience than 

older women, this may have influenced their greater acceptance of similar technologies), however there 

is insufficient sociodemographic information presented in Venkatesh et al.’s paper to explore this. 

Regardless, age moderated all key relationships in the model. It is interesting that, considering that the 

age range of participants was probably not that wide age, age effects were found. Although age data 

were not provided, all participants were employees and therefore the majority could be expected to be 

less than 65 years old.  

UTAUT strengths and limitations  

Two key strengths of the UTAUT are that is it highly predictive of people’s intentions to use technology 

and the inclusion of sociodemographic factors such as age, gender and technology experience. 

However, like the TAM, the UTAUT is not without limitations. As acknowledged by its authors, the 

UTAUT is predictive but not explanatory, i.e. it does not identify underlying mechanisms that influence 

predictors of acceptance. Venkatesh et al. (2003) identify the variables of computer literacy, societal 

effects, and gender roles, as candidates for research into these underlying mechanisms. They also 

suggest research on identification of causal antecedents of the UTAUT constructs. Possible antecedents 

proposed for further study include system characteristics, self-efficacy, task-technology fit, behavioural 

expectation, habit, and individual ability constructs such as ‘g’ (general cognitive ability).  

The UTAUT has the strengths of the TAM such as its emphasis on users’ perceptions and expectations 

of the technology but also contains some of the same limitations. As Venkatesh et al. (2003) 

acknowledge; like the TAM, the UTAUT has been designed for and validated within an organisational 
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context and with information systems technologies, which may limit generalisation to other contexts. 

Additionally, like the TAM authors, despite the UTAUT authors recognising differences between naïve 

technology users and continuing users, they do not accommodate these differences in the models. A 

further TAM similarity is that the operational validity of some UTAUT constructs is questionable. Bagozzi 

(2007) is critical of the reliance of the TAM (and the theories of Reasoned Action and Planned Behaviour 

that the TAM is derived from) on “naïve and over-simplified notions of affect and emotions”. Bagozzi 

advises caution with regard to research conducted with, or based on, these models or their constructs 

Despite these criticism and limitations, technology acceptance models like the UTAUT and TAM have 

their strengths and have made considerable contributions to the field of technology acceptance. Not the 

least of which is to orient the thinking of technology designers to creating technologies that are 

acceptable to users, as well as the assessment of acceptance. 

 

HRI studies based on the TAM/UTAUT  

De Ruyter, Saini, Markopoulos, and Van Breemen (2005) appear to be amongst the first researchers to 

incorporate the UTAUT, and the concept of technology acceptance, into the design of an HRI study. The 

study assessed how people responded to two conditions of the interactive robotic iCat. In one condition 

the iCat was socially expressive and in the other condition it was socially neutral. Participants were 15 

women and 21 men (age, occupation and ethnicity not reported) with “at least some basic experience of 
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using email and the internet”. They were randomly assigned to one of the two iCat robot conditions. The 

‘Wizard of Oz’ method6 was used to operate the iCat.  

Participants were given two tasks to complete with the iCat’s support. The tasks were to record some TV 

programmes using a DVD recorder and purchase several items via an online auction. The interaction 

was video recorded and questionnaires administered immediately after the interaction. To measure 

technology acceptance the item ‘intention to use’ was adapted from the UTAUT. Participants were asked 

how much they would (hypothetically) like to use the iCat at home after the experiment. Although the 

effect sizes were not reported, compared with people in the socially neutral iCat condition, participants in 

the socially intelligent iCat condition were significantly more interested in using the iCat in their own 

home. They also reported significantly more satisfaction with the DVD recorder.  

However, the findings reported by De Ruyter et al. (2005) may need to be considered in light of a lack of 

participant sociodemographics. Not all variables from the UTAUT were assesed and missing information 

inluded participants’ ages and details of prior technology experience: both variables that have been 

shown to predict technology acceptance. It is possible that participants’ level of technology experience 

may have influenced their acceptance of the iCat. De Ruyter et al. noted that several participants 

struggled with the technologies, but did not say which iCat condition they were in.  

The Almere model 

Marcel Heerink’s research team from the Windesheim Flevoland University of Applied Sciences in 

Almere, The Netherlands, developed a model of robot acceptance. Named the Almere Model, the new 

                                                

6 The ‘Wizard of Oz’ method refers to the use of a robot that appears autonomous; but in reality is being 

partly or completely remotely controlled by a human operator. 
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model was based on the UTAUT. Heerink et al. (2010) chose to modify the UTAUT rather than using the 

original model as they theorised that some aspects of the UTAUT may not generalise well to the 

eldercare robot context. These aspects inlcude the UTAUT not having been developed with elderly users 

and not accommodating aspects of interactions with more social embodied technologies such as robots 

and on-screen characters.  

Construction of the Almere model included adding further variables to the UTAUT. One such variable 

was ‘attitude’. As Venkatesh et al., 2003, had removed the attitude variable from the UTAUT, this was 

the first incorporation of both the UTAUT and an attitudes construct into an eldercare HRI context.  

Heerink et al. operationalised the attitude construct as “positive or negative feelings about the appliance7 

of the technology”. The three attitude items in the Almere questionnaire were; I think it’s a good idea to 

use the robot, the robot would make my life more interesting, and it’s good to make use of the robot. 

Similar to the UTAUT attitude construct, the operationalisation of the Almere attitude construct appears 

to reflect attitudes towards using the technology and not attitudes towards the technology itself. 

Examination of the Almere attitude items suggest the first and last of the three attitude items relate to 

intentions to use the robot, and the middle item appears to relate to perceived benefits of use, or, 

rephrased, perceived usefulness. Similar to the UTAUT attitude items, the Almere model items appear 

less to reflect attitudes towards the robot as a whole, but more reflect some overlap with the variables of 

intention to use, and perceived usefulness. 

                                                

7 “…the appliance of the technology” is taken to mean the application, or use, of the technology. 
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In validating the Almere model, Heerink et al. (2010) conducted four studies using social agents and 

older people. Structural equation modeling was run on the pooled results. Two of the four studies were 

conducted with the iCat, one with a video of a Robocare robot, and one with a screen agent. In the first 

iCat experiment, the Wizard of Oz iCat had two conditions; socially expressive (e.g. using the 

participant’s name and making eye contact) and not socially expressive. After an introductory session, 

older participants interacted with the iCat for approximately three minutes. Participants could use the 

iCat to set an alarm and get the weather forecast, or directions to the nearest supermarket. 

Questionaires were completed after the HRI. Results showed that, compared with people in the less 

expressive iCat condition, participants in the more socially expressive iCat condition had more intention 

of using the iCat, and found their iCat was more enjoyable to use and had more social presence.  

In the second experiment; older participants were allocated to watch one of two short HRI videos. The 

videos showed a cylinder-shaped mobile Robocare robot interacting with an eldery actor. In one video 

the robot was responsive to the user and anticipated their needs (e.g. reminding them when they forgot 

their medications) and in the second video the robot was not anticipatory and only responded to the user 

upon request. A questionnaire was administered to participants after they viewed the video. Study 

results indicated, compared with peoples’ ratings of the less responsive robot, people who viewed video 

of the more responsive robot had higher intentions to use that particular robot, scored more highly on the 

attitude variable, and rated the robot as more enjoyable and more useful. However, people in the more 

responsive robot condition also reported significantly more anxiety. This suggests that anticipating user 

needs may not be a completely desirable characteristic for an eldercare robot. However, as participants 

did not use the robot themselves, it is possible this finding is an artefact of the video methodology.    
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Heerink et al.’s (2010) third study measured actual use of an iCat in a retirement village over seven 

days. This study did not use a Wizard of Oz scenario as is typical for iCat trials; rather, participants 

interacted with the iCat via a nearby touch screen interface. Using the touch screen, users could select 

TV programmes, the weather forecast or a joke. At the start of the study, the 30 retirement home 

participants had a three minute introductory interaction with the iCat and then completed a 

questionnaire. The iCat was subsequently placed in a tearoom within the retirement village where 

participants and passers-by could use the robot as they chose.  

The questionnaire was administered after the brief introductory session, but before the iCat was placed 

in the tearoom. The acceptance outcome variable ‘intention to use’ was included in the questionnaire. 

Results showed participants’ intentions to use the iCat were predicted by perceived ease of use and 

attitudes. This means that the residents who had more positive attitudes towards the iCat and thought it 

would be easy to use, were also more likely to report intending to use it. People’s intentions to use the 

iCat were positively correlated with how long they spent using it later in the tearoom. Similar to the 

second experiment with the Robocare robot videos, attitude also significantly predicted intention to use 

the iCat.  

The fourth Almere study involved 30 older users (65-89 years) who owned computers. An on-screen 

cartoon character, Steffie, was installed on participants’ computers. Steffie had been developed to assist 

older people in using the internet for tasks such as email, health insurance, cash dispensers, and railway 

ticket machines. After installation of ‘Steffie’, participants were given an introduction to the character’s 

functions and asked to complete a questionnaire. Participants’ usage of the character was assessed 
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over the next 10 days. Study results showed participants’ intention to use the screen character again 

was predicted by perceived usefulness and the attitude variable.  

Results from the four studies were pooled to create the final Almere model, which differed from its parent 

UTAUT model in several ways. The acceptance outcome, or dependent, variable of ‘actual use [of the 

technology]’ has been removed as an outcome and replaced by ‘intention to use’. Heerink et al. (2010) 

consider the Almere model demonstrates the importance of the attitude variable as it was one of the 

most significant predictors of intention to use the technology. They further suggest there may be 

“different types of attitudes” that should be investigated. Similar to De Ruyter et al.’s (2005) iCat study, 

Heerink et al. did not include the UTAUT moderators of age and technology experience in the Almere 

model despite the focus on eldercare robots and the use of older participants. (However, they do 

recommend these variables for future research.) 

Overall, while these studies and models have limitations, which are inevitable in complex exploratory 

research, the findings suggest that concepts from technology acceptance type models can be usefully 

employed in an eldercare HRI context. Other models which may help address some UTAUT limitations 

are the Diffusion of Innovations and Expectation-Confirmation models. The applicability of these models 

to an eldercare HRI context is discussed in the next section. 

Theory of Innovation/technology diffusion  

Although the model of technology diffusion (also referred to as the diffusion of innovations) was one of 

the six models the UTAUT was synthesised from, the original technology diffusion model has some 

features which were not incorporated into the UTAUT. These missing features may be pertinent to the 

eldercare HRI context.  
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Figure 5. The Almere Model; final path estimates (Heerink et al., 2010)8 

*p< 0.05, **p< 0.005 

 

The theory of diffusion of technology refers to the spread from the technology source to an adopter; of 

ideas, technical information, and actual practices within a social system. The spread is usually via 

communication and influence, and the form of these communications can alter an adopter’s probability of 

adopting a system (E. M. Rogers, 1995). People like what they know, they tend to be cautious about 

                                                

8 From “Assessing acceptance of assistive social agent technology by older adults: the Almere Model,” M. Heerink, 

B. Kröse, V. Evers and B. Wielinga, 2010, International Journal of Social Robotics, (Fig.8) p. 372. © 2010, 

reproduced with kind permission from Springer Science+Business Media B.V. 
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novelty and change, and the rate of adoption tends to decrease the more radical the technology (Greve, 

1998). As older people tend to be less familiar with technologies, and robots are ‘discontinuous’9 

technologies (Flandorfer, 2012), this technology diffusion issue appears relevant to eldercare robots. 

A factor commonly associated with diffusion of innovations is adopters’ perceptions of benefits and 

costs. The costs of innovation adoption can be financial; or non-financial – such as perceived risks 

associated with adopting the technology (Wejnert, 2002). Direct costs usually relate to the financial 

situation of the adopter. Indirect costs may be less obvious, but can still significantly decrease adoption. 

Examples of indirect costs include technical uncertainty – such as how much training is required (Gerwin, 

1988), or social uncertainty – such as anticipation of conflict or disapproval resulting from adoption 

(Rosero-Bixby & Casterline, 1993). The innovation diffusion barrier of both direct and indirect costs may 

be very applicable to an eldercare robot context. For example, the indirect cost of stigma has been 

identified as a barrier to older peoples’ adoption of some assistive technologies (Hirsch et al., 2000).  

The type of adopter is also proposed to be associated with the rate of technology adoption. The 

innovation adopter categories proposed by E. M. Rogers (1995) have worked their way into common 

lexicon. The five categories are innovators, early adopters, early majority, late majority, and laggards. 

Characteristics of the people in the innovator category include being the youngest of the five categories 

in age, having high tolerance for risk, being very social, and having close links to scientific resources and 

other innovators. Like the innovator group, early adopters tend to be young in age. They also tend to 

have more financial resources, higher education, and be more sociable than later adopters.  

                                                

9 Terms that are used interchangeably with ‘discontinuous’ to describe innovations that substantially 

different from existing technologies include ‘disruptive’ and ‘radical’. 
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The third category of technology adopters, the early majority, tends to be slower to adopt innovations 

compared with innovators and early adopters. People in the fourth category, the late majority, are 

sceptical about innovation and will only adopt after the majority of society has already done so. They 

also tend to have lower social status and have less discretionary income. The last self-explanatory 

adopter category, the laggards, are the last people to adopt an innovation. They tend to have an 

aversion to change and be of the older generations. Laggards tend to have lower social status, have less 

discretionary spending, and be least sociable - often only in contact with close friends and family. 

However, as well as user characteristics influencing adoption rates, E. M. Rogers (1995) noted adoption 

is also influenced by charateristics of the innovation itself. Some of these are relative adavantage, 

compatibility, complexity, and triability. Relative advantage relates to whether the innovation give an 

advantage to adopters over non-adopters. Compatability relates to how easy is it for the user to 

assimilate the innovation into their life. The complexity of an innovation refers to the tendency for people 

who percieve that an innovation is difficult to use are unlikely to adopt it. And the innovation 

characteristic of trialability suggests that people who are are able to ‘try before they buy’ are more likely 

to adopt the innovation.  

Some overlap of innovation diffusion constructs and TAM and UTAUT constructs are evident. This is to 

be expected, since the innovation diffusion theory was one of the theories from which the TAM was 

derived. However, some characteristics, such as trialability may be important in an eldercare context 

involving unfamiliar discontinuous technologies such as robots. Furthermore, older age is associated 

with the technology adoption category of laggards. While this is not explanatory, the categorisation 

supports the notion that older people may need a different approach to younger people when it comes to 
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encouraging adoption of new technologies. The innovation diffusion theory also supports the notion that 

encouraging acceptance of discontinuous innovations, such as eldercare robots, may require a different 

methodology from that of continuous innovations, such as a new model of cell phone, or a new computer 

software programme.  

Expectation-Confirmation Theory  

Although derived from the TAM and innovation diffusion theory, amongst others, another model that may 

assist in addressing limitations of the UTAUT and Almere models is a modified expectation confirmation 

model. Bhattacherjee (2001) synthesised expectation confirmation theory from the consumer behaviour 

literature, innovation diffusion theory (E. M. Rogers, 1995), the TAM (Davis, 1989) and the theory of 

planned behaviour (Ajzen, 1991). The resulting model was called the Expectation-Continuation model of 

IT use (ECM-IT: Figure 6). 

Two key aspects of the ECM-IT are the role of users’ expectations of technology use and a distinction 

between first time and current users. Satisfaction (or not) with the technology will be determined by 

whether the users’ expectations are met, unmet, or exceeded. The specific distinction between first time 

and existing users is that existing technology users will have their expectations formed by actual 

experience of the technology. In contrast, novice, or first time users, not having this prior experience will 

have had their expectations formed by other sources such as friends and family, the media and 

marketing materials. This distinction between novice and current users was noted by the TAM and 

UTAUT authors, but not incorporated into their technology acceptance models. No HRI studies have 

been located that have used the ECM-IT. 
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Models- conclusion  

Models can provide a useful theoretical basis from which to assess human-technology interactions, but 

do not usually address the specifics of how to measure them. Determining which variables of the 

complex and variable HRI are important to acceptance can be daunting in an emerging multi-disciplinary 

field. Researchers have identified problems with interdisciplinary knowledge transfer and a lack of 

human-centred HRI evaluation methods and measures as a barrier to progress in human-interactive 

robotic intelligent systems (Burke, Murphy, Rogers, Lumelsky, & Scholtz, 2004). To redress this lack, 

several researchers have complied HRI metric toolkits. 

 

Figure 6. The ECM-IT: A post-acceptance model of information system continuance (Bhattacherjee,2001)10 

                                                

10 From “Understanding information systems continuance: An expectation-confirmation model” by Bhattacherjee, 

2001, MIS Quarterly, 25 (Fig 2) p. 356,  © 2001 reproduced with kind permission of the regents of the University of 

Minnesota 
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2.2. Evaluation of robot acceptability  

There are numerous challenges in evaluating the acceptability of interactive robots. As discussed in the 

previous section, the outcome ‘technology acceptance’ has not actually been defined in the technology 

acceptance models. It can be concluded from the operationalisation of technology acceptance model 

outcomes that acceptance can be inferred from intentions to use the technology as well as actual use of 

the technology. In contrast the definition of eldercare robot acceptance used in this thesis- that older 

people willingly incorporate the robot into their lives - reflects adherence, or long term continued use of a 

robot, constitutes full acceptance. 

But regardless of how robot acceptance is determined; intentions to use, actual use, or long term use,  

how do researchers determine which HRI variables should be assessed in order to evaluate robot 

acceptability? Which of the many HRI variables predict acceptance?  

While results from technology acceptance model research provide strong evidence for perceived ease of 

use and perceived usefulness being the dominant predictors of technology acceptance, there are two 

issues with these variables. One is that the models were not developed for embodied technologies such 

as robots in complex eldercare environments. It is possible that there are variables that predict robot 

acceptance that are unique to the HRI context, and these unique variables may be missing from existing 

generic technology acceptance models. Additionally, technology acceptance models have been 

criticised for being predictive, but not explanatory. This criticism is acknowledged by Davis (1993) and 

Venkatash (2003) who suggest a range of additional possible predictor variables to be studied, as well 

as suggesting that the antecedent predictors of perceived usefulness and ease of use should be 

determined.    
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A further barrier to determining which are the critical HRI variables requiring evaluation, is the diversity of 

HRI contexts. An HRI environment could be anything from a kindergarten to a privately owned home to 

an eldercare facility to a shopping mall to the army. Robot users could range from children to older 

people to soldiers.  

In consideration of the impossibility of developing HRI evaluation methods that address all possible HRI 

scenarios, Steinfeld et al. (2006) focused on developing an HRI assessment toolkit for a search and 

rescue robot-human team scenario. However, despite the HRI context, most of the HRI variables that 

Steinfeld et al. propose for evaluation refer to more technical aspects of the robot (e.g. manipulation, 

communications; delay, jitter, bandwidth, system performance, situation awareness, navigation etc.) and 

there is relatively little consideration of human user.  

However, Steinfeld et al.’s (2006) HRI evaluation toolkit does offer some human-centred HRI variables, 

or user-metrics, for evaluation. Although not intended for an eldercare robot context, some of these HRI 

variables may be particularly relevant to eldercare HRI. Under the ‘user metrics’ section, Steinfeld et al. 

discus how performance shaping factors (PSFs) can influence human behaviour and performance. PSFs 

include operational factors, equipment factors, task factors, external environmental factors, and personal 

factors. The latter includes stress, motivation, and training. This may be important for eldercare robot 

acceptance. Inadequate training for older people has been identified as a barrier to acceptance of 

assistive technology (Magnusson, Hanson, & Borg, 2004).  

Another user-metric listed by Steinfeld et al. (2006) is ‘human role’. Five different human HRI roles are 

proposed; supervisor, operator, mechanic, peer, and bystander (Scholtz, 2003). People in different HRI 

roles may require different information. While the specified roles reflect the authors’ search and rescue 
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focus, the concept of multiple human HRI roles is applicable to the eldercare environment with its 

multiple eldercare stakeholder categories. For example potential older users may have quite different 

motivations for using (or not) healthcare robots compared with the motivations eldercare service 

providers may have for purchasing (or not) eldercare robots. Practical and informational resources 

provided to eldercare stakeholders about eldercare robots should accommodate these different 

motivations.  

Multi-disciplinary methodology challenges are apparent in the HRI category of ‘social metrics’, where 

Steinfeld et al. (2006) consider the difficultly of determining whether engineering, psychological, or 

sociological metrics are best for assessing robot ‘social effectiveness’. In consideration of the diverse 

HRI literature, Steinfeld et al. suggest five social assessment HRI metrics; interaction characteristics, 

persuasiveness, trust, engagement, and human compliance. The latter metric of human compliance may 

be influenced by robot social characteristics such as appearance and social norms. Assessment of 

effectiveness of robot design characteristics can be assessed by human compliance with a specified HRI 

task. For example, in an eldercare environment, the effects of different robot appearances could be 

measured against an older person’s compliance with a robot’s medication management programme. 

Under the ‘operator performance’ category, Steinfeld et al. (2006) list the HRI metric of ‘accuracy of 

mental models of device operation’. This metric describes how stimulus-response compatibility, design 

affordances, and operator expectations, can all impact human performance. The benefits of matching 

robot interface displays and controls to human mental models may include reductions in mental 

transformations of information, faster learning, and reduced cognitive load. This may be relevant to an 

eldercare context for several reasons. One reason is robot design that ‘affords’, or promotes, intuitive 
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use will likely improve acceptance amongst older people who have low levels of technology experience. 

Another complementary reason is some older people may have a high cognitive burden due to fatigue 

and dementia type conditions. Minimising the cognitive burden of using a robot may increase robot 

acceptance for these users. 

While researchers such as Steinfeld et al. (2006) have published HRI evaluation tools that have task-

oriented contexts such as search and rescue, other researchers, such as Kahn et al. (2007) have 

published evaluation tools that are oriented to a social human-like robot context. Kahn et al. begin 

justifying their focus on humanlike robots by acknowledging there are situations where a humanlike robot 

may be disadvantageous. For example, a machinelike, rather than humanlike, robot may be more suited 

to helping an older person with personal hygiene tasks where privacy is paramount, such as toileting. 

Another reason not to build humanlike robots is to avoid the dangers of the uncanny valley (Mori, 1970) 

– a phenomena that describes how people may respond negatively to an agent that is almost, but not 

quite, human. However Kahn et al. propose there are advantages to humanlike robots. One advantage 

is that human-like robot design may optimise intuitive human-robot communication, and another is that 

humanlike robot design may confer more ‘companionship’ benefits than non-human looking robots.  

To assess the “success” of humanlike robots, Kahn et al. (2007) propose six psychological benchmarks; 

autonomy, imitation, intrinsic moral worth, moral accountability, privacy and reciprocity. Kahn et al., do 

not define success in a humanlike HRI context, rather they state that determining the correct HRI 

benchmarks will help answer the fundamental question of what it is to be human. Reflecting this 

philosophical mind-set, the proposed benchmarks are described from a human, not robot, perspective. 
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For example, ‘autonomy’ in this framework refers to human perceptions of robot autonomy, not whether 

the robot is actually autonomous or not.  

The discussion of the first benchmark of autonomy presents philosophical rather than practical issues. 

These include consideration of the associations between autonomy and morality, and the proposal that 

we will understand under what conditions people perceive humanoid robots as autonomous, when we 

understand under what conditions people attribute autonomy to themselves and others. The second 

benchmark is imitation (whether and how people will imitate robots). The third benchmark is intrinsic 

moral value. Kahn et al. (2007) claim that understanding whether people will accord humanoid robots 

intrinsic moral value, will illuminate the moral underpinnings of the HRI. The practical implications of this 

are not discussed, but some complex scenarios are presented as a method of assessing how much 

intrinsic moral value people believe robots have. The proffered scenarios involve people needing to 

choose between their own self-interest or a robot’s interest; such as whether a human should go out 

socialising in the evening or stay home with a humanoid robot who claims to be traumatised after a 

burglary.  

The fourth ‘success’ benchmark is whether people will come to hold robots morally accountable for their 

behaviour. Again, no practical implications are offered, but the authors suggest this will increasingly 

become an issue as robots become more humanlike. A fifth benchmark question relates to privacy. Can 

humanoid robots, even if they are not networked with a survaillance system, infringe on human privacy? 

A rationale for the inclusion of the the sixth and last benchmark of reciprocity (i.e. “do unto others as you 

would have them do unto you”), is that reciprocity is commonly considered a central feature of the moral 

life.  
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In summary, the orientation of Kahn et al.’s (2007) paper is philosophical, with an emphasis on human 

perceptions of robot morality. Limitations of the paper include neither empirical support nor the provision 

of practical implications for these proposed HRI success benchmarks. However the paper appears more 

intended to stimulate debate around these concepts rather than to offer concrete solutions. 

Another set of HRI evaluation guidelines that has focused on humanoid robots has been produced by 

Weiss, Bernhaupt, Lankes, and Tscheligi (2009). The authors synthesised the HRI evaluation literature 

(including Steinfeld et al.’s, 2006, HRI assessment toolkit), to produce an evaluation framework for 

human-robot collaboration with a humanoid robot. The authors also incorporated the UTAUT into their 

framework. Abbreviated to USUS, the framework has four evaluation goals; robot usability, social 

acceptance, user experience, and societal impact. Weiss et al. consider these factors as being most 

important to the integration of humanoid robots into a human working environment.  

It is unclear why Weiss et al. have focused on humanoid robots (nor is ‘humanoid’ defined), but, like 

Kahn et al. (2007) they suggest a humanoid robot form may provide a more socially-intuitive HRI 

interface than a non-humanoid one. Weiss et al. acknowledge this claim is largely untested and also 

acknowledge opposing claims that a non-humanlike robot form is best as humanoid features may 

generate unrealistic expectations, or even fear, of a robot’s abilities.  

Weiss et al (2009) use the term ‘metrics’ to describe the HRI variables that will determine whether a 

particular evaluation goal is met. Usability - one of the four USUS evaluation goals – contains six metrics; 

effectiveness, efficiency, learnability, flexibility, robustness, and utility (Weiss et al., 2009).  

Another of the USUS evaluation goals – social acceptance - contains seven metrics. Four of the seven 

social acceptance metrics are derived from the UTAUT; performance expectancy, effort expectancy, 
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self-efficacy, and attitude toward using technology. The latter metric of attitude is defined (similar to the 

UTAUT attitude construct) as “the sum of all positive or negative feelings and attitudes about solving 

working tasks supported by the robot”.  

The third USUS evaluation goal of user acceptance has five metrics; emotion, human-oriented 

perception, feeling secure, co-experience with robots, and embodiment. The inclusion of embodiment is 

justified on the grounds that robot variables such as morphology impact on social expectations.  

The fourth and last USUS evaluation goal - societal impact of humanoid robots – has four metrics; quality 

of life, health and security, working conditions and employment, cultural context and education. Weiss et 

al. mention the importance of educating people about robots to reduce the fear of being replaced. 

Although eldercare robots do not need to be humanoid; the latter metric of societal impact may have 

application for eldercare robots considering the complex social environment many older people live in. 

The USUS framework also describes three types of HRI study environments; laboratory based, the 

Wizard of Oz technique, and field-based. Researchers are cautioned that while field-based studies are 

useful for testing a system in a realistic usage context, the additional variables make interpretation and 

analysis of data more difficult. Lastly, the USUS describes four user assessment methods; standardised 

questionnaires, physiological measurements, focus groups, and in-depth interviews. Overall, the USUS 

framework contains extensive HRI metrics, some of which appear relevant to an eldercare context, but 

(arguably beyond the scope of the framework) provides few methodologies for evaluating these HRI 

constructs and variables. 

Other researchers, such as Bethel and Murphy (2010), have bridged the gap between theory and 

practical application. Their goal is to assist multi-disciplinary HRI researchers design better quality 
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studies. In their review of HRI methodologies, not only do Bethel and Murphy highlight that existing HRI 

frameworks and evaluation tools tend to be technology focused, but they also tend to lack practical and 

validated implementation methodologies. Consequently, their review both advises increased 

measurement of psychological HRI aspects and suggests methodologies for application of these 

evaluation tools 

Bethel and Murphy (2010) make two key recommendations for HRI experimental design and study 

execution. These are the use of larger sample sizes and triangulation of measures (the use of three or 

more study measures). Larger sample sizes will increase the likelihood of obtaining a more 

representative sample of participants. Larger sample sizes also increase the likelihood of detecting 

significant effects.  

Triangulation of measures has several benefits. As all measures have their strengths and limitations, the 

use of multiple types of measures will help ‘plug gaps’ in the limitations of other measures. A second 

benefit is, due to the complexity of the HRI, the use of multiple measures will give a more comprehensive 

understanding of study events.  

In recommending multiple measures, Bethel and Murphy (2010) describe the strengths, limitations and 

potential pitfalls associated with five methods of HRI evaluation. The methods are self-assessment, 

observational or behavioural measures, psychophysiology measures, interviews, and task performance 

metrics. Self-assessments, or self-report, can provide valuable information, but are also subject to 

confounds. These include, through lack of awareness, participants unintentionally misreporting their ‘true 

feelings’ about an object or interaction. Another potential confound is socially desirable responding, or 

impression management. This also describes situations where participants misrepresent themselves, but 
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in this case they do so to present themselves favourably to researchers and peers, or to avoid 

responding in ways that cause them embarrassment.   

The second recommended HRI assessment method is behavioural measures. These are defined as 

observing behavioural patterns in people in particular context to obtain information about a particular 

construct (B. Johnson & Christensen, 2004). While a benefit of behavioural measures is that they are 

more objective than subjective self-report measures, even behavioural measures are not free of potential 

confounds. The Hawthorne or measurement effect describes the phenomenon where the sense of being 

observed causes a person to alter their natural behaviour (Adair, 1984). The main advantage of the 

fourth recommended method - psychophysiology measures such as blood pressure and salivary cortisol 

- is that they are objective. It is difficult for people to consciously manipulate physiology measures.  

The fifth recommended HRI assessment method is interviews. Like self-report, interviews can be rich 

sources of data but are also subject to similar confounds such as socially desirable responding. The 

sixth and last assessment method of performance metrics measures how well a person or team 

performs or completes a task. Bethel and Murphy (2010) make a number of other HRI methodology 

recommendations. These include; awareness of self-selection bias (participants who volunteer for HRI 

studies may not be representative of the general population and therefore their responses may not be 

representative); consideration of the HRI study environment (it should as closely as possible 

approximate the intended robot deployment environment); and also being aware that measures from 

social and individual psychology, and even from HCI, may not necessarily generalise well to HRI. 
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Conclusion 

There are several models of acceptance that may be useful for understanding human acceptance of 

eldercare robots. Early results from HRI studies using the UTAUT and Almere models suggest promise 

for these models in an eldercare context. However there are issues with operationalisation of constructs, 

particularly robot attitudes. Additionally the models may not sufficiently address differences between 

older technology users and younger users, between novice and existing users, or differences between 

less familiar discontinuous technologies such as robots and more familiar continuous technologies such 

as computers or cell phones. The inclusion of aspects of other models, such as innovation diffusion and 

ECM-IT, may provide options for addressing aspects unique to the eldercare HRI.  

There are a number of HRI variables that are recommended for assessment in order to determine the 

success of an HRI. Despite not being oriented to eldercare, some of these may be applicable to an 

eldercare environment. If eldercare robotocists have access to reliable and valid measures of robot 

acceptance, this may help progress the field by facilitating cross-study comparison. However, generic 

HRI variables, measures, and methods should be critically examined to assess their generalisability to a 

specialised context such as eldercare.  

Despite some limitations, a common theme is that understanding peoples’ expectations and perceptions 

of socially assistive robots, and their attitudes towards these robots, appears to be important to 

understanding their acceptance of robots. Consequently, people’s attitudes towards robots and the role 

of these attitudes in the acceptance of robots are examined in more detail in the next chapter.  
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 Human attitudes towards robots  Chapter 3.

Preamble  

As discussed in chapter one, it is common for people to hold attitudes about robots, even though they 

may have little knowledge or experience of robots. Qualitative reports indicate that there are mixed 

responses to the concept of eldercare robots. Some people have positive attitudes towards eldercare 

robots, others have negative attitudes. The proportion of people who have negative responses appears 

significant, and may be a barrier to the acceptance of eldercare robots. Indeed, Nomura, Kanda, and 

Suzuki (2006) noted high levels of (generic) negative robot attitudes during exploratory studies. 

Anticipating these negative attitudes may be a barrier to people engaging with robots they developed the 

Negative Attitudes towards Robots scale (NARS) specifically to better study the phenomenon. 

Chapter outline 

Section 3.1 of this chapter will review other studies that have assessed people’s robot attitudes. The 

review will include the methodologies, contributions and limitations of these robot attitude studies. There 

will be a particular focus on the validity of operationalization of robot attitudes, and assessment of robot 

acceptance. (As the focus of this thesis is on the specific HRI context of eldercare robots, only studies 

with adult participants are included.) 

As discussed in chapter one, qualitative reports also indicate negative attitudes towards robots are 

commonly associated with perceptions of robots as humanlike. Consequently, section 3.2 will examine 

theory and research that might explain this phenomenon, including anthropomorphism and the uncanny 
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valley. Other topics include the possible origins of people’s robot attitudes. Finally, the implications of 

robot attitudes in relation to robot acceptance are discussed.  

3.1. Review of studies of robot attitudes in adults  

Measures of robot attitudes 

Attitudes are intangible positive or negative evaluations of an object of thought (Weiten, 2004). People’s 

attitudes towards robots must be inferred from peoples’ emotions or feelings towards robots, behaviours 

towards robots, and/or cognitions about robots. Consequently there are a variety of methods to assess 

people’s attitudes towards robots. These methods include self-reports of affect/emotions, or intentions to 

use a robot, through to behaviour assessment and physiological measures. The studies of robot 

attitudes that follow are grouped by the methods they have used to assess attitudes towards robots. 

UTAUT and robot attitudes 

Ezer, Fisk, and Rogers (2009) used the UTAUT principles to assess people’s robot acceptance in a mail 

survey. There were three, five-point Likert-style robot attitude items: Bad-Good; Unfavourable-

Favourable; and Negative-Positive. There were also three, five point Likert-style items for ‘intentions’ 

(robot acceptance). The three intentions items were: Not Buy It-Buy It: No Intention-Strong Intention; and 

Unlikely-Likely. In the survey, participants were asked to respond to their idea of a domestic robot. 

Results for the mixed-age participants showed that age and robot experience were not related to robot 

acceptance. However, higher levels of technology experience were associated with higher robot 

acceptance. The results support the concept that people who are generally more familiar with technology 

are more accepting of robots. It may be that robot experience was not correlated with robot acceptance 

as too few people have experience with robots, or the robot experience participants did have, was not 
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congruent with their mental schema of the domestic robot they were asked to imagine. It is unknown if 

this operationalization of robot attitudes would translate to an actual HRI. 

Heerink et al.’s research group have combined the UTAUT with eldercare, and incorporated embodied 

robots. Prior to publication of Heerink et al.’s (2010) paper describing their Almere model of robot 

acceptance, Heerink, Kröse, Evers, and Wielinga (2009) published another paper containing additional 

detail on one of the iCat studies that was to later inform the Almere model. The methodology of this 

eldercare HRI/iCat study included both measures of attitudes and a behavioural measure of robot 

acceptance – how long participants used the iCat for. The study procedure involved older people being 

administered questionnaires containing a modified version of the UTAUT (later termed the Almere mode) 

following a brief interaction of the iCat. The questionnaire attitudes items were the same three items 

described in the Almere model (i. I think it’s a good idea to use the robot, ii. The robot would make life 

more interesting, and iii. It’s good to make use of the robot). After completion of the questionnaire, 

participants were given the option of using the iCat in a public tearoom over a seven day period.  

Results from hierarchical regression showed robot attitudes and perceived ease of use of the robot were 

the only two (of six) variables to significantly predict intentions to use the iCat. In turn, intentions to use 

the iCat significantly predicted the robot acceptance outcome of how many minutes the participants 

actually spent using the iCat in the tearoom (however, the other two variables included in that 

regression, facilitating conditions and social influence, did not).  

This finding that people’s intentions to use a robot significantly predicted their actual robot usage is 

important. For practical reasons there is often no opportunity to measure people’s degree of technology 

acceptance by assessing if they use, or continue to use, the actual technology. Consequently in the TAM 
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and UTAUT, the outcome variable of ‘intention to use’ is used as a convenient substitute for actual use 

of the technology. However there are some issues with this assumption. In psychology it is well accepted 

that intentions are imperfect predictors of behaviours - to the extent the phenomenon is known as the 

intention-behaviour gap (Kollmuss & Agyeman, 2002; Sutton, 1998). For example, a meta-analysis of 

meta-analyses indicated that behavioural intentions explain, on average, 28% of the variance in actual 

behaviour (Sheeran, 2002). In Heerink, Kröse, et al.’s (2009) study, the correlation between participants’ 

intention to use the iCat and how many minutes they actually spent using it was r = .63, p <.00. While 

this is a strong correlation, the strength of the association between the two variables is not at 

multicollinearity levels, i.e. the two variables are distinct, non-interchangeable, variables. Therefore 

peoples’ reported intentions to use a robot are predictive of, but not the same construct as, actual use of 

a robot. 

While these findings need verification, they have two important implications for assessing acceptance of 

robots. One is that it appears that intentions to use a robot can sometimes be a valid interchangeable 

measure for use, or acceptance, of a robot. However the second implication is that while intention to use 

a robot may predict use of a robot, it does not mean that someone who indicates they intend to use the 

robot will definitely do so. This suggests that intention to use a robot is be a valid measure of 

acceptance, but is a weaker, less proximal, indication of acceptance compared with actual use of a 

robot.  

Negative Attitudes towards Robots Scale: NARS  

Tatsuya Nomura of Ryukoku University, Japan, developed the NARs to better understand the apparently 

high levels of negative attitudes towards robots (Nomura, Kanda, et al., 2006). The NARS items were 
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derived from surveys, and measures of computer anxiety (Hirata, 1990) and communication 

apprehension (Pribyl, Keaten, Sakamoto, & Koshikawa, 1998).  

