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Preface

This thesis is concerned with an application of the tractor calculus to the

constructions of conformal invariants of hypersurfaces. As a motivation, the

problem of finding a suitable analogue of the Willmore invariant in higher di-

mensions is used. The necessary tools of elementary differential geometry such

as the Gauss–Codazzi equations for conformal hypersurfaces are prepared and

subsequently reformulated in terms of tractors for the convenience of calcula-

tions. A development of the tractor calculus on hypersurfaces is undertaken

to give the tools for proliferating hypersurface conformal invariants. The stan-

dard constructions of conformal invariants are modified accordingly, and some

examples are obtained and analyzed. Finally, we demonstrate how this knowl-

edge can be combined with some other methods in conformal geometry to

discover a conformally invariant action on 4-dimensional hypersurfaces and

analyze its Euler–Lagrange equation.

The conformal structure is an example of a parabolic geometry. Naturally

associated to parabolic geometries are the so-called tractor bundles, which

provide calculi similar to the tensor calculus in Riemannian geometry. The

tractor calculi make dealing with the geometric problems in parabolic geome-

tries computationally efficient. Further details can be found in [17] . The main

hope of this thesis is that the application of the conformal tractor calculus can

lead to a success in the search of the conformal invariants of hypersurfaces.

One of the sources of motivation for this research was the problem of general-

izing the Willmore invariant to higher dimensions. By the Willmore invariant

we mean the left hand side of the Euler–Lagrange equation of the Willmore

functional. This functional is known to be conformally invariant.

The present thesis has the following structure.

An overview of Riemannian geometry is given in Chapter 1, where we es-

tablish the notation and collect the basic facts, which are used throughout

the thesis. The exposition in this chapter is rather elementary and can be

harmlessly skipped by a well-versed reader. A somewhat original (cf. also [45,

Chapter IV] and [63, p.42]) version of the abstract Gauss–Codazzi–Ricci de-
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Preface

composition of the curvature in the direct sum of vector bundles is presented

in this chapter. It was inspired by a proof of Bonnet’s theorem in [15]. This

decomposition turns out to be a unifying framework for the treatment of the

usual Gauss and Codazzi equations for hypersurfaces, as well as for the deriva-

tion of the tractor versions of these fundamental equations that we perform in

Chapter 3. In the end of Chapter 1 we give a fairly complete proof of the known

formulas for the variations of geometric quantities on the Riemannian hyper-

surfaces. These formulas are used in Chapter 5 to find the Euler–Lagrange

equation of the Willmore functional.

In Chapter 2 we give a brief introduction, and fix the notation, for the con-

formal geometry of hypersurfaces. Implementing our methodology to work

with vector bundle-valued quantities, we give an exposition of the conformal

rescaling rules in conformally weighted vector bundles in Section 2.1.4, which

is one of the pivotal observations in this thesis. A derivation of the conformal

versions of the equations of Gauss and Codazzi for hypersurfaces, based on the

Weyl–Schouten decomposition of the Riemannian curvature (discussed in de-

tain in Chapter 1), is presented. The conformal Gauss and Codazzi equations

are essential tools for manufacturing invariants of hypersurfaces and other

calculations in submanifold geometry. While these equations are classically

known in many appearances (cf. [78], [77], [56], [55], [42]), we have been able

to link them to their tractor analogues in Chapter 3. We were also influenced

by [16] and [39].

The core of the thesis is Chapter 3 where we give introduction to the con-

formal tractor calculus. Some parts of our treatment in this chapter are rather

terse and require additional sources to get the full appreciation, especially

in the first sections. On the other hand, we supply some very explicit com-

putations, which are usually omitted in the existing literature. The tractor

calculus for hypersurfaces is presented in greater detail, and the theory of the

Gauss–Codazzi–Ricci decomposition in vector bundles is applied to obtain the

tractor Gauss and Codazzi equations. After that we show how the conformal

Gauss and Codazzi equations follow from the tractor versions. We finish this

chapter with introducing modified versions of the intrinsic tractor-D operators,

the so-called twisted intrinsic tractor operators, and discuss their properties.

These operators are the essential ingredient in the constructions of conformal

invariants of hypersurfaces, which are the main subject of study in this thesis.

In the beginning of Chapter 4 we give a simplified version of the constructions

of conformal invariants, which are introduced and studied comprehensively in

vi



[27] (see also [26] for a brief overview). These constructions serve as a model

for our development of this theory for the case of hypersurfaces. Of course,

a definition of hypersurface invariant is needed. This notion is discussed in

the second section of this chapter. The definition of hypersurface invariants

presented in this chapter is a new contribution, to the best of our knowledge, as

it is not found in the literature. Based on this definition, we describe the basic

classes of hypersurface conformal invariants, which we can construct using the

tractor-D operators introduced in Chapter 3. Making examples of these types

of invariants, we begin harvesting our first results.

The culmination of the present thesis is Chapter 5. We start with a brief

historical overview of the Willmore functional. In our research we adopt the

definition of the Willmore functional as the integral of the square of the length

of the umbilicity tensor1. In the next sections we find its Euler–Lagrange

equation for the case when the surface is embedded into an arbitrary Rie-

mannian (or conformal) background. As a tool for that, we derive a useful

formula for the variation of the umbilicity tensor. The left hand side of the

Euler–Lagrange equation of the Willmore functional is a conformal invariant

of the hypersurface with respect to the rescaling of the ambient conformal

structure, which is known as the Willmore invariant (cf.[14]). This invariant

was also found by completely different methods in [1]. Our expression for the

Willmore invariant allows us to confirm a conjecture of A.R.Gover that this

invariant can be obtained using the tractor calculus on hypersurfaces. In or-

der to find an analogue of the Willmore functional in higher dimensions, we

combine the methods developed in the previous chapters with the theory of

the Branson–Gover operators2 that reveals a deep connection of the Willmore

functional with the celebrated Q-curvature. Using these ideas we construct a

conformally invariant action on a 4-dimensional hypersurface and analyze its

Euler–Lagrange equation. This discovery opens new perspectives for a subse-

quent research. It would be interesting to compare our results with the work

of J.Guven [36], who has constructed a conformally invariant bending energy

for hypersurfaces in R4 by a direct calculation. His expression differs from the

one that we have derived using the tractor calculus. The advantage of our

approach is that it works for hypersurfaces in arbitrary 4-dimensional confor-

mally flat manifolds, and also contains the germ of possible generalizations to

higher dimensions.

1A short name for the trace free part of the second fundamental form.
2 The author’s attention to this possibility was drawn by his supervisor Prof. A.R.Gover.
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Preface

Appendix A contains the tables of complete and partial contractions of the

tractor projectors that are useful in the calculations.

In Appendix B we describe briefly a computer algebra system (CAS) called

Cadabra, which we find to be a handy tool for taming hairy computations and

making explorations of tractor expressions.

In Appendix C we have collected all the facts related to the symmetric 2-

tractors, which are used in the expressions of some examples that we construct.
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Chapter 1

Riemannian geometry of

hypersurfaces

The main object of study in this thesis are conformal invariants of hypersur-

faces. The definition of hypersurface conformal invariants will be discussed

more thoroughly in Chapter 4, but at the moment we need to know that

they are metric hypersurface invariants with an additional property of suit-

ably transforming with respect to multiplication of the Riemannian metric by

a strictly positive smooth function.

In order to understand what metric invariants are, and also for the pur-

poses of our calculations, we need to review the basic facts and definitions

of Riemannian geometry, and introduce the notation that will be used later

throughout the text. Since the notation is the primary focus of this chapter,

the details, proofs and verifications for the standard facts are usually omit-

ted and only those that are not commonly treated in the literature, or that

we want to present in an unusual form, are given with proofs and more thor-

ough explanations. In particular, the existence of metrics, connections and

other standard objects of differential geometry is assumed to be known and

not discussed explicitly.

In the end of this chapter we give a detailed derivation of the well-known

identities (see e.g [79] or [38], and also [38]) for the normal variation of the

geometric quantities on hypersurfaces, which we use in Chapter 5 to compute

the normal variation of the umbilicity tensor (Proposition 5.1.2). Using this

identity we express the Euler–Lagrange equation of the Willmore functional

in a convenient form. This allows us to identify the Willmore invariant with

an invariant that can be obtained using the tractor calculus on hypersurfaces,

see the last section of Chapter 4.

The following sources are used as a general reference: [8], [19], [40].

1



Chapter 1 Riemannian geometry of hypersurfaces

1.1 Background and notation from Riemannian

geometry

The main technical framework adopted in this thesis are vector bundles over

manifolds. Vector bundles are thought as real vector spaces smoothly parametrized

by points of the base manifold. All vector bundles that we use have finite rank.

All manifolds and maps between them are assumed to be smooth, that is

C∞-differentiable.

The base field for all the vector spaces, vector bundles and manifolds used

in this thesis is the field of real numbers R.

1.1.1 Manifolds

A manifold is a topological space that locally looks like an open subset of

a Euclidean space Rn. Let us recall the precise definitions for the sake of

completeness. We follow [37] where the omitted details can be found.

Definition 1.1.1. A topological space M is called a topological manifold if M

is Hausdorff (any two points can be separated by open neighborhoods around

them) and second countable (there is a countable base of topology in M),

and for each point p ∈ M there is an open subset U ⊆ M containing point

p together with a map ~x : U → Rn such that ~x(U) is open in Rn equipped

with the standard Euclidean topology (open cubes (−ε, ε)n form a base of

topology) and the map ~x is a homeomorphism (continuous one-to-one with

the continuous inverse). Such a pair (U, ~x) is called a chart around point p,

and, if ~x(p) = 0 ∈ Rn, the chart (U, ~x) is called centered around point p. No

generality is lost if we consider only centered charts, and we do so whenever

convenient.

Observe that if there are two charts (U, ~x) and (V, ~y) containing a point

p ∈M , the maps ~y◦~x−1 : ~x(U∩V )→ ~y(U∩V ) and ~x◦~y−1 : ~y(U∩V )→ ~x(U∩V )

are homeomorphisms of open subsets in Rn. These maps are referred to as the

transition maps between the charts (U, ~x) and (V, ~y).

A collection of charts {(Uα, ~xα)} with the property
⋃
α Uα = M is called an

atlas on the manifold M . If for any two charts in an atlas the transition maps

are smooth, that is C∞-differentiable, the atlas is called smooth. All smooth

atlases form a partially ordered set with respect to inclusion, and a maximal

atlas is called a smooth structure on the manifold. A manifold M equipped

with a smooth structure is referred to as a smooth manifold.

2



1.1 Background and notation from Riemannian geometry

1.1.2 Vector bundles

Vector bundles arise naturally in differential geometry as tangent and cotan-

gent bundles of manifolds, and then various constructions with them can be

used to make a variety of examples. As announced in the beginning of this

chapter, we do not attempt to replace the standard sources, but for the sake

of completeness let us give the basic definitions following [52]. Further details

can be found also in [41], [46] and [49].

Definition 1.1.2. A (real) vector bundle is a set of data (V,M, π, F ) where V

is a manifold called the total space, M is another manifold called the base

space, π : V → M is a smooth map called the projection, and F is a vector

space called the typical fiber, such that the following conditions are satisfied:

1. the map π is surjective;

2. for each point p ∈M the set π−1(p) is given the structure of a real vector

space;

3. each vector space π−1(p) is isomorphic to the typical fiber F ;

4. for each point p ∈ M there is an open subset U ⊆ M and a diffeomor-

phism ϕ : π−1(U) → U × F called a bundle chart (also called “local

trivialization”).

Usually vector bundle referred to by naming its total space, for instance the

vector bundle from the definition would be denoted as V . In fact, we shall

switch to another convention later, as it will be explained in the subsection on

the abstract index notation.

Most of the object that we use or construct will be sections of some vector

bundles. Recall that we restrict ourselves to smooth categories.

Definition 1.1.3. Let V be a vector bundle from the previous definition A

section of a vector bundle E is a map ξ : M → V such that π ◦ ξ = idM . In

other words, a section maps each point p ∈ M to the fiber over p, that is to

the set π−1(p).

The space of all sections of a vector bundle will be denoted by the corre-

sponding calligraphic letter, that is

V := {s : M → V | π ◦ ξ = idM}

3



Chapter 1 Riemannian geometry of hypersurfaces

We use the symbol := as a shortcut for “equals by definition”.

We shall also deal with vector bundle maps (vector bundle morphisms).

Definition 1.1.4. A vector bundle map is a set of data consisting of two

vector bundles (V,M, π, F ) and (V ′,M ′, π′, F ′), and two maps F : V → V ′

and f : M →M ′, such that the following diagram commutes

V V ′

M M ′

F

π π′
f

A vector bundle morphism maps the fiber over each point to the fiber over

the image of that point under the map between the base manifolds.

One of the most important notion for us that would be fair to mention at

least briefly is the one of differential operators. Not going into the full details,

we shall understand a differential operator as a map between the spaces of

sections of two vector bundles such that locally, that is in a choice of bundle

charts, this map is represented by a function of partial derivatives of the section

that this operator acts on. This description is too broad to be useful, and in

fact we shall deal only with linear differential operators (l.d.o.), or, as the most

general case, polynomially defined on the partial derivatives of a section. One

of the first expositions on differential operators was given by R.Palais in [57],

and, remarkably, there only l.d.o. were considered. The differential operators

that we work with are natural in a certain precise sense. The details on this

subject can be found in [41] and references thereof.

1.1.3 The abstract index notation

In order to perform efficient computations in vector bundles we prefer to use

Roger Penrose’s abstract index notation [62] (see also [72]). This notation is

both quite economical and flexible enough to specify sections of vector bundles

with rather complicated structure. Using abstract indices the calculations can

be carried over without choosing a local or coordinate frame, yet giving a way

to compare the formulas stated in either notation.