The NARS was back-translated into English and validated in an HRI study (Syrdal et al., 2009). Factor 

analyses of the NARs resulted in some items being deleted to obtain a satisfactory Cronbach’s Alpha of 

.80, and a tentative re-formulation of three NARs subscales. The resulting measure retained the three 

subscales and 11 items. The first subscale, Future/Social influence, contained three items: “1. I feel that 

if I depend on robots too much, something bad might happen”; “2. I am concerned that robots would be a 

bad influence on children”; and, “3. I hate the idea that robots or artificial intelligences were making 

judgements about things”. The second subscale, Relational attitudes, contained five items: “4. I would 

feel uneasy if robots really had emotions”; “5. I feel comforted being with robots that have emotion”11*; “6. 

I would feel relaxed talking with robots”*; “7. If robots had emotions I would be able to make friends with 

them”*; and, “8. I would feel paranoid talking with a robot”. The third and last subscale, Actual 

interactions and situations, contained three items: “9. I would feel very nervous standing in front of a 

robot”; “10. I would feel uneasy if I was given a job where I had to use robots”, and, “11. Something bad 

might happen if robots developed into living beings. (Response options are not reported in Syrdal et al., 

but in the Japanese version, Nomura  et al., 2006, response options are on a Likert scale from 1- 

strongly disagree, to 5 - strongly agree) 

However, as can be seen from the items listed above, there are a number of issues inherent in the 

NARS which may impair its validity as a measure of robot attitudes. One issue is the assumption that 

                                                

11 The three items marked with an asterisk are reverse scored. 
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robots have emotions. This both makes the measure specific to robots that have (or are perceived to 

have) emotions, and creates double barrelled questions. For example, item 5 “I feel comforted being with 

robots that have emotions”, is both asking participants to decide if they feel comfortable with robots that 

have emotions, as well as asking them to agree with the statement that robots have emotions. There are 

assumptions that the robot can both talk and converse (items 6 and 8), which precludes robots without 

these humanlike characteristics. As the NARS both presents robots as having humanlike characteristics 

of emotions and speech, and predominantly presents them negatively (e.g. items 1, 2, 3, 8, 11) it is 

possible the measure itself may have a priming or framing effect (Schacter & Buckner, 1998), and 

influence people’s responses (Tsui, Desai, Yanco, Cramer, & Kemper, 2011). Despite these possible 

confounds, the NARS has been used in a number of robot studies which have produced some 

interesting results.   

In an early study, Nomura et al. (2006) used the NARS to assess associations between peoples’ 

negative attitudes towards robots and their communication behaviours. The robot research platform used 

was Robovie - a 120cm tall humanoid-type robot - and participants were comprised of 22 male and 31 

female Japanese university students. Prior to meeting Robovie, participants completed measures of 

gender and age, the NARS, and an item on whether they had previously seen ‘acting robots’. 

Participants then entered a room where they were instructed to stop at a marked line and talk to the 

robot in front of them. During the video recorded interaction, the robot asked participants if they had 

recently experienced anything negative, and instructed participants to touch it.  

Nomura, Kanda, et al. (2006) reported that, compared with people who had not previously seen “an 

acting robot”, people who had previously seen a robot stood 10% further away from the robot when they 
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first entered the room, and took slightly longer to respond to the robot when it asked them a question (p 

<.01). There was also some gender differences found. Other results showed some associations between 

some NARS subscales and how the participants responded to the robots question, e.g. whether they 

talked about something related to themselves, n = 9, something not related to themselves, n = 39, or 

whether they did not speak, n = 3. However, due to translation issues, the results of the Japanese study 

are not easy to interpret. Furthermore there is a lack of outcomes that demonstrate association between 

negative robot attitudes and acceptability of the robot. Nomura et al. acknowledge results from the 

Japanese student participants may not generalise well to different populations.  

Nomura, Kanda, Suzuki, and Kato (2008) extended the earlier 2006 study by adding a newly developed 

measure; the Robot Anxiety Scale. The scale has three subscales: Subscale 1 – anxiety toward 

communication capability of robots (example item - whether the robot might talk about irrelevant things in 

the middle of a conversation); Subscale 2 – anxiety towards behavioural characteristics of robots (e.g. 

what kind of movements the robot will make): and Subscale 3 – anxiety towards discourse with robots 

(e.g. how I should talk to the robot). Deviations from Nomura et al.’s (2006) methodology include the 

Robot Anxiety Scale being administered both before and after the interaction (however the NARS was 

only administered once - prior to the interaction: Nomura et al. propose attitudes are unlikely to alter over 

the short term). The state trait anxiety scale (STAI: Spielberger, Gorsuch, & Lushene, 1970) was also 

administered prior to the HRI. 

Nomura et al. (2008) used a similar study methodology to their earlier 2006 study. 22 male and 16 

female Japanese University students had a brief interaction with the robot platform Robovie. Participants 

were initially instructed by researchers to greet the robot. During the HRI the robot asked participants to 
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tell it “one thing that recently happened to you”, and then instructed participants to “touch me”. Nomura 

et al. report their results suggest robot anxiety and negative attitudes towards robots are associated with 

behaviours such as time spent talking to the robot and touching it. Higher levels of the STAI, as 

measured at baseline, were associated with other baseline measures including more negative attitudes 

on the first subscale of the NARS, and more anxiety on the third subscale of the Robot Anxiety Scale. 

Limitations of both the 2006 and 2008 studies include the constructed nature of the HRI. Participants 

were instructed to speak to the robot and touch it, rather than a more naturalistic methodology of 

observing how people chose to respond to the robot.  

Other research groups have also used the NARs. As part of the European Commission LIREC project 

(LIving with Robots and integrated Companions) Syrdal et al. (2009) used the English translation of the 

NARs to explore how robot behaviour variables impact on peoples responses. The methodology 

included programming a Peoplebot to behave in either a socially ignorant or socially responsive fashion 

during a simple HRI. Socially ignorant robot behaviours included taking a straight path in front of the 

participant (as opposed to the socially responsive behaviour of avoiding the participant), moving fast at 

all times rather than slowing around the participant, and waiting for the participant to ask for a pen to 

complete the measures rather than delivering the pen before it was requested. 

Study participants were 14 men and 14 women aged between 18 – 55. All were recruited from a British 

University. The study method included participants evaluating the robot’s behaviour and personality after 

interacting with each of the socially ignorant and socially responsive versions of the robot. The NARs 

was administered once, but is it not clear from the Syrdal et al. (2009) publication at what time point this 

measure was completed (i.e. before or after the HRI).  
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Results indicated participants felt no difference in comfort or enjoyment levels between the two 

differently programmed robots. However, the higher overall NARs scores (more negative attitudes) were 

significantly correlated with higher enjoyment of the interaction. Participants with more negative NARs 

scores were also more likely to rate the personality of both the socially ignorant and socially responsive 

versions of the robot as more autonomous. For the socially responsive robot only, participants with more 

negative attitudes towards robots, not only rated it as more autonomous, but also as being less 

predictable, less controllable, and less considerate. 

This last result was unexpected by Syrdal et al. (2009). It disconfirmed their hypothesis that socially 

responsive behaviours would be desirable in a socially interactive robot. They suggest this resulted from 

people being wary of more sophisticated robots. Despite this explanation for these unexpected findings, 

Syrdal et al. appeared to have concerns about the validity of the NARS. Syrdal, Nomura, Hirai, and 

Dautenhahn (2011) did not use the NARs in a subsequent survey of robot attitudes. The rationale 

provided for this omission was that the measure may not generalise well to a non-Japanese population 

Despite these possible limitations, Syrdal et al.’s (2009) findings from the more and less socially 

responsive robot study indicate that the NARs could be used to assess associations between negative 

robot attitudes and other variables. However, similar to the Nomura et al. (2006, 2008) studies, 

methodological limitations of Syrdal et al.’s study include a lack of acceptance measures. This lack 

means it is unclear what the implications for robot acceptance are for the association between holding 

more negative attitudes towards robots and also finding it more autonomous. A further limitation of the 

study is that manipulation checks were not conducted. Consequently it is unclear if participants did 

perceive the robot’s behaviours to be socially responsive and socially ignorant. For example – did 
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participants perceive the robot bringing them an unrequested pen as a socially responsive or socially 

ignorant behaviour?  

The NARs has also been used to assess associations between negative attitudes towards robots and 

the distance people like to have between themselves and a robot (Takayama & Pantofaru, 2009). This 

US study had 30 people of mixed gender aged 19 - 55 years (mean 28.9 years). Participants each had 

two robot-related tasks. They were instructed to approach a prototype PR22 robot as far as they felt 

comfortable, and then to allow it to approach them. Measures of the participants’ personalities and the 

NARs were administered after participants had done both robot-approach tasks. Takayama & Pantofaru 

found that people who preferred a greater distance between themselves and the robot, also held more 

negative attitudes towards robots and had higher levels of neuroticism.  

Bartneck et al. (2005) used the NARS to assess cross-cultural attitudes towards robots. A survey of 24 

Dutch, 19 Chinese and 53 Japanese participants indicated that Dutch and Chinese participants held 

more negative attitudes on the ‘social influence of robot’ NARS subscale. An example item from this 

subscale is “I am concerned that robots would have a bad influence on children”. However there are 

some methodological issues that cast doubt on the validity of the results. The issues include the 

‘Chinese’ participants being Dutch Chinese, and there is no indication of whether they were born in the 

Netherlands or were immigrants; the ethnicity of ‘”the other” Dutch participants is not provided; there are 

very uneven numbers in the participant groups; “most” of the participants were university students (which 

may limit the generalizability of the results to other populations); and there are no outcome measures. 

The latter issue means that it is unclear if the results are due to cultural differences in attitudes towards 

robots, or the differences are due to cultural interpretations of the NARS (Syrdal et al., 2009). 
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Robot Attitudes Scale (RAS) and drawings 

Emotions towards robots and a new measure of robot attitudes, the Robot Attitudes Scale (RAS), were 

used in a survey of retirement village staff and residents (Broadbent, Tamagawa, et al., 2009). The 11 

item RAS assesses general attitudes towards robots. The items are on 8 point Likert scales with 

semantic opposites as anchors. The items are friendly-not friendly, useful-not useful, trustworthy-

untrustworthy, strong-weak, interesting–not interesting, advanced-basic, easy to use-hard to use, 

reliable-unreliable, safe-unsafe, simple-complicated, and helpful-unhelpful. The Positive and Negative 

Affect Schedule (PANAS: D. Watson et al., 1988) was also used to survey participants’ emotions 

towards robots.  

Results showed that, compared with staff, residents were found to have significantly more positive 

attitudes towards robots and less negative emotions. However there was no difference between the two 

groups on positive emotions towards robots. The RAS Cronbach’s alpha in this study was a high 0.92. 

The more negative staff response to robots may be explained by comments staff made during the study; 

indicating they were fearful of losing their jobs to robots.  

A later HRI study also used the RAS in a blood pressure taking scenario with older participants. (Kuo et 

al., 2009). There were two age groups of mixed-gender participants in the study; 29 participants aged 40 

- 64 years (mean 55.90 years), and 28 participants aged 65 and older (mean 73.07 years). Participants 

were a community sample recruited via GPs, and the majority were New Zealand European in ethnicity. 

The Peoplebot used in the trial had a moving face displayed on its monitor, and had a blood pressure 

device and cuff attached to it. The study procedure involved participants completing initial baseline 

measures before meeting the robot. The baseline measures included the RAS and participants’ 
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drawings of their idea of a healthcare robot. They next interacted with the robot and took their blood 

pressure with the robot’s assistance (instructions and blood pressure results were both spoken by the 

robot and displayed on the robot’s monitor).  

After the interaction, participants completed more measures, including viewing video of their HRI. While 

watching the video, participants noted their thoughts and feelings that occurred at specific time points 

during the interaction. The most common thoughts participants reported related to difficulties with the 

blood pressure cuff, the comprehensibility of the robots instructions, and dislike of the robot’s voice. 

Other frequent comments related to how the robot was unlike or like a human, and the robots facial 

features. However there was no difference in reported attitudes from before to after the trial, or between 

the two age groups. Hierarchical regression analyses showed that age, gender, and computer 

experience did not predict Quality of the Experience (i.e. how fun and natural the robot was: Berry & 

Hansen, 1996), but baseline emotions and attitudes did (Broadbent et al., 2010).   

However Kuo et al. (2009) did find a gender difference. Men had significantly more positive attitudes 

than women in relation to the usefulness of healthcare robots and their future potential. In contrast, the 

expected age differences were not found. Aside from a non-significant trend for the older age group to 

be more uncomfortable with the robot taking their blood pressure, the lack of differences between the 

two age groups was unexpected considering the age-related differences reported in the technology 

acceptance literature (Charness & Boot, 2009; Venkatesh & Davis, 2000).  

Kuo et al. (2009) proposed one explanation for this is that, unlike much of the related literature which 

compared young people with older people, their study compared middle-aged people with older people. 

In relation to the gender results, prior computer experience was not associated with gender, so that does 
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not explain why men were more accepting of the concept of healthcare robots. However this result may 

arise from the particular computer experience item used in the study. Inspection of the response options 

for this item shows participants were asked to rate their level of computer experience from 1 ‘not at all’ to 

8 ‘extremely’. These response options are subjective, and the use of response items with more objective 

descriptions of computer skills, such as using email, internet banking etc., may give different results.  

There were several interesting results from the participants’ healthcare robot drawings. A distinctive 

feature of the drawings was that people either drew a humanlike robot or a box-like robot. Furthermore, 

people who drew a humanlike robot had significantly greater increases in both diastolic and systolic 

blood pressure. As both groups interacted with the same robot, this result indicates that preconceptions 

of robots as more humanlike are associated with stress and heightened physiological arousal. There was 

a non-significant trend for the participants who drew larger drawings to have greater increases in systolic 

blood pressure during the HRI. This finding is in line with previous work with drawings in health care 

settings where drawing size is correlated with more anxiety about the drawing object and more adverse 

outcomes (Broadbent, Ellis, Gamble, & Petrie, 2006; Broadbent, Petrie, Ellis, Ying, & Gamble, 2004). 

Drawings may be a useful method for measuring robot related anxiety, but more research is needed to 

assess if these results generalise to different HRI contexts.   

HRI studies indicate that peoples’ attitudes and perceptions of robots are associated with their 

responses to robots. While ‘general attitudes’ or perceptions may be useful in predicting responses to 

robots, understanding specific attitudes or perceptions – such as perceived usefulness and ease of use – 

may also be necessary for developing acceptable eldercare robots.  
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Emotions towards robots 

There has been a small amount of research on the influence of people’s emotions, or affect, towards 

robots on their robot acceptance. There is some evidence that negative emotions (but not positive) can 

cause people to rapidly recalibrate negative evaluations of out-groups (Monteith,1993). Affective 

evaluations may be faster than cognitive evaluations, suggesting they are more readily accessible 

(Verplanker, Hofstee, & Janssen, 1998).  

In their 2008 study described previously, Nomura et al. developed the 11 item Robot Anxiety Scale as 

they believed negative emotions towards robots were an important research. Compared with negative 

attitudes towards robots, emotions may be more sensitive to psychological changes in response to even 

a brief HRI. However the validity of the Robot Anxiety Scale as a measure of affect or anxiety has not 

been established. There may be some cross-cultural issues, and the items (as translated into English) 

do appear to have construct overlap with the NARS. The two measures were significantly correlated in 

the study.  

A different study manipulated a robot’s behaviours to assess the effects on human emotional responses. 

45 New Zealand university students were tasked with leading a B21r robot along a 16 metre marked 

path (Broadbent, MacDonald, Jago, Juergens, & Mazharullah, 2007). The students were randomised 

into either a ‘good’ or ‘bad’ robot condition. In the bad robot condition the robot was programmed to 

perform erratically in following participants. In the good robot condition the robot was programmed to 

follow participants consistently. After the HRI, participants completed a five section questionnaire in 

addition to their sociodemographics. The later included participants’ previous robot and technical 

experience. Measures included the well validated Positive and Negative Affect Schedule (PANAS: D. 



  

 

99 

 

Watson, Clark, & Tellegen, 1988), a Quality of the Experience measure (used in a previous HRI study: 

Wang, Lignos, Vatsal, & Scassellati, 2006), and a measure of social interaction designed for human-

human interaction. An exemplar social interaction item is participants were asked to rate the extent to 

which they influenced the interaction (Berry & Hansen, 1996). Like the Kuo et al (2009) BP healthcare 

robot study, participants also viewed video tapes of their interaction and noted thoughts and emotions 

they experienced at different points.  

Results of the good/bad robot study included differences in emotions in response to the interaction.  

Participants in the bad robot condition thought the robot influenced the interaction more than they had. 

They also had decreased positive emotions and increased negative emotions. In contrast, participants in 

the good robot condition thought they influenced the interaction more than the robot and had increased 

positive emotions (but no change in negative emotions). Furthermore, compared with participants in the 

bad robot condition, participants in the good robot condition thought robots would be more useful in 

hospitals and rated the quality of the HRI experience more highly.  

These results suggest that a robot’s behaviour can not only influence peoples’ emotions, but also their 

perceptions of the robot. Broadbent et al. (2007) suggest their results indicate that perceptions of a 

robot’s reliability and predictability are important for acceptance of robots in a healthcare context.  

However due to the non-healthcare nature of the study task (guiding a robot around a course), 

Broadbent et al. also suggest that generalisation of the results needs to be done with care.  

Behavioural measures 

Despite having previously used the NARs in their study of cultural differences in robot attitudes (Bartneck 

et al., 2005). Bartneck, Van Der Hoek, et al. (2007) did not use the NARS in a more recent study. They 
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used a very different methodology to assess people’s attitudes towards iCats with different personalities. 

Drawing on Milgram’s classic 1963 study on obedience to authority, 33 male and 16 female participants 

(aged 18 - 59, mean 24.6 years) from a Dutch University were asked to play Mastermind with assistance 

from an iCat. Participants were allocated to one of four iCat personality conditions which varied on 2 

(intelligence) x 2 (agreeableness). Participants were instructed that, at the end of the study, they were to 

turn off the robot using a slow voltage dial. Participants were not informed that when they did actually 

begin to turn off the iCat, the robot would start pleading with them not to be turned off.  

Outcome measures used in Bartneck, Van Der Hoek, et al.’s (2007) study included ‘hesitation’ (how long 

participants took to turn off the iCat), and various ratings of the game attributes, the robot’s attributes, 

and the HRI relationship. The main finding was that there was no difference in how long participants took 

to turn off the two less intelligent iCat conditions - regardless of whether it was agreeable or 

disagreeable. In contrast, participants took almost three times as long to turn off the agreeable version of 

the more intelligent iCat as they did the disagreeable version of the more intelligent iCat. Limitations of 

the paper include that it is not reported if this reported difference is statistically significant, nor what the 

effect size is. A further limitation is there are no direct measures or manipulation checks of the 

independent variables of interest, i.e. the iCat’s perceived intelligence and agreeableness.  

Bartneck, Van Der Hoek, et al. (2007) offer several explanations for their findings. These include 

reciprocity, and a discussion of the differences between the Christian tradition where things either have a 

soul or not; compared with the Buddhist tradition, where there is no clear distinction and even non-living 

things can have a soul. Bartneck et al. recommended further research on the issue, including the use of 

an animacy measure to determine associations between intelligence and lifelikeness. However a final 
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limitation of this study is that it is implied that the (presumably significant) differences in how long 

participants took to turn off the iCat with differing personalities are caused by something inherent in the 

robot. However as the study is not controlled it is possible that similar results would have been obtained 

if any object, such as a computer or a microwave oven had been programmed to manifest similar 

behaviours.  

Like Takayama and Pantofaru’s (2009) study with the PR22 robot, Koay et al. (2007) used approach 

distances to assess people’s attitudes to a more humanlike or a more machinelike Peoplebot. The more 

humanlike Peoplebot had mechanical-looking arms and a metal mask-type face. The machinelike 

version had no arms and a small camera in place of a head. Eight hours of HRI sessions were spread 

over a five week period. The longer duration of this trial allowed assessment of any habituation effects. 

Results showed the 12 university staff and student participants were more comfortable with the robot 

approaching closely after the five week period. The habituation effect was particularly marked with the 

more humanlike robot. At the beginning of the trial participants preferred the more humanlike Peoplebot 

to be further away from them than the machinelike robot, but by the end of the five weeks, participants 

had no preference.   

Behavioural outcomes have been used both to assess acceptance of robots, and demonstrate the 

influence of robot attitudes on robot acceptance (Heerink et al., 2010). 

3.2. To be [humanlike] or not to be [humanlike] 

Section 3.1 describes general robot attitudes, but does not include the central concept of humanlikeness 

in robots.  
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What is a humanlike robot?  

It is not clear what constitutes a ‘humanlike robot’. Robots come in many shapes and sizes, and their 

behaviour may vary as much as their degrees of freedom and the programmes available to operate 

them. With a few arguable exceptions such as the humanoid Geminoid (Nishio, Ishiguro, & Hagita, 

2007), there is a currently a considerable gulf between a humanlike robot and a human-identical robot. 

However is a human-identical, or even humanlike, robot desirable or not? Despite some HRI researchers 

suggesting a humanoid form is the optimal form for a socially assistive robot (Kahn et al., 2007; Mori, 

1970) a substantial proportion of potential robot-users state they do not want a robot to be humanlike 

(e.g. Arras & Cerqui, 2005; Khan, 1998; Lachs & Pillemer, 1995; Wu, Fassert, & Rigard, 2012).   

However, generally details are not available on what specific ways a robot should not be humanlike. In 

other words – when people say they do not want a humanlike robot – what do they actually mean by 

that? Dautenhahn et al. (2005) found that although a majority of participants wanted a robot companion 

to communicate in a humanlike manner, a similar majority did not want a robot companion to have a 

humanlike appearance or behaviour. While useful, these categories of communication, appearance and 

behaviour are still general. This lack of specificity of what constitutes a humanlike robot does not just 

originate from lay participants. In defining a humanoid robot, DiSalvo, Gemperle, Forlizzi, and Kiesler 

(2002) propose that ‘humanoid’ does not necessarily mean a robot looks like a human; rather that it 

looks more like a human than anything else. Similar to Dautenhahn et al., DiSalvo et al. consider that 

robot humanlikeness will be determined by characteristics in addition to physical appearance, such as 

expression, communication, and behaviour. Considering robots are very diverse in their appearance, 
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functionalities, and behaviour; in order to design acceptable robots, more research is needed on which 

specific aspects of humanlikeness in robots tends to cause discomfort in humans.  

So why are some people uneasy about the idea of humanlike robots?   

The answers to that question may help in the development of more acceptable robots. 

Media portrayals of robots 

Some answers may come from popular media depictions of robots. When lay people are asked about 

robots they tend to refer to fictitious robots from science fiction films, TV programmes, and literature 

(Khan, 1998; Kriz, Ferro, Damera, & Porter, 2010; Ray, Mondada, & Siegwart, 2008; Scopelliti et al., 

2005). This suggests that people’s concepts of robots largely arise from exposure to fictitious media 

representations, combined with little experience of real robots. In recognition of this, and also in 

recognition of the possible impact of these media representations on robot acceptance, several 

researchers have analysed media portrayal of robots.  

Khan (1998) noted common robot themes in science fiction media were ‘the dangerous machine’; the 

desire for life or consciousness; the ‘too intelligent’ robot; and human fear of being replaced by robots in 

both domestic and industrial settings. As part of the study, Kahn asked a small group of participants what 

words they associated with the word ‘robot’. The most frequent responses were; “strange thing”, TV, 

horror movies, industrial robots, and programmed machines. A larger group of participants were asked to 

draw a robot for their home. The resulting drawings showed mechanical looking robots with few realistic 

human features, and were clearly influenced by media depictions of robots.   



  

 

104 

 

Another HRI researcher analysed how robots are portrayed in popular American films, such as Star 

Wars, Transformers, AI, Short circuit, and RoboCop (Kriz et al., 2010). Robots were found to be 

commonly portrayed as possessing cognitive capacities such as vision, spatial cognition, and language. 

They were less commonly portrayed as possessing social capacities such as stereotyping/prejudice, 

conformity, and close relationships.  

In an interesting extension of Kriz et al.’s (2010) study, engineering students were seated in front of a 

stationary Peoplebot and asked what capabilities they thought the robot possessed. The participants’ 

responses mapped very closely to the typical capacities possessed by fictitious robots in popular film. 

The four capabilities participants rated the Peoplebot as being most likely to possess were cognitive 

ones; short term memory, vision, spatial cognition, and language. The five capabilities participants rated 

the Peoplebot as being least likely to possess were social ones; prosocial behaviour, conformity, 

aggression, stereotyping and close relationships. The results strongly support the notion that people’s 

expectations about robots are informed by popular media. In particular that robots are high in cognitive 

capabilities and low in social capabilities.  

However Kriz et al. cautioned that participant responses may have been influenced by the specific robot 

(a Peoplebot) used in the study. Another possible limitation of this study is that responses from the 

engineering student participants may not be typical of the wider, less-technical, population. More studies 

with different robots and different populations are required to endorse or disconfirm these results. 

Anthropomorphism and agency 

The human predilection for anthropomorphism may also underpin people’s discomfort around the 

concept of humanlike robots. Anthropomorphism is the attribution of humanlike qualities to a non-human 
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agent or object. The proposed ‘function’ of anthropomorphism is that it helps people understand and 

predict the world around them, and the people, agents, and objects contained within it (Epley, Waytz & 

Cacioppo, 2007). The proposed mechanism of anthropomorphism is when faced with some unknown 

agent; people will access readily accessible known rules or schemas about human behaviour and apply 

them to the agent.   

Perceptions of anthropomorphism arise from an interaction between the human observer and the object 

or agent under observation. In an HRI context, characteristics of both the human and the robot will 

interact to influence if, and how, the human anthropomorphises a robot. 

Robot characteristics that promote anthropomorphism 

Physical features 

A robot’s appearance can affect perceptions of humanlikeness. DiSalvo et al. (2002) asked participants 

to rate the humanlikeness of images of humanoid robot heads – some real and some fictitious. Results 

showed that the presence of a nose, eyelids, and a mouth contributed the most to perceptions of robot 

humanlikeness. However regardless of which particular facial features a robot head possessed, the 

more facial features they had, the more humanlike it was rated as being. This latter result suggests that 

while some anthropomorphic cues may be stronger than others; generally they may act in a summative 

fashion.  

However, it seems that robots do not need to have any realistic human facial features, or even a 

humanlike form, to be anthropomorphised. People can anthropomorphise even clearly non-humanoid 

and machinelike robots, such as their Roomba vacuum cleaner (Forlizzi & DiSalvo, 2006). On the 

grounds that humanlike robots appeared to be unacceptable to some people, a guiding design principle 
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of the Care-O-bot was that it be non-anthropomorphic (Parlitz et al., 2008). However, when the robot 

was trialled in a rest home some residents referred to the Care-O-bot as ‘he’ (Fraunhofer, 2011). These 

findings have several implications for robots. One is that that there may be a dose effect with perceptions 

of anthropomorphism, or humanlikeness, in robots. While even the most minimal of cues can trigger 

anthropomorphic perceptions, the more cues there are, and/or the stronger the cues, the stronger the 

perceptions of humanlikeness may be. Another implication of this is that features common to robots – 

such as apparently agentic movement – are such strong anthropomorphic cues (Nass, Steuer, 

Henriksen, & Dryer, 1994). This implies it may be impossible to ‘design-out’ anthropomorphism in robots 

(Duffy, 2003). Consequently rather than robotocists aiming to design non-anthropomorphic robots, a 

better goal may be to aim for robots with ‘adaptive’ anthropomorphic features: robot features that 

optimise people’s robot acceptance rather than alarm them. 

Movement 

An agent’s movement can contribute to perceptions of lifelikeness and agency, but so can the type of 

movement. Participants who evaluated the different head tracking behaviours of a mechanical robotic 

torso, rated the robot’s more erratic behaviours as more enjoyable and as having more intentionality, 

despite rating the robot’s smooth tracking behaviour as more natural (Wang et al., 2006). Similar to the 

matching hypothesis (Kalick & Hamilton, 1986) Wang et al. suggest this unexpected result (that despite 

the robot with the more erratic movements being rated as less natural compared with the smoother-

moving robot, it was also rated as more enjoyable and having more intentionality) may be due to the 

robots more erratic behaviour being congruent with its unnatural mechanical appearance. However, 

another (complementary) explanation is that the robot’s unpredictable behaviour triggered 
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anthropomorphic perceptions. In support of these interpretations, another study found the more closely a 

non-human agents’ movement approximated human movement, the more mind people attributed to the 

agents, including robots (Morewedge, Preston, & Wegner, 2007). 

There are a number of features common to robots that may predispose humans to perceiving robots as 

anthropomorphic, humanlike, or as possessing intentionality or mind.  

Interactivity  

Speech is a uniquely human characteristic that greatly enhances communication. Many socially 

interactive robots are equipped with this mode of interactivity and the use of natural language will likely 

promote anthropomorphic perceptions (DiSalvo et al., 2002). However the language does not have to be 

verbal. The non-verbal emotionally-responsive squeaking of the social robot Kismet is sufficient to 

encourage people to converse with it (Breazeal & Scassellati, 1999).  

Uncertainty and unpredictability 

Novel objects or agents are more likely to trigger perceptions of anthropomorphism or perceptions of an 

agent’s mind. People attempt to reduce aversive uncertainty by accessing readily available schemas of 

human social rules to predict the behaviour of the novel agent (Bering, 2002; Waytz, Gray, Epley, & 

Wegner, 2010). For similar reasons, compared with predictable agents, agents that behave 

unpredictably are also more likely to trigger perceptions of agency or intentionality (Waytz, Morewedge, 

et al., 2010). 

The novelty of robots could be one of several reasons why people are predisposed to anthropomorphise 

them. Most people have not previously interacted with a robot and therefore have little certainty about 

how a robot might behave. This uncertainty may trigger perceptions of anthropomorphism as people 
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apply better known rules about human behaviour to the robot. This may enable them to better predict the 

robots behaviour and reduce aversive uncertainty. A logical extension of this explanation is that, as 

people become more familiar with robots and robot behaviour, they may anthropomorphise them less.   

Malevolent agents 

Agents, and even fellow humans, that produce adverse outcomes are likely to be perceived as having 

more intentionality, compared with agents that produce neutral, or even positive outcomes (Knobe, 

2008; Morewedge, 2009). A person will perceive more pain if they believe someone hurt them 

intentionally, rather than by accident, and people are more likely to believe in an agentic God when they 

are contemplating suffering rather than salvation (K. Gray & Wegner, 2010).  

This may be an important consideration for robotocists. If a robot is unreliable, users may ascribe more 

intentionality to it.  In a bi-directional fashion, if people are more anxious at the prospect of interacting 

with a robot, they may perceive the robot as being more agentic. The proposed explanation for this 

tendency to attribute more mind in response to negative, rather than positive events, comes from 

evolutionary psychology. This is based on the concept that immediate survival is more dependent on 

understanding the causes of adverse events (in order to avoid them), than it is on understanding the 

causes of positive events (S. E. Taylor, 1991).  

Human characteristics that promote anthropomorphism 

Although a robot’s appearance and behaviour can affect people’s anthropomorphic perceptions, 

individual people can respond quite differently to identical robots. For example, two older men 

responded very differently to the robotic cat NeCoRo. One man was quite indifferent to the robot and the 

other man was enthusiastic – patting the robot and talking to it (E. V. Libin & Libin, 2003). Another study 
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found family members anthropomorphised identical Roomba vacuum cleaners to varying degrees, from 

ignoring it through to talking to it (Forlizzi & DiSalvo, 2006). This suggests that characteristics of the 

individual human user influence human anthropomorphic perceptions, as well as robot characteristics.  

Motivation for anthropomorphism 

Motivation to understand an agent’s behaviour is considered a key driver of anthropomorphism (Waytz, 

Gray, et al., 2010). Therefore the prospect of interacting with an unknown agent may heighten 

perceptions of anthropomorphism. Eyssel, Kuchenbrandt, and Bobinger (2011) found people ascribed 

more human personality characteristics to a version of the social robot Flobi that was more 

unpredictable, but only if they thought they were about to interact with it. Anthropomorphism may also be 

motivated by a desire to increase social bonding (Waytz, Gray, et al.). People who are lonely are more 

likely to ascribe mental states to pets and machines (Epley, Akalis, Waytz, & Cacioppo, 2008).   

An ‘advantage’ of anthropomorphising uncertain agents (including other humans) is that, compared with 

figuring everything out from first principles, anthropomorphism is a relatively fast and energy-conserving 

process (Waytz, Gray, et al., 2010). This may explain why people are more inclined to resort to 

anthropomorphism (rather than generate more cognitively demanding causal explanations), when they 

are under cognitive load or when their cognitive reserve is compromised. People with Alzheimer’s 

disease have been found to make more teleological, or anthropomorphic, attributions to agents, 

compared to healthy controls (Lombrozo, Kelemen, & Zaitchik, 2007). 

Individual characteristics 

While humans generally are prone to anthropomorphising, there are individual characteristics that 

enhance this tendency. These include cognitive impairment, loneliness, and less familiarity with 
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technology -in general as well as robots. As these characteristics are also common to older people, it 

may mean that compared with younger people, older people are more strongly predisposed to 

anthropomorphise robots. This, combined with the anthropomorphic characteristics of robots, has 

important implications for the design and deployment of eldercare robots.  

However, while anthropomorphism gives some clues as to why some people feel discomfort at the 

prospect of humanlike robots, it does not fully explain the issue.  

The uncanny valley 

Peoples discomfort with the idea of humanlike robots is not a modern phenomenon. In 1970, a Japanese 

researcher, Masahiro Mori, published a paper on the phenomenon he termed the Uncanny Valley. Mori 

proposes that people are increasingly satisfied with robots that become increasingly humanlike and more 

familiar – but only up to a certain point. That point is reached when robots become almost, but not quite, 

humanlike. It is proposed that it is this ‘almost but not quite human’ gap, that causes people discomfort, 

or a sense of uncanniness. Mori suggests the function of the sense of uncanniness resulting from the 

uncanny valley may be that of self-preservation. For example a sense of aversive uncanniness may be 

induced by an organism acting oddly due to disease or infection, and therefore the uncanniness is a 

threat signal to avoid that organism. Considering the current impossibility of bypassing the uncanny 

valley altogether by creating a human-identical robot12 (which Mori states is the ultimate purpose of 

robotics), Mori recommends robot designers avoid the uncanny valley by erring on the side of designing 

clearly non-humanlike robots. However, as robots inherently contain anthropomorphic cues, Mori’s 

                                                

12 An unchallenged assumption of Mori’s uncanny valley theory is that humans will be comfortable with 

robots that are indistinguishable from humans.  
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suggestion is likely to be a difficult task, requiring greater understanding of specific robotic 

anthropomorphic cues and their influence on humans.  

However the notion of a robotic uncanny valley is not uncontested. Hanson (2006) digitally merged the 

faces of a very humanlike and a very non-humanlike robot, and had participants rate the resulting 

images on humanlikeness and machinelikeness, and also on familiarity and eeriness. Results showed 

no ‘valley’ or increase in eeriness as the robot faces became almost humanlike. Hanson proposed that 

while there can be eeriness or uncanniness in response to robot faces, it is more likely to arise from poor 

aesthetic design, rather than arising from a robot being almost, but not quite, human-identical.  

Yet another explanation for some people’s discomfort with humanlike robots is both simple and 

complementary to the other explanations. As a commonly expressed fear is that robots will take away 

human jobs and replace human contact, it may be that the more humanlike a robot is perceived to be, 

the more likely it is also perceived to be capable of replacing people.  

Conclusion 

Preliminary research suggests robot attitudes may be an important variable to reinstate in a model of 

robot acceptance. There are some validity concerns with available measures of robot attitudes. While 

technology acceptance models appear useful for the development of eldercare robots, there appear to 

be factors common to older people and robots which the technology acceptance models do not address. 

In particular, people’s perceptions of humanlikeness in robots and their relation to robot acceptance. 

Changes may need to be made to models of technology acceptance to accommodate the characteristics 

of the eldercare robot HRI.  

 



  

 

112 

 

 Central thesis; and aims and focus of         Chapter 4.

thesis and thesis publications 

Preamble 

Eldercare robots are not the commonplace ubiquitous machines that were predicted –especially in 

consideration of the available technology and the apparent niche market. The preceding chapters review 

reasons for this lower than expected prevalence. Reasons appear to be multifaceted, and include 

insufficient investment in research and development of eldercare robots, and the complex eldercare 

environment being challenging for both robots and robot developers to navigate. Another reason for the 

relatively low prevalence of eldercare robots may be insufficient understanding of human aspects of the 

eldercare HRI.  

Consequently, the preceding chapters also examined models, constructs, and variables associated with 

human acceptance of technology and robots, including the TAM, the UTAUT, and the Almere model. A 

common theme in these models was that people’s technology and robot attitudes influenced 

acceptance. Next, HRI studies that assessed people’s robot attitudes were examined. There is early 

evidence that people’s robot attitudes influence acceptance of robots, as do people’s perceptions of 

humanlikeness in robots. These findings are valuable contributions to the emerging and complex HRI 

field. However, there are some methodological issues which may limit their applicability for the 

development of real-world acceptable eldercare robots. Common limitations include the recruitment of 

younger people rather than older, robot studies that do not include an actual robot, or the use of Wizard 

of Oz robotic systems rather than autonomous robots, and the use of measures and constructs of 
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unproven or questionable validity. Sometimes robot studies have no measures of robot acceptance, or 

the outcome measures may have little real-world application. Alternately, robot acceptance is measured, 

but it is not compared with other variables, therefore the influences or implications of the results are 

unclear. The thesis studies described next aim to build on this promising previous work while addressing 

some of the limitations. 

 

Overall thesis aim 

The overall aim of this thesis is to broaden knowledge of the psychological predictors of human 

acceptance of eldercare robots 

Thesis focus 

The focus is on people’s attitudes towards robots in real-world eldercare contexts. 