The essence of the abstract index notation is that the indices are used as

labels to indicate both vector spaces and their elements by attaching indices

to the symbols. If a symbol is used to denote a vector space, we call it the core

symbol . The indices are elements of some set called the index range which is

usually taken to be a subrange of some familiar alphabet. For instance, if V

4



1.1 Background and notation from Riemannian geometry

is the core symbol for a vector space in the consideration, and we have chosen

α, β, γ, . . . to be the set of indices associated with the vector space V , then

writing V α, V β and so forth we refer to copies of the same vector space V . It

becomes meaningful and convenient when we write down (linear) maps between

vector spaces. The first example to look at is the identity map that can be

written as idα
β : V α → V β in the abstract index notation. Furthermore, the

elements of a copy V α of the vector V are labeled with the index referring to

that copy, e.g. we write vα ∈ V α and whenever we use vα later on, we know an

element of what vector space it is. Applying a map moves an element from one

copy of a vector space to another copy of a (possibly different) vector space.

In our example, the identity map idα
β takes vα ∈ V α to the same element

labeled differently, that is to vβ ∈ V β. An arbitrary linear map between two

vector spaces V and W can be denoted by Lα
β : V α → W β. This is already an

example which shows the power of the abstract index notation, because due to

the canonical isomorphism Hom(V,W ) ∼= V ⊗W the map L can be viewed as

an element of the tensor product of spaces Va and W a. Here we encounter the

convention to change (raise or lower) the position of an index in order to denote

the (algebraically) dual vector space. Thus, Va is the notation for Hom(V,R).

This convention automatically ensures that if the same index is used in an

element twice, in the upper and in the lower position, then the natural pairing

between the vector space and its dual is assumed. In the cases when we fix

an isomorphism between the vector space and its dual, the position of the

indices becomes irrelevant, and the contraction rule applies for the indices

repeated in any position. Such an isomorphism induces an inner product in

the vector space, and we usually denote it with the letter g as inspired by

Riemannian geometry. If an inner product in the vector space V α is chosen,

the identity map idα
β coincides with the element gα

β ∈ Va
β. Following the

tradition, however, the identity map is usually denoted by δα
β by analogy with

the Kronecker symbol in the concrete index notation. Introducing a basis {eαi}
(where i = 1, . . . , n = dimV are now the concrete indices) in the space V α, we

can find for any element vα ∈ V α its components vi, that is the coefficients in

the expansion of vα = vieαi with respect to the basis {eαi}. When the concrete

indices are repeated, the Einstein summation convention is always used (unless

explicitly disabled). For instance, vieαi =
∑n

i=1 v
ieαi.

A vector bundle can be thought as a collection of vector spaces attached

smoothly to each point of a manifold, all the vector spaces being isomorphic

to a vector space called the typical fiber. Thus a vector bundle can be denoted

5



Chapter 1 Riemannian geometry of hypersurfaces

in the same manner as it is done for vector spaces, that is with a Latin capital

as the core symbol, accompanied with a choice of the index range.

It is usually safe to abuse the language and notation by denoting vector

bundles and spaces of their sections by the same symbol, and we shall do so

without further mention. That is, for example, we shall use the symbol V both

for the bundle V and the space of its section, if there is no danger of ambiguity,

or, sometimes, the ambiguity is intentional, when either interpretation can

be rendered correct. (Typically, this will be the case when we speak about

covariant derivatives in the direction X).

When we need to talk about arbitrary vector bundles we shall usually use

the letters F ,G,V ,W , . . . for the core symbols. The Greek capitals Φ,Ψ,Ξ, . . .

will be used by default for the corresponding index range, e.g. XΦ ∈ FΦ will

mean a section X of a vector bundle F . Notice that we may suppress the

indices when the context permits.

The tangent TM and cotangent T∗M bundles of a manifold M are denoted

by the symbols Ea and Ea respectively. The initial segment of the Latin minus-

cules {a, b, c, . . . } is reserved for the indices of tensor bundles that are referred

to as the tensor indices . Tensor bundles are various finite tensor products of

the tangent and the cotangent bundle of the manifold, and in the notation

we use for them the symbol E adorned with tensor indices in upper and lower

positions, so that, for instance, Hom(TM,TM) ∼= T∗M ⊗ TM is denoted by

Eab. A juxtaposition of several indices is understood as the tensor product of

the corresponding spaces, e.g. Eabcd = Ea ⊗ Eb ⊗ Ec ⊗ Ed.
The symbol E alone (without indices) will be used as a synonym for the

space C∞(M) of smooth functions on M .

As it has been said already, we abuse the notation by denoting the spaces

of sections of vector bundles by the same symbols as the vector bundles them-

selves. For example, ωa ∈ Ea means ω ∈ Γ(T∗M) in the index-free notation.

For a tensor tab its symmetric part t(ab) is defined as

t(ab) :=
1

2
(tab + tba)

and its skew, or antisymmetric, part t[ab] as

t[ab] :=
1

2
(tab − tba)

This notation is extended to various tensor parts of tensor bundles and, more

generally, vector bundles, e.g. constructions such as F [ΦΨ] or E[ab] ⊗F [ΦΨ] will

6



1.1 Background and notation from Riemannian geometry

be used frequently.

In some cases we need to work in local coordinates, and the indices will

be concrete. The use of concrete indices will be always declared explicitly,

and once the fact has been established using such indices we shall tend to

reformulate the results back into abstract indices for the subsequent use. A

typical example of this rule is our treatment of the variational formulas for

Riemannian hypersurfaces in the last section of this chapter.

1.1.4 Vector-bundle metrics

The dual bundle FΦ of a vector bundle FΦ is the bundle of linear mappings

Hom(F ,R). This notation agrees with our use of Ea for the cotangent bundle.

The dual bundle FΦ is isomorphic (in the category of vector bundles) to

the bundle FΦ but this isomorphism requires a choice. This choice can be

represented by a smoothly assigned inner product in each fiber of the bundle

FΦ. Equivalently, this can be stated as fixing a section hΦΨ of the symmetric

tensor product F(ΦΨ) that induces an inner product in each fiber of FΦ. Such

a section hΦΨ is called a fiber metric in the vector bundle FΨ, or simply a

(vector-bundle) metric.

1.1.5 Connections

A connection ∇F in a vector bundle F over manifold M is a linear map

∇F : Γ(F)→ T∗M ⊗ Γ(F)

or, using the abstract index notation and our conventions,

∇Fa : FΦ → Ea ⊗FΦ

such that for any smooth function s ∈ E and any section f ∈ Γ(F) a Leibniz-

type identity holds:

∇F(sf) = ds⊗ f + s∇Ff

or, in the abstract index notation,

∇Fa (s⊗ fΦ) = (ds)a ⊗ fΦ + s⊗∇Fa fΦ (1.1)

7



Chapter 1 Riemannian geometry of hypersurfaces

If X is a vector field on the manifold M , that is Xa ∈ Ea, the value

∇FXf := Xa∇Fa f

is referred to as the covariant derivative of the section f ∈ F with respect to

the connection ∇Fa in the direction of the vector field X. Due to the linearity

of the connection in the slot a it is safe to speak of the covariant derivative at

a point p in the direction of a tangent vector Xp ∈ TpM , so we usually refer

to X as to the tangent vector in this context.

The definition of connection suggests that on functions s ∈ C∞(M) any

connection ∇F should be defined to act as

∇Fa s := (ds)a

where ds is the differential of the function s on M .

With this extension the Leibniz rule (1.1) can be written formally as the

usual product rule

∇Fa (s⊗ f) = ∇Fa s⊗ f + s⊗∇Fa f

where s⊗ f := s f by convention.

In particular, ∇as will be used as an abstract index style of the notation for

the differential ds of a function s ∈ E .

When a vector bundle and a connection in it are understood, it is customary

to write ∇af for the covariant derivative of f ∈ F without indicating the

bundle in the subscript. Moreover, we may occasionally suppress the tensor

index in the notation for the connection, the symbol ∇f being understood as

a F -valued 1-form on M .

If a vector bundle is equipped with more than one connection we sometimes

use the symbol ∇ with various decorations (accents, underlines, overlines etc)

which has to be used with due care because such a notation can easily become

ambiguous.

Let (V ,∇V) and (W ,∇W) be two vector bundles with connections.

The tensor product V ⊗ W of the bundles V and W as a rule is equipped

with the tensor product connection, that we usually refer to as the coupled

connection on V ⊗W . The bundle V ⊗W is generated by finite linear com-

binations of tensor products v ⊗ w where v ∈ V and w ∈ W are the sections

of the respective factors. The action of the coupled connection
⊗

∇ ≡ ∇V⊗W on

8



1.1 Background and notation from Riemannian geometry

simple sections v ⊗ w is defined by insisting that the product rule holds:

⊗

∇(v ⊗ w) = (∇Vv)⊗ w + v ⊗∇Ww (1.2)

With the convention ∇s ≡ ds mentioned above this product rule lies in

the very definition of every connection, and predominantly we use the coupled

connections on tensor products of vector bundles. In view of this fact the

notation∇F and
⊗

∇ becomes superfluous, and it is customary to use the symbol

∇ without decorations for all the connections involved. For instance, the above

product rule can be written as

∇(v ⊗ w) = (∇v)⊗ w + v ⊗∇w

where each ∇ “knows” the bundle it is able to act on, so the meaning of each

term is unambiguous.

Remark 1.1.5. The qualification “coupled” is usually applied for connections

that arise in tensor products of vector bundles of different nature, say, for

instance, if vector bundles have different rank.

For tensor products of the same bundle V and its dual we usually refer to

the whole family of coupled connections in these bundles constructed from a

given connection ∇V in the bundle V as to the connection ∇V , or just ∇, if

only one connection in V is assumed.

Similarly, the direct sum V ⊕W of the bundles V and W is equipped with

the direct sum connection
⊕

∇ that is defined on sections v + w of the V ⊕W
by the sum rule

⊕

∇(v + w) = ∇Vv +∇Ww (1.3)

Again, the connection can be selected by the section it acts on, so the above

rule is safely presented as

∇(v + w) = ∇v +∇w

if the connections in bundles V and W are fixed.

If a connection ∇F in a vector bundle FΦ is given, it is used to define

connections in the dual bundle FΦ = (F∗)Φ and in all the tensor bundles of a

finite number of copies of F and F∗.
A connection in the tangent bundle (and the whole family of connections

induced by that in the tensor bundles) is termed a linear connection.
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Chapter 1 Riemannian geometry of hypersurfaces

1.1.6 The torsion

Recall that for two vector fields X, Y ∈ TM their Lie bracket [X, Y ] is defined

by its action on smooth functions ϕ ∈ C∞(M) as

[X, Y ]ϕ = X(Y ϕ)− Y (X ϕ)

This condition uniquely defines a vector field called the Lie bracket [X, Y ]

of vector fields X and Y on M . Notice that only a smooth structure is needed

for this definition to make sense.

If ∇ is a connection on TM , the following operator

T∇(X, Y ) := ∇XY −∇YX − [X, Y ]

is C∞(M)-bilinear, and thus gives rise to a tensor T∇ which is called the

torsion of the connection ∇.

Definition 1.1.6. A linear connection ∇ is called torsion free if T∇ = 0.

Proposition 1.1.7. For torsion free connections we have

∇a∇bϕ = ∇b∇aϕ (1.4)

where ϕ ∈ C∞(M).

Proof. Let ϕ ∈ C∞(M), and X, Y ∈ Γ(TM).

Recall thatXϕ = Xa∇aϕ, Y ϕ = Y b∇bf , and similarly (∇XY )ϕ = (Xa∇aY
b)∇bϕ

and (∇YX)ϕ = (Y a∇aX
b)∇bϕ.

Furthermore,

[X, Y ]ϕ = X Y ϕ− Y Xϕ

but

X Y ϕ = Xa∇a(Y
b∇bϕ) = Xa(∇aY

b)∇bϕ+XaY b∇a∇bϕ

and

Y Xϕ = Y b∇b(X
a∇aϕ) = Y b(∇bX

a)∇aϕ+ Y bXa∇b∇aϕ

10



1.1 Background and notation from Riemannian geometry

so we can compute

T (X, Y )ϕ = (∇XY )ϕ− (∇YX)ϕ− [X, Y ]ϕ

= Xa(∇aY
b)∇bϕ− Y b(∇bX

a)∇aϕ

−Xa(∇aY
b)∇bϕ−XaY b∇a∇bϕ

+ Y b(∇bX
a)∇aϕ+ Y bXa∇b∇aϕ

= Y bXa∇b∇aϕ−XaY b∇a∇bϕ

Since X and Y are arbitrary, the result follows.

From the calculation in the proof of the above proposition we get an expres-

sion for the torsion tensor in abstract indices:

(T∇)ab
c∇cϕ = ∇b∇aϕ−∇a∇bϕ (1.5)

Using the Poncaré lemma [50, p.23] one can show that the condition (1.4)

is also sufficient for the connection to be torsion-free.

1.1.7 Metric vector bundles

A metric vector bundle or Riemannian vector bundle (see e.g. [42]) is a vector

bundle FΦ equipped with a fiber metric hΦΨ and a connection ∇F which is

compatible with the metric in the sense that

∇FΦΨhΦΨ = 0

or, equivalently, dropping the subscripts for the ∇-s,

∇Xh(v, w) = h(∇Xv, w) + h(v,∇Xw)

where h(v, w) := vΦwΨhΦΨ.

Each vector bundle with a metric can be equipped with a compatible con-

nection, though such a connection need not to be unique.

Definition 1.1.8. A positive-definite fiber metric g in the tangent bundle TM

of a manifold M is referred to as a Riemannian metric on M , and the pair

(M, g) is called a Riemannian manifold .

11
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1.1.8 The Levi-Civita connection

A torsion-free connection that is compatible with the Riemannian metric in

(M, g) is defined uniquely [72, p.35]. Such a unique connection is called the

Riemannian connection, or the Levi-Civita connection of the metric g. Some-

times we express the fact that ∇ is the Levi-Civita connection of a metric g

by the symbolic expression ∇ = ∇g.

Proposition 1.1.9 (Koszul’s formula). The Levi-Civita connection ∇ = ∇g

on the Riemannian manifold (M, g) is uniquely defined by the identity

2 g(∇XY, Z) = X g(Y, Z) + Y g(Z,X)− Z g(X, Y )

− g(Y, [X,Z])− g([Y, Z], X) + g(Z, [X, Y ])

Proof. See e.g. [67].

1.1.9 Vector-bundle valued forms

From now on we assume, following [12], that sequentially labeled indices as

in Ea1...ak or Ea2...ak are skewed over, that is, for instance, Ea1...ak = E[a1...ak] as

vector bundles.