4.1. Central thesis 

That older people’s perceptions will affect their acceptance of healthcare robots; specifically their 

perceptions of their unmet needs and their perceptions of robots 
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Thesis publications: methodologies and aims 

This thesis contains four publications.  

 

Improved attitudes study 

The first publication, “Improved robot attitudes and emotions at a retirement home after meeting a robot” 

(Stafford et al., 2010) describes a cross-sectional eldercare HRI study conducted in a retirement village. 

Eldercare facility staff and residents interacted with a Cafero robot with demonstration healthcare 

functions for 30 minutes. Measures of robot attitudes and affect were administered before participants 

saw the robot, and again when they had finished interacting with the robot. Participants also rated the 

quality of their interaction with the robot.  

The primary aims of the improved attitudes study were to assess whether or not people’s robot attitudes 

changed from before to after meeting the robot, and whether people’s attitudes towards robots predicted 

ratings, or acceptance, of the robot. A further aim was to assess whether participants perceived robots 

as humanlike or machinelike, and if these perceptions were associated with acceptance.   

 

Prior attitudes & drawings study  

The second publication in this thesis, “Older people’s prior robot attitudes influence evaluations of a 

conversational robot” (Stafford, MacDonald, Li, & Broadbent, 2014), describes a cross-sectional 

repeated measures study with 20 people aged 55 years and over. Participants had six interactions with a 

Peoplebot robot installed with a psychotherapy programme. For each of the interactions, the robot had a 

different face condition displayed on its monitor. The six face conditions varied on gender, 
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machine/humanlikeness, and face or no face. Baseline measures included robot attitudes and drawings 

of what participants thought a robot therapist’s face might look like. After each of the six interactions, 

participants gave an overall rating of the interaction and indicated how much they would like to use that 

particular version of the robot again.  

There were several aims of the prior attitudes & drawings study. One was to assess if the finding from 

the previous study (that peoples’ baseline robot attitudes predicted acceptance of the robot), could be 

replicated with a different robot and a different population. Another was to assess if participants found 

some robot’s face displays more acceptable than others. Further aims related to the participants’ robot 

drawings. These aims were to assess people’s concepts of what a robot therapist face would look like, 

and to assess if any drawing variables were associated with robot acceptance. 

 

Robot mind study  

The third study, “Does the robot have a mind? Mind perception and attitudes towards robots predict use 

of an eldercare robot” (Stafford, MacDonald, Jayawardena, Wegner, & Broadbent, 2013) used an 

improved version of the Cafero eldercare robot used in the first thesis study (the improved attitudes 

study). The robot was deployed for a between-within groups two week study in a retirement village 

apartment building. All residents in the building were invited, but not required, to use the robot. Measures 

administered both at baseline and at trial completion included attitudes towards robots and perceptions 

of robot mind. 

The primary aims of the robot mind study included assessment of any baseline differences between 

people who chose to use the robot over the two week trial period, and those who did not; and whether 
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these differences were associated with use, or acceptance, of the robot. Differences of interest included 

whether or not there were differences in baseline attitudes towards robots and perceptions of robot mind. 

Further aims include assessing whether or not there were changes in these robot attitudes and 

perceptions over the two week trial; and if so, how did they change? 

 

Unmet needs paper  

The fourth and last paper in the thesis, “Identifying specific reasons behind unmet needs may inform 

more specific eldercare robot design” (Stafford, MacDonald, & Broadbent, 2012) is a discussion paper. 

The overall aim of the paper is to assist robotocists in developing more acceptable robots. The paper 

argues that robots are more likely to be accepted if they are perceived to be useful; and robots are more 

likely to be perceived as useful, if they are perceived to meet users’ unmet needs. Furthermore, knowing 

the specific reasons for users unmet needs will help design acceptable robotic solutions. However 

obtaining this information can be difficult, and there is little guidance on how to achieve this. Therefore 

the specific aim of the paper is to provide some general and specific methodological guidelines to assist 

in determining specific reasons for unmet needs of eldercare stakeholders, drawing on psychological 

approaches.  
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 Improved robot attitudes after interacting Chapter 5.

with a healthcare robot in a retirement village   

[improved attitudes study]  

5.1. Preamble to study one – the improved attitudes study  

Research described in the introductory chapters of this thesis provides preliminary evidence that 

people’s robot attitudes are associated with acceptance of eldercare robots. As expected in an 

embryonic field, these initial findings have some methodological limitations and potential confounds. 

These include: the use of measures of robot attitudes that may reflect overlap with other constructs such 

as ‘intentions to use’, rather than assessing attitudes towards robots; the use of non-target user groups 

such as students; either no robot used at all - or a non-autonomous Wizard of Oz style HRI; and some 

studies have no acceptance outcomes - making it difficult to assess the implications for robot 

acceptance. This study attempts to address some of these limitations while being informed by this earlier 

research.  

Some gaps in the research relate to the stability of people’s robot attitudes. While there is evidence that 

robot attitudes are associated with HRI outcomes, there is little research on if, and how, robot attitudes 

change as a result of people actually interacting with a robot. It has been suggested that people’s robot 

attitudes are unlikely to change in the short term (Nomura et al., 2008; Nomura, Suzuki, Kanda, & Kato, 

2006). In order to assess changes in people’s robot attitudes, these need to be assessed (at least) twice: 

once at baseline, prior to the interaction; and again, after the HRI. There is little research into the 
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existence of peoples’ pre-factual, or baseline, robot attitudes; or how these attitudes might be associated 

with robot acceptance.  

Baseline robot attitudes are not usually considered in HRI studies. Bartneck et al. (2009) advised 

researchers not to administer psychological measures prior to an HRI on the grounds that people cannot 

hold opinions about a robot they have not yet interacted with. While some technology acceptance 

models do not consider pre-factual technology attitudes (e.g. Davis, 1989; Venkatesh et al., 2003): 

others do (Bhattacherjee, 2001).  

There is also little research on the role of human emotions in robot acceptance. No studies have been 

located that have used validated measures of emotions in an eldercare HRI context.  

Consequently, this study explores these little researched areas of pre-interaction attitudes and emotions 

towards robots, changes in these variables as a result of an eldercare HRI, and their associations with 

robot acceptance. 

X 

X 

X 

X 

X 

X 

X 
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5.2. Publication one: Improved robot attitudes and emotions at a retirement 

home after meeting a robot 

 

Stafford, R.Q1., Broadbent, E1., Jayawardena, C2., Unger. C2., Kuo, I.H. 2,  Igic, A2., Wong, R2., 

Kerse, N3., Watson, C2., and MacDonald, B. A2. 

 

1Department of Psychological Medicine, the University of Auckland, New Zealand 

2 Department of Electrical and Computer Engineering, the University of Auckland, New Zealand  

3 Department of General Practice and Primary Health Care, the University of Auckland New Zealand 

 

 

Abstract 

This study investigated whether attitudes and emotions towards robots predicted acceptance of a 

healthcare robot in a retirement village population. Residents (n = 32) and staff (n = 21) at a retirement 

village interacted with a robot for approximately 30 minutes. Prior to meeting the robot, participants had 

their heart rate and blood pressure measured. The robot greeted the participants, assisted them in 

taking their vital signs, performed a hydration reminder, told a joke, played a music video, and asked 

some questions about falls and medication management. 

Participants were given two questionnaires; one before and one after interacting with the robot. 

Measures included in both questionnaires were the Robot Attitude Scale (RAS) and the Positive and 
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Negative Affect Schedule (PANAS). After using the robot, participants rated the overall quality of the   

robot interaction. Both residents and staff reported more favourable attitudes (p < .05) and decreases in 

negative affect (p < .05) towards the robot after meeting it, compared with before meeting it. Pre-

interaction emotions and robot attitudes, combined with post-interaction changes in emotions and robot    

attitudes, were highly predictive of participants’ robot evaluations (R = .88, p < .05). The results suggest 

both pre-interaction emotions and attitudes towards robots, as well as experience with the robot, are 

important areas to monitor and address in influencing acceptance of healthcare robots in retirement 

village residents and staff. The results support an active cognition model that incorporates a feedback 

loop based on re-evaluation after experience. 

 

5.2.1. Introduction 

Many countries in the world are facing aging populations (United-Nations, 2010). One consequence of 

this is a greater proportion of older people living with care-intensive chronic illness, combined with a   

growing shortfall in health professionals (Murray, 2002) and caregivers (Super, 2002). 

One possible solution is for robots to help care for older people. A variety of physical and social robotic 

devices have been deployed in the health arena. These range from hospital transporters (Ichbiah, 2005), 

to surgical robots (Howe & Matsuoka, 1999), and physical and mental rehabilitation robots (Krebs et al., 

2003; Mataric, Eriksson, Feil-Seifer, & Winstein, 2007). 

Some robots have been shown to be effective.  Robotic telepresence increased patient satisfaction after 

surgery (Ellison et al., 2004), the seal-like social robot, Paro, was associated with cognitive 

improvements in older dementia patients (Wada, Shibata, Saito, Sakamoto, & Tanie, 2005b), and the 

robot dog AIBO reduced loneliness in rest home residents (Banks & Banks, 2002). However acceptance 

of many robotic health devices has not been   adequately   assessed   and    others   have   not   been 



  

 

121 

 

successful. SANYO’s Hopis, a health and vital signs assessment robot (Belew, 2007) was a commercial 

failure. Yorisoi Ifbot, an entertainment and companion robot, was eventually ignored by its older users 

(Foulk, 2007). 

Acceptance has been defined as the healthcare robot being willingly incorporated into the person’s life 

(Broadbent, Stafford, et al., 2009). Studies on acceptability of retirement home robots are limited, and 

the commercial failure of Hopis and Ifbot demonstrate the importance of determining which factors make 

a robot acceptable to older people. 

Technology Acceptance Models (TAM) determine which variables predict acceptance of new   

technologies. The proposed variables include emotions and attitudes towards technology, as well as 

demographics such as age, gender, and technology experience (Venkatesh et al., 2003). A limitation in 

TAM studies is that technology acceptance is not assessed over a long term. Technology acceptance 

studies typically involve trials of computers and cell phones, as well as younger participants. As older 

people can be less accepting of new technologies than younger people (Giuliani, Scopelliti, & Fornara, 

2005a), the ability of TAM findings to generalize to robot acceptance in older people is not clear. 

A recent review on acceptance of healthcare robots for older people (Broadbent, Stafford, et al., 2009) 

found the following human factors were associated with acceptance; age, gender, prior experience with 

technology and robots; education, and staff role. Robot factors include; the robots’ appearance; the 

degree to which the  robot  is  perceived  as  humanlike  or  machinelike;  size; gender;  personality;  and  

how adaptive the robot is to the users’ needs. Trials with the retirement home robot Pearl showed the 

importance of personalizing the robot to the user’s physical and sensory abilities; such as walking and 

hearing (Pineau, Montemerlo, Pollack, Roy, & Thrun, 2003).   

Initial trials suggest that attitudes towards technology are significant predictors of both post-trial attitudes 

and future use (Hartwick & Barki, 1994). However, there has been little research on the influence of 

emotions and attitudes on acceptance of healthcare robots particularly for older people and associated 

caregivers. Findings so far suggest emotions and attitudes do impact on the human-robot interaction 

(HRI) and are associated with acceptance. In older people, Heerink, Kröse, Wielinga, and Evers (2008) 

found expectation of enjoying the robot interaction was associated with acceptance. Nomura et al. 
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(2008) reported  that people  with   more  negative  attitudes  and anxiety  about  robots  have  more  

emotional  conversations with the robot. Cortellessa, Loutfi, and Pecora (2008) found people can hold 

attitudes about robots from viewing domestic robots on videotapes. Other research suggests that a more 

sociable robot may make older people feel more comfortable and expressive (Heerink, Kröse, et al., 

2006). 

Broekens et al. (2009) identified common methodological problems in older-care robot research, 

including a lack of control groups, a lack of replication of existing findings, a lack of long term studies, 

and the need for larger samples. Another issue is failing to assess staff reactions to older-care health 

robots, which may be important in a retirement setting (Broadbent, Stafford, et al., 2009). 

This study builds on earlier research that investigated what retirement village residents and staff want in 

a healthcare robot (Broadbent, Tamagawa, et al., 2009). This paper specifically focuses on attitudes and 

emotions towards robots. While previous research has shown attitudes and emotions are important for   

technology acceptance; these variables are understudied in relation to robots. The aims of the study are 

listed in Table 1. 

 

Table 1. Questions about human attitudes and emotions to robots  

How do retirement village residents and staff rate a healthcare robot?  

Do attitudes and emotions change after meeting the robot? 

Do attitude and emotions, and changes in these variables, predict better robot ratings? 
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5.2.2. Method 

Recruitment 

Study approval was obtained from the University of Auckland Human Participants Ethics Committee 

(number 2009/434). 32 residents and 21 staff were recruited from Selwyn Village: a non-profit retirement 

complex in Auckland, New Zealand. The 26 acre village has around 650 residents, and provides 

progressive care from independent living units through to hospital and dementia care. Using an alpha 

level of .05 (i.e., p < .05 is required to achieve significance) and power of .80; the sample size of 53 

allows moderate effect sizes to be detected between variables. 

The robot 

The Healthbots project is a joint development between the University of Auckland, ETRI, and Yujin 

Robot. The overall goal of the project is to develop healthcare robots that are acceptable to older people, 

their families and staff.  

 

Figure 7. Robot used in the retirement home trials 
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The mobile robot (Figure 7) has a differential drive, which is powered by a 24v Li-Polymer battery. The 

architecture of the robot consists of four layers; hardware, robot software framework, robot application 

programming interface (RAPI), and service applications. RAPI allows rapid service application 

development, by isolating complexities of low-level control and navigation tasks from the service 

application layer. 

The robot uses the StarGazer robot localization system for navigation (Hagisonic.Co.Ltd, 2008). 

StarGazer requires passive landmarks installed on the ceiling of the robot work-space. Therefore, in the 

experimental environment (described in section II B), landmarks were installed with approximately 1m 

separation. A map of the area was built using the built-in map building module of the robot.  During the 

trials, once the destination location was entered using a remote controller, the robot could autonomously 

navigate to designated places (such as the charging station, participants’ chair etc.) while avoiding 

obstacles. 

For this experiment, seven service application modules were developed; greeting, vital signs 

measurement, medication reminding, schedule reminding, falls detection, entertainment, and evaluation. 

Each module was represented by a pictorial touch button on the robot’s computer screen (Figure 8). 

Participant responses were received via the touch screen and the robot responded to participants with 

synthesized speech. 

Service application front-end was developed with Flash and ActionScript 2.0 and the back-end was 

developed with C++. The vital signs devices attached to the robot were the Omron digital automatic 

blood pressure monitor M10-IT®, and the Masimo SET® for pulse oximetry. 

The robot’s synthetic speech was generated through diphone concatenation type synthesis   

implemented with Festival speech synthesis system (P. Taylor, Black, & Caley, 1998) and used a New 

Zealand accented diphone voice developed at the University of Auckland (C. I. Watson, Teutenberg, 

Thompson, Roehling, & Igic, 2009). Expression was added to the synthetic speech through an intonation 

modelling technique described in Igic et al. (2009) called 'Say Emotional'. 
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The robot greeted the participant by name and asked how they were feeling. The vital signs 

measurement module included blood pressure and blood oxygen saturation. Medication management,   

schedule reminding and fall detection modules handled dialogs with participants in respective areas,   

and gathered data. The entertainment module allowed participants the option of hearing a joke and 

songs of their choice. A ‘patting’ module allowed the participants to pat the back of the robot - causing it 

to turn towards them and say ‘Hi’. The evaluation module collected participant feedback on robot 

functionalities through a controlled dialog. Finally, a ‘goodbye’ module enabled the participant to 

terminate the interaction. 

 

Figure 8. Robot’s main menu screen showing touch buttons 

 

The Setting 

The trial was conducted in the carpeted lounge of a display home set within the retirement village 

complex. 
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Measures in Questionnaire One 

The first questionnaire and first blood pressure assessment was administered to participants prior to 

meeting the robot. The blood pressure assessment was used to indicate participants’ pre-interaction 

anxiety levels. 

 

1)  Demographics: Participants were asked their age, gender, ethnicity, and level of education. 

Residents were asked about their living situation. Staff were asked to describe their employment role 

and how long they had worked at Selwyn Village. 

2)  Computer Knowledge:  Participants were asked to rate their level of experience at basic computer 

tasks such as email and internet searches on a numeric scale. The possible answers ranged from 1= 

‘not at all’ to 8 = ‘extremely’. 

3)  Robot Knowledge: Participants were asked to rate their level of knowledge of robots. The possible 

answers ranged from 1= ‘nothing’ to 8 = ‘quite a bit’. 

4)  The Positive and Negative Affect Schedule (PANAS:D. Watson et al., 1988): This popular measure 

has previously been used in HRI studies (Broadbent et al., 2007; Preucil, Pavlicek, Mazl, Driewer, & 

Schilling, 2006). The base scale consists of  two ten-item mood scales, one composed of positive 

emotions or affect  (PA),  e.g.,  ‘interested’,  and  the  other  composed  of negative affect  (NA), e.g., 

‘scared’. Based on findings from a prior study (Broadbent et al., 2007) an additional negative emotion of 

‘embarrassed’ was added. Participants were asked to what extent they felt these emotions as they were 

about to meet the robot. The purpose of this measure was to assess participants’ positive and negative 

affect specific to the robot. PANAS scales are internally consistent and sensitive to fluctuations over 

time. For internal consistency, the pre-interaction PA subscale had a Cronbach’s α of .92; the NA 

subscale had a Cronbach’s α of .84; suggesting the items are measuring the same underlying construct 

5)  Robot Attitude Scale (RAS): Developed from the preliminary study at the same retirement home 

(Broadbent, Tamagawa, et al., 2009), the RAS consists  of  12  pairs  of  robot  attribute  opposites  such  

as, friendly - unfriendly;  advanced - basic. Participants rated their expectations of the robot on an eight 
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point scale, with the attribute opposites as anchors. RAS items are summed to create an overall scale.  

Lower scores are associated with more favourable attitudes towards robots. The Cronbach’s α was .93.    

There is an additional item to measure ‘humanlikeness’; for this item low scores = more humanlike and 

high scores = more machinelike. The purpose of the RAS was to assess participants’ attitudes towards 

the robot they were about to meet. 

Measures - Questionnaire Two 

The second questionnaire was administered to participants immediately after interacting with the robot. 

1)  Robot Rating: Participants were asked to rate their experience of the robot interaction overall using a 

scale from 0 = ‘poor’ to 100 = ‘excellent’. This item’s purpose is to indicate how acceptable participants 

found the robot. Staff were also asked to indicate how they thought residents would rate the robot after 

using it. 

2)  The Positive and Negative Affect Schedule (PANAS): The PANAS was repeated in the second 

questionnaire to detect any change in emotions from before to after meeting the robot. Participants were 

asked to what extent they felt these emotions during the interaction with the robot. Post-interaction, the 

PA subscale had a Cronbach’s α of.85 and the NA subscale had a Cronbach’s α of .74. 

3)  Robot Attitude Scale (RAS): The RAS was repeated in the second questionnaire to detect any 

attitude changes from before to after meeting the robot. Cronbach’s α was .92 post-interaction. 

Neither the pre- or post-interaction PA, NA, and RAS scales were significantly correlated (p > .05) 

indicating they are assessing distinct constructs. 

Procedure 

Participants were invited to an individual appointment at the show home, and seated in the lounge. The 

robot was stored out of view down the hallway. The researcher was seated next to the participants 

throughout the trial. After informed consent was obtained, participants were given the first questionnaire   

to complete. This was followed by the researcher measuring participants’ blood pressure. Via remote 

control, the researcher then brought the robot into the lounge, where it stopped in front of the participant. 

The researcher then explained to the participant how to use the robot. Starting with the robot greeting, 
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participants worked through the robot modules in a standardised order. After using the robot, participants 

were given the second questionnaire to complete. Participants then sent the robot away by touching the 

‘goodbye’ button on the robot’s computer screen. 

 

Statistical Analysis 

Data analysis was carried out using SPSS for Windows 16. The data normality was checked using the 

Kolmogorov-Smirnov test. All significance tests are two tailed at the .05 level (p < .05). To produce 

‘change’ variables (the change in measure scores from before to after meeting the robot) pre-interaction 

PANAS, RAS and humanlikeness scores were deducted from their respective post-interaction scores. 

5.2.3. Results 

Demographics 

The mean age of the residents was 80.66 years, SD = 6.29 with a range from 68 to 92 years. The staff 

mean age was 46.48, SD = 9.60, ranging from 26 to 62 years. Nine of the residents (28.1%) were male; 

with only one (4.8%) male member of staff. All but one of the residents identified as New Zealand 

European, compared with just over half of the staff (52.4%). The remainder of staff ethnicities was evenly 

composed of ‘other European’, ‘Pacific Island’ and ‘other’. 30 (93.8%) of the participant residents lived in 

independent living units; the remaining two were in the higher dependency rest-home part of the 

retirement village. 

Residents and staff did not differ significantly in education level or knowledge of robots (p > .05).  

However staff reported significantly higher levels of computer knowledge (M= 5.57, SD = 1.69), than 

residents (M = 3.64, SD = 2.15, t (52) = 3.48, p < .01, with a large effect size (eta squared = .19). Level 

of computer or robot knowledge was not associated with overall robot rating (p > .05). Education level 

was inversely associated with overall rating, r = -.28, p < .05). 
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Differences between Groups in Robot Rating 

Participants gave the robot a mean overall rating of 80.28, SD = 16.90, Md = 80.00, with a range from 20 

to 100. A Mann-Whitney U test showed no significant difference between staff (Md = 80, n = 21) and 

residents (Md = 90, n =32) in their overall ratings of the robot interaction, U = 259, z = -1.42, r = .20, p 

>.05. 

In the post-interaction questionnaire, staff were asked how they thought residents would rate the robot 

overall. Interestingly, staff thought residents would rate the robot significantly lower, Md = 80, n = 21, 

than residents actually did, Md = 90, n = 32, U = 116, z = -3.96, p <.01, r = .54. 

Correlations between Robot Rating and Attitudes and Emotions 

As seen in Table 2, three of the eight pre- and post- interaction attitudes and emotions were significantly 

correlated with robot rating. More favourable robot attitudes, both pre- and post-interaction, were 

associated with higher robot ratings. The r value for the association between robot rating and robot 

attitude after HRI was almost twice that of the r value between robot rating and robot attitude and 

positive affect before meeting the robot. This result suggests while pre-interaction attitudes and emotions 

are important for robot acceptance; the attitudes held after experiencing the robot are more strongly 

associated with robot acceptance.  

Changes in Attitudes and Emotions after a Human-Robot Interaction 

A  repeat  MANOVA  assessed  the  impact  of   group (residents  or  staff)  and  time  (before  and  after  

the  robot interaction) on participants’ emotions and robot attitudes. Four emotion and attitude variables    

were used: robot attitude, humanlikeness, positive affect, and negative affect. The results suggest that  

after meeting the robot, there were significant improvements in participants’ attitude towards robots (F,  

27)  =  25.04,  partial  eta squared  = .48,  Figure 9) as well  as decreases  in negative affect (F (1, 27) = 

4.30, partial eta squared = .14, Figure 10). There was no change (p > .05) in positive affect or 

perceptions of humanlikeness. 
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Table 2. Spearman’s Rho correlation coefficients between pre- and post-interaction attitudes and  

emotions, and robot rating13 

Variable       r 

Pre-interaction robot attitude    -.37* 

Pre-interaction humanlikeness    -.21 

Pre-interaction positive affect     .36* 

Pre-interaction negative affect    -.20 

       Post-interaction robot attitude    -.63** 

       Post-interaction humanlikeness    -.09 

       Post-interaction positive affect     .15 

       Post-interaction negative affect    -.08 

There was no significant interaction between group and time, Wilks Lambda = .92, F (4, 24) = .54, p > 

.05, partial eta squared = .08. The non-significant main effect (p > .05) suggests the changes in robot 

attitude, F (1, 27), = 3.59, and negative emotion, F (1, 27) = .27, were not different between residents 

and staff. 

Impact of education levels, pre - interaction emotions and attitudes, and changes in emotions and 

attitudes, on robot rating. 

Hierarchical  multiple  regression  assessed  the  ability of pre-interaction  emotions  and  attitudes,  as  

well  as  the change  in  these  emotions  and  attitudes,  to  predict  how participants rated the robot, 

while controlling for education levels. 

 

 

                                                

13 * p < .05    **p < .01 
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Figure 9. Reductions in negative attitudes towards the robot in residents and staff from time 1 (pre-interaction) to  

time 2 (post-interaction) 

 

The total variance in robot rating explained by the model as a whole was high; 84.7%, F (9, 20) = 12.35, 

p < .01. In the final model (Table 3), education level was not associated with robot rating, in contrast with 

previous research (Giuliani et al., 2005a). Change in negative affect contributed the most unique 

variance to robot rating. Change in humanlikeness was the only non-significant change variable. While 

pre-interaction humanlikeness was significant, its beta value was small. The results suggest robot 

attitude, both before and after the HRI, is an important predictor of robot rating. In contrast; while 

changes in emotions towards robots were strong predictors of robot rating; pre-interaction emotions 

towards robots were not. The results also support previous technology acceptance studies showing both 

emotions and attitudes independently predict technology acceptance (Venkatesh et al., 2003). 
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Figure 10. Improvements in negative affect towards the robot in residents and staff from time 1  

(pre-interaction) to time 2 (post-interaction) 

 

Humanlikeness 

The humanlikeness item had no significant correlations with attitudes, emotions, or blood pressure.  The 

one exception was, for staff only, reporting the robot as more humanlike after meeting it was associated 

with higher post- interaction positive affect, r  = .53, p < .05. 

For residents only, higher heart rate before meeting the robot was associated with reporting the robot as 

more human-like and less machinelike after meeting it (r = .38, p < .05); suggesting an association 

between heightened anxiety and perceiving the robot as more humanlike. In contrast, participants who 
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were expecting the robot to be more humanlike before they met it, tended to give it higher ratings after 

they used it (beta = -.27, p < 05). 

 

Table 3. Final hierarchical regression model showing unique contribution to variance  

(beta value) in robot rating by individual variables14 

Variable  beta value 

Education level       -.16 

   Pre-interaction robot attitude       -.88** 

   Pre-interaction humanlikeness       -.27* 

   Pre-interaction positive affect       -.20 

   Pre-interaction negative affect        .54 

       Change robot attitude       -.86** 

       Change humanlikeness       -.26 

       Change positive affect       -.70** 

       Change negative affect        .97** 

 

5.2.4. Discussion 

Participants rated the robot a high 80% in terms of overall quality of HRI. This is a positive result, and   

suggests participants found the robot acceptable. There was no difference in how residents and staff 

rated the robot, though staff thought residents would rate the robot lower than residents actually did. 

Since this study was cross-sectional, with no manipulation of variables, we cannot be specific as to why 

the robot was rated so highly by participants. But it seems plausible that the high rating can be partly 

                                                

14 * p < .05    **p < .01 
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attributed to the robot being designed in response to older peoples’ expressed preferences (Broadbent, 

Tamagawa, et al., 2009). The robot was also designed to be easy to use for people with physical and 

sensory impairments and low technology experience. User-design examples include; clear instructions,  

uncluttered screen interface, large iconic touch-screen buttons, high visual contrast for discrete touch-

screen elements, multi-modal robot communication (speech  and  large  text), and the robot’s slow and 

indirect approach to participants. 

There were improvements in robot attitude and negative affect from before to after meeting the robot.  

This may reflect both a high level of anxiety in naive users prior to meeting the robot, as well as reflecting 

a positive experience in using the robot. 

Changes in robot attitudes and emotions after meeting the robot explained a large amount of variance in 

robot rating. Improvements in robot attitude, and positive and negative affect predicted higher ratings. Of 

the four highly significant (p < .01) attitude and emotion variables that predicted robot rating; three were 

change variables and only one was a pre-interaction variable. While initial robot attitudes and emotions 

are important in terms of robot acceptance, changes in attitudes and emotions that occur during the HRI 

may be more important. 

Perceived humanlikeness of the robot was associated with higher ratings of the robot by staff, yet also 

with elevated heart rate in residents. This suggests that perceived humanlikeness may be a good 

feature, but may also provoke anxiety depending on demographic context. The complex relationship 

between humanlikeness and acceptance has been found in other robot research (Gee, Browne, & 

Kawamura, 2005). 

Focusing on both pre-existing attitudes and emotions towards robots, as well as the changes in these 

variables, may aid in maximizing an eldercare robot’s acceptance. Educational materials to improve 

potential users’ attitudes and emotions towards robots could be developed and disseminated at a 

retirement village. The robot experience could also be designed to foster positive robot attitudes in users 

and reduce negative affect. 
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Strengths of this study include; ecological  validity - the trial’s retirement home setting means results may 

generalize to other retirement homes in similar cultures; the interdisciplinary nature of the Healthbots 

research team brings expertise from engineering, psychology, gerontology, medicine, and health 

informatics to an emerging and complex field; the study design demonstrates the value of assessing 

attitudes and emotions both before and after a robot interaction; the study had a reasonably large 

sample size for HRI research - which typically has very few participants; this is not a Wizard of Oz study, 

as is often the case; additionally it is part of an on-going robot development project, where results of 

previous stages are fed  into the  design of the next phase. 

There were several limitations in this study. The robot trials were a brief interaction with demonstration 

modules only, so it is unknown how well the results will generalize to longer trials. This study was not a 

controlled trial; therefore it is unknown how the robot would rate compared with, for example, a human 

caregiver or a computer telepresence. There were some robot malfunctions during the trials. This may 

have caused some participants to rate the robot more negatively than they otherwise would have. A self-

selection bias is also possible; people who volunteered to take part in the robot trial may have had more 

positive robot attitudes and emotions, than residents and staff who did not volunteer. 

Conclusion 

This research demonstrates people do have attitudes and emotions towards robots that are important 

predictors of how they accept robots, but these are flexible and can change through experience with   

robots. The research results support an iterative cognition model for robot acceptance. 

Future research could investigate whether similar results are found with robot trials of longer duration; 

compare a healthcare robot against another similar healthcare delivery option; develop and trial robot   

educational materials to promote positive robot attitudes and emotions amongst residents and staff in 

retirement homes; and further assess which aspects of robot design and programming optimise the 

human-robot interaction. 
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5.3. Study one segue – the improved attitudes study  

Possible limitations of the improved attitudes study   

A possible limitation of this study is that we were unable to use the traditional technology acceptance 

outcome measure of ‘intention to use’. This study method included two self-report measures of 

acceptance administered after the HRI. One was “how well would you rate the interaction with the 

robot overall?”, and the other intention to use outcome was, “how much would you like to use this 

robot again?” The latter item is more similar to the well validated ‘intention to use the technology’ 

outcome from technology acceptance models.  

However, participants in the improved attitudes study found the ‘intention to use’ item inappropriate. 

When they were asked how much they would like to use the robot again, many participants 

responded with comments similar to “Well, it was fun using the robot, but it was a demo. I’d like to 

use the improved version, but I don’t need to use this one again.” Consequently participants’ ‘overall 

rating of the interaction’ was used as the primary self-report measure of robot acceptance.  

This issue has been noted in other HRI studies that have used outcome measures based on the 

UTAUT. Rest home residents found a similar item inappropriate when they were asked how much 

they would like to interact with a meal-companion robot again (McColl & Nejat, 2013). The question 

did not make sense to the residents as they knew the robot was being removed after the trial and 

there would be no opportunity to use it again. The UTAUT is a generic technology acceptance model, 

and as suggested by Venkatesh et al. (2003), some technology acceptance items may need to be 

adapted to fit specific contexts. 
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Other HRI studies that have administered psychological measures both before and after an 

interaction 

Since the improved attitudes study was published in 2010, two other publications have been located 

that describe HRI studies that also employed a ‘before and after’ assessment. Lohse (2011) designed 

an HRI study to assess gaps between users’ expectations of a robot’s performance and its actual 

performance. The study protocol involved 31 participants with a mean age of 24.2 years. They were 

given a written task scenario outlining how they were about to teach a new domestic robot the layout 

of a home. After reading the scenario participants rated their expectations of the robot’s 

characteristics and performance, as well as the importance of each characteristic. The measure 

consisted of a series of 17 semantic differential Likert scales with items such as; friendly-unfriendly, 

autonomous-not autonomous, useful-not useful, funny-serious. After guiding a Bielefeld Robot 

Companion (BIRON) through a study house, participants again rated the robot’s characteristics. 

Robot characteristics that the participants rated most important at baseline were ‘practical’ and 

‘useful’. After participants had ‘taught’ the robot the house layout, the difference was calculated 

between participants’ pre-HRI expectations and their post-HRI opinions of the robot’s performance 

and characteristics. The largest gaps between expectations of the robot and actual performance were 

for the items; fast-slow, practical-impractical, and useful-useless. This indicates participants found the 

robot slower and less useful than expected. Lohse (2011) suggest this may be explained by the 

prototype robot lacking the functionalities expected of a commercial product.  

As participants rated practicality and usefulness as the most important robot characteristics, the 

results support Davis’s (1989) proposal that perceived usefulness is a major determinant of 
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acceptance. However, as Lohse’s (2011) study did not contain any acceptance outcome measures 

(i.e. participants were not asked to rate the robot, or how much they would like to use it again), 

associations between these robot expectation/performance gaps and robot acceptance cannot be 

determined. Lohse’s et al.’s results do however concur with the findings of the improved attitudes 

study that people’s attitudes and perceptions of robots can change in a short time period as a result 

of a robot interaction. Although Lohse’s et al.’s study was not targeted at eldercare, the use of 

younger participants in their study means their results may not necessarily generalise to an older 

population. 

While not using the model of Expectation Confirmation Model of IT use specifically, another HRI 

study has been located that combined the methodology of before and after measures, with 

manipulation of expectations. Noting that some robot companies appear to over-sell the benefits of 

their robotic products, Paepcke and Takayama (2010) sought to determine the influence of raising or 

lowering people’s expectations of a pet robot’s abilities on their perceptions of those abilities after 

use. To test this, 24 participants (mean age 30.46 years), were allocated to one of four conditions in a 

2 x 2 HRI trial design (expectation setting: high vs. low, and pet robot type: Aibo vs. dinosaur robot 

Pleo). The experimental procedure started with manipulation of the participants’ expectations of the 

robots, after which (similar to Heerink, Kröse, et al.’s, 2009, study with the iCat placed in the tearoom) 

they could interact with the robot for as long as they chose. Participants’ perceptions of the robot’s 

abilities were measured both before and after the interaction. 

Results showed high or low expectations made no difference to participants’ perceptions of the 

robots’ people-perceiving capabilities, or how much time they chose to spend interacting with the 
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robot. However, compared with people in the low expectation groups, participants in the high 

expectation setting believed their robot had significantly less touch-sensing capacity, and was less 

competent. These results suggest that a high expectation setting did not lead to higher perceptions of 

the robots actual abilities (i.e. there did not appear to be a confirmation bias effect), rather it appears 

that people in the high expectation setting were disappointed with the robot’s actual abilities. Paepcke 

and Takayama (2010) conclude that robot acceptance may be optimised by decribing robots to 

potential users in ways that avoid disapointment when people actually interact with the robot.  

Results from Paepcke and Takayama’s (2010) expectation manipulation study support the findings 

from the improved attitudes study that people’s robot attitudes can be rapidly modifed. Furthermore, 

their results imply that people do not even need to interact with a robot for this to occur: people’s 

robot attitudes and consequent evaluations can be altered with simple framing effects.  

However, while the expection manipulation appeared to influence participants’ subjective perceptions 

of the robots’ competance and abilities, the manipulation influence did not extend to the study’s more 

objective measure of acceptance – how long participants played with the robots. A possible 

explanation for this result may lie in the choice of acceptance measure. For many middle-aged 

adults, playing with a pet robot may not be a natural default, or preferred, behaviour (Premack, 1965): 

i.e. when not under instruction and left to their own devices, middle-aged adults may not choose to 

play with a toy-like robot dinosaur or dog at all. Akin to ‘floor effects’, improbable behaviours may be 

relatively insensitive to expectancy manipulations. A compatible explanation is that each of the four 

study groups only had six participants. The study may have been under powered to detect significant 

differences in length of time participants spent playing with the robots.  
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 Older people’s prior attitudes influence Chapter 6.

evaluations of a conversational robot                       

[prior attitudes & drawing study] 

6.1. Preamble to study two – the prior attitudes & drawings study  

This study also assessed robot attitudes, but added a new measure of expectations. We asked 

people to draw what they expected the robot’s face to look like. The aims were to explore if the 

finding from the improved attitudes study - that people’s prefactual robot attitudes predicted robot 

acceptance - could be replicated within a different HRI context. Compared with the previous study, 

this study had a different population (community living older people vs. retirement village residents) 

interacting with a different robot (Peoplebot vs. Cafero) with different functions 

(therapist/conversational vs. healthcare) in a different setting (university vs. retirement village). 

Additionally, we wanted to assess whether people’s robot drawings, as a more implicit measure of 

their prefactual robot attitudes, were associated with their acceptance of the robot. A further aim was 

to assess what type of display on a robot’s screen was more acceptable to older people: a human or 

machinelike face, a male or female face, or no face. 
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6.2. Publication two: Older people’s prior robot attitudes influence 

evaluations of a conversational robot 

 

Stafford, R.Q1., MacDonald, B.A2., Li, X2., and Broadbent. E1 

 

1Department of Psychological Medicine, the University of Auckland, New Zealand 

2Department of Electrical and Computer Engineering, the University of Auckland, New Zealand 

 

Abstract 

As the population ages, healthcare robots may help meet increasing demands for mental and 

physical health services. However more understanding is required of how to make robots acceptable 

to older people. This study aimed to assess how older peoples’ robot attitudes and drawings were 

related to their reactions to a conversational robot. We also assessed whether altering the robot’s 

virtual face affected peoples’ responses. 20 participants aged over 55 conversed with a Peoplebot 

robot for 30 minutes. During the interaction the robot displayed six different face conditions on its 

monitor in a randomized order. The six robot conditions varied on two dimensions; i/ facial 

appearance (humanlike, machinelike, or no face), and ii/ robot gender. Measures included the Robot 

Attitudes Scale, drawings of a robot’s face prior to the interaction, blood pressure (BP) and heart rate, 

and evaluations of the robot. Results suggest participants did not evaluate the robot’s six display 

conditions differently. However, there was a trend for men to evaluate the robot more highly than 

women did. Participants’ positive attitudes towards robots before the robot interactions were 
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associated with positive robot evaluations after the interactions. Larger drawings were associated 

with higher systolic BP after interacting with the robot. These findings suggest that (at least in the 

short-term) people’s pre-existing mental models of robots may be more important for acceptance 

than the gender, human or machinelikeness, or even the presence or not of a robot’s virtual face. 

More research is needed on participant gender differences in reactions to eldercare robots. 

Compared with creating different robot faces to meet individual preferences, promoting positive 

attitudes towards robots may be a cost-effective method of promoting robot acceptance. Drawings of 

robots may be a useful, more implicit way of assessing anxiety towards robots in potential users. 

 

6.2.1. Introduction 

Older people can have many unmet needs due to the presence of mental and physical illnesses (G. 

A. Hancock, Reynolds, Woods, Thornicroft, & Orrell, 2003). Decreasing numbers of healthcare 

professionals is one reason some countries struggle to meet the healthcare needs of their older 

populations (Sargen et al., 2011). Technology based solutions, including healthcare robots, may be 

able to supplement care for older people. However few eldercare robots are commercially available 

(Mahoney, 1997). A greater understanding of robot and human variables associated with acceptance 

of eldercare robots may assist with individual and commercial acceptance. 

Preliminary studies (Broadbent, Lee, Stafford, Kuo, & MacDonald, 2011) suggest that people’s 

attitudes towards robots and drawings of robots can predict their responses to healthcare robots, 

including their blood pressure (BP). The face of the robot, as well as the robot’s humanlikeness or 
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machinelikeness, can also influence ratings (K. Gray & Wegner, 2012). However, more research is 

needed to assess how older people expect a socially interactive robot to look, and how their attitudes 

towards robots are associated with reactions to robots. This study aimed to assess how older 

people’s robot attitudes and drawings of robots were related to their reactions to a conversational 

robot. We introduced different virtual robot faces in the study so we could further evaluate peoples’ 

responses. 

This paper’s background section discusses related work - including possible advantages of robots for 

elder mental health support, technology acceptance models, and robot and human variables that   

impact acceptance of robots. The latter sub-section focuses on human expectations and attitudes 

towards robots, as well as the robot variables of humanlikeness and machinelikeness, gender, and 

robot faces. The background concludes with some methodological issues relating to assessment of 

eldercare robot acceptance, the research questions and study hypotheses. The next section presents 

the method, followed by the results, discussion, and conclusion. 

 

Background 

The potential for robotic delivery of mental health care 

Whereas some robots are intended to help with more physical aspects of healthcare (e.g. RI- 

MAN:Mukai, Onishi, Odashima, Hirano, & Luo, 2008) robots may also be able to assist older people 

with mental health issues. Older people have high rates of psychopathology and emotional issues, 

such as depression, anxiety and loneliness (G. A. Hancock et al., 2003). Despite the high prevalence 

of these mental health issues, detection (and consequently treatment) can be difficult (Stafford et al., 
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2012). Older people often are not willing or able to report both mental and physical health problems. 

Reasons for this include older people not wanting to be a nuisance, pride, socially desirable 

responding, lack of awareness, and fear of stigma and institutionalisation (Horrocks et al., 2004; K. 

Walters, Iliffe, & Orrell, 2001). 

Robotic mental health support could be delivered in a variety of ways. Loneliness and possibly 

depression may be alleviated via direct interaction with pet therapy robots such as Aibo (Banks et al., 

2008) and Paro (Robinson et al., 2013; Wada, Shibata, Musha, et al., 2005), or indirectly by 

facilitating human to human interaction via elder-friendly versions of communication technologies 

such as Skype. Another example is that robots with monitors could support elder mental health with 

software games designed to entertain and practice memory such as Brain Fitness (Dakim, 2012). 

A meta-analysis of computerised cognitive behavioural therapy programmes concluded that it is an 

effective treatment for adults with a range of anxiety and depressive disorders (Andrews, Cuijpers, 

Craske, McEvoy, & Titov, 2010). Such therapy delivered via robots may be an effective way to 

support older people with their mental health. Compared to computer or even human delivery of 

cognitive therapies, there may be some advantages to delivery by a robot. There is some evidence 

that the embodiment of a robot may provide a beneficial social presence over and above that of a 

computer (Kidd et al., 2006) while still retaining the non-human advantages of being a machine. 

While  some  older  people  fear  eldercare  robots  replacing  people (Wu, Fassert, et al., 2012);  in  

some  contexts machine-care may have advantages over human care. For example, compared with 

disclosing health concerns to a human, older people may feel less like they are ‘bothering’ a 

machine. As people have been shown to disclose more information via computer than face to face 
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(Joinson, 2001); people may feel more able to disclose distress to a robot with less fear of negative 

evaluation.  

Despite possible advantages to robotic eldercare; older people can be less accepting of new 

technologies than younger people (W. A. Rogers & Fisk, 2010). Further, older people have been 

shown to respond differently to robots compared with younger people (Ezer et al., 2009; Nomura & 

Takeuchi, 2011; Stafford et al., 2010). One implication of this is that older participants should be 

included in research to help develop and assess technologies, including robots, intended for elder-

use (Beer et al., 2012; Heerink et al., 2010; Tapus & Mataric, 2008). Therefore, compared with 

technologies developed for younger users; more care may be needed in optimising the acceptability 

of eldercare robots. One approach to optimising acceptability is to exploit technology acceptance 

models (TAMs). 

Technology Acceptance Models (TAMs) 

The purpose of TAMs is to predict under which conditions technologies will be accepted. The primary 

determinants of acceptance, or intention to use the technology, are how useful and easy to use the 

technology is perceived to be (Davis, 1989). However, Davis - the author of the original TAM - notes 

that there will likely be additional variables that impact technology acceptance and further research is 

needed to determine these (Davis, 1993). TAMs are also general models, and not much is known 

about specific factors that contribute to acceptance of new technologies such as robots by older 

people (Bagozzi, 2007). Therefore, in addition to examining general perceptions of robot usefulness 

and ease of use; it may be useful to identify specific robot and human variables that impact 

acceptance of eldercare robots. 
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Which human and robot variables impact acceptance? 

A human variable that is associated with acceptance of robots is peoples’ attitudes towards robots. In 

a human robot interaction (HRI) study, retirement home residents interacted with a Cafero healthcare 

robot for half an hour (Stafford et al., 2010). The robot’s demonstration healthcare functions included 

measuring blood pressure (BP), a hydration reminder, medication management, and entertainment. 

People’s attitudes towards the robot improved significantly from before to after interacting with the 

robot. Positive robot attitudes before the interaction predicted positive evaluations of the robot after 

the interaction. Another healthcare HRI study using Cafero found older people who held less positive 

attitudes towards the robot before deployment in a retirement village, were significantly less likely to 

use it over a two week period, compared with residents who held more positive robot attitudes 

(Stafford et al., 2013). 

However, unrealistically high expectations about a robot’s abilities may negatively affect acceptance. 

From a robot variable perspective; Cynthia Breazeal designed the sociable robot Kismet to have an 

anthropomorphic but non-humanlike appearance to help match people’s expectations of the robot to 

the robot’s actual abilities, thus avoiding disappointment (Breazeal, 2000).  

From a human variable perspective; Paepcke and Takayama (2010) manipulated participants’ 

expectations of the abilities of robot pets AIBO and Pleo. People with low expectations reported less 

disappointment in the robots after interacting with them and higher evaluations of the robots’ 

competence. Theoretical support for the role of pre-interaction expectations in robot acceptance 

comes from the expectancy-confirmation paradigm; widely used to understand consumer satisfaction 

and re-purchasing behaviour (Hong, Thong, & Tam, 2006). Bhattacherjee (2001) created the 
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Expectation-Confirmation Model in IT (ECM-IT) in recognition of the applicability of this paradigm to 

technology acceptance. 

Compared with general robot attitudes; human perceptions of robot ‘trustworthiness’ could be 

considered a more specific robot attitude. Sanders, Oleson, Billings, Chen, and Hancock (2011) 

proposed trust as a key factor in successful robot-human teams. They further concluded that there 

was little evidence for the impact of human variables on trust. Rather, robot variables were 

considered the dominant determinants of perceived robot trustworthiness. Support for this model 

comes from a study where different robot forms (viewed as static images) were rated as having 

differing levels of trustworthiness by students. Additionally, trustworthiness ratings were positively 

correlated with theoretical willingness to use the robots depicted in the images (Schaefer, Sanders, 

Yordon, Billings, & Hancock, 2012). 

A  human’s  perception  of  whether  a  robot  is  humanlike  or  machinelike  can  also  influence 

acceptance of the robot. However it is unclear which design would be more acceptable for an 

eldercare robot.  Some  HRI  researchers  propose  that  socially  interactive  robots  should  be 

humanlike to afford more natural interaction (Duffy, 2003). Other research suggests humanlikeness in 

robots is undesirable (Broadbent, Lee, et al., 2011; Wu, Fassert, et al., 2012). 

Some answers to this ‘humanlike or machinelike?’ robot design problem may lie in Mori’s 1970 

Theory of the Uncanny Valley (Mori, 1970). Mori’s theory predicts that people will be increasingly 

comfortable with objects as they become more humanlike until a sense of unsettling uncanniness 

develops as the robot becomes almost, but not quite, humanlike. K. Gray and Wegner (2012) 

explored this theory by asking 120 people (mean age = 25 years) to watch short videos of the same 
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social robot, Kasper, in two different conditions. In one condition the participants could see the more 

humanlike face of the robot; and in the other the more mechanical looking rear of the robot’s head. 

Participants did indeed rate the more humanlike front of the robot as being more uncanny than the 

mechanical back of the robot. While this supports the notion that humanlikeness in robots is 

counterproductive to acceptance, the study was conducted with young participants in a non-

healthcare context, which may not generalise well to an eldercare robot context. Further, the results 

may be specific to Kasper’s face and not generalise to robot faces of different design. 

A robots’ physical form seems to be important for acceptance of robots, and the face of a robot, like 

the face of humans (Etcoff,1999), also appears to be critical in people reactions to it. So an important 

question is: should an interactive robot have a face? And if so: what should the face be like?  

Some researchers have assessed the relationship between robot facial features and how humanlike 

the robot appears. DiSalvo et al. (2002) collected 48 static images of robots from popular media. The 

features of the robot’s  heads  were  counted  and  20  participants  (of  unreported  age)  rated  the  

heads  on humanlikeness.  Results  showed  the  presence  of  robot  facial  features  was  important  

for perceptions of humanness. The features that contributed most to perceptions of humanness were 

the nose, eyelids, and mouth. However, the study did not assess whether degree of perceived 

humanness was related to acceptance. 

The results from K. Gray and Wegner’s (2012) ‘front and behind’ Kaspar study are aligned with the 

results from several studies that suggest older people would prefer a robot without a face (Broadbent, 

Tamagawa, et al., 2009; Cesta et al., 2007). However there may be further variables that determine 

whether people prefer a humanlike or machinelike robot - with or without a face. Preference may be 
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impacted by context variables. For example, Goetz et al. (2003) found people preferred more 

humanlike-looking robots for more sociable tasks, and more machinelike robots for less sociable 

tasks. It also seems plausible that preferences are impacted by the aesthetics of a particular robot 

face. For example, Hanson (2006) tested the Uncanny Valley Theory by digitally morphing static 

images of a robot and a human. Results suggested it was not degree of robot humanlikeness per se 

that was associated with uncanniness or unease; but rather unaesthetic design. 

While explicit human preferences are important, they are not the only consideration in the design of 

acceptable robots. For example, Goetz et al. (2003) found people preferred an exercise robot 

programmed with a fun personality compared with the same robot with a serious personality.  

However despite their preference for the fun robot, participants exercised more with the serious 

robot. This finding further supports the notion that context and context-relevant outcomes should be 

considered in designing acceptable robots. 

Another factor that may impact acceptance is robot gender, which is strongly expressed in the face.  

A review of eldercare robots concluded that while there is some evidence to suggest perceived 

gender of a robot can impact human responses, there is insufficient research to advise on the optimal 

eldercare robot gender (Broadbent, Stafford, et al., 2009). It is also possible the gender of the human 

robot-user may impact acceptance. There is some evidence that men and women rate technologies 

differently (Sung et al., 2009; Venkatesh et al., 2003). In other work, Schermerhorn, Scheutz, and 

Crowell (2008) found male students (of unreported age) performed worse than female students on a 

difficult arithmetic task performed in front of a robot. The Peoplebot robot used in that study had an 

embodied camera-type ‘head’ and a male voice (voice origin unreported). 
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In assessing human-robot gender interaction, Siegel, Breazeal, and Norton (2009) used cash 

donation as an objective measure of the relative persuasive powers of a male and female robot. The 

physically androgynous Mobile Dexterous Social Robot was gendered by pre-recorded male and 

female human voices. The mean participant age was 35.6 (SD = 11.6). It was found that men 

donated more money to the female version of the robot, whereas the gender of the robot made no 

difference to women participants. 

In a recent study, Eyssel, Kuchenbrandt, Bobinger, de Ruiter, and Hegel (2012) randomized 58 

students (Mean age = 22.88, SD = 2.81) to viewing one of four videos of the androgynous robot 

FLOBI uttering a short sentence. The 2 x 2 robot  conditions  varied  on  whether  the  robot  spoke  

with  a  male  or  female,  humanlike or robot-like voice. Eyssel et al. reported that gender interactions 

were detected, including participants preferring the robot with the same-sex voice. However several 

of these reported gender differences were non-significant, e.g. p = .20. 

As the HRI gender studies have been conducted with younger participants in a non-healthcare 

context, generalisability to an eldercare robot context may be limited. Furthermore, the robots were 

gendered by voice only and not by appearance. Results from non-HRI gender-preference healthcare 

studies may help with this research question. For example, B. L. Bernstein, Hofmann, and Wade 

(1987) found that the majority of 169 students (age range 17-74 years, M = 30.5, SD = 8.1) either had 

no gender preference for a counsellor or they preferred a male counsellor. However older age was 

associated with preferring a male counsellor. The exception was when the issue was of a personal or 

intimate nature, in which case students reported preferring a same-sex counsellor. In a UK study 
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(Horrocks et al., 2004), older women reported preferring a female doctor. Older men had no 

preference. 

How to assess attitudes? Some methodological issues 

The interaction between a human and a robot is complex. Determining and measuring acceptance-

critical aspects of HRI, in a valid and reliable way, can be difficult. For example, an elderly man 

verbally reported he did not like Paro the social seal robot, yet video recordings of the man’s 

affectionate behaviour towards the robot suggest otherwise (Wada, Shibata, Musha, et al., 2005). For 

these reasons the use of multiple data gathering methodologies, or data triangulation, is 

recommended (Bethel & Murphy, 2010). More implicit measures of people’s attitudes, such as 

drawings, can corroborate self-report or help circumvent self-report limitations. 

Drawings may be used as an alternative and complementary method to questionnaires to assess 

people’s mental schemas about an object. Drawings have shown to be associated with anxiety and 

behaviour. For example, patient’s drawings of damage to their heart predicted return to work after a 

heart attack (Broadbent et al., 2004). Larger drawings of the heart have been associated with more 

heart-focused anxiety in the same group (Broadbent et al., 2006). Furthermore, pictures of robots 

drawn by people aged  over  40  have  been  found  to  predict  outcomes  in  an  HRI  study 

(Broadbent, Lee, et al., 2011). People who drew a humanlike, rather than box-like robot at baseline, 

had greater increases in BP from before to after interacting with a healthcare Peoplebot. Larger 

drawings of robots were associated with more negative emotions after interacting with the robot. 
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Aims 

This study aimed to determine some more specific factors that impact older people’s acceptance of a 

conversational robot. In particular, to see if older participants would respond differently to different 

types of displays on the robot’s monitor; some displays with faces, some without. Also to examine 

whether pre-existing attitudes towards robots and drawings of robots are related to acceptance of a 

conversational robot. The purpose of the latter aim is to build on earlier studies and assess if the 

previous findings can generalise to a community-dwelling older sample interacting with a 

conversational robot. 

Research questions 

I. Does   the   gender,   humanlikeness   or   machinelikeness,   or   presence   or   absence,   of   a 

conversational robot’s virtual face influence participants’ responses to the robot?  

II. What do people draw when asked to draw a robot therapist’s face? 

III. Are  participants’  attitudes  towards  robots  and  drawings  of  robots  associated  with  their 

evaluations of a conversational robot, and their BP and heart rate, after interacting with the robot 

Hypotheses 

A. Participants would rate a virtual humanlike face on a conversational robot’s monitor most 

acceptable, followed by a robot with no face on its screen, and a virtual machinelike face would be 

least acceptable. 

B. People would draw a humanlike face to express their idea of a therapist robot’s face. 
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C. Larger drawings of the robot would be associated with lower robot acceptance and increased BP 

and heart rate. 

D. More positive robot attitudes before an interaction would result in greater acceptance of the robot 

E. Men and women would rate a conversational robot of the same sex as more acceptable than a 

conversational robot of the opposite sex. 

6.2.2. Method 

Creation of the robot’s display conditions 

The robot’s monitor displayed six different ‘face’ display conditions. Four of the six display conditions 

had virtual faces (along with a male or female voice). Two of the six conditions had no faces and a 

male or female voice only. Therefore the robot’s monitor displays varied on two dimensions, i/ facial 

appearance (humanlike, machinelike, or no face) ii/ robot gender.  

In this study the robot’s six display conditions are referred to as; human-female face, machine-female 

face, human-male face, machine-male face, noface/female voice, and noface/male voice. 

The human faces for the robot’s display originated with standard faces on the software FaceGen 

Modeller from Singular Inversions. The faces were aged at approximately 40 years using the 

software settings. This agent age was considered appropriate for a conversational robot study with 

older participants. A Caucasian appearance was also selected for the faces, to match the expected 

participant group. Once the human faces were determined, a ‘silver skin’ was placed over them and 

the nose made more angular to provide more robotic or machinelike versions of the human faces.  
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However, with the agent’s body not visible and without stereotypical feminine accessories such as 

women’s clothing, long hair, or makeup, the machine-female virtual face looked more neutral in 

gender than female. Consequently (as seen in Figure 11) the size of the cheekbones and lips were 

enhanced to feminise the machine-female’s face. Longer hair was also added to the human-female 

face to increase the perceived ‘femaleness’ relative to the human-male face. Xface, an open source 

3D talking head based on the MPEG-4 standard was used to animate the virtual faces so they 

appeared to speak in a naturalistic way. 

Manipulation check for the robot’s virtual faces 

Using  participants aged  55  years  and  over,  two  iterations  of  manipulation  checks  were 

conducted to ensure that the robot’s four virtual faces were perceived as significantly different in 

human/machinelikeness and gender. To ensure that the virtual faces only differed from each other on 

these variables of interest and not on emotional expression - scales were administered based on 

Ekman’s basic emotions (Ekman, 1992). The faces are shown in Figure 11 and results of the second 

manipulation check indicated the emotional expressions of the four virtual faces were not significantly 

different (p >.05). 

Manipulation check for the robot’s male and female voices 

The robot communicated with participants by generating speech with either a male or female 

Microsoft voice. Prior to the main study, manipulation checks were conducted with participants to 

ensure that the voices were perceived as significantly different in gender (p<.05). The checks also 

ensured the voices did not differ on a 10 item Likert scale that had semantic opposites of ‘natural: 

humanlike’ versus ‘mechanical:robotlike’ (p >.05). 
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Participants 

A power calculation was conducted to determine the appropriate number of participants for the study. 

With power set at .8 and an α value of .05, the GPower 3.1 calculation indicated a sample of 19 

people would be sufficient to detect a medium effect size (f = .25) in differences between participants’ 

evaluations of the robot’s six different display conditions. Twenty participants aged 55 years or over 

were recruited via email sent to University of Auckland departments. Potential participants were 

informed they would be asked to interact with a therapist robot. Participants were required to be 

fluent in English and able to type using a keyboard. The ages of the seven men and 13 women 

participants ranged from 55 - 71, M = 64.5, SD = 4.55. Seventeen participants identified as European 

New Zealanders, two as European Dutch, and one as Indian. Sixteen of the participants had a 

university degree. With a maximum possible score of eight, the mean of participants’ computer 

knowledge was M = 6.32 (SD = 1.53), and the mean for their knowledge of robots was 3.37 (SD = 

1.7, both n’s = 19). 

Procedure 

Ethics approval was obtained from the University of Auckland Human Participants Ethics Committee 

(Ref.2009/367). During the study participants interacted with the ELIZA programme installed on a 

Peoplebot robot (Adept Mobile Robots), with an on-board Intel Pentium1300 MHz processor. ELIZA 

is an interactive software programme that simulates Rogerian psychotherapy (O'Dell & Dickson, 

1984). The purpose of the programme was to provide a constant conversational platform to enable 

evaluation of participants’ responses to the changing appearance of the robot’s monitor display.  

ELIZA responds to participants with pre-formatted psychotherapy content triggered by key words 
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typed by the participants. While useful, ELIZA is a very limited psychotherapy programme. As the 

Peoplebot/ELIZA combination is not equivalent to a human psychotherapist, in this study the robot is 

referred to as a ‘conversational robot’. 

 

 

      machine-female         human-female  

 

 

 

 

 

     

     machine-male            human-male  

 

 

 

 

 

     

Figure 11. The final faces used for the four of six robot display conditions with virtual faces15 

                                  

                                                

15 Note: The robot’s two display conditions without faces (no face/female voice and no face/male voice) are not 

shown, but had a blank blue screen instead of a face. 
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The Microsoft Speech SDK 5.1 was used to synthesize the robot’s speech. For the robot’s three 

female display conditions, Microsoft’s ‘Mary’ voice was used. Microsoft’s ‘Mike’ voice was used for 

the three male conditions. These two voices are available for download from the Microsoft website 

(Microsoft, 2012). 

Text generated by the ELIZA programme was also displayed on the robot’s monitor. As seen in 

Figure 12, participants communicated with the robot by typing on a keyboard attached to the robot. 

During the interaction the robot sequentially displayed the six different conditions on its monitor. The 

order of presentation of the display conditions was randomized for each participant. 

The trial was conducted in a small office within the University of Auckland, New Zealand. Participants 

were met on the University campus by a researcher and escorted to the study room. They were 

informed about the study procedure including that they would be interacting with a robot installed with 

a basic psychotherapy programme and displaying different faces on its monitor. They were told they 

would interact with the robot by typing into a keyboard and the robot would communicate with them 

with speech and text.  

On arrival at the study room participants were seated opposite the robot, which initially had a blank 

monitor display. Written informed consent was obtained. Participants then completed the baseline 

questionnaires. Next, participants were asked to interact for five minutes with each of the robot’s six 

display conditions. Participants evaluated each of the conditions immediately after each interaction. 

Blood pressure and heart rate were measured both at the beginning and end of the trial. 
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Figure 12. The trial set-up16 

 

 

Measures 

As outlined in Figure 13, different measures were administered at different stages of the trial. 

 

                                                

16 Note: For the robot’s two display conditions without a virtual face, the monitor screen was identical except for 

having a blank blue space where the human-male face is depicted in this figure 

 

Text generated by the ELIZA 

programme appeared here 

Text typed by the  

participant appeared here 
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Pre-HRI measures 

Demographics: Participants were asked their gender, age, ethnicity, education, and occupation. 

Knowledge of computers and robots (Stafford et al., 2010): Participants were asked to circle a 

number to indicate how experienced they were at using computers; e.g. for email, typing things out, 

and finding things on the internet. The response options ranged from 1 (not at all) to 8 (extremely). 

They were also asked how much they knew about robots. The response options for this item ranged 

from 1 (nothing) to 8 (quite a bit). 

 

 

Figure 13. Diagram showing administration of measures in relation to pre-robot interactions, interactions with each of the six 

robot display conditions, and post-interactions. 
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Robot Attitudes Scale (RAS): This 12-item measure was developed in an earlier study (Broadbent et 

al., 2010). The written RAS instructions were ‘Please circle the number that best corresponds to how 

you feel towards the robot therapist you are about to use. I think the robot therapist will be:’. 

Participants then rated the robot on 12 attributes using an eight-point scale, with the attribute 

opposites as anchors. For example; friendly (1) - unfriendly (8). The other RAS items were; useful-

useless; trustworthy-untrustworthy; strong-fragile; interesting - boring; advanced - basic; easy to use - 

hard to use; reliable - unreliable; safe - dangerous; simple - complicated; helpful - unhelpful; and 

controllable - uncontrollable. RAS items were summed to create an overall score (RAS-total) between 

12 and 96. Higher RAS scores equate to less favourable robot attitudes. Cronbach’s α was .86. 

Drawings of the robot’s face: The standardised drawing instructions were adapted from (Broadbent, 

Lee, et al., 2011). Instructions  were  placed  above  a  124mm(h)  x 141mm(w)  box  on  an  A4  

sized page. The instructions were – “The robot will have a face displayed on its computer screen. 

Please draw a picture of what you think the robot’s face will look like. We are not interested in your 

drawing ability; we are interested in your ideas about robot faces - a simple sketch is fine”. On the 

inside top  left  of  the  box  was  the  text  “My  picture  of  a  face  that  could  be  displayed  for  a  

robot therapist….”. 

After  the  trial,  researchers  viewed  the  drawings and  by  consensus  identified  the  drawings’ 

distinctive features. 
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Measures administered after interacting with each of the six robot display conditions 

Robot evaluation: After each of the six interactions, participants completed two questions. These 

items were developed in Stafford et al., (2010). The two items asked participants to i/ provide an 

overall rating of that robot display condition - from 0 (very poor) to 100 (excellent) and ii/ to indicate 

how much they would like to use that version of the robot again, by writing a number from 0 (not at 

all) to 100 (excellent). Item ii/ is based on technology acceptance research indicating there is a strong 

relationship  between  intentions  to  use  a  technology  and  actually  using  it (Venkatesh et al., 

2003). These two variables were highly correlated (r = .92, n = 20, p <.001), so were averaged to 

form a composite variable ‘Robot evaluation’. 

Perceived gender and human/machinelikeness of the robot’s virtual faces: After each of the 

interactions, participants rated the four of six robot display conditions that had virtual faces (human-

female face, machine-female face, human-male face and machine-male face) on gender and 

human/machinelikeness. Response options were on a 10 point Likert scale. Response options for 

perceived gender were: 1(male)-10(female): for human/machinelikeness: 1(machinelike)-

10(humanlike). Note the robot’s two monitor display conditions without virtual faces (no face/male 

voice and no face/female voice) were not rated on these items. 

Statistical analyses were conducted using SPSS statistics 18. Data were assessed for normality 

using the Kolmogorov-Smirnoff statistic, and parametric or non-parametric statistical analyses run 

accordingly. A Friedman Test was conducted to assess differences in participants’ evaluations of the 

robot’s six different screen displays.  A mixed ANOVA was conducted to assess differences between 

man and women in ratings of the robot’s different displays (for this analysis, the evaluation data was 
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ranked in order to convert it to a normal distribution). Spearman’s correlation coefficients tested for 

associations between the continuous variables (the RAS, drawing details, physiological measures, 

and robot evaluations). Mann-Whitney U tests were conducted to assess differences in physiological 

measures between people who did and did not draw particular features on their robot faces. 

Significance was set at p <.05. 

6.2.3. Results 

Do people respond differently to the different faces of a conversational robot? 

Was the manipulation of the robot’s virtual faces effective? - As expected, there were significant 

differences between participants’ ratings of the robot’s four virtual faces on gender and 

human/machinelikeness. However (unlike the manipulation check) in this main trial participants rated 

the human-female face as being significantly more female (M = 7.5, SD = 1.73) than the machine-

female face (M = 4.8, SD = 2.79, p <.05). This was considered acceptable for the purposes of the 

main study, as the machine-female face was still rated as being significantly more female than the 

two male virtual faces; human-male (M = 1.5, SD = .61) and machine-male (M = 1.9, SD = 1.17, p’s 

<.05). 

How did participants evaluate the different robot display conditions? -  The results of a Friedman Test 

(Table 4) indicated there were no significant differences detected in participants’ evaluations of the 

robot’s  six  different  display conditions, X2(5, n = 20) = 2.25,  p >.05. Consequently, for the 

remainder of the analyses, the evaluation scores for the robot’s six display conditions were averaged 

to give an overall evaluation of the robot for simplified analyses. 
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Table 4. Statistics describing participants’ evaluations of the six different robot display conditions 

Condition displayed 
on 

robot’s monitor 
 

 
Median 

 
Mean 

 
SD 

Human-female face 25.0 27.8 24.3 

Machine-female face 25.0 27.8 23.2 

Human-male face 12.5 27.6 27.2 

Machine-male face   7.5 25.4 28.0 

Noface/female voice 16.3 24.6 24.7 

Noface/male voice 16.3 24.2 24.3 

 

Did men and women evaluate the robot display conditions differently? 

A mixed 2 (men and women) X 2 (robot male, robot female) X 3 (robot humanlike, machinelike, or no 

face) ANOVA was conducted using participant gender as a between subjects factor and robot facial 

appearance and robot gender as within subjects factors. The results indicated that there was no main 

effect for robot gender F(1,18) =.265, p =.613), and there was no main effect for robot facial 

appearance (F(2, 36) =.185, p =.832). However, there was a non-significant trend for a between-

subjects effect between men and women, such that men tended to rate all the conditions (estimated 

marginal mean rank 13.44, SD 1.76) higher than women did (estimated marginal mean rank 8.92, SD 

1.29), F(1,18) = 4.30, p =.053). There was a medium sized between-subjects effect size of r = .44. 

There were no significant interaction effects (all p values >.05). 
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What do people draw when asked to draw a robot therapist’s face? 

Drawing descriptives: The mean width of the drawings was M = 65.2mm (SD = 29.05); the mean 

height was M = 64.0 (SD = 24.03); and mean area was M = 4789.3mm2 (SD = 4157.15; all n’s = 20. 

The mean number of robot facial features drawn was M = 5.45, SD = 1.96, range = 6 (from 3 to 9). 

Counts of whether or not participants drew particular facial features can be seen in Table 5. 

Examples of drawings showing particular facial features can be seen in Figure 14. 

 

Table 5. Counts and percentages of robot therapist facial features drawn by participants 

     Is the facial feature present in the drawing? 

Feature Yes  No 

Eyes 20 (100%) 0 

Nose 19 (95%) 1 

Mouth 18 (90%) 2 

Head-shape containing features 16 (80%) 4 

Smile 11 (55%) 9 

Eyebrows 9 (45%) 11 

Ears 9 (45%) 11 

Eye pupils 8 (40%) 12 

Hair 7 (35%) 13 

Neck 3 (15%) 17 
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Figure 14. Some examples of robot drawings demonstrating gender dimorphism,  

human vs. machinelikeness, and the presence or absence of particular facial features 
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 humanlike, eye-pupils  machinelike, no eye-pupils  

 

 

 

 

 

     

    smile, no ears  no smile, with ears  

 

 

 

 

 

     

     headshape    no headshape  

 

 

 

 

 

     

 with hair, and eyebrows  no hair nor eyebrows  
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Did participants draw male or female, humanlike or machinelike robot therapist faces? Researchers 

rated participants’ drawings of a robot therapist face on both gender (male, female or ‘gender-

neutral’) and whether they were humanlike or machinelike. As seen in Table 6 the majority of faces 

were categorised as predominantly male, with gender-neutral a close second and only two drawings 

were rated as being female. Almost two thirds of the drawings were rated as being humanlike rather 

than machinelike. There was agreement amongst the six researchers on face gender and 

human/machinelikeness for all drawings except four. In these cases, the faces were re-examined and 

a consensus reached. 

 

Table 6. Counts of researcher ratings of the gender (male, female, or gender-neutral) of the participant’s robot therapist face 

drawings and whether the faces were humanlike or machinelike 

Drawing  
categories              Male                      Female             Gender-Neutral                      Totals 
 

Machinelike       2 0 5     7  (35%) 

Humanlike    8 2 3 13  (65%) 

Totals 10 (50%) 2 (10%) 8 (40%) 20 (100%) 
 

 

Do participants’ robot attitudes and robot drawings correlate with their evaluations of the robot, their 

blood pressure or heart rate? 

Robot Attitudes Scale (RAS): Half of the robot attitude items reported before interacting with the robot 

(including RAS-total) were significantly and strongly correlated with post-interaction evaluations of the 
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robot. As seen in Table 7 more positive robot attitudes at baseline were associated with higher robot 

evaluations. 

Table 7. Spearman correlations between pre-interaction RAS Items and the post-HRI evaluation scores17 

   
 

correlations between RAS items 
and robot evaluation 

  RAS items              M           SD   rho    P 

RAS- total 36.65 10.73 -.64** .002 

RAS- useful(1)-useless(10) 3.35 1.09 -.52* .02 

RAS- strong(1)-fragile(10) 3.20 1.45 -.49* .03 

RAS- interesting(1)-boring(10) 2.30 1.34 -.50* .03 

RAS- advanced(1)-basic(10) 3.85 1.69 -.69** .001 

RAS- reliable(1)-unreliable(10) 3.00 1.26 -.73** .000 

RAS- helpful(1)-unhelpful(10) 3.40 1.23 -.69** .001 

RAS- friendly(1) – unfriendly(10) 3.20 1.67 -.21 .34 

RAS-trustworthy(1)-untrustworthy(10) 2.80 1.61 -.32 .16 

RAS- easy to use(1)- hard to use(10) 3.15 1.35 -.20 .41 

RAS- safe(1)- dangerous(10) 1.55 0.69 -.24 .31 

RAS- simple(1)-complicated(10) 3.35 1.31 -.16 .38 

RAS-controllable(1)-uncontrollable(10) 3.50 1.79 -.21 .38 

*p<.05 **p<.01 

 

There were no significant correlations between participants’ robot attitudes and participants’ initial 

heart rate and BP. However, elevated heart rate post-interactions was associated with pre-interaction  

perceptions  of  the  robot  as  less  trustworthy  (r = .53, p = .02)  and  less controllable (r = .56, p = 

                                                

17 Note i. Lower RAS scores mean more positive robot attitudes.  Note ii. all n’s =20 
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.01). The RAS-total score was not significantly associated with any pre- or post-interaction 

physiological measures. 

Drawings  of  a  robot  therapist’s  face: There  were  no  significant  correlations  between i/ drawing 

width, height, area, or total number of features drawn, and ii/ robot evaluation (p >.05). 

With one exception, Mann-Whitney U tests showed no significant differences between people who 

did or did not draw particular facial features and their robot evaluations (p >.05). The exception was 

people who drew hair on the robot’s head (Md = 32.5, n = 7) were more likely to evaluate the robot 

more highly after using it than people who did not draw hair (Md = 7.9, n = 13, U = 17.5, z =-2.2, p = 

.03, r = .49). There was also a non-significant trend for people who drew a neck to evaluate the robot 

more highly (p =.08). 

There were no significant associations between drawing features and diastolic BP (p >.05), but the 

larger people’s robot therapist drawings were - the more elevated their systolic BP was at the end of 

the trial (r = .53, p = .02, n = 20). 

Ears were the only facial feature of the drawings associated with any physiological measure. As seen 

in Table 8 people who drew ears were more likely to have a lower heart rate at both pre- and post-

interactions, compared with those who did not draw ears. 
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Table 8. Mann-Whitney U Test statistics showing differences in heart rate between participants who did and did not draw 

ears in their picture of a robot therapist face 

Ears 
drawn? 

Heart rate (pre-interactions) 
Median 

n u z p r 

No 80.0 11 23.0 -2.01 .04 .45 

Yes 64.0 9     

 Heart rate (post-interactions) 
Median 

     

No 73.0 11 19.0 -2.13 .02 .48 

Yes 61.0 9     

 

6.2.4. Discussion 

There was no significant difference in participants’ evaluations of the six different conditions 

displayed on the robot’s monitor; regardless of whether the robot’s face was male or female, human 

or machinelike, or even if there was a face at all. However when examining participant gender 

differences; there was a non-significant trend for men to evaluate the robot more highly than women 

did. Participants’ evaluations of the robot in this study were low compared with evaluations of a 

Cafero healthcare robot in a retirement village setting (Stafford et al., 2010). The difference may be 

explained by participants in this study being younger and more highly educated than the retirement 

village residents. They may have had high expectations of a ‘therapist robot’ but with their greater 

familiarity with technology, were disappointed with the low level of technical sophistication exhibited 

by the ELIZA programme on the Peoplebot. Additional methodological differences between the two 

studies included the use of different robots (Peoplebot Vs. Cafero) with different functions 

(conversational vs. healthcare). 
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In relation to drawings - half of participants drew a male robot therapist face, and 40% drew a gender-

neutral one. Only 10% drew a robot’s face that was identified as female. Most people drew a 

humanlike, rather than machinelike face. All people drew eyes on the robot’s face. All but one 

participant drew a nose, and most drew a mouth and head-shape. About half of participants gave 

their robot’s face a smile, eyebrows, ears and eye pupils. Less than half drew a neck or hair on the 

robot’s head. 

This study’s participants likely acquired at least some of their concepts of what a robot looks like from 

popular media. It may be interesting to ‘reverse engineer’ this study’s drawing results by comparing 

them with the robot features coded from images of popular media and research robots. DiSalvo et al. 

(2002) found 81.3% of the 48 ‘humanoid’ robot images they surveyed had eyes, 18.8% had eyelids, 

16.7% eyebrows, 29.2% noses, 62.5% a mouth, and 43.8% had ears. Similar to this study, Di Salvo 

et al. (2002) found eyes were the most common robot facial feature.  