Sections of the bundles Ea1a2...ak⊗F where F is a vector bundle over manifold

M , are called F -valued k-forms. We shall use the notation Fk = Ea1a2...ak ⊗F
for the bundles of F -valued k-forms. It is convenient to set by definition that

F0 = F .

In particular, the usual k-forms are section of the bundles Ek := Ea1...ak , and

0-forms are just smooth functions E0 = E .

The wedge product of a k-form αa1...ak ∈ Ea1...ak and a l-form βb1...bl ∈ Eb1...bk
is a k + l-form α ∧ β given by

(α ∧ β)c1...ck+l :=
(k + l)!

k!l!
αc1...ckβck+1...ck+l (1.6)

where a juxtaposition of tensors is understood as the tensor product, and in

the right hand side the term is skewed over the indices c1, c2, . . . ck+l according

to our convention.

In general, the wedge product of vector-bundle valued forms α ∈ Fk and

β ∈ Gl is a section of (F ⊗ G)k+l given by the same formula as in (1.6).

When F = G and a there is a map F ⊗F → F with certain properties (for

instance, when F = G = Hom(H,H) and the map is the composition of vector
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1.1 Background and notation from Riemannian geometry

bundle morphisms) the wedge product is composed with this map, yielding

again a section of the bundle F . We shall frequently do this implicitly if the

context permits.

For a k-form ω ∈ Fk where F is a vector bundle with a connection ∇ the

covariant exterior derivative is defined in the index-free notation as

d∇ω(X0, ..., Xk) =
∑

0≤i≤k

(−1)i∇Xi

(
ω(X0, . . . , X̂i, . . . , Xk)

)
+

∑
0≤i<j≤k

(−1)i+jω([Xi, Xj], X0, . . . , X̂i, . . . , X̂j, . . . , Xk)

(1.7)

This formula specified to the case f ∈ F0 becomes

d∇f(X) = ∇Xf

In the abstract index notation we can write this equation as

(d∇f)a
Φ = ∇af

Φ

Using the above definition it is straightforward to verify the following fun-

damental property of the exterior covariant derivative.

Proposition 1.1.10. The exterior covariant derivative d∇
F

is the unique

derivation in the algebra Ω∗(T ∗M) ⊗ F of differential forms with coefficients

in F such that for 0-forms we have d∇
F
f = ∇f , and the graded Leibniz rule

holds, viz

d∇
F

(α ∧ β) = d∇
F
α ∧ β + (−1)deg(α)α ∧ d∇

F
β (1.8)

Proof. See e.g. [50, pp.170-171].

If a torsion-free connection is chosen on the base manifolds, the exterior

covariant derivative can be expressed using abstract indices in the following

form

d∇ωa0a1...ak := (n+ 1)∇a0ωa1...ak (1.9)

It is easy to see (cf. e.g. [72, p. 429]) that the result of the above expression

is independent of the choice of a torsion free connection in the right hand side.

If a Riemannian metric on manifold M is given, we have another operation

that we will use later, the (covariant exterior) codifferential of a F -valued

13
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k-form ω which is given by

δ∇ωa2...ak := −∇a1

ωa1a2...ak (1.10)

1.1.10 The curvature operator

Recall, that the formula (1.7) specified to a section ω ∈ F1 becomes

d∇ω(X, Y ) = ∇Xω(Y )−∇Y ω(X)− ω([X, Y ])

If now ϕ ∈ F = F0 we can apply the previous identity to a F -valued 1-form

d∇ϕ = ∇ϕ to get

d∇∇ϕ(X, Y ) = ∇Xd∇ϕ(Y )−∇Y d∇ϕ(X)− d∇ϕ([X, Y ])

= ∇X∇Y ϕ−∇Y∇Xϕ−∇[X,Y ]ϕ

It is easily verified that the operator d∇ ◦∇ is C∞-linear and therefore gives

rise to a section of E2 ⊗ EndF that is uniquely defined by the connection ∇
in the vector bundle F .

Definition 1.1.11 (Curvature operator). The operator K∇ : F → F2 defined

as

K∇ := d∇ ◦ ∇ (1.11)

is called the curvature operator , or simply the curvature, of the connection ∇
in the vector bundle F .

When using the abstract index notation it is customary to write the second

covariant derivative of a section as ∇a∇bX
Φ, and one must be careful here

because this really means (∇∇X)ab
Φ that is defined as

(∇∇f)XY
Φ ≡ ∇2

XY f
Φ := ∇X

(
∇Y f

Φ
)
−∇DXY f

Φ

where X, Y are some tangent vector fields on the manifold M , and D is some

linear connection on M . The skew part of the second covariant is then given

by

∇2
XY f

Φ −∇2
Y Xf

Φ = ∇X

(
∇Y f

Φ
)
−∇X

(
∇Y f

Φ
)
−∇(DXY−DYX)f

Φ
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but using the torsion T (X, Y ) = DXY −DYX − [X, Y ] we can rewrite this as

2∇2
[XY ]f

Φ = K∇XY f
Φ −∇T (X,Y )f

Φ

When a choice of a torsion free connection D on the base manifold has been

made, the expression for the curvature takes a particularly simple form

K∇a1a2fΦ = 2∇a1∇a2fΦ

and in what follows we shall always assume that this is the case.

If D is a linear connection, no other choice of a connection on M is needed,

and the expression for its curvature operator takes a classical form

KD
XYZ = DXDYZ −DYDXZ −D[X,Y ]Z

Proposition 1.1.12 (The Leibniz rule for curvature). Let V and W be vector

bundles over a manifold M , ∇V and ∇W be connections in the bundles V and

W respectively, and v ∈ V and w ∈ W be arbitrary sections. The curvature

operator KV⊗W of the coupled connection ∇V⊗W in the tensor product V ⊗W
satisfies the following product rule:

KV⊗Wa1a2 (v ⊗ w) = (KVa1a2v)⊗ w + v ⊗ (KWa1a2w) (1.12)

where the indices on sections v, w and v⊗w are suppressed, and KVa1a2, KWa1a2

are the curvature operators on (V ,∇V), (W ,∇W) respectively.

Proof. A straightforward calculation:

KV⊗Wab v w = ∇a∇b(v w)−∇b∇a(v w)

= ∇a(w∇bv − v∇bw)−∇b(w∇av − w∇av)

= w∇a∇bv −(((((
(((∇aw)(∇bv) +

hhhhhhh(∇av)(∇bw) + v∇a∇bw

−hhhhhhh(∇bw)(∇av)− w∇b∇av −(((((
(((∇bv)(∇aw)− v∇b∇aw

= v(2∇[a∇b]w) + w(2∇[a∇b]v) = (KVabv)w + v (KWabw)

Proposition 1.1.13 (The Bianchi symmetry). If ∇ is a torsion-free connec-

tion in Ea and K∇a1a2
c
d is the corresponding curvature operator on Ea, then

K∇a1a2
c
a3 = 0
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Proof. Let ωa be an arbitrary 1-form on M . Recall that

2∇a1∇a2ωc = −K∇a1a2
b
cωb

Locally ωa = ∇aϕ for some smooth function ϕ (The Poincaré Lemma [50,

p.23]). Thus,

K∇a1a2
b
a3ωb = −2∇a1∇a2∇a3ϕ = ∇a1T∇a2a3

b∇bϕ = 0

Proposition 1.1.14 (Curvature on F -valued k-forms). Let F be a v.b. with

connection ∇F coupled to a torsion-free connection ∇ on the manifold M , and

Xa1...ak
Φ ∈ Fk. Then

2∇a1∇a2Xa3...ak+2
Φ = KFa1a2

Φ
ΨXa3...ak+2

Ψ

Proof. A straightforward calculations that we give only for the case k = 1

since the general case is similar but involves more notation.

Let us start with Xa
Φ = αaV

Φ

2∇a1∇a2Xa3
Φ = 2∇a1∇a2(αaV

Φ)

= (2∇a1∇a2αa3)V Φ + αa3(2∇a1∇a2V Φ)

where the second term in the last line vanishes due to the Bianchi symmetry.

Since every Xa
Φ is a finite sum of terms of the form αaV

Φ and the curvature

operator is R-linear, this completes the proof.

The section K∇a1a2XΦ is a F -valued 2-form, and so the exterior covariant

derivative of it can be taken again, however the following Proposition shows

that the result will be always zero.

Proposition 1.1.15 (The Bianchi identity). If F is a vector bundle with the

connection ∇ over manifold M with a torsion-free connection D, and K∇ is

the curvature 2-form of the connection ∇ coupled to the connection D, then

d∇K∇ = 0

or, equivalently,

∇a0Ka1a2
Φ

Ψ = 0

Proof. Let XΦ be a section of the vector bundle F . The curvature operator

16



1.1 Background and notation from Riemannian geometry

K = K∇ acts on this section as

(KX)a1a2
Φ = Ka1a2

Φ
ΨX

Ψ = 2∇a1∇a2XΦ

Computing the action of the covariant exterior derivative d∇K on the section

XΦ we get

[
(d∇K)a0a1a2

Φ
Ψ

]
XΨ =

[
3∇a0Ka1a2

Φ
Ψ

]
XΨ

= 3∇a0(Ka1a2
Φ

ΨX
Ψ)− 3Ka1a2

Φ
Ψ∇a0XΨ

= 3∇a0(2∇a1∇a2XΦ)− 3(2∇a1∇a2∇a0XΦ)−Ra1a2
b
a0∇bX

Φ

= 6∇a0∇a1∇a2XΦ − 6∇a0∇a1∇a2XΦ + 0 = 0

Proposition 1.1.16 (The skew symmetry in Riemannian vector bundles). If

FΦ is a Riemannian vector bundle with a connection ∇ = ∇F and a metric

hΦΨ then the curvature operator has the additional symmetry

Ka1a2ΦΨ = −Ka1a2ΨΦ

where Ka1a2ΦΨ := hΦΞKa1a2
Ξ

Ψ

Proof. A direct application of the Leibniz rule yields

0 = 2∇a1∇a2hΦΨ = −Ka1a2
Ξ

ΦhΞΨ −Ka1a2
Ξ

ΨhΦΞ = −Ka1a2ΨΦ −Ka1a2ΦΨ

1.1.11 The vector-bundle Laplacian

Let F be a vector bundle over a Riemannian manifold (M, g), and ∇ ≡ ∇F is

a connection in F coupled to the Levi-Civita connection on M .

Definition 1.1.17. The (rough, or connection) Laplacian ∆ is a second order

differential operator ∆: F → F defined on any section f ∈ F as

∆f := gab∇b∇af := ∇a∇af (1.13)

The following easy consequence of the Leibniz rule proves to be useful in

calculations:

Proposition 1.1.18 (Quasi-Leibniz rule for the Laplacian). For any two sec-

tions s, t ∈ F

∆(s⊗ t) = s⊗∆t+ 2gab(∇as)⊗∇bt+ t⊗∆s (1.14)

17



Chapter 1 Riemannian geometry of hypersurfaces

On vector-bundle valued forms there is another second order operator which

has an advantage of being formally self adjoint.

Definition 1.1.19. The forms Laplacian [∆] is a second order differential

operator [∆] : Fk → Fk defined as

[∆]fa1...fk
Φ := −

(
(d∇δ∇f)a1...ak

Φ + (δ∇d∇f)a1...ak
Φ
)

(1.15)

on any section f ∈ Fk.

We shall need the following particular case of a well-known fact.

Proposition 1.1.20 (Weitzenböck identity for 1-forms). The difference be-

tween the action of the forms Laplacian and the rough Laplacian on 1-forms

is given by the identity

[∆]Xa
Φ = ∆Xa

Φ −Kb
a

Φ
ΨXb

Ψ − Rica
bXb

Φ (1.16)

where Kab
Φ

Ψ is the curvature operator of the F−connection, and Rab
c
d is the

usual Riemannian curvature of the metric g, so that Ricab is the corresponding

Ricci tensor.

Proof. By the definition,

[∆]Xa
Φ := −

(
δ∇d∇ + d∇δ∇

)
Xa

Φ

The codifferential of the the covariant exterior derivative of F -valued 1-form

Xa
Φ is

δ∇d∇Xa
Φ = ∇b

(
∇aXb

Φ −∇bXa
Φ
)

= −∇b∇bXa
Φ +∇b∇aXb

Φ

= −∆Xa
Φ +∇b∇aXb

Φ

The exterior covariant derivative of the codifferential of Xa
Φ is just

d∇δ∇Xa
Φ = −∇a∇bXb

Φ

Combining these equations we obtain

[∆]Xa
Φ = −

(
−∆Xa

Φ +∇b∇aXb
Φ −∇a∇bXb

Φ
)

= ∆Xa
Φ −∇b∇aXb

Φ +∇a∇bXb
Φ

18



1.1 Background and notation from Riemannian geometry

In the second term of the last display we can commute the derivatives

∇b∇aXb
Φ = gbc∇c∇aXb

Φ

= gbc
(
∇a∇cXb

Φ +Kca
Φ

ΨXb
Ψ − Rca

d
bXd

Φ
)

= ∇a∇bXb
Φ +Kb

a
Φ

ΨXb
Ψ − Rb

a
d
bXd

Φ

= ∇a∇bXb
Φ +Kb

a
Φ

ΨXb
Ψ + Rica

bXb
Φ

Using this we see that

[∆]Xa
Φ = ∆Xa

Φ −
(
��

���
�

∇a∇bXb
Φ +Kb

a
Φ

ΨXb
Ψ + Rica

bXb
Φ
)

+���
���∇a∇bXb

Φ

so the result follows.

1.1.12 The difference formulas

Now let us consider the situation when we have two connections ∇ and ∇′ in a

vector bundle F . Computing the action of ∇′−∇ on ϕf for ϕ ∈ E and f ∈ F
we obtain

∇′a(ϕf)−∇a(ϕf) = ϕ∇′af +��
��f∇′aϕ− ϕ∇af −����f∇aϕ = ϕ(∇′af −∇af)

because connections agree on smooth functions.

Therefore the operator ∇′ − ∇ is linear on sections of F and corresponds

to a section Aa
Φ

Ψ of the space of End(F)-valued 1-forms that we refer to as

the difference operator , or the contorsion, of connections ∇′ and ∇, so we can

write

∇′afΦ = ∇af
Φ + Aa

Φ
Ψf

Ψ (1.17)

or, symbolically, as

∇′ = ∇+ A

Expanding the action of the curvature operator Ka1a2ΦΨ of ∇′ on a section

XΦ we get (using that on the base manifold we have only one connection)

2∇′a1∇′a2XΦ = 2∇a1

(
∇a2XΦ + Aa2

Φ
ΨX

Ψ
)

+ 2Aa1
Φ

Ψ

(
∇a2XΨ + Aa2

Ψ
ΞX

Ξ
)

= 2∇a1∇a2XΦ + 2 (∇a1Aa2
Φ

Ψ)XΨ + 2Aa2
Φ

Ψ∇a1XΨ︸ ︷︷ ︸
+ 2Aa1

Φ
Ψ∇a2XΨ︸ ︷︷ ︸+2Aa1

Φ
ΨAa2

Ψ
ΞX

Ξ
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Chapter 1 Riemannian geometry of hypersurfaces

so we have proven the difference of curvatures formula

K ′a1a2
Φ

ΨX
Ψ = Ka1a2

Φ
ΨX

Ψ + (2∇a1Aa2
Φ

Ψ)XΨ + 2Aa1
Φ

ΞAa2
Ξ

ΨX
Ψ (1.18)

or, succinctly,

K ′ = K +∇∧ A+ A ∧ A

A similar calculation yields a formula for the difference of vector-bundle

Laplacians

∆′XΦ = ∆XΦ + 2AaΦ
Ψ∇aX

Ψ +XΨ∇aAa
Φ

Ψ + AaΦ
ΞAa

Ξ
ΨX

Ψ (1.19)

where we assume that M is equipped with a Riemannian metric, and connec-

tions ∇′ and ∇ are coupled to the corresponding Levi-Civita connection on

the tensor indices.

1.1.13 The Gauss–Codazzi–Ricci decomposition

We consider now the situation that we encounter at least twice in this the-

sis, firstly, when we recapitulate the Riemannian geometry of hypersurfaces,

and secondly, when we study connections in the tractor bundles on hyper-

surfaces. In both cases we have canonical curvature operators in the natural

bundles defined along the hypersurface that come in pairs: an ambient bundle

and a subbundle in it that is referred to as intrinsic. The intrinsic bundle in

both interesting for us cases is the image of a projection operator such as the

tangential projection operator on a Riemannian submanifold, or the tractor

projection operator on a conformal hypersurface.

Let us formalize this situation as follows. Let F be a vector bundle on a

manifold M . Let ∇ be a connection in the vector bundle F . Furthermore, let

F> and F⊥ be subbundles of F such that F = F> ⊕ F⊥. Thus any section

ξ ∈ F is uniquely represented as a sum of two sections τ ∈ F> and ν ∈ F⊥,

and we write ξ =
(
τ
ν

)
or simply ξ = τ + ν to save the space when τ ∈ F> and

ν ∈ F⊥ is assumed.

The projection operators π> : F → F and π⊥ : F → F are defined on

ξ =
(
τ
ν

)
∈ F> ⊕ F⊥ as π>(ξ) = τ and π⊥(ξ) = ν. Clearly, π> and π⊥ are

smooth vector bundle endomorphisms, and

π> ◦ π> = π> π> ◦ π⊥ = 0

π⊥ ◦ π⊥ = π⊥ π⊥ ◦ π> = 0
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1.1 Background and notation from Riemannian geometry

so they are indeed can be called projections.

This structure allows us to define connections ∇> and ∇⊥ in the subbundles

F> and F⊥ respectively by setting

∇> := π> ◦ ∇ ∇⊥ := π⊥ ◦ ∇

Returning to the bundle F = F>⊕F⊥ we obtain the direct sum connection

that is defined (cf. (1.3)) as

⊕

∇ξ = ∇>τ +∇⊥ν

on sections ξ = τ + ν of F .

The properties of connections are easily verified for ∇> and ∇⊥ since π>

and π⊥ are linear.

The connection
⊕

∇ is called the van der Waerden–Bortolotti connection cor-

responding to the connection ∇ in the vector bundle F equipped with a direct

sum decomposition F = F> ⊕F⊥.

The bundle F is now equipped with two connections ∇ and
⊕

∇, and we can

consider their contorsion operator (1.17). Let us refer to A = ∇ −
⊕

∇ as the

direct sum contorsion operator in this context.

The difference formula

∇aV
b =

⊕

∇aV
b + Aa

b
cV

c

can be thought as the abstract Gauss formula for the direct sum decomposition

of the vector bundle F = F> ⊕F⊥ with the connections ∇ and
⊕

∇.

Since the operator A is linear, its action on a section ξ = τ + ν of F
decomposes as

AX

(
τ

ν

)
= AX

(
τ

0

)
+ AX

(
0

ν

)
that we can also write in the compact form

AX(τ + ν) = AXτ + AXν

It turns out that the right hand side of the last display is already a direct

sum decomposition.

Proposition 1.1.21. The direct sum contorsion operator A restricted to the
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Chapter 1 Riemannian geometry of hypersurfaces

bundle F> takes values in the bundle F⊥, and vice versa, that is

π> ◦ A|F> = 0 π⊥ ◦ A|F⊥ = 0

Proof. By definitions of A := ∇−
⊕

∇ and the connections ∇> and ∇⊥

AXτ = ∇Xτ −∇>Xτ = ∇Xτ − π>(∇Xτ) = π⊥∇Xτ ∈ F⊥

where τ ∈ F>, X ∈ TM , and similarly, for ν ∈ F⊥

AXν = ∇Xν −∇⊥Xν = ∇Xτ − π⊥(∇Xν) = π>∇Xν ∈ F>

It is convenient to introduce the operators Ha
Φ

Ψ ∈ Ea ⊗ F⊥Φ ⊗ F>Ψ and

Sa
Φ

Ψ ∈ Ea ⊗F>Φ ⊗F⊥Ψ defined by

HXτ := π⊥(AX

(
τ

0

)
) SXν := π>(AX

(
0

ν

)
)

that capture the nontrivial parts of the action of A on the corresponding

subbundles.

In terms of these operators we can express the action of the contorsion A on

sections ξ =
(
τ
ν

)
of F as

AX

(
τ

ν

)
=

(
SXν

HXτ

)
= SX

(
τ

ν

)
+HX

(
τ

ν

)

In the matrix form the operator A can be now presented as

AX =

(
0 SX

HX 0

)
(1.20)

The operators HX and SX can be interpreted as the derivatives of the pro-

jection operators π>, π⊥ ∈ F∗ ⊗ F with respect to the connection ∇ in F -

bundles. The definition of this connection applied to the operators π>, π⊥ can

be explicitly written as

(∇π>)Xξ = ∇X(π>(ξ))− π>(∇Xξ)

(∇π⊥)Xξ = ∇X(π⊥(ξ))− π⊥(∇Xξ)

where ξ ∈ F and X ∈ TM . Restricting these identities respectively to the
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1.1 Background and notation from Riemannian geometry

bundles F> and F⊥ we obtain

(∇π>)Xτ = ∇X(π>(τ))− π>(∇Xτ) = ∇Xτ −∇>Xτ = AXτ

(∇π⊥)Xν = ∇X(π⊥(ν))− π⊥(∇Xν) = ∇Xν −∇⊥Xν = AXν

where X ∈ TM , τ ∈ F> and ν ∈ F⊥.

These calculations show that

H = (∇π>) ◦ π> S = (∇π⊥) ◦ π⊥

The above identities can be thought as the abstract Weingarten equations

for the direct sum decomposition F = F> ⊕ F⊥. They express the block

components H and S of the direct sum contorsion operator A in terms of the

derivatives of the projection operators π> and π⊥.

In terms of the operators H and S the difference formula (1.17) between the

connections ∇ and
⊕

∇ in the vector bundle F = F> ⊕F⊥ can be presented as

∇Xξ
Φ =

⊕

∇Xξ
Φ +

(
HX

Φ
Ψ + SX

Φ
Ψ

)
ξΨ

This can be viewed as the abstract Gauss–Weingarten formula for the direct

sum decomposition F = F> ⊕F⊥.

The curvature difference formula (1.18) now reads as

K =
⊕

K +
⊕

∇∧ A+ A ∧ A (1.21)

where AX = SX + HX , and we are going to decompose this identity with

respect to the direct sum structure F> ⊕F⊥ on F .

The first term in the right hand side of the last display is the curvature

operator of the direct sum connection, and it is easy to see that it can be

presented in the matrix form as

⊕

K =

(
K> 0

0 K⊥

)

where K> and K⊥ are the curvature operators of the connections ∇> and ∇⊥

in the bundles F> and F⊥ respectively.

The term
⊕

∇ ∧ A is understood as the exterior covariant derivative of the

Hom(F ,F)-valued form A with respect to the connection ∇ = ∇cF coupled

to the linear connection in the base manifold.
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Let for a moment F be any vector bundle with a connection ∇F over a

manifold M equipped with a torsion free linear connection∇, and AX : F → F
be a EndF -valued 1-form M . Notice that we can regard this 1-form as a

section AaΨ
Φ ∈ Ea ⊗ FΨ

Φ. Then the covariant derivative of A with respect

to the coupled connection ∇F⊗E in the bundle Ea ⊗ FΨ
Φ can be explicitly

represented as

(∇F⊗EA)XY ξ = ∇FX(AY ξ)− A∇XY ξ − AX(∇FY ξ)

where ξ ∈ F , and X, Y ∈ TM .

The exterior covariant derivative of A by definition is

(∇F⊗E ∧ A)XY ξ = (∇F⊗EA)XY ξ − (∇F⊗EA)Y Xξ

or, substituting the explicit expressions,

(∇F⊗E ∧ A)XY ξ = 2∇F[XAY ]ξ − A[X,Y ]ξ − 2A[Y (∇FXξ)

where in the second term of the right hand side we have also used the torsion-

freeness of the linear connection in M , that is ∇XY −∇YX = [X, Y ].

Applying these formulas to
⊕

∇A and expressing the appearing terms further

using the definition of
⊕

∇ and the decomposition AX(τ + ν) = SXν +HXτ , we

compute

(
⊕

∇A)XY ξ =
⊕

∇X(AY ξ)− A∇XY ξ − AY (
⊕

∇Xξ)

= ∇⊥XSY ν +∇>XHY τ − S∇XY τ −H∇XY ν − SY∇⊥Xν −HY∇>Xτ

Passing to the exterior covariant derivative and using the torsion-freeness of

∇ on M , we obtain

(
⊕

∇∧ A)XY ξ = 2∇>[XSY ]ν − S[X,Y ]ν − 2S[Y∇⊥X]ν

+ 2∇⊥[XHY ]τ −H[X,Y ]τ − 2H[Y∇>Y ]τ

The two similar expressions in the top and bottoms lines of right hand side of

the last display can be interpreted as the exterior covariant derivatives of the

homomorphism-valued 1-forms S and H respectively. A suggestive notation
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1.1 Background and notation from Riemannian geometry

for these derivatives can be introduced as follows

(d∇
⊥,∇>H)XY τ = 2∇⊥[XHY ]τ −H[X,Y ]τ − 2H[Y∇>Y ]τ

(d∇
>,∇⊥S)XY ν = 2∇>[XSY ]ν − S[X,Y ]ν − 2S[Y∇⊥X]ν

using which we are able to express
⊕

∇A as

⊕

∇AXY
(
τ

ν

)
=

(
(d∇

>,∇⊥S)XY ν

(d∇⊥,∇>H)XY τ

)
for some section ξ ∈ F represented as ξ = τ + ν and vectors X, Y ∈ TM .

To emphasize that this is indeed a direct sum decomposition of
⊕

∇A we can

rewrite this expression informally in the matrix notation as

⊕

∇A =

(
0 d∇

>,∇⊥S

d∇
⊥,∇>H 0

)

viewing the right hand side as acting on sections
(
τ
ν

)
∈ F> ⊕ F⊥ = F by the

usual matrix multiplication.

The term A∧A in the curvature difference formula (1.21) can be computed

in terms of HX and SX too. Treating A as a linear operator (1.20) we can

present its composition as the matrix product

(A ◦ A)XY =

(
0 SX

HX 0

)(
0 SY

HY 0

)

so that the wedge product is given by the commutator

(A ∧ A)XY = (A ◦ A)XY − (A ◦ A)Y X

It is easily verified that explicitly the wedge product A ∧ A turns out to be

(A ∧ A)XY =

(
(S ∧H)XY 0

0 (H ∧ S)XY

)
(1.22)

where the bundle homomorphisms involved are

SX : F⊥ → F> HX : F> → F⊥

S ◦H,S ∧H : F> → F> H ◦ S,H ∧ S : F⊥ → F⊥

so that the composition is well defined and the formula (1.22) agrees with the
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direct sum decomposition.

Combining the expressions for the terms of the curvature difference formula

(1.21) in the matrix form we obtain what we may call the Gauss–Codazzi–Ricci

decomposition for the direct sum connection in vector bundle

Theorem 1.1.22 (The Gauss–Codazzi–Ricci decomposition). The curvature

K of the connection ∇ in a vector bundle F decomposed into the direct sum

as F = F> ⊕ F⊥ is expressed in terms of the curvatures of the projected

connections on the respective subbundles and the components of the direct sum

contorsion as

K =

(
K> + S ∧H d∇

>,∇⊥S

d∇
⊥,∇>H K⊥ +H ∧ S

)
(1.23)

Remark 1.1.23. Traditionally, the Gauss–Codazzi–Ricci equation is stated sep-

arately for each subspace in the direct sum, namely as

π>(K|F>) = K> + S ∧H Gauss

π⊥(K|F>) = d∇
⊥,∇>H Codazzi I

π>(K|F⊥) = d∇
>,∇⊥S Codazzi II

π⊥(K|F⊥) = K⊥ +H ∧ S Ricci

Now we turn to the case when the orthogonal decomposition is compatible

with the metric h in a Riemannian vector bundle F with a connection ∇. That

is we have ∇h = 0, and the metrics h> and h⊥ on the component subbundles

F> and F⊥ are defined as

h> = h|F> h⊥ = h|F⊥

Now we can define the direct sum metric h⊕ =

(
h> 0

0 h⊥

)
in the bundle F .