This study’s robot drawings contained a considerably higher proportion of noses and mouths than 

DiSalvo et al.’s 48 robot images, and almost the same proportion of ears, but fewer eyebrows. This 

suggests that people have higher expectations of robot faces having noses and mouths than would 

be expected from the robot faces typically portrayed in the media. Alternatively, this study’s 

instructions to draw the “face of a therapist robot” may have triggered schemas of more humanlike 

and less media-typical robots. 

Participants who reported more positive pre-interaction robot attitudes also reported higher robot 

evaluations after interacting with it. Perceptions of the robot as less trustworthy and less controllable 

were associated with higher post-interaction heart rates. People who drew hair in their pictures also 
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rated the robot more highly. People who drew ears had a lower heart rate both before and after the 

interactions. Larger drawings of robot therapist faces were associated with higher post-interaction 

systolic BP. 

Therefore hypothesis A. was not upheld as no differences were found in participants’ responses to 

the robot’s different face displays. Hypothesis B. was upheld as the majority of participants’ drawings 

were humanlike. As  larger  robot  drawings  were  associated  with  higher  post-interactions systolic 

BP, but not diastolic BP nor heart rate, hypothesis C. was partially upheld. As participants’ positive 

pre-interaction robot attitudes were associated with positive evaluations of the robot, hypothesis D. 

was upheld. As men and women did not have a same-sex preference for the conversational robots, 

hypothesis E was not upheld. 

Some of this study’s results are consistent with other studies, and some are not. Considering there is 

evidence that people evaluate different robot faces differently (DiSalvo et al., 2002; Goetz et al., 

2003), it was surprising that differences in the robot’s display conditions in this study did not appear 

to affect participant’s robot evaluations. There are several possible reasons for this. As the trial was 

sufficiently powered to detect moderate effect sizes; it’s possible a significant but small effect went 

undetected due to an insufficient number of participants.  

Another (complementary) reason is a five-minute interaction with each of the six different display 

conditions may not have been long enough for differences in participants’ responses to be elicited.  

Further, the ELIZA programme may have acted as a confound by not responding sufficiently 

consistently across the six conditions. It is also possible the faces used in this study were too similar 

to provoke moderate differences in participant responses. Some of this study’s results differing from 
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that of other studies could also be due to participant age differences. Results from HRI studies with 

younger participants may not generalise well to older people (W. A. Rogers & Fisk, 2010). 

Some of the individual RAS items that were associated with participants’ evaluations of the robot 

have been identified as important in other acceptance studies. One RAS item of particular interest is 

‘useful-useless’. In this study people who expected the robot to be more useful also evaluated it more 

highly. This finding is consistent with models of technology acceptance where perceived usefulness 

is considered a key determinant of technology acceptance. As these naïve expectations were 

captured via administration of the first measures before participants had used the robot; these results 

support Davis’s (1989) emphasis on the importance of perceptions of usefulness rather than more 

objective measures of usefulness. 

As  both  perceived  usefulness  and  perceived  ease  of  use  are  considered  key  predictors  of 

technology acceptance, the ‘easy to use - hard to use’ RAS item is also of interest. In this study, in 

contrast to previous technology acceptance research (Davis, 1989, 1993; Venkatesh et al., 2003) 

perceptions of the robot’s ease of use were not significantly correlated with robot evaluation scores.  

A third RAS item of interest is ‘trustworthy-untrustworthy’. Despite other researchers proposing that 

perceptions of robot trustworthiness are important for acceptance (J. D. Lee & See, 2004; Sanders et 

al., 2011), this study found no significant association between perceptions of robot trustworthiness 

and post-trial evaluations of the robot. 

There are several possible explanations for these anomalous results for the RAS items relating to 

ease of use and trustworthiness. In relation to perceptions of ease of robot use – this highly educated 

sample may have had high comfort levels in relation to technology use. Additionally, as part of the 
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procedure, the researcher explained the robot’s simple operating requirements to participants before 

they completed the pre-interaction measures. Consequently ease or difficulty of use of the robot may 

not have been a salient cognition for participants. In support of this explanation, Hong et al. (2006) 

note the impact of perceived ease of use may diminish as users adjust to a technology. Further, 

Davis (1993) found that while perceived ease of IT use was predictive of technology acceptance; it 

was only half as influential as perceived usefulness. 

In relation to perceptions of robot trustworthiness; pre-interaction perceptions of the robot as being 

less trustworthy were not significantly associated with robot evaluation or initial heart rates, but  were  

significantly  correlated  with  higher  heart  rate  after  the  interactions. It is possible that perceptions 

of robot untrustworthiness provoke anxiety in response to a robot interaction. In light of this finding, 

closer examination of the data in Table 7 show that of the non-significant correlations between RAS   

items and robot evaluation; ‘trustworthy-not trustworthy’ had the highest r value (-.32) and the p value 

closest to significance (.16). This suggests that the correlation between perceptions of robot 

trustworthiness and higher robot evaluations may have reached significance with higher participant 

numbers. These physiological and self-report results for perceptions of robot ‘trustworthiness’ support 

both the concept that trustworthiness perceptions are associated with robot acceptance, and the 

importance of multiple data gathering methodologies in HRI research. 

People  who  draw  more  humanlike  robot  features  such  as  hair  and  ears  may  have  more 

humanlike mental schemas of robots. Drawing these features was associated with better robot 

evaluations and lower heart rate. Previous research is divided on whether humanlikeness in robots 

negatively or positively impacts on acceptance. This division may have arisen because the answer to 
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the question “Should a robot be humanlike or not?” is “it depends”. Whether people regard robot  

humanlikeness as a negative or a positive factor may be an interaction between a person’s robot 

schemas, or pre-existing mental models of robots, and the specific HRI context; in this case a 

conversational robot. 

Eldercare robots could perform a variety of social or more task-oriented roles; and it is likely people 

prefer an eldercare robot’s appearance to be consistent with its role (Broadbent, Tamagawa, et al., 

2009). In this study, results  from  the  drawings  suggest  that  participants’  perceptions  of  the  

therapist  robot  as humanlike were both positive and associated with higher robot acceptance. This 

may mean that perceptions of humanlikeness are consistent with perceptions of a conversational 

robot. That larger robot drawings were associated with higher systolic BP concurs with previous 

research findings that larger drawings are associated with increased anxiety. Similarly to this study, 

Broadbent, Lee, et al. (2011) found a trend for larger drawings of a healthcare robot to be associated 

with greater increases in systolic BP during an HRI. 

Compared with women in this study, men tended to rate the robot higher across all conditions. The   

medium  effect  size  associated  with  that  finding  suggests  the  standard  significance benchmark 

of p <.05 may have been reached with a larger sample size. The sample size of seven men and 13 

women implies generalizations of the gender results should be done with caution. However this 

study’s gender-related findings are similar to those of a healthcare robot study with a larger sample (n 

= 57) of mixed age participants (Kuo et al., 2009). Compared with women in that study, men were 

found to hold significantly more positive robot attitudes. This study’s gender result concurs with other 

research that suggests men are more accepting of technologies (Venkatesh et al., 2003). 
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The limitations of this study may include being underpowered to detect small differences in 

participants’ responses to the different robot conditions. Participants may have become tired after 

interacting with six different versions of the robot. Participants were not asked to rate the two versions 

of the robot without virtual faces on gender and humanlikeness. If they had responded to these items, 

results may have indicated whether virtual faces added to perceptions of robot gender and 

human/machinelikeness over and above the gendered voices. The RAS was not re-administered 

after baseline in order to minimise participant burden. This limited the number of outcomes able to be 

analysed. 

There are pros and cons to quantitative and qualitative analyses. In this study there was more 

emphasis on quantitative analyses of the drawings (for example counts of facial features and drawing 

size) rather than qualitative analyses. Although the presence or absence of a smile - qualitatively 

suggestive of friendliness - was considered a distinctive feature across the drawings; other qualitative 

aspects were not analysed in this study. Quantitative assessments are useful for quantitative 

statistical analyses; but more qualitative assessments may be more useful for a one on one in-depth 

analysis. For example, if a potential robot user drew a frightening looking robot it may be beneficial to 

have an in-depth interview to understand the source of these perceptions. 

Study strengths include triangulation of data methodologies. These included self-report items, 

drawings and physiological measures. Multiple data collection methodologies are recommended for 

HRI research, and drawings may be a useful and more implicit measure to use concurrently with self-

report. Participants’ drawing results may either endorse participants’ self-reports or help circumvent 

self-report limitations such as socially desirable responding and memory biases. Further strengths 
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include participant assessment both before and after the robot interactions. This enabled predictors 

of robot acceptance to be ascertained. The use of older participants supports work in the 

development of acceptable eldercare robots. The use of standardized drawing instructions enables 

comparison with other HRI research. Drawings of robots may be a useful way to index anxiety and 

changes in anxiety towards robots. 

Sanders et al. (2011) claim robot variables are the dominant determinant of human acceptance of 

robots, and human variables make a negligible contribution if any. However, other HRI studies have 

found human variables are important for acceptance (e.g. Heerink, Kröse, Wielinga, et al., 2008). 

While not discounting the importance of robot factors; evidence that different individuals’ perceptions 

of the attributes and acceptability of identical robots can vary (Forlizzi & DiSalvo, 2006; Paepcke & 

Takayama, 2010) supports the concept that human perceptions are also an important factor in robot 

acceptability. In this study, pre-existing subjective perceptions of robot humanlikeness appear to have 

larger effects on acceptability than more objective design parameters of robot humanlikeness. 

It is possible that in this study, small differences in acceptance between the different robot faces went 

undetected. However results also suggest that, beyond basic aesthetic design as proposed by 

Hanson et al. (2005), differences in robot faces, such as human/machinelikeness, may only result in 

differential user responses of minor clinical significance. Future research could therefore focus on 

optimising attitudes towards robots and fostering context appropriate perceptions of robot 

humanlikeness in order to increase acceptance. Although care should also be taken not to raise 

people’s expectations so high that they are disappointed with the robot. 
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It is plausible that participants’ prior experience with human therapists could influence their responses 

to a ‘robot therapist’; as could prior experience with online computer therapies, especially ones that 

feature screen agents or static or moving images of real people. These variables were not measured 

by the authors and may be an interesting area for future research.  

Even though numbers of participants used in this study were relatively small, this is not dissimilar to 

previous work in either drawings (Kaptein et al., 2011) or HRI research (Bartneck, Verbunt, Mubin, & 

Al Mahmud, 2007; Beer et al., 2012; Caine, Fisk, & Rogers, 2006; Callari, Ciairano, & Re, 2012; 

Kiesler & Goetz, 2002).  

Furthermore, other research groups in addition to the authors have already published a number of 

studies on quantitative analysis of drawings (Broadbent et al., 2006; Broadbent et al., 2004; 

Daleboudt, Broadbent, Berger, & Kaptein, 2011). Despite this, future research should include larger 

sample sizes to better detect differences in responses to different  robot  faces,  as  well  as  detect  

gender  differences  in  participant  responses.  

A larger sample size would also allow broader knowledge of older people’s drawings of robots. 

However, the type of robot image drawn is likely to be influenced by the specific HRI, the study 

context, and drawing instructions. In this study the instructions were to draw a robot’s face. The 

instruction in a prior HRI study involving robot drawings was to draw a healthcare robot (Broadbent, 

Lee, et al., 2011), and consequently the drawings were quite different from the ones in this study. 

And robot drawings are likely to be different again if participants are asked to draw a companion 

robot, or a medical robot, or the face of a multi-functional service type robot. More research is needed 



  

 

178 

 

to assess which of these exploratory results generalise to other HRI contexts, and which are specific 

to specific HRI contexts. 

However, while details of robot drawings, such as facial features or body shape, are likely to vary 

depending on HRI study context, this study’s results have demonstrated that drawing size was 

positively correlated with physiological arousal (indicating anxiety). This is an important and useful 

finding. This result is congruent with previous robot and non-robot drawing studies that have found 

larger drawing sizes are positively correlated with poorer outcomes and anxiety in relation to the 

drawing subject. This suggests that this result is likely to generalise across a wide variety of HRI 

contexts, and therefore be a useful and generalisable tool for assessing robot-related anxiety. Note 

that while the results cannot prove precisely what mental states the physiological measures 

correspond to; physiological arousal, such as elevated heart rate and blood pressure, is associated 

with elevated stress and anxiety (De Vente, Olff, Van Amsterdam, Kamphuis, & Emmelkamp, 2003). 

A possible limitation of the study is that drawings of a robot’s screen face may not generalize to 

robots with embodied 3D heads. However, displaying a head or face on a robot’s monitor or screen is 

one of several methods for manifesting a robot’s face. Each different method for manifesting a robot’s 

face will likely have its advantages and disadvantages. While an embodied 3D robot head may have 

benefits that a robot’s ‘3D’ screen head does not (Bainbridge, 2011; Kidd & Breazeal, 2010; Tapus, 

Tapus, & Mataric, 2009); it will also be relatively expensive to construct, and be limited in its scope for 

customisation. In contrast, a robot’s screen face readily lends itself to customisability, including the 

option of no face. The latter preference has been expressed by some older people in eldercare robot 
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studies (Broadbent, Tamagawa, et al., 2009; Stafford et al., 2010), which is why in this study, two of 

the robot’s six screen display conditions were without faces. 

Advantages of screens and monitors on robots include provision of additional functions, more 

interaction modalities, and customisability. Perhaps in recognition of these advantages, a number of 

socially assistive robots have screens. Although the Peoplebot’s monitor is optional, some other 

robots with screens include Fraunhofer’s Care-O-bot-3 (Fraunhofer, 2012), Yujin Robot’s Cafero and 

IRobiQ (Robot, 2007), the EU CompanionAble project’s Hector (IMSS, 2012), the NurseBot project’s 

Pearl (Pollack et al., 2002), and the shopping robot TOOMAS (Gross et al., 2009). Therefore 

understanding what constitutes an optimal display on a robot’s screen appears to be an important 

emerging HRI area to research. 

Additional suggestions for future research include longer interactions. This may assist in detecting 

differences in participant responses to different robot faces. More research is also needed on 

differences between older men and women in their ratings of robots. It may be of interest to assess if 

younger people’s drawings of robots differ from older people’s drawings. Interventions could be 

designed to manipulate older people’s robot attitudes and assess the impact on acceptance of 

eldercare robots. 

 Future HRI studies could administer drawings both before and after interactions, to assess whether 

changes in drawing size and features mirror any changes in anxiety about robots or physiological 

changes. A subsequent study has been performed to try and address some of these limitations 

(Broadbent et al., 2013). Rather than using the ELIZA programme, the subsequent study uses a 



  

 

180 

 

robot healthcare interaction with a larger sample size of younger participants, and with a smaller 

number of faces that were only one gender and without hair. 

 

 

Conclusion 

This is the first time older people’s expectations of a virtual robot therapist face have been assessed 

via drawings. The results of this study suggest drawings can indicate perceptions about robots which 

are related to acceptance. In subsequent work, they may be a useful methodological tool to assess   

changes in participants’ perceptions of robots after an intervention designed to promote appropriate 

robot attitudes.  

Results of this study corroborate earlier studies showing that pre-interaction robot attitudes are 

positively correlated with acceptance. The results demonstrate that these earlier findings relating to 

robot attitudes and drawings can generalise to a different community sample of middle-aged to older 

adults, and to a robot with a conversational function. 

Although some participant gender effects were found, no differences in acceptance between the 

robot’s six different face displays were detected. In contrast large effect sizes were detected for the 

associations between pre-interaction robot attitudes and post-interaction acceptance. This contrast 

suggests, alongside developing aesthetically pleasing and context-appropriate robot faces, it may be 

cost effective to direct research towards promoting contextually-appropriate robot attitudes. Support 

is also provided for the importance to robot acceptance of subjective perceptions of a robot’s 
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capacities. Assessing people’s mental schemas of robots via attitudes and robot drawings may be 

important methods for predicting acceptance of robots, and form a basis for future interventions to 

enhance acceptance. 

 

 

6.3. Study two segue – the prior attitudes & drawings study  

 

Comparison of results between the prior attitudes & drawings study and the improved 

attitudes study  

The results of the prior attitudes & drawings study replicate a key finding of the improved attitudes 

study - that people’s prefactual robot attitudes are associated with their acceptance of a robot. This 

finding was replicated with a different robot with different functions, with a different older population, 

and in a different environment. Further replication of findings from the improved attitudes study in this 

prior attitudes & drawings study can be seen in the significant associations of participants’ baseline 

robot drawing variables with post-HRI robot acceptance outcomes.  

Support for the use of “overall rating of the HRI” as a proxy for ‘intentions to use’ 

Results from the second prior attitudes & drawings study support the use of the item ‘overall rating of 

the interaction’ as a comparable outcome measure to ‘intention to use’ in the first, improved attitudes 

study. In the first study, the acceptance item ‘how much would you like to use this robot again’ was 

unable to be used for analyses. The majority of participants found the item confusing due to the robot 
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only being a demonstration version. They wanted to use the improved version of the robot, but had 

no desire to use the prototype study robot again. In contrast, in the prior attitudes & drawings study, 

the outcome item “how much would you like to use this version of the robot again?” was acceptable 

to participants. Furthermore, in the prior attitudes & drawings study, participants’ responses to that 

item (“How much would you like to use this version of the robot again?”) and their responses to the 

‘overall rating of the interaction’ were correlated to a multicollinearity level; indicating they are 

comparable constructs.  

Other recent research on people’s responses to different robot face displays 

A recent publication describes a study that built on the methodology of the prior attitudes & drawings 

study. In this more recent study (Broadbent et al., 2013), 30 participants (Mean age 22.5 years) each 

interacted with three different versions of a Peoplebot in a blood pressure taking task. Similarities 

between Broadbent et al.’s study and the prior attitudes and drawings study include the use of a 

Peoplebot with different types of face displays on its monitor. The types of faces used were similar to 

those used in the prior attitudes & drawings study: a human face, a silvery robotic/machinelike face 

based on the human face, and no face.  

Although the Peoplebot’s faces were developed using a similar approach in both studies, they had 

different ‘base faces’ (in the improved attitudes study the base faces were ‘average faces’ in the 

software programme: in Broadbent et al.’s study the base face was a photograph of a male student). 

Consequently the resulting faces looked similar but not identical.   

The results were also different between the two studies. In the prior attitudes & drawings study, 

regardless of the robot gender, no significant preference was found for the Peoplebot’s human face, 
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machinelike face, or no face display. In contrast, robot face preferences were found in Broadbent et 

al.’s (2013) study. Participant’s in that study significantly preferred the human face display for a 

healthcare robot. The robot’s no-face display was the next preferred, and the machinelike face was 

least preferred. There were no significant differences in participants’ blood pressure readings 

between the three different face displays.  

This difference in results could be attributed to a number of method differences between the two 

studies. These include Broadbent et al.’s study having younger participants rather than older, the 

study robots having different functions (blood pressure task vs. conversational/therapist), and 

Broadbent et al.’s study being a repeated measures design, rather than between groups, and having 

more participants and fewer face display conditions. This latter study difference meant that, 

compared with the prior attitudes & drawings study, Broadbent et al.’s study was better powered to 

detect significant differences in face preferences. 

A further difference between the two studies is that of manipulation checks. In the prior attitudes & 

drawings study manipulation checks prior to the main trial ensured that the robot’s faces did not 

significantly differ in emotional expression; whereas in Broadbent et al.’s (2013) study, the personality 

of the robot’s faces was assessed during the trial.  

This method difference does provide a possible explanation for the difference in findings. Broadbent 

et al. found ‘eeriness’, a measure of aversive uncanny valley effects, was not associated with the 

degree of humanlikeness of the robot faces, but rather was associated with negative perceptions of 

the face’s personalities. Although perceived personality and perceived emotion are not 

interchangeable constructs; as the faces in the prior attitudes & drawings study were ‘matched’ on 
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perceived emotional expression prior to the main trial, this may explain why in contrast to Broadbent 

et al.’s findings, participants had no preferences between the robot’s face displays. However, this is 

speculation only. The eeriness and personality of the robot face displays were not assessed in the 

prior attitudes & drawings study, and as described above, there were many method differences 

between the two studies that may also explain the difference in results.  
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 Does the robot have a mind? Mind Chapter 7.

perception and attitudes towards robots predict use of 

an eldercare robot [robot mind study] 

7.1. Preamble to study three – the robot mind study  

The Cafero robot used in the first improved attitudes study had been upgraded based on two types of 

feedback. One type was feedback from participants in the improved attitudes study. The other type 

was the development of robot solutions in response to issues that become apparent during 

deployment in a real-world eldercare environment.  

In the improved attitudes study participants only used the robot for approximately 30 minutes (also 

the case in the prior attitudes & drawings study). Therefore, a key aim of the next robot mind study 

was to assess if the findings that robot attitudes predicted robot acceptance could be replicated in a 

longer term trial. In this robot mind study, the improved version of the Cafero robot was deployed in a 

retirement village for two weeks. This study had several key objectives in addition to assessing the 

effects of longer exposure to the robot. As intentions to use a technology can be weak predictors of 

actual behaviour (Davis, 1989), we wanted to use the measure of actual use of the robot as a more 

objective and proximal measure of robot acceptance.  

Lastly, a new, two-dimensional measure of mind perception was administered in the robot mind 

study. Mind perception may help explain why some people are uncomfortable with the concept of 
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humanlike robots. Use of the Mind Perception Questionnaire (H. M. Gray, Gray, & Wegner, 2007) 

may help assess underlying mechanisms that influence people’s acceptance of robots. 

 

7.2. Publication three: Does the robot have a mind? Mind perception and 

attitudes towards robots predict use of an eldercare robot 

 

Stafford, R.Q1., MacDonald, B. A2., Jayawardena, C2., Wegner, D. M3., and Broadbent, E1. 

 

1Department of Psychological Medicine, the University of Auckland, New Zealand 

2 Department of Electrical and Computer Engineering, the University of Auckland, New Zealand 

3 Department of Psychology, Harvard University, MA, USA  

 

Abstract  

Robots are starting to be developed for aged care populations and some of these have been made 

into commercial products that have been well received. However, little is known about the 

psychological factors that promote acceptance or rejection of robots by older people. Finding out 

more about these psychological determinants of robot uptake and acceptance is the primary focus of 

the study described in this paper. A healthcare robot feasibility study was conducted in a retirement 

village. Older people (n = 25) were invited to use a prototype robot with healthcare functions over a 

two week period. Questionnaires were completed before and after the period. It was found that 

residents who held significantly more positive attitudes towards robots, and perceived robot minds to 
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have less agency (ability to do things) were more likely to use the robot. It was also found that 

attitudes towards robots improved over time in robot-users. Our results suggest that the cognitions 

older people hold about robots may influence their decisions to use robots. The study results also 

validate participants’ subjective self-reports of attitudes towards robots and perceptions of robot mind, 

against the objective measure of robot use. Interventions to foster adaptive cognitions could be 

developed and applied in the design, deployment and marketing of robots to promote their use and 

acceptance. 

 

7.2.1. Introduction 

The proportion of older persons compared to the proportion of younger persons in the global 

population is currently increasing (United-Nations, 2012).These trends are particularly notable in the 

more developed regions, and especially in Japan, Germany, and Italy. There have been predictions 

of shortages of workers to care for this growing ageing population (Eaton, 2005; Sargen et al., 2011). 

It has been proposed that healthcare robots may be able to supplement support for older people, 

their families and caregivers (Bemelmans et al., 2010; Broadbent, Stafford, et al., 2009; Broekens et 

al., 2009). Many research organisations and companies are currently studying and/or developing 

eldercare robotic devices. A well-known example is Paro, a robotic seal, which has shown promising 

results in improving mental health (Klein & Cook, 2012; Shibata, Kawaguchi, & Wada, 2011). 

However, there are also unsuccessful cases where robots have not been widely adopted by aged-

care populations, (e.g. Foulk, 2007; Mahoney, 1997). 

More understanding is required of factors that minimise the rejection of eldercare robots and optimize 

their acceptance. There is some understanding of robot factors that promote acceptance; notably that 

the robot is perceived as both useful and easy to use. There is also some knowledge of human 
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predictors of acceptance. However, known human predictors of technology acceptance tend to be 

fixed and/or historical demographics. For example, female gender and older age have been 

associated with low acceptance of novel technologies (Venkatesh et al., 2003). There are two issues 

with fixed demographic factors as acceptance predictors. One issue is fixed factors may predict non-

acceptance of technology, but do not explain the underlying causes of non-acceptance. The second 

issue is that, by definition, fixed predictors are fixed. It is not possible to make older women more 

accepting of novel technologies by changing their gender and reducing their age. However, unlike 

demographics, psychological characteristics of potential technology users may be less fixed. Greater 

knowledge of potentially modifiable psychological factors associated with the acceptance and 

rejection of robots in an aged-care context is required. This may assist designers in creating 

acceptable eldercare robots to help meet the challenges of ageing populations. 

Goals 

The primary goal of the study described in this paper was to further knowledge of psychological 

factors involved in the acceptance of eldercare robots. Specifically we investigated whether the 

attitudes that older people hold about robots and their perceptions of the robot’s mind could predict 

the use of a healthcare robot in a retirement village. 

The study had several secondary study goals. These included testing the feasibility of deploying a 

prototype robot in a complex real-world eldercare environment. An additional goal was obtaining 

feedback from real-world older participants on the prototype robot and its healthcare functions or 

modules. The feedback will be used to further develop and improve the robot and its modules in an 

iterative fashion. 

This paper’s focus is on psychological factors and does not focus on the functional effectiveness of 

the robot. Assessing effectiveness was beyond the scope of this feasibility study, and robot 

functionality is an important but likely insufficient factor for acceptance. Several other publications 

focus on more technical aspects of this study, e.g. Kuo et al. (2011) and Jayawardena et al. (2012).  
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The introduction next provides an overview of related work in eldercare robots. The issue of 

increasing acceptance of eldercare robots is raised. Next, the potential for technology acceptance 

models to assist in increasing eldercare robot acceptance is examined. The next two sections 

propose two psychological factors as predictors of eldercare robot acceptance: attitudes towards 

robots and the theory of mind. The last section of the introduction provides the study’s specific aims 

and hypotheses. 

 

Eldercare Robots 

For eldercare robots to have enduring commercial success, they must perform useful tasks that will 

promote continued usage once any novelty effects have worn off (e.g. Foulk, 2007). Past research 

using a variety of methodologies has identified potentially useful tasks for domestic eldercare robots. 

Identified tasks include chores such as vacuuming (Dautenhahn et al., 2005); cleaning in general, 

polishing and cleaning windows and walls, and moving heavy items (Khan, 1998). In another study, 

retirement village staff and residents rated detection of falls, lifting heaving objects and monitoring the 

location of people who wander away from the village, as the three most useful tasks for a 

hypothetical and unspecified eldercare robot. The study conducted focus groups with residents and 

staff using open ended questions to elicit preferences for robot functions and appearance in the 

absence of any robot. Subsequently a list of robot tasks was made from participants’ responses 

(Broadbent, Tamagawa, et al., 2011). More personal tasks such as baby-sitting, pet-minding, and 

food preparation have been considered less suitable for robots (Khan, 1998). 

Another approach to determining suitable robot tasks is to first assess the needs of older people, and 

subsequently develop technologies to address those needs (Cavallaro et al., 2013; Hirsch et al., 

2000; Stafford et al., 2012). Much of the research on preferred robot tasks is based on surveys 

administered in the absence of an embodied robot. This is a valid approach; however physical 

interactions with embodied robots can also provide useful information about usability, and reveal 

changes in preferences and attitudes about robots and robot tasks (e.g. Koay et al., 2007). 
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A number of robots have been developed to perform different tasks in eldercare. Socially assistive 

eldercare robots aim to interact with older people to improve or maintain their physical and/or mental 

health (Heerink et al., 2010). Companion robots include the seal robot Paro (Shibata et al., 2011), the 

teddy-bear-like Huggable (Stiehl et al., 2006), and robotic cat NeCoRo (A. V. Libin & Cohen-

Mansfield, 2004). The robotic dog, Aibo, has been shown to have similar benefits to a real dog in 

reducing loneliness in eldercare (Banks et al., 2008).  

Other robots intended for eldercare include the mobile navigation and memory-aid robot Pearl 

(Pollack et al., 2002). Robot developers Fraunhofer IPA state the Care-o-bot 3 can safely navigate 

around humans, facilitate human-human interaction, and transport household objects to and from 

human users. They propose the Care-o-bot 3 may assist older people to continue living safely in their 

own homes (Graf, Parlitz, & Hägele, 2009).  

This study used the robot Cafero - a multi-functional mobile robot with a touch-screen. Cafero has 

been adapted for eldercare by incorporating software for telephone calling, vital signs assessment, 

fall detection, medication management and entertainment (Stafford et al., 2010). Another eldercare 

HRI robot, Bandit, is a mobile robot platform with a humanoid torso. Bandit has been used for 

cognitive stimulation and as an eldercare exercise instructor (Fasola & Mataric, 2010; Tapus & 

Mataric, 2008). However most eldercare robots are either not yet commercially available, or are not 

widely deployed. 

There is initial evidence for the effectiveness of robots in improving health outcomes in older people. 

A systematic review of the effects of robots in eldercare found 41 relevant studies - most of which 

focused on companion-type robots and Paro in particular (Bemelmans et al., 2010). The review 

concluded that while the effects on psychosocial and physiological outcomes are promising, larger 

randomised controlled trials are required to test efficacy. There is some limited evidence that robots 

are preferred to non-robotic devices in eldercare. For example Kidd, Taggart, and Turkle’s (2006) 

study indicated that nursing home residents preferred the activated Paro compared with the turned-

off Paro. Tapus and Mataric (2008) showed that Bandit was preferred to a non-robotic interface. 
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For eldercare robots to be effective they must not only be functional, but older people must be 

comfortable with their use. Acceptance in this context has been defined as the robot being willingly 

incorporated into the person’s life (Broadbent, Stafford, et al., 2009). Consequently longitudinal 

human-robot interaction (HRI) studies are required to assess true human-robot acceptability. There 

are insufficient longitudinal eldercare HRI studies in a real-world environment (Bemelmans et al., 

2012; Broekens et al., 2009), and despite the first electronic autonomous robot being created in 1948 

(Holland, 2003), little is known about the variables that increase or decrease human acceptance of 

robots. This lack of knowledge of predictors of acceptance of eldercare robots is likely a barrier to 

their successful design, deployment and commercialisation; and a motivation for our study to explore 

psychological factors. 

 

Technology Acceptance Models 

Technology acceptance models have previously been applied in robotics research to study factors 

related to acceptance (Heerink, Kröse, Evers, et al., 2008; Heerink et al., 2010). Fred Davis (1989, 

1993) is the author of the original Technology Acceptance Model (TAM). While anticipating the 

discovery of other technology acceptance predictors; Davis proposed perceived ‘ease of use’ and 

‘usefulness’ of the technology as the major predictors. The much cited Unified Theory of Acceptance 

and Use of Technology model (UTAUT:Venkatesh et al., 2003) has built on Davis’ parsimonious 

model by adding a variety of demographic and situational factors, such as age, gender, computer 

experience, and ‘voluntariness’ of technology use. Voluntariness was added in an attempt to address 

participant self-selection confounds. 

Many studies have since shown technology acceptance models (including Davis’ original TAM) to be 

predictive of technology acceptance (Bagozzi, 2007; Venkatesh et al., 2003). However the addition of 

many variables to UTAUT has been criticised for increasing the complexity of technology acceptance 

models without advancing understanding of how these variables contribute to technology 

acceptance. A deeper understanding of technology acceptance predictors is proposed to create truly 

acceptable technologies (Charness & Boot, 2009). 
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A further issue is that technology acceptance models may be limited in their ability to generalise to 

acceptance of eldercare robots. Potential limitations include technology acceptance studies being 

typically conducted with simpler technologies such as cell phones and computers, and rarely 

involving embodied agents such as robots. The studies rarely assess longer-term acceptance in a 

real-world setting (Broekens et al., 2009), and usually involve younger participants. Younger people 

may differ substantially from older people in terms of technology acceptance. Older people are less 

likely than younger people to have knowledge of similar technologies, such as computers, that they 

can generalise to robots. Older people have been found to be more reluctant to adopt novel 

technologies than younger people (Charness & Boot, 2009). 

Eldercare robots that can provide users with easy to use and useful functionalities are more likely to 

be acceptable compared with robots that do not provide these things (Davis, 1993; Venkatesh et al., 

2003). However, as identified by technology acceptance models, predictors of acceptance are 

perceptions of ease of use and usefulness, not objective measures of these factors. This suggests it 

is of limited use having a highly functional robot if it is not perceived as such by potential users. If 

people think a robot is worthless, they may be reluctant to even try using it. Hong et al. (2006) 

discuss how pre-use technology expectations are more likely to originate from manufacturers or 

mass media sources, whereas post-use technology expectations are more likely to originate from 

actual experience of the technology itself. If people are not willing to try using a technology then they 

cannot experience its functionality. Therefore uptake or initial use may be considered a critical if 

insufficient precursor to acceptance. 

Fortunately, in exploring predictors of robot use, there are alternatives to adding more fixed 

demographic predictors to acceptance models. It may be helpful to investigate more explanatory and 

potentially modifiable predictors such as psychological variables. The general public view of robots 

might be characterised as having special status as artefacts with physical and/or cognitive humanlike 

qualities and this seems to trigger a range of preconceptions, which may be based on science fiction, 

movies, and television (Broadbent et al., 2010; Gee et al., 2005). Media images and messages may 

interact with a human predilection to anthropomorphise. Consequently people may perceive 
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something different about robots, over and above other non-robot technologies such as computers or 

cell phones, which may affect robot uptake and subsequent acceptance. 

Therefore to help identify predictors of eldercare robot acceptance we propose to explore two 

potential psychological factors in eldercare robot use: attitudes towards robots and perceptions of 

robots’ minds. 

Attitudes towards robots 

For the purpose of this study we take our definition of ‘attitude’ from social psychology. Attitudes are 

positive or negative evaluations of objects of thought. Attitudes can be composed of affect (feelings 

towards the object), behaviours (predispositions to act in a certain way towards an object), and/or 

cognitions (the thoughts people hold about the object) (Weiten, 2004). In this paper, we are mostly 

interested in the cognition component. This is motivated by our interest in peoples’ decisions to use a 

robot or not. 

Robot-specific attitudes, possibly in addition to generic technology attitudes, may predict robot 

acceptance. Heerink et al. (2010) adapted the UTAUT to fit the context of an iCat robot within an 

elderly residence. Attitudes towards the robot were included in the model. The robot attitude items 

were; ‘I think it’s a good idea to use the robot’; ‘The robot would make life more interesting’; and ‘It’s 

good to make use of the robot’. Results showed actual usage of the iCat by the 65–94 year old 

participants was predicted by the intention to use; and the intention to use was, in turn, predicted by 

perceived ease of use and attitudes to robots. 

Generalisability of Heerink et al.’s (2010) results to the wider resident population may be impaired by 

some methodological limitations. One possible limitation is there was only a single administration of 

the questionnaire to participants (after they had used the robot in the introductory session). Therefore 

baseline robot attitudes and any changes in these attitudes over the week-long trial were unable to 

be assessed. A self-selection bias is also likely (and difficult to avoid) with participants having more 

favourable attitudes towards robots than non-participants. However, Heerink et al.’s results are 

supported by other studies that have also found attitudes towards robots are likely important for robot 
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acceptance (Crawford, Grussing, Clark, & Rice, 1998; Gee et al., 2005; Goetz et al., 2003; Heerink, 

Krose, et al., 2006; Nomura, Kanda, et al., 2006; Syrdal et al., 2009). 

This study employs the Robot Attitudes Scale, which focuses on general positive or negative 

thoughts about robots (Broadbent, Tamagawa, et al., 2011). Previous work with this scale has shown 

that attitudes towards robots predict ratings of the robot, and attitudes improve after interacting with 

the robot (Stafford et al., 2010). 

Theory of Mind 

A new area of investigation in HRI is peoples’ perceptions of whether the robot has a mind. These 

perceptions may also affect acceptance of robots.  H. M. Gray et al. (2007) examined the extent to 

which people agree that various characters, such as a baby, a dog, and a robot have a mind. The 

research found that people perceive the attributes of mind along not one dimension but two: mind 

experience and mind agency. The dimension of mind experience can be summarised as a 

character’s perceived ability for ‘feeling’; the capacity to feel hunger, fear, pain, pleasure, rage, 

desire, personality, consciousness, pride, embarrassment, and joy.  

Conversely, mind agency can be summarised as a character’s perceived ability for ‘doing’; the 

capacity for self-control, morality, memory, emotion recognition, planning, communication, and 

thought. The robot character in Gray et al.’s study received a moderate score for agency (higher than 

the dog and some other characters) but lowest equal with God for capacity for experience. Recent 

research has suggested that higher perceptions of a robot’s capacity for mind experience are tied to 

feelings of unease (K. Gray & Wegner, 2012). 

The theory of mind perception is related to anthropomorphism, in that people attribute capacities of 

mind to non-human characters. Humans readily anthropomorphise non-human creatures, and even 

non-living objects, such as computers (Reeves & Nass, 1996). Anthropomorphism in humans is 

easily generated with even primitive social cues (Nass, Steuer, & Tauber, 1994). The greater the 

number and intensity of these cues; the stronger the impression the human may receive that their 

robot partner is a social actor and higher in agency. Features common to robots such as 
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embodiment, movement, and speech may promote a sense of perceived agency in robots (Breazeal, 

Kidd, Thomaz, Hoffman, & Berlin, 2005; DiSalvo et al., 2002; Severinson-Eklundh, Green, & 

Hüttenrauch, 2003). 

However different individuals in different contexts can perceive different levels of anthropomorphism 

for identical non-human agents. Epley, Waytz, and Cacioppo (2007) address contextual and 

psychological predictors of anthropomorphism within the Three Factor Theory of Anthropomorphism. 

Psychological components of the theory include the cognitive motivational mechanism of ‘effectance’. 