From this point we begin to assume that h = h⊕. This is equivalent to saying

that F⊥ is the orthogonal complement of F> with respect to the metric h, or

simply to the condition

h(τ, ν) = 0

for all τ ∈ F>, ν ∈ F⊥. Indeed,

h(τ, ν) = h⊕(τ, ν) = h⊕
((

τ

0

)(
0

ν

))
= h(τ, 0) + h(0, ν) = 0
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Proposition 1.1.24. The h> and h⊥ on the component subbundles are com-

patible with the corresponding connections:

∇>h> = 0 ∇⊥h⊥ = 0

and if h = h⊕ we also have
⊕

∇h = 0

Proof. Straightforward calculations.

Proposition 1.1.25. The operators HX and SX are skew-adjoint in the sense

that

h⊥(HXτ, ν) = −h>(τ, SXν) (1.24)

for any section τ + ν ∈ F> ⊕F⊥ = F

Proof. Differentiating h(τ, ν) = 0 with respect to ∇ we get

0 = h(∇Xτ, ν) + h(τ,∇Xν)

= h(∇Xτ −∇>Xτ, ν) + h(τ,∇Xν −∇⊥Xν)

= h(HXτ, ν) + h(τ, SXν)

where X ∈ TM .

An important addition to the observations made in this section is to consider

a local orthonormal frame {Nx}, x ∈ 1, . . . , k of the subbundle F⊥. In this

thesis we only use the case k = 1 but it is natural to give a more general

perspective here.

Recall that a frame {Nx}, x ∈ 1, . . . , k is orthonormal if

hΦΨN
Φ
xN

Φ
y = δxy :=

1 if x = y

0 if x 6= y

The indices x, y, · · · = 1, . . . , k are not abstract, and we shall identify δxy

with δx
y etc, so effectively we do not care about the upper or lower position of

these indices. In particular, we can write hΦΨN
Φ
xN

Φ
y = NΦ

xN
y

Φ = δxy.

In the presence of a local orthonormal frame {Nx}, x ∈ 1, . . . , k of the bundle

F⊥ we can write an expression of the “normal” projection operator π⊥ as

follows:

(π⊥)Φ
Ψ =

k∑
x=1

NΦ
xN

x
Ψ
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where Nx
Ψ := hΨΞN

Ξ
x.

The “tangential” projection operator π> is then expressed as

(π>)Φ
Ψ = δΦ

Ψ −
k∑
x=1

NΦ
xN

x
Ψ

where δΦ
Ψ is the abstract index notation for the identity operator id : F → F .

It is customary to use the Einstein summation convention here and write

(π⊥)Φ
Ψ = NΦ

xN
x

Ψ and (π>)Φ
Ψ = δΦ

Ψ −NΦ
xN

x
Ψ dropping the explicit sum-

mation operator, but we shall not do this now for the sake of clarity.

Differentiating the relation NΦ
xN

y
Φ = δxy we obtain the identity

NΦ
x∇aN

y
Φ = −Ny

Φ∇aN
Φ
x

which in the case k = 1 yields the property (dropping the index x)

NΦ∇aNΦ = 0

that we shall frequently use in this thesis.

Now we can take advantage of these preparations and give an expression for

the operators S and H in terms of an orthonormal frame Nx in F⊥.

Recall that Sa
Φ

Ψ := (∇π⊥)a
Φ

Ξ(π⊥)Ξ
Ψ. Substituting the expression for π⊥

and performing differentiation we get

Sa
Φ

Ψ = (∇π⊥)a
Φ

Ξ(π⊥)Ξ
Ψ =

(
∇a

(
k∑
x=1

NΦ
xN

x
Ξ

))(
k∑
y=1

NΞ
yN

y
Ψ

)

=

(
k∑
x=1

(
(∇aN

Φ
x)N

x
Ξ +NΦ

x∇aN
x

Ξ

))( k∑
y=1

NΞ
yN

y
Ψ

)

=
k∑
x=1

k∑
y=1

(
(∇aN

Φ
x)N

x
ΞN

Ξ
yN

y
Ψ +NΦ

xN
Ξ
yN

y
Ψ∇aN

x
Ξ

)
=

k∑
x=1

k∑
y=1

(
(∇aN

Φ
x)N

x
Ψ −NΦ

xN
x

ΞN
y

Ψ∇aN
Ξ
y

)
=

k∑
x=1

(π>)Φ
Ξ(∇aN

Φ
x)N

x
Ψ

The quantities

La
Φ
x := (π>)Φ

Ξ∇aN
Ξ
x
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deserve the name of the shape 1-forms for their role in what follows.

Thus we can write Sa
Φ

Ψ =
∑k

x=1(π>)Φ
ΞLa

Ξ
xN

x
Ψ.

Now we can see that Ha
Φ

Ψ = −hΦΘhΞΨSa
Ξ

Θ.

In the case k = 1 we shall work with the shape 1-form

La
Φ := ∇aN

Φ

dropping the projection on the index Φ due to the identity NΦ∇aNΦ = 0 and

ignoring the index x.

1.1.14 The pull-back connection

The construction of the pullback bundle and the pullbacks of geometric quanti-

ties will be used systematically in the rest of this thesis, mainly because this is

the way how the submanifolds (and hypersurfaces) inherit the structure from

the background. For this reason we give a brief overview of these constructions,

mainly following [4, section 1.8] where many subtleties have been brought to

our attention. A more formal and detailed treatment can be found in [50].

Definition 1.1.26 (The pullback bundle). Let ϕ : M → N be a smooth map,

and F be a vector bundle over manifold N . The pullback bundle ϕ∗F is defined

over manifold M so that the fiber over each point p ∈ M is the same as the

fiber over the point ϕ(p) ∈ N . In other words, the following diagram commutes

M N

ϕ∗F F

ϕ

Remark 1.1.27. As it is clear from the diagram, the pullback bundle has the

universal property, that allows to establish the following important fact.

Proposition 1.1.28. “Pullbacks commute with taking duals and tensor prod-

ucts” [4], that is there are canonical isomorphisms such that

(ϕ∗F)∗ ∼= ϕ∗(F∗) and (ϕ∗F1)⊗ (ϕ∗F2) ∼= ϕ∗(F1 ⊗F2)

Any section f ∈ F gives rise to a section of the pullback bundle ϕ∗F by

taking the composition of f with ϕ. This operation is called the restriction

along the map ϕ.
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Chapter 1 Riemannian geometry of hypersurfaces

Definition 1.1.29 (Restrictions). The restriction fϕ of the section f along

the map ϕ is defined by

fϕ := f ◦ ϕ

.

Remark 1.1.30. Restrictions of sections of any vector bundle on the target

manifold along smooth maps always exist (that is, no requirements to the map

are needed in addition to smoothness).

Remark 1.1.31. If the map ϕ : M → N is just an inclusion ι : M → N , espe-

cially when the manifold M is a submanifold of N , the restriction is usually

denoted by the symbol ·|M . We shall do so later after the precise definitions

related to submanifolds are given. Moreover, when working only with sections

on the submanifold, the restriction operation will be often suppressed form the

notation.

Definition 1.1.32 (Pushforwards). Recall that the tangent map Tϕ : TM →
TN is vector bundle morphism (linear on fibers at each point p ∈ M), and

therefore can be viewed as a ϕ∗TN -valued 1-form on M , that is as a section

ϕ∗ ∈ T∗M ⊗ ϕ∗TN . This 1-form acts on tangent vectors X ∈ TM , and the

result of this action is called the pushforward ϕ∗X which is an element of

ϕ∗TN .

Combining the restriction and the pushforward operation we can define the

pullback operation on any (0, k)-tensor.

Definition 1.1.33 (The pullback of a covariant tensor). Let t be a (0, k)

tensor on N , and ϕ : M → N be a map between manifolds. The pullback ϕ∗t

is a (0, k)-tensor on M defined as

ϕ∗t(X1, . . . , Xk) := t(ϕ∗X1, . . . , ϕ∗Xk)

It is important for us to notice that the pullback operation is defined for

F -valued (0, k)-tensors without any change in the above display, because the

restrictions along ϕ can be taken for a section of any vector bundle over N .

In other words, if t ∈ Eab...c ⊗F , both sides of the above display are viewed as

taking values in the bundle F .

In particular, the pullback is defined for any vector bundle-valued k-form.

Now let ϕ : M → N be a map between manifolds as before, and F is a

vector bundle over N equipped with a connection ∇. In this situation there is
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a canonically defined connection in the pullback bundle ϕ∗F called the pullback

connection and denoted by ϕ∗∇ .

Definition 1.1.34 (The pullback connection). Let ϕ : M → N be a map

between manifolds, and F is a vector bundle over N . The pullback connection

ϕ∗∇ on the pullback bundle ϕ∗F is defined on restrictions fϕ of sections f ∈ F
along ϕ by setting

(ϕ∗∇F)Xfϕ := ∇Fϕ∗Xf (1.25)

and extending this definition by linearity since the pullback bundle is generated

by such restrictions.

Remark 1.1.35. It is instructive to write down the equation (1.25) in abstract

indices. In order to do that we need to distinguish the tangent bundles of the

manifolds M and N by the indices, so let for the moment the range {i, j, k, . . . }
be associated with the tangent bundle E i of the manifold M , and the range

{λ, µ, ν, . . . } be the range associated to the tangent bundle Eλ of the manifold

N . The tangent map Tϕ is represented by a section ϕi
λ ∈ Ei ⊗ ϕ∗Eλ as we

already noted above (using the index-free notation). The pushforward of a

vector X i ∈ E i is then given by the contraction with the differential ϕi
λX i.

Let also the range Φ,Ψ,Ξ. . . . be associated with the bundle FΦ, and notice

that we can use this range both for the bundle F and for the pullback bundle

ϕ∗F because their fibers are isomorphic as vector spaces. Having done these

preparations we can now rewrite the equation (1.25) as follows

X i(ϕ∗∇i)f
Φ|ϕ = (ϕi

λX i)∇λf
Φ (1.26)

where we have used the notation ·|ϕ for the restriction of a section along the

map ϕ in order to distinguish ϕ from an index.

The pullback connection agrees with taking the duals and tensor products,

and also preserves the metric structure and the curvature operator on vector

bundles.

Proposition 1.1.36. Let ϕ : M → N be a map between manifolds, and F be a

Riemannian vector bundle over manifold N with a metric h and a connection

∇. The pullback bundle ϕ∗F equipped with the pullback metric ϕ∗ and the

pullback connection ϕ∗∇ is again a Riemannian vector bundle.

Proof. Applying the equation (1.25) we get

(ϕ∗∇)Zhϕ = ∇ϕ∗Zh = 0
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Proposition 1.1.37 (The curvature of the pull-back connection). In the set-

tings of the previous proposition, let K∇ be the curvature operator of the con-

nection ∇ in the bundle F over the manifold N , and Kϕ∗∇ be the curvature

operator of the pullback connection ϕ∗∇ in the pullback bundle ϕ∗F . Then the

following equality holds

Kϕ∗∇F = ϕ∗K∇
F

(1.27)

where in the both sides we have End(F)-valued 2-forms on the manifold M .

Proof. It is a straightforward verification that can be done using a local frame.

See e.g. [4] or [50, p. 176].

The pullback of a linear connection preserves the symmetry of the connection

in the following sense.

Proposition 1.1.38 (The symmetry of the pullback connection). Let ∇ be a

torsion free connection in the tangent bundle of the manifold N , and the map

ϕ is as before. The pullback connection satisfies the following identity

(ϕ∗∇)X(ϕ∗Y )− (ϕ∗∇)Y ϕ∗X = ϕ∗([X, Y ]) (1.28)

Proof. The proof is best done using local coordinates. See e.g. [4].

1.1.15 The Riemannian curvature

On a Riemannian manifold (M, g) we have the Levi-Civita connection ∇ = ∇g

in the tangent bundle TM . This connection is extended to tensor bundles in

the usual way (using the dual connection in T∗M and the coupled connections

in T∗M⊗· · ·⊗T∗M⊗TM⊗· · ·⊗TM), and we refer to this extended connection

as to the Levi-Civita connection in tensor bundles.

The curvature operator of the Levi-Civita connection is termed the Riemann

curvature operator and denoted by Rab
c
d. Thus, by definition

Rab
c
d := K∇

g

ab
c
d

Since in the Riemannian structure provides a canonical identification of the

tangent and cotangent spaces, it is customary to use it to raise and lower the

indices without mentioning this explicitly. In particular, it is convenient to

present the Riemann curvature operator in the covariant form. The resulting

object is traditionally referred to as the Riemannian curvature tensor, or simply
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as the Riemannian curvature. Explicitly, the Riemannian curvature is given

by the equation

Rabcd := gceRab
e
d

Sometimes, it is convenient to write the Riemannian curvature as Rab
cd

emphasizing that

Rab
cd ∈ E[ab]

[cd]

or, in other words, that the Riemannian curvature is a Λ2(T∗M)-valued 2-form

on M .

Notice that we refer to the tensor Rabcd and all its index variations (Rab
c
d,

Rab
cd) as the Riemannian curvature, and use the upright capital letter R for

it.

In addition to the symmetries of the curvature operator in vector bundles,

that is the skew symmetry

Rabcd = −Rbacd

and the Bianchi symmetry

R[abc]d = 0

the Riemannian curvature has also the swap symmetry

Rabcd = Rcdab

The Bianchi identity for the Riemannian curvature

∇[aRbc]de = 0 (1.29)

is a consequence of a more general fact established above, see Prop. 1.1.15.

The Riemannian curvature decomposes (if n ≥ 3) orthogonally into the

totally trace-free part called the Weyl tensor Wabcd and the trace part that

can be written as

Rab
cd = Wab

cd + 4 δ[a
[cPb]

d] (1.30)

where the Schouten tensor Pab and the Schouten scalar J are defined by

Ricab = (n− 2)Pab + Jgab, J := gabPab (1.31)

A proof of (1.30) will be given in a more general setting in Section 1.1.17.
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1.1.16 Algebraic curvature tensors (ACT)

In this subsection we work over an inner product space (V, g) where the inner

product g may have an arbitrary signature.