The term describes the need to interact effectively with the environment. Ascribing familiar human 

characteristics to unfamiliar non-human agents may assist in both explaining and predicting the 

agent’s behaviour. This strategy may serve to reduce anxiety about how the agent may behave in the 

future.  

An extension of this work showed people expecting to interact with an unpredictable robot were more 

likely to anthropomorphise it than people who were expecting to interact with a predictable robot 

(Eyssel et al., 2011). In contrast, the cognitive motivational mechanism of ‘sociality’ describes the 

human need for social connectedness. For example, the more lonely people are - the more motivated 

they are to anthropomorphise non-human agents. 

Similar to Epley et al. (2007); Takayama (2012) discusses how perceptions of robot agency may 

assist in understanding human-robot interactions. Whether agency is perceived as a positive or 

negative attribute may depend on context. A person who perceives little agency in a robot may have 

their own sense of agency enhanced by the use of a non-agentic ‘robot-as-tool’. In contrast a person 

who perceives more agency in a robot may be more able to interact with it more easily via natural 

social behaviours. However, there is some evidence that higher levels of perceived agency in robots 

is not all positive. Heerink et al. (2010) conducted a study where older people watched videos of a 

robot programmed to be more or less responsive, or adaptive, to the needs of the human user. The 

older participants reported more anxiety in relation to a more adaptive robot than the robot that was 

programmed to be less adaptive. In a different study, preconceptions of a robot as more humanlike 

have been shown to negatively impact reactions amongst middle-aged and older people (Broadbent, 
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Lee, et al., 2011). These findings suggest people may be more reluctant to use a robot if they 

perceive it as having a mind. 

Therefore it appears possible that psychological factors related to attitudes toward robots and theory 

of mind are important in eldercare robot acceptance. This paper further explores these factors, and 

how they relate to eldercare robot use. 

Aims and Hypotheses 

This paper reports the results of a two week study of a healthcare robot in a retirement village. As 

technology up-take, or initial use, is a critical precursor to longer term acceptance; the main outcome 

is use of the robot. Therefore the aims were to test if the psychological factors; attitudes towards 

robots and the theory of mind; predicted robot up- take. Specifically our aims were to assess if: 

1. Retirement village residents’ initial attitudes towards robots could predict their use of the robot. 

2. Retirement village residents’ preconceptions of the robot’s mind could predict their use of the 

robot. 

We hypothesised that residents would be more likely to use the robot if they: 

3. Had more positive attitudes towards robots. 

4. Perceived the robot as having less mind. 

Other observational results and participant ratings of the prototype robot and robot functions are 

reported elsewhere (Jayawardena et al., 2012; Tiwari, Warren, Day, & Datta, 2011). 

 

7.2.2. Method 

Participants 

The study was conducted at Selwyn Village: a non-profit retirement complex in Point Chevalier, 

Auckland, New Zealand. The 26 acre village has approximately 650 residents, and provides 
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progressive care from independent living units through to hospital and dementia care. This paper 

reports on the study in Lichfield Towers (Figure 15), a five story independent-living apartment 

complex within the retirement village. This building was chosen to recruit from because the 

independent-living residents were relatively mobile and capable of taking part in the study and 

providing feedback. Lichfield Tower’s ground floor comprises a range of shared areas, including the 

foyer, dining room, pool room, television room and lounge. The foyer receives a high level of traffic 

from both residents and visitors from other village buildings, as well as visitors from outside the 

facility. 

Information about the study was placed in the village newsletter and in the letterboxes of residents 

who lived in Lichfield Towers. The researcher knocked on each of the 48 apartment doors in Lichfield 

Towers with the aim of inviting all residents in the building to participate. As shown in the participant 

flow diagram (Figure 16), 25 residents consented to take part in the study. Residents were informed 

that the aim of the two week study was to have older people help test and give feedback on newly 

developed functions on a prototype robot. This feedback would assist the researchers develop and 

improve the robot and its functions. 

Residents were told that the robot could take vital signs (e.g. blood pressure), remind about 

medication, make telephone calls, play some songs, and play memory games. Participants were 

invited to use the robot as much as they liked over the next two weeks, but were told they were not 

required to use it if they did not want to. Residents could choose to use the robot in their own 

apartment for half an hour a day and/or they could visit the robot in the public foyer of the building. An 

inclusion criterion for participants wanting the robot to visit their apartments was that they be taking 

medication daily. The purpose of this was to obtain feedback on the robot’s medication management 

module. 

The mean age of the 25 resident participants was 86.12 years, SD = 4.35, ranging from 78 to 95 

years. Eighteen of the 25 participants were female. Four participants completed their formal 

education at age 12–13, twelve completed secondary school up to 15–18 years, two completed a 

technical or trade certificate, and six completed a polytechnic diploma or university degree (one had 
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missing data). For the computer experience item, participants rated their experience at basic 

computer tasks such as email and Internet searches on a numeric scale. The possible responses 

ranged from 1 (not at all experienced) to 8 (extremely experienced). Residents’ average level of 

computer experience was low at 2.29, SD = 2.24. 

Procedure 

Approval for the study was obtained from the University of Auckland Human Participants Ethics 

Committee. After obtaining residents’ informed consent, baseline questionnaires were administered 

to participants before meeting the robot. The robot was then introduced to the building. During the 

study, the robot was taken to the apartments of residents who chose this option for 14 consecutive 

days for approximately 30 minutes between the hours of 7.30 am and 9 am. Morning visits were 

chosen as this was when residents typically took their regular medications. This meant participant 

could test the robot’s medication management module, as well as using all the other robot functions. 

In the first visit, researchers showed participants how to use the robot. The robot also photographed 

these residents to program the robot’s face-recognition software. 

 

 

Figure 15. Lichfield Towers building, showing entrance and interior of its foyer 
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Between 11 am and 2 pm for the same 14 days, the robot was situated in a corner of the foyer on the 

ground floor of the building. These times were selected as outside these hours the public foyer had 

little foot traffic. During the trial the robot was attended by a researcher who demonstrated how to use 

the robot or offered assistance as required. Anyone who entered the foyer during this time was free 

to interact with the robot. People who used the robot in the foyer had the option of having the robot 

photograph them. The robot would then invite participants to type their name on the touch-screen 

keyboard. This participant input allowed the robot to register their faces. The robot could then 

recognise and greet participants by name via both speech and on-screen text. 

As part of study procedures, video was taken of the interactions. The results of the video analysis are 

reported elsewhere (Kuo, Jayawardena, Broadbent, Stafford, & MacDonald, 2012). Follow-up 

questionnaires were administered after the robot was removed from the building at the end of the 

trial. 

The Robot 

The robot used in this study was the second version produced by the Healthbots project, which is a 

joint project between the University of Auckland, Electronics and Telecommunications Research 

Institute (ETRI), and Yujin Robot. The overall goal of the Healthbots project is to develop healthcare 

robots that are acceptable to older people, their families, and staff. The Healthbots project is an 

interdisciplinary collaboration of psychologists, engineers, computer scientists, and medical 

professionals (University_of_Auckland, 2012). 

Software and Hardware 

The Healthbots robot (Figure 17 & Figure 18) is a differential drive mobile robot, powered by a 24 V 

Lithium-Polymer battery. It consists of a rotatable touch-screen, microphones, ultrasonic sensors, 

bumper sensors, and a laser range finder. The commercial robot was provided by Yujin Robot 

together with our partners at ETRI in South Korea. 

 

 



  

 

200 

 

 

Figure 16. Participant flow diagram 

 

The first version of the robot was deployed and tested through November – December 2009 

(Jayawardena et al., 2010; Stafford et al., 2010). Building on results of the earlier study, our 

researchers designed and developed improvements and extensions to the robot’s eldercare software 

functions. Software tools were developed to enhance the ability of roboticists, psychologists and 

Residents identified in 
Lichfield Towers (n= 42 ) 

Did not use robot 
(n= 14) 

Used robot in both foyer 
and apartment                  

(n= 3) 

Used robot in foyer 
              (n= 4) 

Used robot in own 
apartment only 

(n= 4) 

Excluded  (n= 17 ) 

  Away (n= 5 ) 

  Declined to participate and           
xx  reasons (n= 12) 

Too ill (n= 2) 
Dementia (n= 2) 
Too busy (n= 2) 
Not interested (n= 7) 

Consented and completed Questionnaire 1 (n= 25) 

Approached to complete Questionnaire 2 (n= 25) 

Completed data (n = 23) 

Declined and reasons (n = 2)                                                             

    Not interested (n= 1)                                 

    Reason unknown (n = 1)                                                                           
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healthcare experts to work together in iteratively refining the robot’s interactive behaviour. A number 

of external services were developed for integration with web resources and to provide others a view 

of medications and vital signs data on a PC. The software version used for this study is an improved 

version of software used in the first Healthbots trial (Jayawardena et al., 2010). The front-end of the 

application was developed using Flash/Action Script 3.0 and the back-end was developed using C++. 

The robot software communicated with several web-services for information retrieval and update. 

Additional robot functionality was achieved via integration with third-party applications. 

Several lessons related to the software development approach were learned during the field trials 

with the first version of the robot. Lessons included the importance of flexibility to meet individual 

preferences and usability needs (e.g. users may prefer a different screen colour, a larger font, 

layouts, images, videos, certain dialogues, voice accent, screen flows or application modules etc.).  

 

 

Figure 17. Charlie - the Healthbots robot 
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Figure 18. A researcher demonstrating the robot to a retirement village resident 

 

A key consideration in the software architecture design was rapid customisability. This provided the 

flexibility to respond to user preferences and usability needs. To improve the software continuously, 

an iterative approach was used throughout the software development cycle. This enabled the 

inclusion of real-time feedback from the SMEs, pilot groups, end-users, and other stakeholders. The 

software architecture was sufficiently flexible to accommodate new findings, suggestions, new 

requirements, etc. even during testing and deployment phases. 

Robot Behaviour/Interactivity 

The robot had three main response behaviours: 

1. Public foyer setting:  Respond to face recognition or touch-screen press to interact with users in 

the building foyer. Perform user-selected tasks on a touch-screen main menu. Participants in the 

public foyer were free to choose from any of the robot’s service modules with the exception of 

medication management. The face recognition system is described in detail in Kuo, Jayawardena, 

Broadbent, and MacDonald (2011). 
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Figure 19. Scenarios employed on the robot18 

 

2. Apartment setting: Respond to face recognition or touch-screen press to interact with users in their 

apartments. In the apartment setting the robot initially performed scheduled tasks (blood pressure 

measurement and medication reminding), and then offered the user the choice of other services. 

3. Respond to fall events. This functionality was not used for this study. A subsequent study has been 

conducted on this aspect (unpublished). 

Figure 19 illustrates the robot in the default position, the events that trigger the different behaviours, 

and the robot behaviours in each scenario. All three scenarios are embedded in the robot behaviour 

implemented by the robot software. 

                                                

18 Key: FR = face recognition, DB = database, BP = blood pressure, SPO2 = blood oxygen levels 
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By default, the robot was kept docked at its charging station in the foyer. If someone approached or 

touched the robot, either a ‘Face Detected’ or a ‘Screen Touched’ event was triggered. This starts the 

initial interaction phase, which includes face recognition, authentication, and self-introduction. At the 

end of the initial interaction phase, the robot displays the ‘main menu’. At this junction users could 

select any available service (vital signs measurement, calling, entertainment, and brain fitness). The 

interaction session ends when the user finishes the session or no interaction is detected after a 

certain time period. 

For the scheduled apartment visits within the multi-level Lichfield building, researchers transported 

the robot in the elevators between floors on a trolley. The robot then navigated down the corridor to 

the resident’s apartment. The apartment door would be opened by the resident or a researcher. The 

robot next navigated inside the apartment and positioned itself in a pre-programmed location in front 

of the seated participant. It was beyond the scope of this feasibility study to have the robot navigate 

each apartment and locate the participant. However, the researchers or participant could use the 

robot’s remote control to move it from the pre-programmed location as desired. Apartment HRI 

sessions were initiated as previously described in ‘robot behaviour/interactivity 2’. At the end of the 

session, the robot would navigate outside the apartment and be returned by researchers to the 

default location in the public foyer. 

Robot Functions: Service Modules 

Seven prototype service application modules were developed; vital signs measurement, medication 

reminding, falls detection, entertainment, and telephone calling. Brain fitness games were also 

available on the robot. The modules were designed to be sufficiently intuitive so an older person who 

had never used a computer before could easily use them; yet adaptive enough so experienced users 

would not get frustrated. An example of the latter is that experienced users could bypass module 

introductions and instructions. Participants responded to the robot via the robot’s touch-screen: the 

robot responded to participants via synthesised speech and on-screen text. 

The vital signs measurement module assessed blood pressure, arterial stiffness, pulse rate, blood 

oxygen saturation, and blood glucose levels. Vital signs devices were attached to the robot via a USB 
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hub, with a Bluetooth link for blood glucose monitoring. Participants could measure their own vital 

signs using the robot without assistance from the researchers. The robot provided optional 

instructions via speech, on-screen text, and/or demonstration video. Vital signs results were delivered 

via speech and displayed on the robot’s screen. 

The medication management module reminded users of their medication schedules and consisted of 

a sophisticated dialogue system connected to a back-end web service. The medication module was 

only conducted in apartments and not in the public foyer setting (details of the development and 

testing of the medication management module are published in Tiwari et al., 2011). As required by 

the University of Auckland Human Participants Ethics Committee, an MD researcher attended the 

robot in the apartments for the medication management sessions for this trial. A third-party software, 

BrainFitness from Dakim (2012), provided games designed to be an enjoyable way for older people 

to practice their cognition and memory. Entertainment sub-modules provided music videos, pictures, 

and quotes. The robot’s calling module - developed using the Skype API - enabled participants to 

make telephone calls to friends and family. 

Robot Speech 

The robot’s synthetic speech was generated through diphone concatenation-type synthesis 

implemented with Festival speech synthesis system (P. Taylor et al., 1998) and used a New Zealand 

accented diphone voice developed at the University of Auckland (C. I. Watson et al., 2009). 

Expression was added to the synthetic speech through an intonation modelling technique described 

in Igic et al. (2009) called ‘Say Emotional’. 

Navigation 

For map building and navigation, the robot used the StarGazer robot localisation system 

(Hagisonic.Co.Ltd, 2008). StarGazer is a robust, easy to use, and accurate commercial navigation 

system. The system requires small passive white dot landmarks. The unobtrusive landmarks are 

installed with approximately one metre separation on the ceiling of the robot work-space. A map of 

the area was built using the built-in map building module of the robot. The robot could then 
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autonomously navigate to designated places (such as the charging station, participants’ apartments 

etc.) and avoid obstacles using the pre-built map and landmarks. Landmarks were installed on the 

ceiling of all locations the robot traversed in the course of the study; public areas, corridors and 

apartments. Resetting the robot position was not required due to the robot being installed with the 

complete pre-built map. 

Measures 

Baseline Questionnaire 

Demographics - Participants were asked their age, gender, level of education, and computer 

experience. 

Robot Attitudes Scale (RAS:Broadbent, Tamagawa, et al., 2011): This 11 item scale was used to 

measure residents’ attitudes towards robots. This scale was chosen as it had been developed in an 

earlier study at the same retirement village, and been shown to predict the quality of the residents’ 

interaction with the robot (Stafford et al., 2010).  

 

Table 9. Instructions and wording of the Robot Attitudes Scale and Dimensions of Mind Perception Questionnaire 

 

Measure Scale instructions Example items 

 

Robot Attitudes Scale            Please circle the number that best corresponds             

xxxxxxxxxxxxxxxxxxxxxxxxxxxto how you feel towards the healthcare robot  

xxxxxxxxxxxxxxxxxxxxxxxyou are about to interact with. I think the robot         

xxxxxxxxxxxxxxxxxxxxxxxxwill be. . . 

1 2 3 4 5 6 7 8 

Unfriendly Friendly 

1 2 3 4 5 6 7 8 

Useless Useful 

 

Dimensions of 

Mind Perception   

This survey asks you to make estimates of the 

abilities of the robot. Please rate the robot on each of 

the following scales. Try to indicate the degree to 

which you believe the robot has each of these 

capacities by using the numbers from 1 to 7 as a 

yardstick on which to measure the robot. 

[Agency] 

How much is the robot capable of remembering things? 

1 2 3 4 5 6 7 

Has no memory   Has memory 

 

[Experience] 

How much is the robot capable of experiencing physical 

or emotional pleasure? 

1 2 3 4 5 6 7 

Cannot feel pleasure Can feel pleasure 
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The primary purpose of using the RAS was to assess the strength of positive or negative attitudes 

toward robots; and to assess whether or not these attitudes were different between different groups, and 

if they changed as a result of interactions. A reduced eight item version of this scale was used for this 

study to minimise participant burden. The eight items chosen had the highest factor loadings (friendly: 

unfriendly, useful: useless, trustworthy: untrustworthy, easy to use: hard to use, reliable: unreliable, safe: 

dangerous, helpful: unhelpful, and interesting: boring). As per the original instructions, participants rated 

robots on each of the eight attributes using an eight point scale. The attribute opposites served as 

semantic anchors. RAS items are summed to create an overall score between eight and 64 where higher 

scores equate to more favourable robot attitudes. Cronbach’s α was 0.90. The instructions and example 

items are shown in  

 

Table 9. 

Dimensions of Mind Perception (H. M. Gray et al., 2007) - Eleven items were used from this 18 item 

scale to minimise participant burden. The scale is composed of two subscales: mind agency (six items 

were chosen; perceived capacity of the robot to recognise emotions, have thought, memory, self-control, 

plan and be moral) and mind experience (five items were chosen; perceived capacity of the robot to feel 

pleasure, hunger, pain, and have personality and consciousness). We used the original response 

options, which are on a seven point scale with semantic anchors. The possible range of scores was from 

6 to 42 for agency, and from 5 to 35 for experience. Instructions and example items are shown in  

 

Table 9. 

Follow-up Questionnaire 

This included a second administration of the Robot Attitudes Scale and Dimensions of Mind Perception 

scale. It also included a question on whether the resident had used the robot or not. Participants who 

used the robot were asked to write a number indicating the quality of their overall experience of the robot 

interaction using a scale from 0 (poor) to 100 (excellent). They were also asked how much they would 

like to use the robot again using a scale from 0 (not at all) to 100 (very much). These two items had been 
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used in a previous study and found to be acceptable to older users (Stafford et al., 2010). Robot-users 

were asked to rate how easy or hard they found the robot to use on a five point semantic scale. The 

response options were; very hard, hard, neither hard or easy, easy, and very easy. Participants were 

asked to rate the robot’s usefulness for themselves on a four-point semantic scale. The usefulness 

response options were; not at all useful, a little useful, useful, and very useful. There was a fifth option of 

‘not useful for me but useful for others’. The latter item was included due to comments made during a 

previous study by the relatively high-functioning independent-living residents. A common comment was 

that while residents could not see the robot currently being useful for themselves - they could see it 

being useful for their future selves, or for other less independent residents. 

Statistical Analyses 

Statistical analyses were conducted with PASW Statistics Data Editor. Three mixed ANOVAs were 

performed. The within-groups variable was the two time points (baseline and follow-up) and the between 

groups variable was whether or not the participants used the robot. Non-significant Kolmogorov Smirnov 

tests (p >.05) indicate the distribution of scores for robot attitudes, and robot mind agency and 

experience, between the two groups (who used and did not use the robot) were sufficiently normal to 

justify parametric analyses. The first ANOVA used the Robot Attitudes Scale as the dependent variable, 

the second used perceived mind agency and the third used perceived mind experience. These analyses 

tested whether participants who used the robot differed from those who did not use the robot on attitudes 

and mind perceptions, and if there was a time by group effect. To increase statistical power for analyses 

of the two items; robot rating and intentions to use the robot again, two residents who completed all the 

measures and used the robot but lived in the rest-home part of the village were included.  

7.2.3. Results 

Use of Robot 

Of the 25 residents who completed the baseline questionnaire; 11 did use the robot over the two week 

trial period and 14 did not. Of those who used the robot (n = 11), their use varied from once to 16 times 

(mean 5.5 times). Within this robot-user group, people who used the robot more often reported better 
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attitudes towards the robot at follow-up (r = 0.68, p< 0.01), but there were no other significant 

correlations with other outcomes. 

Neither age, gender, nor education (p < 0.05) were related to residents’ choice to use the robot. 

However, a Mann Whitney U test revealed those who did use the robot had significantly higher computer 

experience (Md = 2, Mean = 3.40, n = 10) than those who did not use it (Md = 1, Mean = 1.50, n = 14), U 

= 39.50, z = −2.06, p = 0.04, and a medium-large effect size r = 0.42. 

There was a significant group effect for robot attitudes. Residents who chose to use the robot had better 

attitudes towards robots at baseline than residents who did not use the robot, F(1,16) = 6.70, p = 0.02 

(Mean ‘did not use robot’ 41.67 CI: 35.63 to 47.71; Mean ‘used’ 52.10 CI: 46.06 to 58.13); Partial Eta 

Squared = 0.30. There was also a significant time effect for attitudes. Overall there was a significant 

improvement in participants’ attitudes towards robots from before to after the trial, F(1, 16) = 9.99, p = 

0.006. (Mean before trial 44.44, CI: 39.77 to 49.11; Mean after trial 49.33, CI: 44.85 to 53.80), Partial Eta 

squared = 0.38. Lastly, there was a significant group by time interaction for attitudes, with greater 

increases in positive robot attitudes in the robot-use group (Figure 20), F(1, 16) = 5.21, p = 0.04, Partial 

Eta Squared = 0.25. 

A significant group effect was found for perceived robot agency. There was a significant difference 

between residents who did and did not use the robot in perceived robot agency, F(1, 9) = 5.49, p = 0.04. 

Mean ‘did not use robot’ 22.33 (CI:17.23 to 27.44); Mean ‘did use robot’ 14.50, (CI: 8.90 to 20.10), with a 

large effect size of Partial Eta Squared = 0.38. Non-robot users perceived the robot as having higher 

agency than people who did use the robot (Figure 21), but there were no significant time (p = 0.88) or 

interaction effects (p = 0.24) for agency. For perceptions of robot mind experience, there were no 

significant differences detected between groups: robot using and non-robot using residents (p = 0.28), or 

over time (p = 0.33), or interaction effects (p = 0.58). 
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Figure 20. Attitudes towards robots were more favourable amongst people who used the robot compared to those who did not 

use the robot, and attitudes improved more in those who did use the robot19 

 

 

 

Overall Rating, Intentions to Use Again, Ease of Use and Usefulness 

Participants gave the robot interaction overall a mean rating of 78.50, SD = 15.47, CI: 67.44 to 89.56, Md 

= 80.00. The mean of ‘intention to use the robot again’ was 65.00, SD = 39.02, CI: 37.09 to 92.91, Md = 

80.00. Of the nine respondents to the ‘ease of robot use’ question; four answered ‘easy to use’ and five 

answered ‘very easy to use’. Of the 18 respondents who rated the robot’s usefulness; four answered ‘not 

at all useful’, one ‘a little useful’, five ‘useful’, two ‘very useful’ and six ‘not useful for me but useful for 

others’. 

  

                                                

19 Mean ‘did not use robot’: baseline 40.99 (CI 34.39 to 47.59), follow-up 42.35 (CI: 36.02 to 48.68). Mean ‘did use 

robot’ baseline 47.89 (CI: 41.29 to 54.49), follow-up 56.30 (CI: 49.97 to 62.63) 
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Figure 21. Participants who used the robot had lower perceptions of the robot’s agency than those who did not use the robot20 

 

To investigate predictors of the HRI rating and intentions to use the robot again amongst the small 

sample of users (n = 11), Pearson correlations and chi-square analyses were conducted. There were no 

significant associations between participants’ age, gender, computer knowledge, and reported ease of 

robot use or usefulness, or with overall interaction rating or intentions to use the robot again (p > 0.05). 

There were however significant associations between perceived robot mind agency and robot mind 

experience (separately) with intention to use the robot again (r = 0.68, and r = 0.62 respectively, p < 

0.05), but no significant associations with robot interaction rating. 

7.2.4. Discussion 

This study examined predictors of robot use in a small cohort of residents in a retirement village over a 

two week period. As predicted, people who chose to use the robot had more computer knowledge, held 

more positive attitudes towards robots, and attributed less mind agency to robots. The amount of mind 

agency and mind experience the residents perceived in robots also predicted how much robot-users 

intended to use the robot again. 

                                                

20 There were no differences in perceptions of the robot’s ability to experience things. Mean scores are presented 

at each time point 
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The study’s secondary goals were met. Resident feedback was obtained on the robot and its functions 

that can be used to improve the robot. Results provide initial support for the feasibility of deploying 

robots in complex eldercare settings. 

There are several possible reasons why people who attributed more agency to robots may have been 

less likely to use the robot in this study. One reason is that thinking a robot has more agency makes 

older people more wary of it and afraid to try it. Another possible reason is that they were disappointed 

when they saw the robot and therefore did not want to use it. However, inspection of Figure 21 suggests 

a trend that perceived agency decreased in those who did use the robot, and remained high in those 

who did not use it. This trend does not support the argument that non-users were disappointed that it did 

not appear have as much mind as they initially thought. The results suggest that people have 

preconceived ideas that robots have higher capacities to think and remember and be conscious than 

they actually do - an illusion that is dispelled when they actually use one. These ideas may originate from 

exposure to robots in the media, including books, television, film, and news reports, which often 

exaggerate the capabilities and dangers of robots. 

Overall, participants in this study thought that robots had a higher capacity for agency than capacity for 

experience. This was similar to the mind dimension profile that participants ascribed to the social robot 

Kismet when given a written description and photo (H. M. Gray et al., 2007). In Gray et al.’s study, 

characters high in either dimension of mind experience or agency were more valued. In contrast, while 

all participants in this study perceived the robot to be low in the mind dimension of experience, those 

residents who expected the robot to be higher in agency were less likely to use it.  

It may be that a robot perceived as possessing this type of high agency:low experience mind profile 

appears as an autonomous creature that has no sense of compassion or empathy. People may avoid 

such a robot as they fear that, at best, the robot may be indifferent to their welfare, and at worst actively 

inflict harm. This interpretation is in accord with Mori’s (1970) suggestion that self-preservation is the 

function of uneasiness in relation to uncanny characters. 

That higher ratings in this study of both robot mind experience and agency (separately) predicted 

intentions of using the robot again, concurs with Gray et al.’s (2007) results of both dimensions being 

valued; but are somewhat contrary to this study’s finding that higher perceptions of robot agency were 
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associated with non-use. It may be that if a robot is perceived to have an ‘unbalanced mind’ i.e. the 

capacity for agency but not for empathy, it is perceived to be missing the checks and balances that 

promote both predictable and desirable behaviour.  

That robot-users were more likely to be those residents who perceived the robot as having both low 

agency and low experience, is congruent with previous reports from residents and staff (in the same 

retirement village as this study) that their preference was for a healthcare robot that did not look too 

humanlike as it was just a machine (Broadbent, Tamagawa, et al., 2011). 

Like many previous technology acceptance studies, higher computer experience was associated with 

acceptance; but in contrast higher formal education was not. Many of this older generation of 

participants had their formal education terminated prematurely due to poverty and/or war. For older 

people the assessment of formal education may poorly reflect life experience. That all respondents rated 

the robot as easy, or very easy to use, suggests the goal of designing an ‘older-user-friendly’ robot was 

at least partially met. 

The study results also contribute to knowledge about models of human acceptance of robots. The 

results replicate and strengthen previous findings that attitudes toward robots are important to 

acceptance and add a new predictor to the model - perceived robot mind. The study methodology has a 

number of strengths that support the application of the results to the development of individually and 

commercially acceptable eldercare robots.  

The study’s real-world setting is a considerable strength. Healthcare human-robot interactions are often 

complex; involving variable environments and multiple stakeholders (Kristoffersson, Coradeschi, & 

Loutfi, 2013). While laboratory robot studies are valuable and often necessary, studying HRI in real-world 

environments is likely key to an in-depth understanding of real-world robot acceptability. For a variety of 

technical, legal, ethical, practical, and resident health reasons, studying acceptance of eldercare robots 

in a retirement village is extremely challenging (Broadbent, Jayawardena, Kerse, Stafford, & MacDonald, 

2011; Heerink, Kröse, et al., 2006; Stafford et al., 2010). This two week study was conducted in a real-

world setting and used real-world retirement village residents as participants. Further, this study utilised 

a semi-autonomous robot with its attendant technical issues, rather than the Wizard of Oz scenario. 
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Further methodological strengths of this study include comparing subjective measures with objective 

measures. Psychological measures of robot attitudes were compared with an objective behavioural 

measure of whether participants chose to use the robot or not. This approach also enabled assessment 

of baseline differences between robot-users and non-users. Additionally this is the first time the theory of 

mind perception has been used to assess acceptance of healthcare robots in older people. 

The study also had some limitations. Older participants often have limited capacity to complete lengthy 

questionnaires, so the number of measures needs to be restricted. Although a reasonable size by HRI 

standards, the sample size meant small effect sizes could not be detected. For this reason, longer-term 

trials with larger sample sizes are required to corroborate these results. 

It is possible researcher presence acted as a confound. There was at least one researcher nearby when 

the robot was available for participant use. Researchers had to build rapport with some residents before 

they would consent to participate in the study. However the recruiting researcher was mindful of 

minimising socially desirable responding. This was achieved by emphasising that participants were being 

helpful whether they used the robot or not, and in order to best improve the robot we needed their 

honest, not polite, opinion when completing questionnaires. Given that 14/25 of participants did not use 

the robot it seems plausible this strategy to build rapport while simultaneously minimizing socially 

desirable responding was at least somewhat successful. 

Further possible limitations for assessing robot acceptance include the robot being only available to all 

Lichfield Tower residents for three hours per day. Future research could include longer-term trials where 

the robot is permanently left in situ to assess how 24/7 availability impacts on acceptance. Future work 

could investigate why older users give high ratings to robots even if errors occur. It may be that residents 

blame themselves on these occasions rather than the robot. 

That this feasibility study was not controlled is another limitation. Some of the robot’s functions such as 

Skype, entertainment and medication management could have been delivered via computer or tablet. 

While further research is needed, there is limited preliminary evidence that socially interactive robots 

may provide a ‘robot advantage’ over non-robot methodologies for motivating health behaviours. For 

example, in a six week study (Kidd & Breazeal, 2008), participants were allocated to one of three weight 

loss methodologies; a socially interactive robot, a computer, and a pen and paper log. There was no 
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significant difference in weight loss between the three groups but participants in the robot group adhered 

to the programme for longer than the other two groups, and reported a closer relationship with the robot. 

A further advantage for some robots is mobility. Such robots may be able to visit older people with 

compromised mobility, as well as transporting objects between people. 

It is useful to consider what influence the robot’s form and function may have had on robot use. In our 

previous focus groups and questionnaires with this population (Broadbent, Tamagawa, et al., 2011), 

participants reported a preference for a non-humanlike robot and had high ratings of many of the 

functions we developed for the robot. In fact, that was why we chose this particular form and the 

functions for this robot. In this study we only had one robot at the village so could not test whether 

people would have used a different robot more or less often. This may be an area for future research to 

investigate. An understanding of specific design features that promote or decrease perceptions of robot 

agency could be used to formulate the appropriate robot design for a particular context. However 

Roomba owners vary greatly in how much agency or social relationships they perceive in their robotic 

vacuum cleaners of identical design (Forlizzi & DiSalvo, 2006). This suggests that subjective individual 

perceptions of robot agency, or intentionality (Dennett, 1987), may be as important as the objective 

physical design and behaviours of the robot. 

This study’s rapport building strategies used to promote recruitment may be of interest to HRI 

researchers. During the recruiting interviews it was noted that despite efforts to inform Selwyn Village 

residents about the study, some potential participants held misconceptions that were a barrier to 

participation. Misconceptions typically related to the study purpose and methodology, and the ‘nature’ of 

the study robot. A key recruitment strategy was to elicit these misconceptions and address them where 

possible. For example some residents believed that as they were “no good with computers”, they would 

also be “no good” with the study robot. Such people were usually reassured by explaining that the 

robot’s simple touch screen operation had been designed to be easily used by someone who had never 

used a computer before. Another common misconception was the time and effort required by 

participation. Consequently the costs and benefits of participation were outlined in detail to potential 

participants, along with a reminder that even if they agreed to participate they could still withdraw from 

the study at any time. 
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Since the initial requirement for robot acceptance is for people to choose to interact with the robot, it is 

important to maximise initial human-robot engagement. This may be achieved by encouraging positive 

attitudes and appropriate perceptions of robot mind among potential older users. While this is likely to be 

context dependent, it may be beneficial to design and promote robots as having balanced mind profiles 

of either high agency and high experience, or low agency and low experience, and avoiding the high 

agency:low experience mind profile.  

The cognitions older people hold about robots influence their decisions to use robots and therefore have 

implications for (a) how robot designers and programmers design and integrate the robot components to 

present an overall interaction with the user, and (b) how robots are distributed and deployed to people. 

This includes the marketing and information about the robot’s appearance and abilities. As the service 

robot market develops, it will be important for robot manufacturers and distributors to develop early 

generations of robots that people will engage with. These will need to be followed with new generations 

of robots that are sensitive to the changing trends in peoples’ attitudes, and perceptions of robot mind 

experience and agency, that will likely arise from increased exposure to the robots. 

Future longitudinal studies could both assess the effectiveness and efficiency of robotic eldercare, and 

assess it against non-robot eldercare such as human care or computers. Longer-term trials are required 

to assess continued usage of eldercare robots. While the RAS appears to both predict robot use and be 

sensitive to changes in robot attitudes, it is beyond the scope of the RAS to determine the causes of 

participants’ robot attitudes. Future research could explore the origins of attitudes towards robots. 

Further research is also required on how to encourage positive attitudes prior to the introduction of 

robots to eldercare. Interventions could be developed in the distribution and marketing of robots to 

modify attitudes and mind perceptions to encourage use and promote acceptance of eldercare robots. 
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7.3. Study three segue – the robot mind study  

There have been several other robot studies that have used the perceived mind dimensions measure. K. 

Gray and Wegner (2012) used the Mind Perception Questionnaire to examine associations between 

mind perception, humanlikeness, and the uncanny valley. The study methodology involved participants 

watching a brief video clip of either the humanlike front of the robot Kaspar, or the robot’s machinelike 

back. Participants rated the robot’s front aspect as more uncanny, or unnerving, than its mechanical 

back. K. Gray and Wegner suggest this result is a consequence of the ability to experience things (mind 

experience) being normally attributed to humans, not machines. Therefore, akin to an expectation-

violation, the humanlike appearance of the front facing robot unnerved participants by triggering 

perceptions of mind experience in an agent that is not normally perceived to have this mind dimension.  

K. Gray and Wegner’s (2012) results in relation to perceived robot mind experience appear to contrast 

with those of the robot mind study. Although the robot mind study did not assess eeriness, participants 

did not appear to perceive robot mind experience as an aversive robot characteristic. Rather the variable 

was associated with robot acceptance (intentions to use), and, unlike agency, was not associated with 

non-use of the robot. However there are several methodological differences between the two studies 

that may explain these apparently opposing results. A key difference is that there was only one 

(machinelike) robot in the robot mind study, so any differences in perceptions of the robot’s mind must 

have originated from the participants, not the robot. In contrast, in K. Gray and Wegner’s study there 

were two different views of the robot Kaspar (front and back) in a between groups design. Therefore the 

results may have been due to the differing appearances of the robot triggering differing perceptions of 

robot mind in the participants. 
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Another robot study assessing perceived robot mind found a robot-participant gender interaction (Eyssel, 

Kuchenbrandt, Hegel, & de Ruiter, 2012). Participants rated the mind of the social robot Flobi after 

viewing a three second video of the robot speaking in either a male or female voice. Male participants 

rated the robot as having more mind when it spoke in the male voice, and vice versa, female participants 

rated the female-voiced robot as having the most mind. However, Eyssel et al. summed the mind 

perception measure, rather than assessing the two dimensions separately, and associations with 

perceptions of robot mind and robot acceptance were not assessed.  

There are some method differences between the robot mind study and the two Eyssel et al. (2012) and 

K. Gray & Wegner (2012) studies, which may account for any differences in findings. Method differences 

include measures of mind perception being administered at one time point only in the latter two studies – 

after viewing the robots. Furthermore, this single administration was done after viewing a brief robot 

video rather than interacting with an actual robot. While different methodologies have different merits 

and limitations, a single post-HRI administration means that baseline perceptions of robot mind cannot 

be assessed, nor can any changes in mind perception as a result of the HRI, and nor can any influences 

of pre-factual perceptions of robot mind on acceptance be assessed.  

The study described in segue two in which participants did a repeated measures blood pressure task 

with three different robot face displays (Broadbent et al. 2013), also involved the administration of the 

mind perception questionnaire. Also included were measures of uncanny valley effects, and participants’ 

perceptions of the robot’s personality.  

To recap, the three robot face displays used in the Broadbent et al. (2013) study were a male humanlike 

face, a silver face (a ‘silverised’ version of the humanlike face), and a display without a face. In contrast 

to results from the prior attitudes & drawings study, where no preference was found between the 
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different face displays, participants in  Broadbent et al.’s study most preferred the humanlike robot face, 

followed by the no-face display, and least preferred was the silver face. However, similar to the robot 

mind study, all three versions of the robot in Broadbent et al.’s study received higher ratings for mind 

agency than they did for mind experience. Participants perceived the robot’s humanlike and silver faces 

to have both more mind agency and experience, compared with the no-face robot display.  

Results from the robot mind study indicate that different individuals can perceive different amounts of 

mind in the same robot and these differences predict use of the robot. Results from the other three 

studies described above (Broadbent et al., 2013; Eyssel et al., 2012; K. Gray & Wegner, 2012) - which 

also assessed perceptions of robot mind but used different robots from the Cafero robot used in the prior 

attitudes & drawings study - indicate that robot appearance and behaviour can also influence people’s 

perceptions of robot mind.  
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 Specific reasons for unmet needs for more Chapter 8.

specific eldercare robot design [unmet needs paper] 

8.1. Preamble to manuscript 4 - the unmet needs paper  

The motivation for this paper arose from extensive conversations and interactions I had with older 

people, their families, and eldercare facility staff (participants and non-participants), over the course of 

these doctoral studies. These conversations suggested a number of barriers to developing acceptable 

eldercare robots.  