We use the inner product g to identify V and V ∗ without mention, so that

the position of abstract indices is chosen according to convenience (an thus

has no particular meaning).

In the abstract index notation the inner product is written either as gab ∈ Vab
or δa

b ∈ Vab, and we do not distinguish them really by virtue of the aforemen-

tioned identification V ≡ V ∗.

Tensors will be elements of the tensor products ⊗kV of the vector space V ,

and the inner product is extended to these tensor products as usual, e.g. for

t, s ∈ ⊗2V we have their inner product defined as tabsab.

Definition 1.1.39. A tensor R ∈ ⊗4V is called an algebraic curvature tensor

(ACT, or Bianchi tensor), if it has the algebraic symmetries of the Riemannian

curvature

Rabcd = −Rbacd = Rcdab and R[abc]d = 0 (1.32)

It is convenient to regard algebraic curvature tensors as elements of Λ2(V )⊗
Λ2(V ), that is as exterior 2-forms with values in the space of exterior 2-

forms. This is a special case of so-called double forms , the technique that

was originated by J.A.Thorpe in [71], and then used extensively by A.Gray

[35], R.Kulkarni [43], K.Nomizu, and many others. Currently this technique

is actively developed by M.L.Labbi, see e.g. [44]. We only use this idea to

get some insights, but won’t go into the full implementation of double forms

here. It is enough for us to observe that 2-tensors can be also seen as double

(1,1)-forms due to the trivial isomorphism ⊗2V ∼= Λ1(V )⊗Λ1(V ). The wedge

product of double forms gets a classical appearance as the Kulkarni–Nomizu

product of 2-tensors.

Definition 1.1.40. The Kulkarni–Nomizu product of tensors t, s ∈ ⊗2V is

denoted by t? s and defined to be

(t? s)ab
cd := 4 t[a

[csb]
d] (1.33)

Writing all the indices in the lower position, the Kulkarni–Nomizu product

is given by

(t? s)abcd = tacsbd − tbcsad + tbdsac − tadsbc (1.34)

The Kulkarni-Nomizu product of 2-tensors has the following properties.
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Proposition 1.1.41. The Kulkarni–Nomizu product of 2-tensors is a commu-

tative operation:

t? s = s? t (1.35)

for t, s ∈ ⊗2V .

Proof. This follows easily from (1.34):

(t? s)abcd = tacsbd − tbcsad + tbdsac − tadsbc
= sactbd − tadsbc + sbdtac − tbcsad = (s? t)abcd

Notice that no symmetry of 2-tensors t and s is used here.

Remark 1.1.42. Classically, the double forms are required to have the swap

symmetry, but we need to relax on this for some applications where we use

similar ideas for F -valued forms where F is a vector bundle, that is the first

group of indices acts on tensor bundles, the second group of indices acts on

the F -bundles, and within each group we have the skew symmetry.

Proposition 1.1.43. The Kulkarni–Nomizu product t ? s of two symmetric

2-tensors t, s ∈ �2V is an ACT

Proof. The swap symmetry (t? s)abcd = (t? s)cdab follows from the commuta-

tivity.

The skew symmetry (t? s)abcd = −(t? s)bacd is obvious from the definition.

It remains to verify the Bianchi symmetry. Since this result is well known

and has been proved in many various ways mathematically, we take a chance

to demonstrate how this can be established in an experimental manner using

a computer-algebra system. We have used Cadabra, see Appendix B for more

information. The use of a computer system is just a handy tool for a manual

computation since once can check the full listing step by step.

This simple and self-explanatory code in Cadabra

{a,b,c,d,e,e#}::Indices(vector);

KN := t_{a c} s_{b d} - t_{b c} s_{a d} + t_{b d} s_{a c} - t_{a d} s_{b c};

@asym!(%){_{a}, _{b}, _{c} };

@collect_terms!(%);

produces the following output
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KN :=
1

3
tacsbd −

1

3
tabscd −

1

3
tbcsad +

1

3
tbascd +

1

3
tcbsad −

1

3
tcasbd

+
1

3
tbdsac −

1

3
tcdsab −

1

3
tadsbc +

1

3
tcdsba +

1

3
tadscb −

1

3
tbdsca

from which one can see that if 2-tensors t and s are symmetric, all the terms

cancel out.

Remark 1.1.44. The above computation certainly can be done by hand. The

purpose is to show that a computer algebra system may prove useful in prac-

tical discovering of tensor identities. Of course, the code can be improved to

give the zero result automatically.

The g-traces of algebraic curvature tensors are the Ricci and the Scalar

parts.

Definition 1.1.45. The Ricci part Ric(R) of an ACT R is defined as

Ric(R)b
d := δc

aRab
cd (1.36)

Definition 1.1.46. The scalar part Scal(R) of an ACT R is the next contrac-

tion:

Scal(R) := δd
bRic(R)b

d (1.37)

Proposition 1.1.47. For a 2−tensor t over an inner product space (V, g) of

dimension n we have

Ric(g ? t) = (n− 2) t+ (trg t) g (1.38)

and

Scal(g ? t) = 2(n− 1) trg t (1.39)

Proof. Indeed,

δc
a(δa

ctb
d − δbctad + δb

dta
c − δadtbc) = n tb

d − tbd + (trg t)δb
d − tbd

Notice that tensor t ∈ ⊗2V does not have to be symmetric.

Proposition 1.1.48. Let t ∈ ⊗2V . The map t 7→ g ? t is injective for n > 2

Proof. Suppose that g ? t = 0 for some t ∈ ⊗2V . Using equation (1.38) we

get 0 = Ric(g ? t) = (n − 2)t + (trg t) g and so t = − trg t

n−2
g. Taking the trace

yields trg t = − trg t

n−2
n, or (1 + n

n−2
) trg t = 0, so the claim follows.
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Definition 1.1.49. The composition t◦s of two 2−tensors t and s over an inner

product space (V, g) is defined as just as the composition of the corresponding

endomorphisms

(t ◦ s)ab := ta
csc

b (1.40)

that is just as the matrix product of t and s if they are are interpreted as

matrices.

Remark 1.1.50. It is well known that this operation is not symmetric in

general , even if both tensors t and s are symmetric.

Remark 1.1.51. The operation of composition of 2−tensors is associative:

(t ◦ s) ◦ r = t ◦ (s ◦ r) (1.41)

since the composition of functions is associative.

Definition 1.1.52. The double contraction t : s of two 2−tensors t and s over

an inner product space (V, g) is defined as

t : s := ta
csc

a = trg(t ◦ s) (1.42)

Proposition 1.1.53. The double contraction of 2-tensors is a commutative

operation:

t : s = s : t

for any t, s ∈ ⊗2V .

Proof. From the definition (1.42) by renaming the indices: ta
csc

a = sa
ctc

a.

Proposition 1.1.54. For a 2−tensor t over an inner product space (V, g) the

double contraction of it with itself is also known as the square of its length

t : t = |t|2 (1.43)

Proof. Obvious.

Definition 1.1.55. The symmetric product t � s of two 2−tensors t and s

over an inner product space (V, g) is defined as

t� s := 1
2

(
t ◦ s+ s ◦ t

)
(1.44)
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Remark 1.1.56. This is just an index-free notation for the symmetrization of

the composition

(t� s)ab = (t ◦ s)(ab)

Definition 1.1.57. For k ≥ 0 the k−th power of a 2−tensor t over an inner

product space (V, g) is defined recurrently as

t0 := id

tk+1 := tk ◦ t

In particular,

t2 := t ◦ t

Proposition 1.1.58. For two symmetric 2−tensors t and s over an inner

product space (V, g) of dimension n we have

Ric(t? s) = (trg s) t+ (trg t) s− 2 t� s

and

Scal(t? s) = 2(trg t)(trg s)− 2 t : s

Proof. Compute

δc
a(ta

csb
d− tbcsad + tb

dsa
c− tadsbc) = (trg t)sb

d− (t ◦ s)bd + (trg s)tb
d− (s ◦ t)bd

and

δd
b
(

(trg t)sb
d − (t ◦ s)bd + (trg s)tb

d − (s ◦ t)bd
)

= (trg t)(trg s)− (t ◦ s)bd + (trg s)(trg t)− (s ◦ t)bd

Corollary 1.1.59. For a symmetric 2−tensor t the following holds:

Ric(t? t) = 2(trg t)t− 2 t2

and

Scal(t? t) = 2(trg t)
2 − 2 |t|2

Corollary 1.1.60. For an inner product space (V, g)

Ric(g ? g) = 2(n− 1)g
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and

Scal(g ? g) = 2(n− 1)n

1.1.17 The Weyl–Schouten decomposition of ACT

Definition 1.1.61. A (4, 0)−tensor W is called the Weyl part of an ACT R
if it is totally trace free and there exist a (2, 0)−tensor P called the Schouten

part of R such that

R =W + g ? P (1.45)

We use the notation W(R) :=W and P(R) := P for the Weyl part and the

Schouten part of an ACT R
As the Schouten part P(R) of an ACT is a symmetric tensor, we can define

its trace

J(R) := trg P(R)

that we term the Schouten scalar of R.

Proposition 1.1.62. For any ACT R there exist and defined uniquely the

Weyl part W = W(R) and the Schouten part P = P(R) so that the equation

(1.45) holds. In fact,

P(R) = 1
n−2

(
Ric(R)b

d − Scal(R)
2(n−1)

δb
d
)

(1.46)

and W(R) = R− g ? P(R).

The Schouten scalar is then given by

P(R) = 1
2(n−1)

Scal(R) (1.47)

Proof. For the proof it is enough to compute:

Ric(R)b
d = δc

aRab
cd

= δc
a(W + δa

cPbd − δbcPad + δb
dPac − δadPbc)

= 0 + nPbd − Pbd + δb
dJ − Pbd

= (n− 2)Pbd + δb
dJ

where we denoted

J := δc
aPac (1.48)
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Contracting again we get

Scal(R) = δd
bRic(R)b

d

= (n− 2)J + nJ = 2(n− 1)J

Now it is easy to solve the equations:

J = 1
2(n−1)

Scal(R)

and

Pbd = 1
n−2

(
Ric(R)b

d − δbdJ
)

= 1
n−2

(
Ric(R)b

d − Scal(R)
2(n−1)

δb
d
)

There a further decomposition of the Ricci part Ric(R) into the the sym-

metric trace-free part
◦

Ric(R) and the trace part Scal(R)
n

g, that is

Ric(R) =
◦

Ric(R) + Scal(R)
n

g (1.49)

Some more auxiliary lemmas will be useful in what follows.

Lemma 1.1.63. For two symmetric 2−tensors t and s over an inner product

space (V, g) of dimension n the Schouten part of their Kulkarni-Nomizu product

is given by

P(t? s) = 1
n−2

(
(trg s) t+ (trg t) s− 2 t� s− (trg t)(trg s)−t:s

(n−1)
g
)

The Schouten scalar part is then

J(t? s) = n
n−1

(
2(trg t) (trgs)− 2 t : s

)
Proof. We just compute:

P(t? s) = 1
n−2

(
Ric(t? s)− Scal(t?s)

2(n−1)
g
)

= 1
n−2

(
(trg s) t+ (trg t) s− 2 t� s− 2(trg t)(trg s)−2 t:s

2(n−1)
g
)
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Taking the traces we get

J(t? s) = 1
n−2

(
(trg s) (trg t) + (trg t) (trgs)− 2 t : s− (trg t)(trg s)−t:s

(n−1)
n
)

= 1
n−2

(
(n−1)(2(trg t) (trgs)−2 t:s)−

(
(trg t)(trg s)−t:s

)
(n−1)

n

)
= n

n−1

(
2(trg t) (trgs)− 2 t : s

)

Corollary 1.1.64. For a symmetric 2−tensor t over an inner product space

(V, g) of dimension n the Schouten part of its Kulkarni-Nomizu square (t? t)

is computed as

P(t? t) = 1
n−2

(
2 (trg t) t− 2 t2 − (trg t)2−|t|2

(n−1)
g
)

The Schouten scalar part is then

J(t? t) = n
n−1

(
2(trg t)

2 − 2 |t|2
)

Corollary 1.1.65. For a symmetric 2−tensor t over an inner product space

(V, g) of dimension n

P(g ? t) = t

and

J(g ? t) = trg t

From this one derives that for any such t

W(g ? t) = 0

From this we easily derive that operations W and g ? P· are projectors in

the corresponding spaces.

1.2 Hypersurfaces in Riemannian manifolds

The main goal of this section is to make an overview of Riemannian geometry

of hypersurfaces and to prepare the notation for the remaining parts of this

thesis.

Using the general Gauss–Codazzi–Ricci decomposition from Section 1.1.13

applied to the direct sum splitting of the pullback bundle along the hyper-
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surface, we recover the Gauss and Codazzi equations for hypersurfaces. In

Chapter 2 we apply the Weyl-Schouten decomposition (1.45) to these equa-

tions and obtain their forms, which are convenient for the conformal geometry

of hypersurfaces.

These constructions, including the derivation of the Gauss and Codazzi equa-

tions, are paralleled in Chapter 3. In particular, we formulate the tractor

analogues of these equations. This leads to an alternative way to obtain the

conformal Gauss and Codazzi equations from Chapter 2.

1.2.1 Submanifolds

Definition 1.2.1. A map f : N →M between two smooth manifolds is called

an immersion if for any p ∈ N the differential Tpf : TpN → TpM is injective.

Immersions can have a rather complicated behavior, for instance, nothing

stops an immersion from having self intersections or an awkward topology.

Definition 1.2.2. An embedding is an immersion f : M → N which is also a

homeomorphism onto its image.

Informally, a submanifold M̄ is a subset of a manifold M such that locally

looks like an affine subspace in the Euclidean space Rn.

Definition 1.2.3. Let M be a smooth manifold. A subset M̄ ⊆ M is an

embedded submanifold in M if for any point p ∈ M̄ there is a chart (U, ~x) in

M centered around point p such that M̄ ∩ U = ~x((Rm × 0) ∩ ~x(U)) where

Rm × 0 = {(x1, . . . , xm, 0, . . . , 0) ∈ Rn|x1, . . . , xm ∈ R}. A chart with this

property is called a slice chart , and the corresponding coordinates are called

slice coordinates of the submanifold. The manifold M in this context will be

called the background .

In other words, locally the inclusion M̄ ⊂ M it looks like the standard

embedding

Rm → Rn : (x1, . . . , xm) 7→ (x1, . . . , xm, 0, . . . , 0)

In slice coordinates the submanifold is given locally as the zero locus of the

last n−m coordinate functions. The converse is a consequence of the implicit

function theorem that we state in the form given in [10]

Theorem 1.2.4 (The Implicit Function Theorem). If s1, . . . , sk are smooth

functions with ds1 ∧ · · · ∧ dsk 6= 0 at p ∈ M , then they can be completed to a

coordinate system near p by the addition of m = n− k functions sk+1, . . . , sn.
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1.2 Hypersurfaces in Riemannian manifolds

It is convenient to have a global version of this fact.

Theorem 1.2.5. A subset M̄ ⊆M is an embedded submanifold if and only if

M̄ is the image of an embedding.

Proof. See [37, p.21].

If we set M̄ = {p ∈ M |s1(p) = · · · = sk(p) = 0} we get a subset, which is

called the zero locus Z(s1, . . . , sk) of a system of functions (s1, . . . , sk).

Definition 1.2.6. If a submanifold M̄ ⊆ M is represented as the zero locus

Z(s1, . . . , sk) of a system of real valued functions (s1, . . . , sk) with the property

ds1 ∧ · · · ∧dsk 6= 0, the functions s1, . . . , sk are called the defining functions of

the submanifold M̄ .

Proposition 1.2.7. Any embedded submanifold M̄ can be locally represented

as the zero locus of a system of defining functions.

Proof. This is a direct consequence of our definition of embedded submanifolds

and the implicit function theorem.

The number k = n −m is called the codimension codimM(M̄) of the sub-

manifold M̄ in the manifold M . Usually the ambient manifold is fixed, and

we denote the codimension simply as codim M̄ .

Embedded submanifolds have the following useful properties.

For any smooth function f̄ on M̄ there is a smooth function f on M such

that f̄ = f |M̄ . This ensures the existence of extensions off an embedded

submanifold. This is proved easily by using slice coordinates.

Tangent vectors to M̄ are precisely those tangent vectors X to M at points

on M̄ that act on smooth functions f on M so that Xf = 0 whenever f |M̄ ≡ 0.

(See e.g. [49], p. 178). This allows to identify naturally the tangent space at a

point of M̄ with a subspace of the tangent space at that point to M . In other

words, the inclusion map ι : M̄ →M is an immersion.

1.2.2 Hypersurfaces

By a hypersurface we mean an embedded submanifold of codimension 1. For

certainty, we assume that we are given a closed hypersurface Σ in a connected

Riemannian manifold (M, g). Recall, that a manifold is called closed if it is

compact and has no boundary. Both the background manifold M and the

hypersurface Σ are assumed to be oriented. This restriction is consistent with

the local character of our considerations.
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As we discussed earlier, locally a regular embedded hypersurface Σ ⊂ M

can be presented as the zero locus Σ = Z(s) = {p ∈M |s(p) = 0} of a smooth

function s : M → R such that the differential ds 6= 0 at all the points along Σ.

We refer to such s as a local defining function of hypersurface Σ.

The freedom in the choice of defining functions can be locally described as

multiplication by a smooth nowhere vanishing function.

Proposition 1.2.8. Let s, s′ : U → R be two local defining functions of the

hypersurface Σ around point p ∈ Σ. Then there is a smooth function λ : U → R
such that s′ = λ · s on U , and λ is nowhere zero on U .

Proof. This is a consequence of the following modification of the Taylor theo-

rem (also known as the Hadamard lemma):

Claim. Let (U, {si}i=1,...,n) be a slice coordinate system of the hypersurface Σ,

that is sn is a defining function of Σ, and f : U → R be any smooth function.

Then there exist a smooth function g : U → R such that for all x ∈ U

f(x1, . . . , xn) = f(x1, . . . , xn−1, 0) + xn · g(x1, . . . , xn)

where xi := si(x), i = 1, . . . , n and the usual identifications are applied.

Proof of the claim. Pick x ∈ U and define a function ϕ : [0, 1]→ R by

ϕ(t) := f(x1, . . . , txn)

By the fundamental theorem of calculus

f(x1, . . . , xn)− f(x1, . . . , xn−1, 0)

= ϕ(1)− ϕ(0) =

1∫
0

dϕ

dt
dt = xn

1∫
0

∂f

∂xn
(x1, . . . , txn)dt

where the function

g(x) :=

1∫
0

∂f

∂xn
(x1, . . . , txn)dt

is clearly smooth. This confirms the claim.

Now we can complete the proof of the Proposition. Since s is smooth and

ds 6= 0 along Σ we can complete it to a slice coordinate system

{
s1, . . . , sn−1, sn = s

}
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and using the Claim in these coordinates we get

s′ = xn · g =: s · λ

everywhere on U . Clearly, λ 6= 0 everywhere off the hypersurface Σ otherwise

we get a contradiction with the fact that s′ is a defining function of Σ, but

because

ds′ = λds+ sdλ

becomes

ds′ = λds

along Σ and both ds′ and ds are non-degenerate linear operators at all the

points of Σ, we get λ 6= 0 everywhere on U .

Oriented defining functions

In view of our main goal we shall be interested in the local properties of hyper-

surfaces that are independent of the choice of a defining function. There is an

issue with the orientation that is easy to eliminate in the case of hypersurfaces.

Observe that if s is a defining function, its opposite −s is a defining function

again, but only one of the functions s, −s will be oriented in the following

sense. Recall that we assume that our hypersurface Σ and the background

manifold M are both assumed to be oriented, that is there is a class of positive

volume forms chosen on each of them. Since the differential ds of the defining

function is a nowhere vanishing 1-form at all the points of the hypersurface, it

can be used to choose an orientation on Σ.

A defining function s of the hypersurface Σ is called oriented if it induces

the given orientation on Σ, that is εΣ ∧ ds = εM for some strictly positive

smooth function α, where εM is a positive n-form on M and εΣ is a positive

(n− 1)-form on Σ.

1.2.3 The ambient tensor bundles

The tangent bundle TM of the background manifold M is denoted in the ab-

stract index manner by Ea, and we call it the background tangent bundle. The

restriction of the background tangent bundle onto Σ can be identified with the

pullback bundle ι∗TM along the embedding ι : Σ→ M . The pullback bundle

ι∗M ≡ TM |Σ will be called the ambient tangent bundle of the hypersurface Σ,

or simply the ambient bundle. According to the abstract index notation we
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Chapter 1 Riemannian geometry of hypersurfaces

may use the same indices {a, b, c, . . . } for the ambient bundle since on the fiber

level we have isomorphic vector spaces, but the core symbol should be differ-

ent. In lines with our notational policy, we use the symbol Ea for the ambient

bundle on Σ. In most cases we shall view the bundles as defined along the

hypersurface, and therefore a special notation will be redundant, so we may

(slightly abusively) suppress the restriction operation, and write simply Ea for

the ambient bundle of the hypersurface.

The dual of the bundle TM |Σ is the pullback of the cotangent bundle T∗M

due to Proposition 1.1.28. Therefore, we denote the bundle T∗M |Σ by Ea or

just by Ea. It can be called the dual ambient bundle, or the ambient cotangent

bundle.

The tensor products of finite number of copies of Ea and Ea agree with the

restrictions (pullbacks) of the background tensor bundles, and are termed the

ambient tensor bundles .

The restriction of the background metric gab on M onto the ambient bundle

Ea is called the ambient metric on Σ and denoted by the same symbol gab.

The pullback connection ι∗∇ of the Levi-Civita connection on M is called

the ambient connection on the hypersurface Σ and denoted by the symbol ∇.

The purpose of the underline is to remind that this connection is defined along

the hypersurface, and thus, in the index notation, is a map ∇a : Eb → Ea⊗Eb,
so in the calculations we know that the index a in ∇a is tangential, that is

Na∇af = 0 for any ambient tensor section f .

1.2.4 The unit normal of a hypersurface

Since the hypersurface is supposed to be oriented, the unit section of its normal

bundle is uniquely defined and called the unit normal field.

Using an oriented defining function we can actually compute the unit normal,

and the result will be independent of the choice of the defining function along

the hypersurface.

More specifically, let s be a local defining function of Σ in an open set

U ⊆M . We can define a co-vector field Na on U by the formula

Na = |∇s|−1∇as

Using the metric on M it is easy to see that NaN
a = 1 in the points of U

where |∇s| is defined (it suffices for us that this holds in a tubular neighborhood

of Σ in M).
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1.2 Hypersurfaces in Riemannian manifolds

The unit normal vector field Na will be then obtained from Na using the

metric on the manifold M as Na = gabNb.

We show now that this construction gives (co-)vector fields on M that agree

at all the points along the hypersurface Σ.

Proposition 1.2.9. Let s and s′ be smooth oriented local defining functions

of the hypersurface Σ on an open subset U in the manifold M . The covectors

Na = |∇s|−1∇as and N′a = |∇s′|−1∇as
′ are equal at all the points of Σ ∩ U .

Proof. If functions s and s′ are local defining functions of Σ on U , using Propo-

sition 1.2.8 we can write

s′ = λs

for some smooth function λ, nowhere vanishing on U .

At all the points of Σ ∩ U we have

∇as
′ = s∇aλ+ λ∇as = λ∇as along Σ

Since both defining functions s and s′ are oriented, λ must be positive ev-

erywhere on U . Thus |∇s′| = λ|∇s|.
Therefore

N′a =
λ∇as

λ|∇s|
=
∇as

|∇s|
= Na along Σ

The point is that along the hypersurface the unit normal is a section of

the ambient bundle Ea. Using the defining function s of the hypersurface

Σ we can think of the field Na = 1
|∇s|∇as as of an extension of the unit

normal off the hypersurface. The proposition ensures that at the point of

the hypersurface all such extensions agree. The general facts that we have for

the pullback connections ensure that the ambient derivatives of the unit normal

along the hypersurface are also independent of extensions. These observations

are important for our discussion of the hypersurface invariants in Chapter 4.

The normal bundle

The normal bundle N a of the hypersurface Σ has rank 1, and therefore the

normal connection∇N , that is the normal projected ambient connection∇⊥ :=

π⊥ ◦ ∇, is just the trivial (flat) connection d on the bundle N a.
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1.2.5 The projection operators on hypersurface

Using the unit conormal field Na and the ambient metric in Ea we can give ex-

plicit expressions for the projection operators π> and π⊥ in the ambient bundle

Ea, as is discussed in the end of Section 1.1.13. We rewrite the observations

made there as follows.

Proposition 1.2.10. The normal projection operator π⊥ : TM |Σ → TM |Σ
can be identified with a section of Eab denoted by Na

b and is given by the

expression

Na
b := NaN

b

The (tangential) projection operator π> : TM |Σ → TM |Σ can be identified

with a section of Eab denoted by Πa
b and is given by the expression

Πa
b := δa

b − Na
b

The projection operators are idempotent

Na
bNa

b = Na
b and Πa

bΠa
b = Πa

b

and satisfy the property Πa
bNb

c = 0.

1.2.6 The intrinsic tensor bundles

The tangent bundle TΣ of the hypersurface Σ can be identified with the an-

nihilator of the unit conormal field Na. This bundle is termed the intrinsic

tangent bundle of the hypersurface and denoted by the symbol Ea according

to our conventions. The the intrinsic cotangent bundle T∗Σ (the dual of TΣ)

is denoted as Ea in the abstract index manner.

The intrinsic tensor bundles are the tensor products of a finite number of

copies of the bundles Ea and Ea. A. usual, we denote them by adding several

indices in the upper and lower positions to the symbol E , e.g. E (ab) stands for

�2TΣ.

The intrinsic metric

The induced Riemannian metric (the first fundamental form) ḡ = ι∗g on the

intrinsic bundle is just the restriction of the ambient metric onto the intrinsic

bundle viewed as a subbundle of the ambient bundle of the hypersurface. This

metric will be termed the intrinsic metric and denoted by the symbol ḡab.
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1.2 Hypersurfaces in Riemannian manifolds

Using the projection operator Πa
b we can express the intrinsic metric as

ḡab = Πa
a′Πa

a′ga′b′ (1.50)

This is equivalent to the identity

ḡab = gab − NaNb (1.51)

The intrinsic connection

The Levi-Civita connection of the intrinsic metric ḡab will be called the intrinsic

connection on hypersurface, and denoted by the symbol ∇.

In the direct sum decomposition Ea = Ea⊕N a we also have the (tangential)

projected ambient connection ∇> := π> ◦ ∇, that is, for an intrinsic tangent

vector V a ∈ Ea, we have

∇>a V b := Πa
a′Πb′

b∇a′V
b′

A fundamental fact of Riemannian geometry of hypersurfaces (in fact, sub-

manifolds) is the following.

Theorem 1.2.11 (The Gauss theorem). The connection ∇> in the intrinsic

tensor bundle Ea of hypersurface coincides with the Levi-Civita connection of

the intrinsic metric ḡ:

∇> ≡ ∇

Proof. Using using (1.51) it is straightforward to verify that ∇>ḡ = 0. The

fact T∇
>

= 0 follows immediately from the “torsion-freeness” of the pull-back

of a torsion free connection as in Proposition 1.1.38, but it is also can be seen

directly: Πa
a′Πb

b′∇a′∇b′f = Πa
a′Πb

b′∇b′∇a′f . The uniqueness of the Levi-

Civita connection (Proposition 1.1.9) then implies the claim.

1.2.7 The Weingarten equations for hypersurfaces

The ambient bundle Ea of the hypersurface is presented now as the direct sum

Ea = Ea ⊕N a of the intrinsic bundle Ea and the normal bundle N a.