The common combined barriers to participation in the HRI studies were the retirement village residents’ 

perceptions that the robot was of no use to them and would be too difficult for them to use. A typical 

resident comment was that as they were no good with computers, they would also be “no good” with a 

robot. I explained to the independent-living residents that by participating in the robot study they would 

be helping us researchers by testing and providing feedback on the prototype healthcare robot. I 

assured them that we had designed the robot to be easily used by someone who had never used a 

computer before. In short, in accordance with the technology acceptance models, perceptions of robot 

usefulness and ease of use were important to many retirement village residents.   

However, trying to determine what robot functions people would find useful was challenging. The 

approach of directly asking was limited in its effectiveness. Most people had very little idea of how robots 

could assist them in their daily lives. 

Another approach for determining useful robot functions is to assess people’s unmet needs - that could 

then be matched with robotic solutions. In keeping with the central thesis it is plausible that people’s 
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perceptions of their unmet needs will predict acceptance of a healthcare robot – mediated by their 

perceptions of robot usefulness.  

However, assessing unmet needs met with other barriers. Some older people seemed unaware of, or 

unwilling to acknowledge their unmet needs. For example, it was not uncommon during preliminary 

conversation for residents to comment that they were lonely. Yet, when asked to rate their loneliness 

levels on a Likert scale, they would deny being at all lonely. While lack of company appeared to be a 

common problem for residents; readily apparent in casual conversation, there appeared to be a 

stigmatising barrier to consciously acknowledging that they were lonely.  

After noting some barriers to determining robot functions that eldercare stakeholders would perceive as 

useful, I examined the literature on user centred technology and robot studies. Closer inspection showed 

that the term ‘user centred’ was often used to refer to usability needs rather than the user’s personal 

needs. Additionally, the research tended to be more product-driven than user centred.  

While the field of HRI is becoming increasingly multi-disciplinary, it is still engineering dominated. In the 

same way that psychologists typically do not have training in engineering or other disciplines; typically 

engineers do not have training in psychology, gerontology, or human research methodologies. 

Consequently I wanted to provide robotocists with a psychology-informed paper on methodologies that 

would aid in the design of more acceptable robots and useful robot functionalities.   
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8.2. Manuscript four: Identifying specific reasons behind unmet needs may 

inform more specific eldercare robot design 

 

Stafford, R.Q1., MacDonald, B.A2., and Broadbent, E1. 
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2 Department of Computer and Electrical Engineering, the University of Auckland, New Zealand 

 

Abstract 

Many countries are facing aging and aged populations and a shortage of eldercare resources. Eldercare 

robots have been proposed to help close this resource gap. Prevalence of eldercare robots may be 

enhanced by more acceptable robot design. Current assistive robot design guidelines are general and 

consequently difficult to translate into specific acceptable design. This paper proposes a method for 

developing more specific eldercare robot design guidelines. Technology acceptance models suggest 

acceptable robots need to be perceived as useful as well as easy to use. As older people often have 

high levels of unmet need, knowledge of the needs of older people and other eldercare stakeholders can 

suggest how robots could be usefully deployed. It is further proposed that determining the specific 

reasons why eldercare-needs are unmet may help lead to more specific design guidelines for eldercare 

robot form and function, as well as the design of robot marketing, distribution and deployment strategies. 

Keywords: robots, older people, needs, HRI, technology acceptance, user centred design. 
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Introduction 

Many countries are facing aging and aged populations (United-Nations, 2012) combined with a shortage 

of healthcare professionals (Super, 2002). Eldercare robots may help mitigate this shortfall in eldercare 

resources (Beer et al., 2012). A key issue is ensuring that the robots are acceptable to users. While 

there are existing general guidelines for acceptable eldercare robot design, their very generality can 

make them difficult to translate into specific acceptable designs (Fisk, Rogers, Charness, & Sharit, 2009; 

Maciuszek, Aberg, & Shahmehri, 2005). This paper proposes that examining the underlying reasons for 

unmet eldercare needs may help refine the design problem and inform more specific robot design 

guidelines. This paper further examines some methodological limitations inherent in eldercare robot 

design research and suggests ways of circumventing them. 

The paper is divided into six sections. First, reasons why eldercare robots are not yet prevalent are 

explored, including low acceptance. Two dominant technology acceptance models are then described to 

see what factors are relevant to eldercare robot acceptance. The next section describes the range and 

methodology issues of robot design guidelines that have already been developed to promote eldercare 

robot acceptance, including matching user-needs to robot functionalities. Then related work in 

psychology and health are reviewed - focusing on assessment of elder-needs. Finally, to illustrate the 

concepts discussed, reasons for unmet eldercare-needs and their potential for translation into robot 

design are examined using the example of incontinence. Recommendations for developing more specific 

and acceptable robot designs are then made. 

Why are eldercare robots not prevalent? 

Eldercare robots can be described as assistive robots that aim to enhance the physical and/or mental 

health of an older person, such that their quality of life is maintained or enhanced. Acceptance of 

eldercare robots is defined as the robot being willingly incorporated into the person’s life (Broadbent, 

Stafford, et al., 2009). There are successful eldercare robots. The most notable arguably being the 

companion seal robot Paro (e.g. Robinson et al., 2013; Shibata et al., 2011). However while relatively 

few eldercare robots have been presented to the market, some have not met with commercial success 

(Mahoney, 1997; Robotics_Today, 2007). Human-robot interaction (HRI) researchers have indicated 
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reasons for the lack of eldercare robots. Reasons include: autonomous assistive robots must manage 

more uncertain environments compared with industrial robots (Breazeal, 1999), making them more 

difficult to build safely. People involved in the eldercare environment, such as caregivers or family, may 

not be accepting of robots (Broadbent, Tamagawa, et al., 2009). The cost of robots can be prohibitive to 

potential purchasers, especially when perceived benefits are inadequate (Mahoney, 1997). Older people 

can be less accepting of novel technologies than younger people (Czaja et al., 2006; Flandorfer, 2012). 

Sometimes potentially useful assistive devices are not accepted by older users as the product’s design 

does not make the benefits of use clear to them (Forlizzi et al., 2004). In some instances, poor uptake 

and discontinued use of eldercare assistive devices (including robotics) may result from technology 

design being overly product-driven and insufficiently user-driven (Flandorfer, 2012; Gardner, Dukes, & 

Discenza, 1993; Keates, John Clarkson, & Robinson, 2002; Maciuszek et al., 2005; Mahoney, 1997). 

User-driven design may be more costly up front, but a review of user-centred IT design concluded any 

additional costs appear reasonable in terms of product success and user acceptance (Kujala, 2003).  

In order to try to increase eldercare robot acceptance, it is useful to consider technology acceptance 

models. 

Technology Acceptance Models 

Technology acceptance models (TAM) specify variables that increase or decrease user acceptance of 

technology. The basic but seminal TAM proposed by Davis in 1989 provides two major determinants of 

technology acceptance; ‘perceived ease of use’ and ‘perceived usefulness’. Davis’s TAM was merged 

with eight other acceptance models to formulate the Unified Theory of Acceptance and Use of 

Technology model (UTAUT:Venkatesh et al., 2003). The four primary UTAUT predictors of intentions to 

use information technology are; perceived ease of use, perceived usefulness, social influence, and 

facilitating conditions. User variables, such as age and technology experience, were also included. 

‘Voluntariness of use’ was also added in an attempt to redress self-selection confounds. While the 

UTAUT has been employed in an eldercare robot context (Heerink et al., 2010), current technology 

models may be limited in usefulness for robot design, due to inability to explain how particular variables 

predict technology acceptance (Bagozzi, 2007). 
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The next section provides examples of existing eldercare robot design guidelines that have been 

proposed in order to increase acceptance. Some limitations to the methods used to determine these 

guidelines are discussed. 

Robot design guidelines issues 

The concept of ‘eldercare robot design’ is not restricted to the design of robot hardware and software; 

rather it includes all aspects of robot design from early concept, the robot’s form and functionality, 

marketing, distribution, and deployment. HRI researchers have provided numerous assistive robot 

design guidelines. While providing valuable information for an emerging field, many guidelines are 

theoretical, general, untested (Maciuszek et al., 2005) and/or have not been shown to increase 

acceptance (Heerink, Krose, et al., 2006). Guideline examples include; assistive robots should be 

designed to be customizable (Forlizzi et al., 2004; Kuo, Broadbent, & MacDonald, 2008), manifest social 

abilities (Heerink, Krose, et al., 2006), have good error recovery (Fisk et al., 2009; Kuo et al., 2008), and 

match the users’ needs (Broadbent, Stafford, et al., 2009). Eldercare robots should be designed to be 

small (Scopelliti et al., 2005), slow-moving, and machinelike (Broadbent, Tamagawa, et al., 2009; 

Scopelliti et al., 2005). They should promote elder independence in balance with human connectedness, 

and avoid stigma (Forlizzi et al., 2004; Hirsch et al., 2000). Eldercare robots should look like familiar 

appliances to ‘afford’ ease of use (Forlizzi et al., 2004). 

Preferred robot-tasks also suggest robot design guidelines. A focus group study showed independent-

living older people most preferred a robot to clean, fetch and organize (Beer et al., 2012). In an assisted-

living setting, a questionnaire of preferred robot tasks was designed based on focus groups conducted 

with older people, caregivers and managers (Broadbent, Tamagawa, et al., 2011). Administration of the 

resulting questionnaire showed the most preferred robot tasks included detecting falls, monitoring 

peoples’ locations, lifting people and heavy objects, and switching appliances on and off.  

Some well-known examples of assistive robots with different design approaches are MOVAID and Care-

O-bot. MOVAID (Dario et al., 1999) was based on the inclusive ‘design-for-all’ principles of Universal 

Design. Intended users were both disabled and older people. During initial design-scoping interviews, 

disabled people, their families and carers were asked about their needs for general technical assistance. 

Three key tasks identified for MOVAID were heating and serving food, cleaning kitchen surfaces, and 
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removing dirty bed sheets. A dominant design rationale for Care-O-bot3 (Parlitz et al., 2008) was 

avoidance of an anthropomorphic appearance. Target users were derived from scenario-based design 

methods and were described as ‘techies and soccer moms’. The minimum user criterion was familiarity 

with technologies such as digital cameras. Since conception Care-O-bot3 has been trialed in assistive-

living facilities (Fraunhofer, 2011).  

The robot design guidelines originate from a variety of methodologies. These include literature reviews, 

previous research, focus groups, ethnography, semi-structured interviews, and questionnaires. Possible 

methodological limitations include participants responding to closed questionnaires of possible robot 

tasks and appearances (e.g. Beer et al., 2012). A closed list may elicit valuable information, but may also 

reflect researcher bias as well as constraining peoples’ reports of what tasks they would like robots to do 

(Wu, Fassert, et al., 2012). Focus groups obtain data relatively quickly, but participants may not disclose 

information through embarrassment or stigma. It may be difficult to access people’s unconscious 

attitudes through direct questions (Sixsmith & Sixsmith, 2000).  

In assessing generalisability of robot design guidelines it is useful to examine the methodology and 

questions the guidelines are derived from. Some studies provide this identifying information (e.g. 

Broadbent, Tamagawa, et al., 2011; Horrocks et al., 2004). Some studies do not (e.g. Beer et al., 2012). 

Some measures have been developed with younger participants (Ray et al., 2008), which may not 

generalise well to the design of robots for older people (W. A. Rogers & Fisk, 2010).  

However older people are a heterogeneous population themselves. These differences can be 

generational, educational, gender, cultural, functional, individual and/or environmental. Therefore robot 

design measures may also have limited generalisability if developed with older participants that differ 

from the target older users. For example; older people who are living independently may have different 

technology and eldercare-needs from people in assisted-living. As seen in the CREATE Model of 

Technology and Aging (Fisk et al., 2009), older people tend to have a variety of eldercare support 

stakeholders.  

These stakeholders can include the older person, caregivers, family, service providers, robot purchasers, 

and even robot research funding agencies. Therefore, acceptance of the robot by a range of eldercare 

stakeholders may be important to wider commercial acceptance. For example, caregivers can be fearful 
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of losing their jobs to robots (Broadbent, Tamagawa, et al., 2009) and purchasers of eldercare robots are 

likely to be family or service providers rather than the older user (Mahoney, 1997). The opinions of older 

users are critical, but some robot design guidelines have been developed without consideration of the 

needs of other eldercare stakeholders (e.g. Beer et al., 2012). However some studies have considered 

the needs of multiple eldercare stakeholders (e.g. Broadbent, Tamagawa, et al., 2009).  

Methodological issues aside, many robot design guidelines are difficult to convert into specific robot 

designs because they are too broad. Fisk et al. (2009) acknowledge this design problem and ascribe it to 

the difficulty of providing specific robot design guidelines that suit all contexts in the variable and 

complex eldercare environment. There may be ways to refine the design problem. In a series of 

eldercare robot acceptance studies, Heerink et al.(2010) found perceived usefulness was the strongest 

predictor of intention to use the robot. People may perceive a product as useful when they see it as 

meeting an interest or need (Maciuszek et al., 2005) and consequently be more likely to accept it. 

Therefore incorporating a greater understanding of user needs into the design process may aid 

development of more specific robot design guidelines (Beer et al., 2012; Hirsch et al., 2000).  

However, despite calls for more user-needs assessment to facilitate robot design, HRI researchers are 

often referring to assessment of users’ technology usability needs (i.e. how easy or difficult the 

technology is to use) e.g. Fisk et al. (2009), rather than assessing users’ individual needs (i.e. 

companionship, hygiene, hydration, finance, accommodation etc.).  

Similarly there are calls for user involvement early in the design process (Dario et al., 1999; W. A. 

Rogers & Fisk, 2010). Some HRI studies do employ potential users early at the conceptual stage of 

design (e.g. Beer et al., 2012; Broadbent, Tamagawa, et al., 2009; Sung et al., 2009). Yet, for other 

studies ‘early’ user involvement means at the usability testing stage, not the conceptual stage (e.g. Fisk 

et al., 2009; Fraunhofer, 2011). Usability is a critical but insufficient precursor to technology acceptance.  

There are further issues with user-centred design as commonly deployed in eldercare robot research. 

Robot design studies often assess what tasks potential users would like an eldercare robot to do. 

Responses to that question have important implications for acceptance, but it is a different question from 

‘what are the individual needs of the potential user group?’ The second question removes the robot from 

the equation so answers become less constrained by real or perceived technology capabilities or fears. 
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The difference between these research questions is described by the term ‘naïve consumer’. The term 

refers to the challenge of soliciting peoples’ opinions on products of which they have little or no 

experience: as has been noted in eldercare HRI studies (Beer et al., 2012; Broadbent, Tamagawa, et al., 

2009).  

There are several implications of the naïve consumer issue in robot design research. Through lack of 

experience of robots, robot-naïve participants may not think to request a potentially useful robot 

functionality that would meet some need. Conversely, they may reject the idea of robots performing 

particular tasks, but change their minds with actual experience. Older people reported improved attitudes 

towards a health robot after only a half hour interaction (Stafford et al., 2010) and improved attitudes to 

previously disliked assistive devices after actual use (Forlizzi et al., 2004). Consequently, robot design 

preferences expressed by robot-naïve participants should be interpreted in context. There is merit in 

each of these robot design approaches. Due to unique data captured by different methodologies, 

triangulation of varied research methods in HRI is advised for comprehensive data capture (Bethel & 

Murphy, 2010). However, assessment of the individual needs of potential eldercare robot stakeholders, 

independent of the product driven concept of an eldercare robot, should be included in the methodology 

mix. This may assist in circumventing the limitations inherent in the naïve consumer issue. Consideration 

of the literature from psychology and health about eldercare-needs helps to inform robotic designers 

about further potential design issues.  

Eldercare-needs and needs assessment 

Need is a psychological feature that arouses an organism to action toward a goal, giving purpose and 

direction to behaviour. Maslow’s seminal theory on human needs proposed a pyramid shaped model 

with survival needs on the bottom, such as food and shelter. These basic needs must be satisfied before 

a human can reach the more meaningful self-actualisation needs at the pyramid pinnacle (Maslow, 

1943). Older people often have many unmet needs. Identifying the most important needs may help 

narrow the design process for acceptable eldercare robots (Maciuszek et al., 2005). Several HRI 

researchers have investigated how older people prioritise need. Giuliani et al. (2005a) found older 

people ranked theoretical elder-needs in accordance with Maslow’s hierarchical needs theory. However, 

an investigation of elder-needs priorities via a combination of literature reviews, focus groups, 



 

229 

 

observation, and interviews found no clear ranking; rather older peoples’ ranking of the importance of 

their own needs varied with their personal circumstances (Maciuszek et al., 2005). Two widely used 

elder-needs questionnaires are Activities of Daily Living (ADLs:Katz & Akpom, 1976) and Instrumental 

Activities of Daily Living (IADLs:Lawton & Brody, 1969). ADLs assess limitations in daily living such as 

bathing, transfer from bed, and toileting. IADLs assess limitations in routine activities such as shopping, 

housekeeping and using the telephone. Independently living older people tend to be high in IADL needs 

only. People in assisted-living facilities tend to be high in both IADLs and ADLs. Both these measures 

assess met and unmet elder needs, but not partially-met needs. Carer needs are not assessed. 

A more recent and well-validated measure of elder-needs is the Camberwell Assessment of Need for the 

Elderly (CANE:Reynolds et al., 2000).The CANE contains the 24 elder-needs and two carer needs that 

research determined most important. The elder-needs items include accommodation, food, household 

skills, self-care, daytime activities, physical and mental health, information, deliberate and accidental 

self-harm, abuse/neglect, behaviour, alcohol, drugs, company, intimate relationships, caring for someone 

else, mobility/transport, money, memory, eyesight/hearing, and incontinence. The two carer items are 

information and psychological distress. The CANE assesses the three levels of ‘need status’; whether 

the need is met, unmet or partially met. Clarifying need status – met, unmet or partially met, is typically 

undefined in the literature (K. Walters et al., 2000), and this is also true for HRI papers. For example, 

based on the premise that many people snack, M. K. Lee et al. (2009) designed a Snackbot for office 

workers in an office context. However, it was unclear whether office staff had snacking needs that were 

not already met by nearby vending machines or cafes, and no analysis showed how the robot could 

better meet their unmet or partially-met snacking needs. 

K. Walters et al. (2000) assessed unmet eldercare needs and help-seeking amongst a UK sample. The 

CANE was combined with semi-structured interviews. The three highest levels of unmet needs were 

found to relate to incontinence, accommodation, and psychological distress. Differences were found in 

which needs people were more likely to disclose and seek help for. Both older people and carers were 

both more likely to seek and be offered help for mobility issues; compared with incontinence, 

psychological distress, eyesight, memory, accommodation problems, and loneliness.  
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Unfortunately determining unmet or partially-unmet needs is rarely straightforward (Sixsmith & Sixsmith, 

2000). Needs assessment can be confounded by older people being unwilling or unable to express their 

needs. A UK elder-needs study (K. Walters et al., 2001) found help had been sought by older people in 

only 24% of cases of identified unmet needs. Reasons for not seeking help included people being 

resigned to their situation: while identifying a need they did not intend to do anything about it. Older 

people may not acknowledge needs such as loneliness or disability due to stoicism, pride and/or stigma 

(Hirsch et al., 2000). Fear of institutionalization is another reason older people may under-report need 

(Horrocks et al., 2004).  

Some underreporting of need is less deliberate. Elder-needs can fluctuate rapidly alongside fluctuating 

mental and physical health. Consequently older peoples’ perceptions of their capabilities (and therefore 

their ability to accurately report their needs) are often misaligned with their actual capabilities (Hirsch et 

al., 2000). Habituation to the inconvenience of both unmet and partially-met needs may also interfere 

with conscious recognition, and therefore reporting, of need (Hirsch et al., 2000; Horrocks et al., 2004).  

Identification of eldercare-needs such as independence, incontinence, and assistance with chores 

provide indications for acceptable eldercare robot design (Fisk et al., 2009), as do insights into elder-

needs barriers such as stigma. However, these elder-needs design guidelines are still insufficiently 

specific. For example, a study identified elder-loneliness as a high priority issue (Mast et al., 2010); 

however it is unclear whether the self-reported loneliness resulted from the death of a spouse or friends, 

insufficient contact with family, and/or being housebound. And if an older person is housebound….why? 

Is it lack of transport, or physical or mental disability? The specific reasons needs are unmet have 

implications for designing technology to match needs. Consequently a deeper understanding of the 

reasons for unmet elder-needs is recommended to further refine the design problem (Giuliani et al., 

2005a).  

As an example, the next subsection explores this concept with elder-incontinence needs. 

Identification of Reasons for Unmet Specific Needs for More Specific Design 

Incontinence is a common and potentially disabling issue for older people. Despite incontinence support 

being readily available through the UK public healthcare system many older people are not using these 

resources and unnecessarily suffering the physical and psychological consequences of incontinence. 
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Horrocks et al. (2004) identified many barriers to incontinence help in 20 older people aged 66-94 years 

through semi-structured interviews. Barriers included a generational reluctance to discuss personal and 

bodily functions. There were patient/doctor gender interactions. Older women preferred a female doctor; 

older men had no preference. Unlike women, older men actively disliked incontinence pads. Female-

dominated incontinence product advertising meant both incontinence and incontinence products were 

perceived as ‘women’s problems’ only.  

Further findings include the association of incontinence stigma with distress. Distress often led to 

painstaking concealment of incontinence problems (however elders less distressed by their incontinence 

were also less likely to bother seeking help). There were also themes of ‘not wanting to bother busy 

doctors’ with ‘trivial’ incontinence complaints. House-bound participants were missing viewing 

incontinence information leaflets at health clinics. Self-management strategies for urinary leakage, such 

as restricting social activities, degraded the older person’s quality of life. Some participants may have 

impaired their health by restricting fluid intake and altering medication regimes; especially reducing 

consumption of diuretics.  

Opportunities for robots to overcome incontinence-needs barriers may be seen in this in-depth analysis. 

For example, older people may be more willing to seek information about embarrassing unmet needs 

from a robot than a human. People are also less likely to feel they are ‘bothering’ a machine (Mahani & 

Eklundh, 2009). A robot software programme could present solutions to common unmet elder-needs 

such as incontinence. Such a programme could combine understanding of incontinence needs and 

needs-barriers with input from psychogerontologists to reduce stigma and psychological distress.  

There are further benefits of needs-technology matching. The ready availability of resources on a 

healthcare robot may be advantageous to housebound people. Understanding individual differences in 

eldercare stakeholder needs and need-barriers can guide customization. With regard to gender 

differences; incontinence information could be presented via a robot’s monitor to older women in a 

female persona. Men (and women) could be offered a choice of robot persona gender. To raise male 

awareness of incontinence and solutions; information could be developed for robotic presentation using 

older male models. In marketing the robot to older people, the non-stigmatizing nature of intimate 

resources available via the robot could be discretely emphasized, as could the benefits of improved 
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continence such as increased independence. In marketing the robot to family purchasers, the benefits of 

enhanced elder-independence and quality of life through improved continence could be emphasised, 

and any financial benefits of prophylactic healthcare emphasised to service provider purchasers. 

The above suggestions for more specific robot guidelines for elder-incontinence are an example only. 

Beyond basic design principles, much eldercare robot design may be context dependent. Existing 

research on eldercare needs and need-barriers should be assessed for generalisability to the particular 

target robot stakeholder group. The above example is based on a 2004 British study of community-living 

people aged 66-94 which might not generalise well to, for example, a present day cohort of 80 + year old 

people in assisted-living facilities in a different country. 

Recommendations for integrating these eldercare needs issues into more specific robot design 

guidelines are listed next. 

Recommendations for More Specific Eldercare Robot Design 

1. That stakeholder eldercare-needs and needs-barriers be incorporated early (at the conceptual stage 

rather than the user-testing stage) in the robot design process. Fewer costly design iterations may be 

required (Kujala, 2003). 

2. One size will probably not fit all. Identify the specific context for the eldercare robot – independent-

living, assisted-living, hospital etc. Identify key target stakeholders. Identify eldercare needs of different 

types of stakeholders. 

3. Review the eldercare-needs literature. Assess specific reasons why specific needs of eldercare 

stakeholders are unmet, partially-unmet or met. Incorporate all key eldercare-needs into eldercare robot 

design, e.g. it is of limited use if an otherwise useful incontinence software programme is stigmatising. 

4. Evaluate the methodology of relevant eldercare-needs literature for generalisability to the target 

stakeholders. 

5. If relevant literature cannot be found, it may be advisable to conduct a separate study assessing 

stakeholders’ eldercare-needs and needs-barriers – using participants' matched to the target 

stakeholders. 
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6. Use data triangulation when assessing eldercare-needs and specific needs-barriers. As more ‘open’ 

methodologies, such as ethnography, observation, semi-structured interviews etc. may be effective for 

identifying latent elder-needs, these should be included in the methodology mix (Kujala, 2003). 

Feedback from carers, families etc. on their perceptions of elder-needs can help fill gaps in self-reports 

of need from elders. 

7. Translate specific reasons for unmet needs into more specific robot design guidelines. HRI 

researchers can then better assess what robot aspects can be made available, designed, or modified to 

meet those needs and address need-barriers. 

8. Integrate these guidelines into all aspects of eldercare robot design – including robot form and 

function, marketing, recruitment, distribution, and deployment. 

Conclusion 

Designing acceptable eldercare robots is a complex multifactorial and multidisciplinary task. This paper 

highlights the importance of research conducted into reasons for high rates of unmet eldercare-needs to 

increase awareness of these issues amongst roboticists. The individual issues are not new, but this 

paper combines an understanding of eldercare-needs and needs-barriers, with an understanding of 

associated methodological issues. This combined approach may aid roboticists in developing more 

specific and acceptable eldercare robot design guidelines. 
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 Discussion  Chapter 9.

This thesis contains four peer-reviewed published21 scientific papers on the theme of understanding 

psychological variables associated with acceptance and non-acceptance of eldercare robots. Three of 

the papers are based on HRI studies and one is a discussion paper.  

Key thesis findings 

There are five key findings of this thesis. The first key finding is the replication of earlier research that the 

attitudes that people hold about robots prior to an HRI can predict their robot acceptance across a range 

of study methods. These study methods include the conduction of trials in eldercare facilities, and 

evaluation of people’s acceptance of robots with both subjective and objective measures. Subjective 

measures include people’s intentions to use the robot again. Objective measures include whether they 

use a robot or not.  

The second key thesis finding is that that people’s perceptions of a robot’s mind can predict whether 

they will use a robot or not. The third is that people’s use of a robot can influence their robot attitudes 

and perceptions of a robot’s mind. The fourth is that, not only can people’s attitudes towards robots 

change rapidly; from before to after a single 30 minute interaction, but that these attitude changes 

predict robot acceptance. The fifth key finding is that people’s pre-interaction robot drawings are 

correlated with both their robot evaluations and physiological responses after a robot interaction. The 

implications of these key thesis findings and other contributions to the field of HRI, are discussed in this 

chapter.  

                                                

21 As of 24/09/2013 the status of the manuscript for the prior attitudes & drawings study is in submission – accepted 

with minor revisions. 
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Chapter outline 

Section 9.1 discusses the thesis findings in relation to robot attitudes. This includes the associations with 

robot acceptance, and consideration of the merits of the RAS as a questionnaire measure of robot 

attitudes. Section 9.2 outlines contributions in relation to perceptions of robot mind and associations with 

robot acceptance. In section 9.3, robot drawings, as a more implicit measure of robot attitudes are 

discussed. Next, in section 9.4, the contributions of the discussion paper on reasons for unmet needs to 

the field of eldercare HRI are summarised. Thesis strengths are described in section 9.5. A proposal for 

a new model of robot acceptance is presented in section 9.6. Sections 9.7, 9.8, and 9.9 contain, 

respectively, limitations of this thesis, suggestions for future research, and the thesis conclusion.   

 

9.1. Robot attitudes 

The association of prefactual robot attitudes with robot acceptance    

Unusually for HRI studies, in addition to two of the three studies administering measures after 

participants had interacted with a robot, all three thesis studies administered psychological measures at 

baseline - before participants had interacted with the robots. Results from all three studies showed 

participant’s baseline, or prefactual, robot attitudes were significantly associated with their acceptance of 

the robot. Specifically, in the prior attitudes & drawings study participant’s baseline robot attitudes 

predicted both overall rating and intentions to use (averaged into ‘robot evaluation’). In the robot mind 

study they predicted who would and would not use the robot. In the improved attitudes study, they 

predicted overall rating of the HRI.  
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This association between participant’s baseline robot attitudes and robot acceptance was particularly 

notable in the improved attitudes study. In that study, participants completed the baseline measures 

before they even saw the robot. This result supports earlier research (Broadbent et al., 2010) that 

people’s generic, pre-factual, robot attitudes, can predict acceptance of specific robots. In comparison 

with other HRI studies that have administered psychological measures before and after the HRI; Lohse 

et al. 2011 did not assess robot acceptance. It is also unclear whether Lohse et al. administered the 

baseline measures before or after participants viewed BIRON, the Bieleford Robot Companion. In 

Paepcke and Takayama’s (2010) expectation manipulation study, participants viewed the robot pets 

before the baseline measures were completed.  

The strong evidence that baseline, pre-interaction, robot attitudes not only exist, but predict robot 

acceptance, concurs with the opinions of some researchers and disagrees with others. Bartneck et al. 

(2009) advise researchers not to administer psychological measures prior to an HRI on the grounds that 

people could not hold opinions about a robot they had not yet experienced. Conversely, Bagozzi (2007) 

and Bhattacherjee (2001) have criticised technology acceptance models for lack of consideration of ‘pre-

factual’ attitudes. In his 1989 and 1993 papers, Davis allows for the existence of pre-interaction attitudes 

(and for their influence on acceptance), but proposes they are completely derived from the physical 

appearance of the technology.  

However this explanation for the origins of pre-factual technology attitudes appears insufficient on two 

counts. As participants in the improved attitudes study were found to hold pre-factual robot attitudes that 

predicted acceptance of a robot they had not even seen, their baseline robot attitudes could not have 

been informed by the physical appearance of the robot. Furthermore, while the physical appearance or 

behaviour of a technical device or robot does influence people’s responses (DiSalvo et al., 2002; Syrdal, 
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Dautenhahn, Woods, Walters, & Koay, 2007); that people respond differently to identical robots (Forlizzi 

& DiSalvo, 2006; Paepcke & Takayama, 2010) argues that the physical appearance and behaviour of 

robots is not the only influence on people’s technology (and robot) attitudes. 

Overall, the thesis study finding that people can hold baseline robot attitudes that predict robot 

acceptance across a range of HRI contexts and methods, is an important contribution to the HRI field. 

Implications include the possibility of optimising robot acceptance in potential users by promoting 

adaptive robot attitudes. The emphasis, however, needs to be on adaptive robot attitudes. The robot 

mind study results show that people are less likely to use a robot if they have negative robot attitudes.  

However Paepcke and Takayama (2010) showed that, compared with people who were manipulated to 

have low expectations of a robot’s abilities, people who were manipulated to have high expectations 

were more disappointed in the robot. Consequently ‘adaptive robot attitudes’ may mean robot attitudes 

that are sufficiently positive so that people are willing to interact with the robot, but not so high that they 

are disappointed with the robot when they do interact with it.  

People’s baseline robot attitudes appear important for robot acceptance, but their very first interaction 

with a robot also appears important for robot acceptance. When people transition from a ‘never robot 

user’ to someone who has used a robot, their attitudes about robots transition from being completely 

informed by sources other than personal experience of robots, to being informed by personal experience 

of robots (Bhattacherjee, 2001).  

Results from the improved attitudes study show that while people’s baseline robot attitudes predicted a 

large amount of variance in robot acceptance, change in robot attitudes as a result of the interaction 



 

238 

 

predicted approximately an equal amount. This result implies that the experience of the HRI is at least as 

important to robot acceptance as baseline robot attitudes.  

People’s robot attitudes can change rapidly 

The method of both before and after administration of psychological measures in two of the three thesis 

studies showed not only the existence of influential baseline robot attitudes, but also that people’s 

attitudes towards robots can change rapidly. Sometimes positive changes in participant responses can 

be attributed to the confound of researcher, observer, or Hawthorne effects. In an HRI context, the 

Hawthorne effect describes a situation where people are responding to the presence of the researchers 

rather than the presence of the robot. However, in the robot mind study, while robot attitudes did improve 

significantly in retirement village residents who used the robot during the two week trial, robot attitudes 

did not change in people who did not use the robot. Because the researcher had contact with all 

participants, this suggests researcher presence was not a confound in this study.  

People’s robot attitudes may change more rapidly than indicated in the HRI literature. Even more 

dramatically than in the two week robot mind study, the participants’ robot attitudes in the improved 

attitudes study improved from before to after interacting with the robot for only 30 minutes. The 

combined findings of the improved attitudes study and the robot mind study provide further support for 

the malleability of robot attitudes, and the potential for interventions to foster adaptive robot attitudes in 

potential robot users.  

Other HRI research and opinion on attitude change 

There is little discussion in the HRI literature on change in robot attitudes. Nomura, Suzuki, et al. (2006) 

propose that robot attitudes are unlikely to change in the short term, and instead offer a generational 

perspective. They think it is likely that society’s attitudes towards robot will become more positive as the 
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younger generations, more familiar with novel technologies such as robots, become the older 

generation. Several other HRI studies have been located that assessed change in people’s perceptions 

of a robot’s abilities from before to after an interaction (Lohse, 2011; Paepcke & Takayama, 2010).  

In a comparable study, Kuo et al. (2009) administered the RAS to older and younger people before and 

after interacting with a healthcare robot. No differences were found in participants’ robot attitudes from 

before to after the HRI, or between the younger and older participants. As the focus of the Kuo et al. 

study was on age and gender, the RAS items were not assessed against an outcome measure – 

attitudes towards healthcare robots. However, baseline robot attitudes did predict how enjoyable the HRI 

was, and the quality of the experience (Broadbent et al., 2010).      

However, no other studies have been located that have used the before and after methodology in a real-

world context: with older people and eldercare facility staff interacting with a healthcare robot, with a hard 

behavioural acceptance measure – whether people choose to use a robot or not.  

Relative advantages of the RAS as a questionnaire measure of robot attitudes  

The association between robot attitudes (as assessed by the RAS) and robot acceptance has been 

replicated across all three thesis studies. However the RAS is not the only questionnaire measure of 

robot attitudes. The most commonly used other robot attitudes measures are the NARS (Nomura, 

Kanda, et al., 2006) and attitude items derived from technology acceptance models. The latter includes 

the Almere Model attitude items (Heerink et al., 2010). However, the RAS has some characteristics that 

may give it a competitive advantage as a measure of robot attitudes. 

As discussed in Chapter 3, the NARS has some limitations which may impair its effectiveness as a 

measure of robot attitudes (Tsui et al., 2011). These include concerns about the measure’s cross-cultural 
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validity (Syrdal et al., 2011). The double-barrelled nature of some NARS items may confuse participants 

and compromise the validity of their responses. As several studies have demonstrated the effectiveness 

of framing or priming effects on people’s responses to computers and robots (Hinds, Roberts, & Jones, 

2004; Paepcke & Takayama, 2010; Rutjes, 2013), the negatively worded robot attitude items, combined 

with the assumptions of robot speech and emotions, may mean administration of the NARS may 

influence the very construct it is trying to assess. Despite these possible limitations, NARS responses 

have been associated with some HRI outcomes (Nomura et al., 2008; Syrdal et al., 2011). However, the 

lack of direct real-world outcomes makes it difficult to assess the existence or extent of associations 

between the NARS and robot acceptance.  

The other commonly used measure of robot attitudes come from the Almere model. There is evidence 

for an association of the Almere robot attitudes measure with robot acceptance (Heerink et al., 2010). 

(as the Almere model is based on technology acceptance models, studies that use the Almere model 

also tend to incorporate measures of robot acceptance). However the operationalization of attitudes in 

these models casts doubt on the completeness of the construct. These detected associations may result, 

at least partially, from overlap with other variables that are predictive of robot acceptance - such as 

perceived robot usefulness and intentions to use the robot - rather than from attitudes towards robots as 

such.  

Apparent construct overlap was the rationale Venkatesh et al. (2003) gave for the removal of the 

technology attitudes variable from the Almere’s parent model - the UTAUT. Inspection of both the 

UTAUT and Almere attitudes measures suggest the items are more representative of attitudes towards 

using the technology or robot, rather than assessing attitudes towards the robot itself.  



 

241 

 

This might not be an issue, except that the Almere attitudes measure only consists of a few items and 

they all appear to reflect attitudes towards use of the robot, and not address other aspects of people’s 

mental models of robots. In recognition of this, Heerink et al. (2010) suggest that other types of robot 

attitudes should be investigated. However, arguably a more serious reason for the redundancy of the 

attitudes variable, is that when operationalised as ‘attitudes towards use of the technology’ is that it 

actually overlaps with the dependent outcome “intentions to use the technology’.  

Possible RAS advantages over other measures of robot attitudes include that it assesses attitudes 

towards robots, not just attitudes towards use of robots. The RAS measure does include two items on 

perceived usefulness and perceived ease of use of the robot. It also includes the items friendly, 

trustworthy, reliable, safe, helpful, and interesting22. The high Cronbach’s alpha scores from HRI studies 

that have used the RAS indicate the items are measuring the same construct (Kuo et al., 2009; Stafford 

et al., 2010; Stafford et al., 2013; Stafford et al., 2014).  

9.2. Perceptions of robot mind  

Thesis findings in relation to perceptions of robot mind 

Results from the robot mind study showed people’s baseline perceptions of robot mind predicted who 

used the robot. However, robot users and non-robot users only differed in their perceptions on one of the 

two robot mind dimensions. There was no difference in baseline perceptions of the robot mind dimension 

of experience (capacity for ‘feeling’) between robot users and non-robot users. However, compared with 

people who did use the robot, non-robot users perceived significantly more robot mind agency (capacity 

for ‘doing’) at baseline.  

                                                

22 the RAS humanlike-machinelike item is a separate subscale 
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Furthermore, from the beginning to the end of the two week HRI trial, robot users’ perceptions of robot 

mind agency decreased. In contrast, non-robot users did not change in their perceptions of robot mind 

agency. This suggests that people perceived the robot as having more capabilities than it actually did, 

and when people actually used the robot and experienced its actual capabilities, these perceptions were 

revised downwards. 

Immediate implications of these findings suggest that perceptions of robot mind, like robot attitudes, 

appear to both predict robot acceptance and be modifiable. This also suggests (again like robot 

attitudes), that the variable of perceived robot mind may be a candidate for interventions to promote 

robot acceptance.  

There are several studies that provide evidence for the effectiveness (and efficiency) of such 

interventions. K. Gray and Wegner (2012) were successful in manipulating people’s perceptions of how 

much mind agency and experience a computer possessed. Using an adapted version of the Mind 

Perception Questionnaire, Eyssel and Kuchenbrandt (2012) were also successful in manipulating 

people’s perceptions of a robot’s mind and levels of anthropomorphism. In both studies (similar to the 

method used by Paepcke and Takayama, 2010, and Hinds et al., 2004), the manipulation consisted of 

simple framing effects embedded in the wording of instructions.  

Support for a two dimensional model of robot mind: and are people predisposed to perceive 

robot minds as high agency:low experience?  

The associations detected between perceived robot mind and robot acceptance in the robot mind study 

were correlational only, and it is unclear from the results whether one or two dimensions of perceived 

robot mind influenced acceptance of the robot. The Mind Perception Questionnaire, unlike more 

established uni-dimensional concepts of mind, such as agency (Takayama, 2012) or intentionality 
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(Dennett, 1987), has the two dimensions of mind agency and mind experience. In the robot mind study, 

considered in isolation, only participants’ baseline perceptions of the robots mind agency, and not mind 

experience, predicted use of the robot. This could suggest that robot mind is only perceived on one 

dimension of agency; that the mind dimension of experience is redundant; and that a uni-dimensional 

measure of robot mind would suffice just as well as a two dimensional one.  

However, in addition to the model’s psychometric validation (H. M. Gray et al., 2007), there is other 

support for a two dimensional model of perceived mind. One source of support comes from further, and 

apparently conflicting, data from the robot mind study. While participants with higher perceptions of robot 

mind agency at baseline were less likely to use the robot (this suggests higher perceived mind agency 

was a negative robot attribute for non-robot users); in participants who actually used the robot, higher 

perceptions of both robot mind experience and agency at baseline were positively (and separately) 

correlated with intention to use the robot again23.  

This latter finding suggests that, for robot-users, higher perceived robot mind agency was a positive 

attribute, as well as suggesting that the two mind dimensions are valued independently. This concurs 

with findings from Gray, Gray, and Wegner’s (2007) original work, that both mind dimensions are 

associated with liking a character, wanting it to be happy, wanting to protect it from harm, and believing it 

has a soul. In fact, Gray et al. suggest this commonality between mind agency and mind experience is 

why perceived mind is traditionally viewed as a uni-dimensional construct. However, as the robot mind 

dimension of agency is valued by robot-users in the robot mind study (as well as being valued by 

                                                

23 Participants who did not use the robot over the two week trial were not asked to rate the HRI, or how much they 

would like to use it again.  
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participants in Grey et al.s study), it does not follow that robot mind study participants who perceived 

higher amounts of robot mind agency at baseline were less likely to use it.   

There are several possible explanations for this apparent contradiction. Although perceived mind agency 

appeared to be a negative attribute for non-robot users and a positive one for robot users, it should be 

recalled that non-robot users perceived significantly higher levels of robot mind agency at baseline than 

robot users. It could be that higher amounts of robot mind agency are aversive, but lower amounts are 

not.  

Another explanation for this apparent anomaly is that robot mind is perceived on two dimensions and 

that they act in concert. The two dimensions may combine to form mind profiles, which may vary in 

acceptability, depending on the HRI context. A robot with a high agency:low experience mind profile may 

be aversively perceived as agentic and unfeeling. A robot with a low agency:low experience mind profile 

may be perceived as having the mind of a useful ‘robot-as-tool’ machine. Yet another explanation is that 

there is something inherently different about people who are predisposed to use robots and those who 

are not.       

 A one dimensional model of perceived mind can explain why people are inclined to perceive 

humanlikeness in robots, or anthropomorphise them. The HRI context contains many triggers for 

anthropomorphism. But a one dimensional model of mind struggles to explain why perceived robot 

humanlikeness is associated with negative responses in some instances and positive responses in 

others. Part of the conundrum may be that HRI research has been somewhat preoccupied with the one 

dimensional question of whether a robot should be machinelike or humanlike. In contrast, a better 

question might be; what type of machine or human should a robot be like? After all, not all humans nor 

human behaviour is desirable.  
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Media representations of robots - and their minds 

Other support for the concept of robot minds being perceived on two dimensions, rather than one, 

comes from studies of the origins and manifestations of people’s mental models of robots. It is clear from 

robot survey results that lack of personal experience with robots is not a barrier to people holding 

opinions about robots (e.g. Arras & Cerqui, 2005; A. J. Moon, Danielson, & Van der Loos, 2012). So, if 

not from personal experience, from where do people acquire their mental models of robots? There is 

evidence that these are acquired from popular media, including films and literature (Broadbent et al., 

2010; Khan, 1998). Kriz et al. (2010) ascertained robots are typically portrayed in popular film as being 

high in cognitive capabilities and low in social capabilities. Congruently, in a related study Kriz et al. 

found participants rated a Peoplebot as being most likely to have cognitive capabilities and least likely to 

have social capabilities. These abilities appear, respectively, similar to the dimensions of mind agency 

and mind experience. 

Several robot surveys have found similar proportions of perceived robot capabilities. At a robot show, 

people were asked which of ten characteristics they thought applied to robots. The characteristics most 

commonly ascribed to robots were precision, reliability, rationality, and perfection. The characteristics  

least commonly ascribed to robots were life, humanity, and feelings (Arras & Cerqui, 2005). In a different 

study, 117 mixed-aged participants were surveyed on the possible characteristics of an imaginary 

domestic robot (Ezer et al., 2009). Participants rated robots as being significantly more likely to have 

performance-oriented traits than socially-oriented traits.  

These combined findings raise the possibility that people are predisposed, or ‘primed’ by media 

representations, to perceive robots as having minds that are high in agency and low in experience. The 

notion that this high mind agency:low mind experience mental model of robots is common is endorsed by 
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the popular dictionary definitions of robots listed at the beginning of this thesis: a machine programmed 

to perform specific tasks in a human manner, esp. one with a human shape; a person of machine-like 

efficiency (Collins Paperback Dictionary, 2003, p. 713); a machine that looks like a human being and 

performs various complex acts (as walking or talking) of a human being; a similar but fictional machine 

whose lack of capacity for human emotions is often emphasized; an efficient insensitive person who 

functions automatically (Merriam-Webster-Dictionary, 2013, online); an intelligent mechanical being 

designed to look like a human or other creature, and usually made from metal (chiefly science fiction); 

(figuratively) a person who does not seem to have any emotions (Wicktionary, 2013, online). 

While there appears to be a media-driven predisposition for people to perceive robots as having a high 

agency:low experience mind, not everyone perceives robots as having this particular mind profile. 

Results from the robot mind study show that while perceptions of a high agency:low experience robot 

mind predict non-acceptance of the robot (possibly because such robots are perceived to be like their 

media representatives: intelligent agents that are indifferent to people’s needs), the study also shows 

that not all people perceive robot mind dimensions as high agency:low experience.  

Rather, people who did use the robot in the robot mind study perceived the robot’s mind to be low in 

both agency and experience. This difference may be explained by people’s perceptions of robot minds 

being influenced by their personal experiences, as well as by the media. Not only did robot-users 

decrease in the (already low) amount of mind agency they perceived in the robot from before to after the 

two week trial, but, to begin with, they had significantly more computer experience than non-robot users. 

Both of these results suggest that more computer and robot experience may moderate media 

representations of high agency:low experience robot minds. Personal experience of technology and 

robots may promote more realistic and adaptive ideas of a robot’s capabilities and mind.  

http://en.wiktionary.org/wiki/mechanical
http://en.wiktionary.org/wiki/figuratively
http://en.wiktionary.org/wiki/person
http://en.wiktionary.org/wiki/emotions
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There are a number of characteristics of the complex HRI which may trigger perceptions of 

anthropomorphism, and/or moderate perceptions of robot mind. Robot characteristics that appear to 

influence perceptions of robot mind include appearance (Broadbent et al., 2013; K. Gray & Wegner, 

2012), and apparently agentic behaviour (Levin, Killingsworth, Saylor, Gordon, & Kawamura, 2013). 

Human variables that may influence perceptions of robots include motivation. For example, people who 

are lonelier are more likely to anthropomorphise robots (Eyssel & Reich, 2013).  

There is some evidence that these human and robot variables interact to influence perceptions of robot 

mind. People are more likely to anthropomorphise an unpredictable robot compared with a predictable 

one, but only if they are expecting to interact with it (Eyssel et al., 2011). Syrdal et al. (2009) found  

people who scored higher on the neuroticism scale, were more likely to have both more negative robot 

attitudes and to find a ‘socially responsive robot’ more autonomous and unacceptable.  

Evidence of HRI variables interacting to influence people’s perceptions of the desirability of robot 

humanlikeness may be seen in the improved attitudes study. In that study, retirement village staff and 

residents appeared to respond differently to perceptions of robot humanlikeness in the same robot. 

Overall, participants’ perceptions of robot humanlikeness were not significantly correlated with their robot 

attitudes. However staff who found the robot more humanlike after interacting with it, also reported more 

post-interaction positive emotions. This suggests that staff perceived robot humanlikeness as a positive 

attribute. In contrast, residents who had elevated heart rate prior to the interaction found the robot more 

humanlike after interacting with it. This suggests residents perceived robot humanlikeness as a negative 

attribute. It is possible these differences in response to perceived robot humanlikeness reflect the 

moderating effects of human and interaction variables on perceptions of robot mind. 
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9.3. Robot drawings  

As a more implicit measure of robot attitudes, robot drawings may be a useful contribution to the HRI 

toolkit. There are two main categories of robot drawing results from the prior attitudes & drawings study. 

One is the provision of the type and number of facial features that people expect a robot therapist to 

have. Analysis of the drawing contents show that the presence of human-typical features, such as ears 

and hair, were associated with more positive robot evaluations and less physiological reactivity. The 

other main category of drawing results related to size of the drawings. Larger drawings were associated 

with elevated systolic blood pressure after interacting with the robot.  

A few other robot studies have used robot drawings. An early robot survey asked participants to draw 

their idea of a domestic robot (Khan, 1998). However, aside from Khan noting that the drawings 

appeared influenced by robots from science fiction, the drawing content was not assessed against any 

outcomes. A more recent healthcare robot study did combine robot drawings with outcome measures. 

Similar to the prior attitudes & drawings study described in this thesis, results from the Broadbent, Lee, 

et al. (2011) study included larger robot drawings being associated with elevated physiology measures. 

These results concur with findings from non-robot healthcare drawing studies, where larger drawings are 

associated with worse outcomes (Broadbent et al., 2006; Broadbent et al., 2004). 

However, while results from Broadbent, Lee, et al.’s (2011) study and the prior attitudes & drawings 

study concur in that both studies found an association between drawing size and outcomes, some 

drawing results from the two studies appear contradictory. The evidence is mixed as to whether 

humanlike characteristics in the robot drawings are perceived as a negative attribute or a positive 

attribute. In Broadbent, Lee, et al.’s study, participants who drew robots that were humanlike, rather than 

boxlike, were more likely to have an increase in both blood pressure and negative emotions from before 
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to after interacting with the robot – indicating that perceived humanlikeness in robots made people more 

anxious. In contrast, in the prior attitudes & drawings study, participants who drew human-typical 

features of hair and a neck on their picture of a robot therapist’s face, were more likely to evaluate the 

robot positively. Furthermore, people who drew the human-typical feature of ears had lower heart rate at 

both baseline and post-HRI. This indicates that for the prior attitudes & drawings study participants, 

perceived humanlikeness in robots predicted less physiological reactivity.  

The differences in results between the two studies may arise from the different methods used. One 

difference is the robots had different functions (healthcare vs. conversational/therapist), and accordingly, 

participants were given different drawing instructions. In Broadbent, Lee, et al.’s (2011) study, 

participants were asked to draw their idea of a healthcare robot: in the prior attitudes & drawings study 

participants were asked to draw their idea of a robot therapist’s face. These different instructions resulted 

in different types of robot drawings that were consequently assessed differently. The drawings in 

Broadbent, Lee, et al.’s study were either machinelike or humanlike. In the prior attitudes & drawings 

study, all drawings had faces (as per drawing instructions) and hence were more humanlike.  

Other method differences between the two robot drawing studies include that the faces on the robots’ 

display screens were different. The single robot face displayed on the Peoplebot’s monitor in Broadbent, 

Lee, et al.’s (2011) study was a very basic human face (it had hair but not ears) and many people did not 

like it. Broadbent, Lee, et al.’s study also had younger participants (vs. older), and was a between 

groups design (vs. repeated measures). Consequently, any combination of the many method differences 

between the drawing studies may affect people’s mental models of robots, and explain why in 

Broadbent, Lee, et al.’s (2011) perceived robot humanlikeness appeared to be an undesirable quality, 
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yet in the prior attitudes & drawings study robot humanlikeness appeared to be a desirable quality. In 

future the use of the Mind Perception questionnaire may help explain this type of finding.   

Overall, the combined findings of the two robot drawing studies indicate that drawing size is a useful, 

more implicit, measure of robot attitudes across a range of methodologies. In contrast, specific features 

of the robot drawings, particularly in relation to humanlikeness, may depend on the selection of study 

methods; such as type of participants, robots, and drawing instructions. It is unknown if the content or 

size of robot drawings might change in response to an intervention and/or and HRI (i.e. if drawings were 

administered twice: before and after the HRI). Generally, the use of more implicit psychological 

measures can usefully complement more explicit psychological measures such as self-report.    

9.4. Specific reasons for unmet needs 

A goal of this thesis is to increase awareness of the importance of understanding reasons for the unmet 

needs of eldercare stakeholders. While perceptions of robot mind and robot attitudes appear important 

additions to a model of eldercare robot acceptance, two key predicators of acceptance form the TAM 

and UTAUT models, perceived usefulness and perceived ease of use, still appear relevant and important 

in an eldercare robot context. Understanding the reasons for the unmet needs of older people and other 

eldercare stakeholders may help in the design of more useful robots, and consequently more acceptable 

robots, in several ways.  

Overall, it may be beneficial to think of ‘acceptable robot design’ holistically, rather than just limited to the 

physical design of a robot. Understanding the reasons for the unmet needs of older people could be 

considered one aspect of holistic acceptance robot design. This knowledge may assist robot designers 

in designing robotic solutions to meet those needs. However, for useful robots to be accepted, they must 
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be perceived as useful by potential users. Knowledge of the reasons for older people’s unmet needs 

may assist in designing interventions that convey an understanding of robot usefulness, in meaningful 

terms, to potential users. However, for robots to be perceived as useful, they must first be perceived to 

be meeting a need. For a number of reasons, as outlined in the unmet needs paper, people can be 

unable or unwilling to acknowledge that they have unmet needs. Therefore, in some cases, in order for 

eldercare robots to be perceived as useful, sensitive interventions may be required to raise awareness in 

potential users of their unmet needs. This could perhaps be done prior to offering robotic solutions. 

Again, understanding the reasons for unmet needs may assist in the design of such interventions.  

9.5. Thesis strengths  

The studies reported in this thesis have a number of strengths, many of which contribute to the likelihood 

of the results generalising to other real-world eldercare contexts.  

The closer a robot study can approximate a real-world eldercare HRI environment, the greater the 

likelihood the results will be able to contribute to the development of acceptable eldercare robots (Bethel 

& Murphy, 2010). There are a number of ways the studies reported in this thesis approximate a real-

world eldercare robot environment. All three studies used actual robots, with all the attendant real-world 

challenges. Robot studies conducted in the absence of robots, using methodologies such as video or 

surveys, can provide valuable information. Moreover, there are likely to be unique aspects to interacting 

with an embodied robot, such as ease of use, which cannot be assessed by other methods. 

A further strength of this doctoral thesis is that all study robots were autonomous robots, rather than the 

commonly used Wizard of Oz method. The latter method can be useful for assessing human responses 

to robots without the technical challenges of autonomous robots. But the Wizard of Oz HRI is limited in 
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the contributions it can make to the technical development of commercially viable robots that must 

operate in a socially and technically complex real-world environment.  

The inclusion of a hard measure of robot acceptance in the robot mind study  – actual use of the robot – 

is a significant strength of this thesis. For real-world eldercare deployment, it is important to know what 

variables are associated with older people actually using a robot or not (unlike employees, it is unlikely 

that older people can be mandated to use a robot). Compared to actual use of a robot, people’s 

intentions to use a robot are a useful, but inferior predictor of robot acceptance.  

The thesis has contributed to the HRI field by furthering understanding of how people’s emotions 

towards robots, and changes in those emotions as a result of an HRI, can influence robot acceptance. In 

the improved attitudes study, eldercare facility staff and residents’ baseline negative emotions towards 

the robots decreased from before to after interacting with the robot. Their positive emotions towards the 

robot did not change. Both baseline negative emotions, and changes in negative emotions, predicted 

acceptance of the robot. This is the first time the emotions of eldercare stakeholders towards a robot 

have been assessed both before and after an HRI, in a real-world eldercare context, with a validated 

measure of affect (PANAS: Watson, Clark & Tellegen,1988), and with the inclusion of measures of robot 

acceptance. 

Two of the three HRI studies reported in this thesis were conducted in a real-world eldercare 

environment. Real-world trials are extremely challenging (Weiss et al., 2009), requiring extensive 

financial, personnel, equipment, and time resources. There are two key benefits to the real-world HRI 

methodology. One is the greater ecological validity of the results. A second benefit is the opportunity to 

resolve technical issues required for commercial robot deployment. While laboratory trials are necessary 

for preliminary robot developmental work, they cannot fully anticipate the issues inherent in deploying 
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robots in real-world eldercare environments – the ultimate goal of eldercare robots. Without awareness 

of these issues, it is not possible to design solutions to overcome them. In contrast to these thesis 

studies, the majority of eldercare robot studies either do not involve an actual robot, and/or are not 

conducted in a real-world eldercare environment. (A notable exception is the work of Marcel Heerink’s 

research group. E.g. Heerink, Krose, et al, 2006; Heerink et al., 2010.)     

Another approximation to the eldercare HRI environment is that all the three thesis HRI studies have 

recruited older people as participants. Recruiting older people for robot trials can be more costly in time 

and resources compared with convenience samples of younger university students or university staff. 

However there are differences between older and younger people, as well as between more and less 

well educated people (Czaja et al., 2006; Milne et al., 2005; More, personal communication, April 16, 

2013; Sanchez, Fisk, & Rogers, 2004), which may be important considerations when developing robots 

intended for eldercare.  

To the best of the PhD candidate’s knowledge the recruitment method used in the robot mind study is 

both novel and makes several important contributions to the eldercare HRI field. The method involved 

approaching all residents in the retirement village building where the two week robot trial was taking 

place and inviting them to participate. Residents were told that use of the robot was optional, and not a 

requirement of participation. Benefits of this approach included the assessment of psychological 

differences between people who did and did not use the robot after the two week trial. This recruitment 

method, in combination with the before and after administration of psychological measures, meant that 

baseline psychological differences between robot-users and non-robot users could be assessed, as well 

as changes in these variables as a result of interacting (or not) with the robot.  
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One of the methodological limitations of many eldercare robot studies is small sample sizes. Recruiting 

sufficient numbers of older people for HRI studies can be challenging. At a practical level, the 

recruitment methodology in the robot mind study had the advantage of substantially boosting 

participation rates. A number of participants were happy to complete questionnaires, but only agreed to 

participate because using the robot was optional. While clearly this recruitment method is not suitable for 

all eldercare HRI studies, researchers may want to bear it in mind when considering how to increase 

participation rates, and actual robot use or not is a study outcome.  

The robot mind study recruitment method also raises awareness of the self-selection bias in eldercare 

robot studies (i.e. people who volunteer for HRI studies may be more favourably inclined towards robots 

than those who do not volunteer). As described in the previous paragraph, people who did not wish to 

use the robot were not excluded from the study. This resulted in a more representative sample of 

retirement village residents. That more than half of participants chose not to use the robot over the two 

week trial period, does however suggest that self-selection bias may be a substantial confound in 

eldercare HRI studies. The results obtained in the robot mind study are likely to be relatively free of this 

confound.  

The eldercare social environment is often complex (Hirsch et al., 2000). One of the thesis studies, the 

improved attitudes study, recruited multiple eldercare stakeholders (retirement village residents and 

staff). The staff included caregivers, nurses, and management. As older people are unlikely to be the 

only eldercare stakeholder group involved in the purchase and operation of eldercare robots, including 

multiple groups in eldercare robot studies also contributes to the ecological validity of the findings.  

Further ecological validity for the thesis results was provided by the real-world robot functionalities used 

in two of the three thesis studies. These robot functions, which had been stated as desirable by 
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eldercare user groups, included vital signs measures, medication management, cognitive stimulation, 

human to human communication, and entertainment. Evidence for the real-world application of these 

functions is provided by the purchase by a healthcare company of four robots that use these 

functionalities (3-News-online-staff, 2013). In contrast, while exploratory research is important, many HRI 

studies use robots with less real-world applications (Bemelmans et al., 2012).   

Replication of the RAS results is a strength and contribution of this thesis. Review authors have 

indicated more validation of HRI measures is required (e.g. Bethel & Murphy, 2010). The finding that 

robot attitudes (as measured by the RAS), are associated with robot acceptance was replicated across 

the three thesis studies. While replication does not address construct validity, it helps establish the 

reliability and generalisability of measures. Replication of results across a range of study methods 

indicates that results are not restricted to a narrow research context, or arise from statistical anomalies. 

 The greater the variety of methods results are replicated across, the stronger the evidence for their 

reliability. While the three thesis studies had the same underlying theme of eldercare robotics, there was 

variation of context and method. Variations included different robots (Cafero vs. Peoplebot) with different 

functionalities (healthcare modules vs. conversational), different populations (eldercare facility staff and 

residents vs. community living older people). Other variations included participants’ baseline robot 

attitudes being assessed in different contexts (improved attitudes study – RAS completed before 

participants saw the Cafero robot vs. prior attitudes & drawings study – RAS completed while 

participants seated in front of the Peoplebot), and in different HRI study environments (eldercare facility 

vs. university office). Overall the combined thesis studies provide strong evidence that the RAS is 

predictive of acceptance, sensitive to changes in robot attitudes, and can be used by robotocists in a 

variety of HRI contexts.    
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A strength of the experimental study reported in this thesis (the prior attitudes & drawings study) is the 

inclusion of manipulation checks. While manipulation checks can be done at any stage, pre-trial pilot 

checks were conducted for the prior attitudes & drawings study to ensure that the four different faces 

displayed on the robot’s monitor did not vary on perceived emotional expression. These checks increase 

the chance that participants were actually rating the robot’s faces on the variables of interest - 

humanlikeness/machinelikeness and gender – and not the pleasantness or unpleasantness of their facial 

expression.  

The inclusion of pilot tests for all three thesis studies also contributes to the robustness of the results. 

The pilot tests helped identify and resolve technical and method problems prior to the start of the main 

study. For example, pilot testing of measures for the improved attitudes study revealed that the intended 

computer experience item was overly subjective. Pilot results showed people tended to rate their 

computer experience as ‘average’ on a generic Likert scale, regardless of their level of skill. 

Consequently, a computer experience Likert scale with more objective semantic anchors was devised 

and used in these thesis studies.  

The use of data triangulation is a further strength of the thesis studies. As different measures have 

different merits and limitations, the use of multiple measures helps address limitation ‘gaps’. The three 

thesis HRI studies not only used multiple measures, but also a range of measure types. These included 

physiological (heart rate and blood pressure), drawings, behavioural (use or not of the robot), and self-

report.  

The studies in this thesis have both measured and reported comprehensive participant 

sociodemographics. This is important for two reasons. Many of these sociodemographic variables such 

as age and technology/computer experience are associated with computer acceptance. Secondly, the 
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reporting of comprehensive participant sociodemographics enables other HRI researchers to better 

assess the generalisability of our findings.  

Also helping ensure validity of the results, the potential confound of socially desirable responding was 

minimised during the studies. While completing measures older participants frequently indicated they 

were inclined to respond politely, rather than honestly, in evaluating the robot and its functions. 

Consequently it was part of the measure administration protocol for the researcher to assure participants 

that their honest opinion was the most helpful one, as we needed this information to best improve the 

robot.  

The validation of ‘overall rating of the [HR]interaction’ against ‘intention to use [the robot again]’, is a 

strength of this study. At this early stage of eldercare robot development, it is common to test robots that 

are either not fully developed and/or are only present in an eldercare facility for a brief time. In these 

eldercare HRI scenarios, the acceptance outcome of ‘intention to use the robot again’ may not be 

appropriate. Items, such as intention to use, from the TAM and UTAUT may need to be adapted to fit 

specific contexts (Venkatesh et al., 2003). As described in the segues for the improved attitudes study 

and the prior attitudes & drawings study, the combined findings of these studies show that correlations 

between the two outcome variables of ‘overall rating’ and ‘intention to use’ reached multicollinearity 

levels. This result suggests the two items represent the same construct, and supports the use of the 

‘overall rating of the HRI’ item as a measure of robot acceptance in settings where the ‘intention to use’ 

outcome variable is not appropriate.    

It is important that two particular limitations of subjective measures of robot acceptance, such as overall 

rating and intention to use, are borne in mind. One of these is that, even if overall rating of the robot 

interaction is comparable to intentions to use the robot; intentions can be poor predictors of actual 
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behaviours (Davis, 1989; Sheeran, 2002; Sutton, 1998). The second caveat is that subjective ratings of 

robot preferences provide little evidence for the effectiveness of a robot. This was demonstrated in Goetz 

et al.’s (2003) exercise robot study. People preferred the fun robot but did more exercise with the serious 

robot. With the possible exception of companion robots, people liking a robot does not necessarily mean 

a robot will be effective at what it is designed to do.  

9.6. Implications for robot acceptance models 

Technology acceptance models have much to offer for understanding the acceptance of eldercare 

robots. However, as Heerink et al. (2010) observes, the TAM and UTAUT were designed with and for 

younger workers in an organisational context with non-embodied technologies such as computer 

systems. There may be differences between that context, and the eldercare HRI context which the 

UTAUT does not address.  

The studies presented in this thesis add to our knowledge of the variables that predict acceptance of 

eldercare robots. The results have implications for models of robot acceptance. A proposed model of 

eldercare robot acceptance is pictured in Figure 22. This model is speculative only and needs to be 

evaluated. The model is described next, in tandem with the thesis study results that have informed 

aspects of the model. 

Model features 

The proposed model is an iterative one. The model shows how a person’s first use of a robot is 

completely informed by physical and psychological variables other than actual robot experience, but that 

all subsequent interactions will be at least partially informed by the experience of the HRI. Results from 

all three thesis studies showed that pre-interaction attitudes and emotions towards robots, and 
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perceptions of robot mind, predicted robot acceptance. Results from the improved attitudes study 

showed that, similar to the Expectation-Confirmation Model of IT acceptance, changes in participants’ 

robot attitudes as a result of the interaction predicted their acceptance of the robot. It is also proposed 

that actual use of the robot is the primary outcome acceptance measure, not intentions to use.  

It is proposed that the ‘attitudes’ variable be included in a model of robot acceptance. Despite being 

removed from the UTAUT, attitudes towards robots appear important in understanding robot acceptance. 

Attitudes towards robots have been shown to predict intentions to use in the improved attitudes study 

and prior attitudes & drawings study, and actual use of a robot in the robot mind study. However, when 

selecting measures of robot attitudes, care should be taken as to their reliability, and construct and 

cross-cultural validity.   

Perceptions of robot mind also appear important to robot acceptance. Perceived robot mind predicted 

actual use of a robot in the robot mind study. A two dimensional model of perceived mind may explain 

some distinctive characteristics of the eldercare robot context. These characteristics may be less 

relevant in the organisational contexts that the TAM and UTAUT were developed for: where younger 

people tend to be interacting with more familiar and less embodied technologies. 
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Figure 22. Suggestion for a model of eldercare robot acceptance 

 

Perceived usefulness is important for robot acceptance. However for people to perceive something as 

useful they must first perceive they have unmet needs. Hence, perceptions of unmet needs is shown as 

an influence on people’s robot attitudes. In all three thesis studies perceived usefulness was included in 
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the RAS, which was shown to predict robot acceptance. In the prior attitudes & drawings study the RAS 

items were also inspected separately. Participants’ baseline perceptions of the robot as useful and 

helpful were correlated with robot acceptance. It appears that measurement of people’s attitudes 

towards robot usefulness may either be embedded in a more general measure of robot attitudes, like the 

RAS, and/or measured separately. 

9.7. Thesis limitations 

The thesis results should be considered in light of possible limitations of the thesis studies.   

The HRI studies reported in this thesis were not controlled, in the sense that none of the robots were 

compared with alternatives. Appropriate alternatives for an eldercare robot might include humans or the 

equivalent functionalities installed on a computer or a tablet. Therefore it was not possible to assess if 

robotic delivery of eldercare was perceived as superior or inferior to alternatives. However randomised 

controlled trials of these robots would have been difficult at the stage of robot development. The robots 

required further technological development. The trials described in this thesis helped inform that 

development.  

The sample sizes used in these thesis studies, while reasonable for the HRI field, may have impaired the 

detection of significant results. In the prior attitudes & drawings study, the study was sufficiently powered 

to detect of medium effect sizes in people’s differential responses to the robot’s different face display 

screens. However, the study was underpowered to detect differences of small effect sizes. A further 

possible limitation of this study is the number of conditions combined with the relatively short interaction 

time. The method involved participants interacting with six different robot face conditions for five minutes 

each. It may have been too many conditions with too brief an interaction time, for differences in 
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participants’ responses to the different faces to be detected. Participants may also have been fatigued 

by the number of conditions 

There were omissions of some items and measures from the thesis studies; the inclusion of which may 

have added to understanding of robot acceptance. One omission was the variable ‘intention to use the 

robot’ was not inserted in the baseline measures for the robot mind study. Inclusion of this variable would 

have meant the strength of the association between intentions to use and actual use of the robot could 

have been assessed. We chose not to re-administer the RAS during the prior attitudes & drawings study 

after each of the six interactions, or at the conclusion of the study. This was to minimise participant 

burden, and, due to the number of interactions, the results would be difficult to interpret. However this 

omission may have limited understanding of associations between changes in robot attitudes and robot 

acceptance in this study. 

A possible limitation is that participants in the improved attitudes study and prior attitudes & drawings 

study may have had more positive views of robots than the general population. Due to the robot mind 

study’s recruitment method of inviting all residents to participate, regardless of whether they were willing 

to interact with a robot or not, a self-selection bias would likely have been minimal in that study. 

9.8. Future research for enhanced understanding of acceptable eldercare 

robots 

The findings of this thesis suggest future research areas in order to further understanding of the 

components of an acceptable eldercare robot.  

In addition to development and validation of an eldercare robot acceptance model, future research could 

further develop and validate evaluation methods and measures for the eldercare robot context. More 
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research could be conducted on possible associations between perceptions of robot mind, robot 

attitudes, and acceptance. The use of larger sample sizes, while difficult to obtain in eldercare HRI, will 

allow the use of statistical techniques such as regression and structural equation modelling. In turn this 

will allow the relative contribution of variables predictive of robot acceptance to be assessed, and clarify 

the relationships between variables. The RAS could be further validated by comparison with other 

measures of robot attitudes.  

Further understanding of what an adaptive perception of robot mind is for different robots may help 

optimise robot acceptance. In the robot mind study, a low agency:low experience mind profile appeared 

most acceptable to participants. However different perceived mind profiles might be more acceptable for 

different types of robots. It is possible a low agency:high experience mind profile may be more 

acceptable for companion robots. More research into perception of robot mind includes further 

understanding of what features of a robot portray particular mind dimensions, and how they are 

associated with acceptance. Robotocists have already begun designing robots that appear to display 

theory of mind (Scassellati, 2002). Future work may focus on ensuring eldercare robots portray a mind 

that is acceptable to eldercare stakeholders. 

While the three thesis studies provide some validation of the RAS, further validation is required. The 

studies provide evidence of predictive validity (people with more positive RAS scores were more likely to 

be more accepting of the robot), and concurrent validity (the RAS could distinguish between people who 

would use the robot and those who would not). Additionally, factor analyses results and high Cronbach’s 

alpha scores for the RAS (when the ‘humanlike/machinelike’ item is removed) also indicate the RAS has 

high internal consistency. However further validity testing could include test-retest reliability. The RAS 
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could also be used in conjunction with Nomura et al.’s (2006) Negative Attitudes towards Robots Scale 

(NARS) to assess convergent or divergent validity.  

The word ‘robot’ appears to predispose people to perceive robots as having minds that are high in 

agency and low in experience. This robot mind profile was associated with lack of use of the robot in the 

robot mind study. It is possible that eldercare robot acceptance may be enhanced by referring to robots 

as something other than robots. Future research could assess the impact of the word robot on 

acceptance, and determine alternative acceptable robot descriptions that are not associated with high 

agency:low experience mind profiles.  

More research on the use of drawings to assess attitudes towards robots may help develop more implicit 

measures of robot attitudes. In particular, future research could assess if drawing size and content 

change from before to after an HRI, and if those changes are associated with robot acceptance. If 

people’s drawings of robots do prove sensitive to peoples changes in robot attitudes, then drawings may 

be suitable to administer before and after interventions designed to promote adaptive robot attitudes and 

perceptions of robot mind. Results may indicate the effectiveness of the interventions. To date, in robot 

drawing studies, each person has only been asked to draw one robot picture of a specific HRI context.  

There is some limited evidence that perceived humanlikeness in robots appears to be a positive attribute 

in some contexts and not in others. Therefore another robot drawing research question is – do the same 

people draw different robot drawings for different HRI tasks? A subsequent question is – how are 

humanlike characteristics in those robot drawings associated with outcomes, such as robot evaluations, 

robot use, and physiological reactivity? Combining drawings of robots with the Dimensions of Mind 

Perception Scale (Gray, Gray, & Wegner, 2007) may also help future researchers further understand 

how perceptions of robot ‘humanlikeness’ are associated with robot acceptance. 
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More research is recommended into the unmet needs of eldercare stakeholders; and the specific 

reasons why they are unmet. Subsequent research could develop robotic solutions (if a robotic solution 

appears the optimal solution) to meet these unmet eldercare needs. 

9.9. Conclusion  

This thesis makes a number of contributions to furthering understanding of the psychological variables 

that predict acceptance of eldercare robots. These contributions may assist in the development of 

acceptable eldercare robots. 

Expanding on earlier research, people’s initial, or baseline, attitudes towards robots have been shown to 

be important for their acceptance of robots. Furthermore, the RAS assesses attitudes towards robots 

rather than just attitudes towards use of robots, as in TAM- or UTAUT-derived attitudes measures. The 

RAS also does not contain assumptions of humanlike characteristics in robots, as does the NARS.  

This association between people’s robot attitudes and robot acceptance has been replicated in these 

thesis studies across a variety of eldercare robot study methods: different eldercare populations, 

different robots, different robot functions, and different study environments. A notable example of the 

latter is the inclusion of real-world eldercare environments. An important feature of these thesis studies is 

the assessment of baseline robot attitudes. While the method allows assessment of influential baseline 

robot attitudes, when combined with post-HRI measures, it also allows detection of any changes in 

peoples robot attitudes, which also appear important for robot acceptance.  

This thesis provides HRI researchers with some measures of robot attitudes that have been validated 

against robot acceptance outcomes, including actual use of a robot. The measures include robot 

drawings as a measure of more implicit robot attitudes in the prior attitudes & drawings study. The RAS 
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questionnaire has been used in all three thesis studies. In all three studies the RAS has had good 

Cronbach’s alpha scores, indicating good internal validity of the measure. Replication of the RAS 

findings across a variety of study methods, suggests both good generalisability of the thesis results, and 

that the RAS is a useful measure for researchers across a variety of HRI study contexts.  

Older people’s perceptions of robot minds appear important to actual use of the robot. In particular, 

perceptions of a robot’s mind as being high in agency (capacity for doing) and low in experience 

(capacity for feeling) predicted non-use of the robot. Consequently, along with robot attitudes, 

perceptions of robot mind may be an important addition to models of robot acceptance. The variable of 

perceived usefulness, from generic technology models, also appears relevant for robot acceptance. 

Understanding the underlying reasons for eldercare stakeholders unmet needs, may assist in designing 

robotic solutions that are perceived as more useful, and therefore more acceptable.   

The results of this thesis support the foundation premise of the TAM and UTAUT, that people’s 

perceptions of technology characteristics are at least as important as more objective technology 

parameters. However there appear to be important differences between the organisational, computer 

system context these technology acceptance models were derived from, and the eldercare robot context. 

These differences may impair the ability of traditional technology acceptance models to effectively 

explain the acceptance, and non-acceptance, of eldercare robots. It appears that the addition of 

perceptions of robot mind and attitudes towards robots to acceptance models may improve 

understanding of eldercare robot acceptance. That these psychological variables appear to be both 

predictive of robot acceptance and readily modifiable bodes well for their potential in optimising people’s 

acceptance of eldercare robots.   
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