A section V a ∈ Ea can be written uniquely as V a = τa + νa for some τ ∈ Ea

and τa ∈ N a. It is convenient to use a vector like notation V a =
(
τa

νa

)
for such

sections, as we do in Section 1.1.13. Notice that νa = νNa for ν = NaV
a.
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Chapter 1 Riemannian geometry of hypersurfaces

Since by the Gauss theorem ∇> = ∇, and we denote ∇⊥ as ∇N , the direct

sum connection
⊕

∇ = ∇> ⊕∇⊥ can presented as

⊕

∇ =

(
∇ 0

0 ∇N

)
(1.52)

The direct sum connection
⊕

∇ can be extended to ambient tensor bundles in

the usual way (as the dual and tensor product connection). It is traditionally

called the van der Waerden–Bortolotti connection in the literature (see e.g. [63]

where this construction is used for submanifolds of arbitrary codimension).

Using the general observations made in Section 1.1.13, the difference opera-

tor Aa
b
c between the ambient connection ∇ and the direct sum connection

⊕

∇
is expressed as A = S +H where the operators Ha

b
c and Sa

b
c are defined by

Ha
b
c = (∇aΠ

b
d)Π

d
c

and

Sa
b
c = (∇aN

b
d)N

d
c

The projection operators Πa
b and Na

b are viewed as sections of the ambient

tensor bundles, and thus can be differentiated with respect to the ambient

covariant derivative.

If we compute these derivatives, we get, for instance,

∇aΠb
c = ∇a

(
δb
c − NbN

c
)

= −(∇aNb)N
c − Nb∇aN

c

The quantity∇aNb plays an important role in the geometry of hypersurfaces.

Definition 1.2.12. The shape tensor Lab is the ambient covariant derivative

of the unit normal along the hypersurface:

Lab := ∇aNb (1.53)

The mean curvature H of hypersurface Σ is defined as

H := n̄−1gabLab (1.54)

where n̄ = dim Σ.

It is easy now to express the operators Ha
b
c and Sa

b
c in terms of the shape

tensor.
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Proposition 1.2.13 (The Weingarten equations). The operators Ha
b
c and

Sa
b
c are given by the formulas

Sa
b
c = La

bNc

Ha
b
c = −NbLac

(1.55)

Proof. Straightforward computations, which we have partly done above.

In practice, the Weingarten equations are often used in the form of the

following identity:

∇aΠb
c = −LabN

c − NbLa
c (1.56)

1.2.8 The Gauss–Weingarten formula on hypersurfaces

Theorem 1.2.14 (The Gauss–Weingarten formula). The difference between

the ambient connection ∇ and the van der Waerden–Bortolotti connection
⊕

∇
in the ambient bundle Ea of the hypersurface Σ is given by the following ex-

pression:

∇aV
b =

⊕

∇aV
b + (NcLa

b − NbLac)V
c (1.57)

where V b is an ambient vector along the hypersurface Σ, that is V a ∈ Ea.

Proof. This is just a restatement of the abstract Gauss formula ∇ =
⊕

∇ +

(S + H) from Section 1.1.13 for the case of the direct sum decomposition

Ea = Ea⊕N a using the Gauss theorem ∇> = ∇ and the Weingarten equations

(1.55).

In practical computations this formula is used separately for the intrinsic

and normal fields.

Corollary (The Gauss formula). The tangential covariant derivative ∇aV
b of

an intrinsic vector V a ∈ Ea is given by the sum of the intrinsic covariant

derivative ∇aV
b of this vector and the second fundamental form Ha

b
c actinv

on this vector, that is

∇aV
b = ∇aV

b − NbLacV
c (1.58)

Corollary (The Weingarten formula). This is simply the fact that ∇aNb = Lab,

which is the definition of the shape tensor (1.53) in our approach.
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1.2.9 The equations of Gauss and Codazzi

Theorem 1.2.15 (The Gauss equation for Riemannian hypersurfaces). The

the intrinsic Riemannian curvature of the hypersurface is expressed in terms

of the curvature of the ambient connection and the shape tensor as

R = ΠΣR + L ∧ L (1.59)

or, explicitly,

Rab
c
d = Πa′

aΠ
b′
bΠ

c
c′Π

d′
dRa′b′

c′
d′ + La

cLbd − Lb
cLad (1.60)

The contracted forms of this equation are also referred to as the Gauss equa-

tions, and we record them here for the completeness sake:

Ricbd = ΠΣRicbd −
NN
Rbd + n̄HLbd − (L2)bd (1.60-I)

and

Scal = Scal− 2
NN
Ric + n̄2H2 − |L|2 (1.60-II)

where the symbols
NN
Rbd and

NN
Ricbd are defined on page 59.

Theorem 1.2.16 (The Codazzi equation for Riemannian hypersurfaces). The

intrinsic exterior covariant derivative of the shape tensor viewed as a 1-form

on the hypersurface in terms of the curvature of the ambient connection is

given by the equation

∇∧ L = R · N (1.61)

explicitly

∇aLb
c −∇bLa

c = Πa′
aΠ

b′
bRa′b′

c
dN

d (1.62)

from what we can also obtain the contracted form of the Codazzi equation:

N
Ricb = ∇a

Lab − n̄∇bH (1.62-I)

where
N

Ricb := Πb′
bRicb′dN

d.

Proof of Theorems 1.2.15 and 1.2.16. On can prove these theorems as an ap-

plication of Theorem 1.1.22, using Proposition 1.1.25 and Equation 1.55.

Of course, it is not difficult to derive the Gauss and Codazzi equations

directly, using the difference formula (1.18) for the curvatures. The difference

operator in ∇ =
⊕

∇+A takes the form Aa
b
c = La

bNc−LacN
b, according to the
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Gauss–Weingarten formula (1.57), and therefore

(
⊕

∇∧ A)[ab]
c
d = 2

⊕

∇[aAb]
c
d =

⊕

∇a(Lb
cNd − LbdN

c)− (a↔ b)

= (∇aLb
c)Nd +���

���:0
Lb

c∇Na Nd − (∇aLbd)N
c −����

��:0
Lbd∇Na N c − (a↔ b)

= 2∇[aLb]
cNd − 2∇[aLb]dN

c

(A ∧ A)[ab]
c
d = Aa

c
eAb

e
d − (a↔ b)

= (La
cNe − LaeN

c)(Lb
eNd − LbdN

e)− (a↔ b)

= −La
cLbd − LaeLb

eN cNd︸ ︷︷ ︸
symmetric in a and b

−(a↔ b)

= −2L[a
cLb]d

Taking the corresponding orthogonal parts of R =
⊕

R +
⊕

∇ ∧ A + A ∧ A we

obtain the results.

1.2.10 The tangential Laplacian on hypersurfaces

Here we give an application for the difference of the Laplacians formula (1.19)

to the orthogonal splitting of the ambient bundle along the hypersurface.

The tangential Laplacian ∆ is the Laplacian of the ambient connection ∇
in the ambient bundle Ea = Ea ⊕N a. We can compare it with the Laplacian

of the van der Waerden–Bortolotti connection using the Gauss–Weingarten

formula.

Indeed, let us pick an ambient vector field V a ∈ Ea = Ea ⊕N a that we can

present as V a =
(
τa

νa

)
= τa + νa. Let ν := Ncν

c so that νa = νNa.

The difference of Laplacians formula (1.19) from section 1.1.12 takes the

form

∆V b =
⊕

∆V b + 2Aa
b
c

⊕

∇aV c +
( ⊕
∇aAa

b
c

)
V c + Aa

b
cA

ac
d

The Laplacian
⊕

∆ of the van der Waerden–Bortolotti connection
⊕

∇ is easy

to compute:
⊕

∆V b = ∆τ b + ∆Nνb. It is also clear that
⊕

∇aV c = ∇a
τ c +

∇N aνc. Differentiating with
⊕

∇ the direct sum difference operator Aa
b
c =

La
bNc − NbLac we obtain the expression

⊕

∇aAa
b
c =

(
∇a

La
b
)

Nc − Nb∇a
Lac. It

remains to compute Aa
b
cA

ac
d = −(L2)bd − |L|2NbNd, and we can substitute
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these expressions into the difference of Laplacians formula to get

∆

(
τ b

νb

)
=

(
∆τ b + 2 La

b∇aν + ν∇a
La

b − (L2)bcτ
c

Nb
(
∆ν − Lac∇

a
τ c − τ c∇a

Lac − ν|L|2
))

Proposition 1.2.17. The tangential Laplacian of an intrinsic vector field

V a ∈ Ea along the hypersurface Σ is expressed via the intrinsic Laplacian

as follows:

∆V a = ∆V a − (L2)abV
b − Na∇c

(LcbV
b) (1.63)

where (L2)a
b := La

cLc
b.

Proof. From the calculation of ∆
(
τb

νb

)
made above we can deduce that

∆

(
τ b

0

)
=

(
∆τ b − (L2)bcτ

c

−Nb
(
Lac∇

a
τ c + τ c∇a

Lac
))

which is equivalent to the claim.

Similarly, we obtain an expression for the tangential Laplacian acting on the

normal fields.

Proposition 1.2.18. The tangential Laplacian acting on a normal field V a ∈
N a along the hypersurface Σ is given by the expression

∆V a = 2 Lb
a∇b (NcV

c) + (NcV
c)∇b

Lb
a + Na

(
∆
(
NbV

b
)
− NbV

b|L|2
)

(1.64)

In particular, the tangential Laplacian of the unit normal Na along the hyper-

surface Σ has the following expression in terms of the shape tensor:

∆Na = ∇b
Lb

a − Na|L|2

Proof. From the formula for ∆
(
τb

νb

)
computed above we get an expression

∆

(
0

νb

)
=

(
2 La

b∇aν + ν∇a
La

b

Nb (∆ν − ν|L|2)

)
from which the claim follows.

Remark 1.2.19. It is possible to make analogous identities for the orthogonal

parts of the Laplacian in vector bundles in the spirit of the section 1.1.13.
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1.2.11 Simons’s identity on hypersurfaces

Sometimes we need to commute the derivatives of the shape tensor, and the

identities of this were proposed in James Simons’s paper [65], and then were

given in a modified form in Huisken and Polden’s lectures [38]. These identities

are an essential tool in many calculations of concrete examples of hyperusr-

face invariants, and we give their derivation in our notation for the sake of

completeness and for the future references.

Proposition 1.2.20 (Simons’s identity). The second covariant derivative of

the shape tensor has the following commutation property:

∇c∇dLab = ∇a∇bLcd + ΠΣ∇aRcbdN + ΠΣ∇cRdabN

− Lab
N
Rcd + Lcd

N
Rab − 2ΠΣRcaf(dL

f
b) + 4Lf [aLc](dL

f
b)

Proof. We start with writing the Codazzi equation in the following form

∇dLab −∇aLdb = RdabeN
e

and differentiate it to get

∇c∇dLab = ∇c∇aLdb +∇c(RdabeN
e)

In the second term of the above display we can commute the derivatives

∇c∇aLdb = ∇a∇cLdb − Rca
f
dLfb − Rca

f
bLdf

Using the Codazzi equation again

∇cLbd −∇bLcd = RcbdeN
e

and taking the derivative

∇a∇cLdb = ∇a∇bLcd +∇a(RcbdeN
e)

we arrive to the equation

∇c∇dLab = ∇a∇bLcd +∇a(RcbdeN
e) +∇c(RdabeN

e)− Rca
f
dLfb − Rca

f
bLdf
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Chapter 1 Riemannian geometry of hypersurfaces

We can write the Gauss formula as

∇aVb = ∇aVb +NbLa
cVc

where Vb ∈ Eb, i.e. VbN
b = 0.

Using the Gauss formula we compute

∇a(RcbdeN
e) = ∇a(RcbdeN

e) +NcLa
f (RfbdeN

e)

+NbLa
f (RcfdeN

e) +NdLa
f (RcbfeN

e)

The first term in the right hand side of the last display is now in the form

that we can differentiate using the ambient derivative:

∇a(RcbdeN
e) = ∇a(Π

c′
cΠ

b′
bΠ

d′
dRcbdeN

e)

= (∇aΠ
c′
c)Π

b′
bΠ

d′
dRc′b′d′eN

e + Πc′
c(∇aΠ

b′
b)Π

d′
dRc′b′d′eN

e

+ Πc′
cΠ

b′
b(∇aΠ

d′
d)Rc′b′d′eN

e + Πc′
cΠ

b′
bΠ

d′
d∇a(Rc′b′d′eN

e)

= (−N c′Lac−NcLa
c′)Πb′

bΠ
d′
dRc′b′d′eN

e+Πc′
c(−N b′Lab−NbLa

b′)Πd′
dRc′b′d′eN

e

+ Πc′
cΠ

b′
b(−Nd′Lad −NdLa

d′)Rc′b′d′eN
e + Πc′

cΠ
b′
bΠ

d′
d∇a(Rc′b′d′eN

e)

where we used

∇aΠ
b′
b = −N b′Lab −NbLa

b′

Making simplifications and using a compact notation

ΠΣRNbdN = N c′Πb′
bΠ

d′
dRc′b′d′eN

e

we further get

∇a(RcbdeN
e) = −LacΠΣRNbdN −NcLa

fRfbdN − LabΠΣRcNdN −NbLa
fRcfdN

−
(((

((((
(((

(((

Nd′LadΠ
c′
cΠ

b′
bRc′b′d′eN

e −NdLa
fRcbfN + ΠΣ∇aRcbdN

Using the shorthand notation
NN
Rbd := ΠΣRNbNd (see page 59), we rewrite

∇a(RcbdN) = ΠΣ∇aRcbdN+2 La[c

NN
Rb]d−NcLa

fRfbdN−NbLa
fRcfdN−NdLa

fRcbfN

Returning to

∇a(RcbdN) = ∇a(RcbdN) +NcLa
fRfbdN +NbLa

fRcfdN +NdLa
fRcbfN
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1.2 Hypersurfaces in Riemannian manifolds

we get

∇a(RcbdN) = ΠΣ∇aRcbdN + 2 La[c

NN
Rb]d −����

���:
1

NcLa
fRfbdN −����

���:
2

NbLa
fRcfdN −����

���:
3

NdLa
fRcbfN

+���
���

�:1
NcLa

fRfbdN +���
���

�:2
NbLa

fRcfdN +���
���

�:3
NdLa

fRcbfN

Thus we obtain the identity

∇aRcbdN = ΠΣ∇aRcbdN + 2 La[c

NN
Rb]d

Similarly, we get also

∇cRdabN = ΠΣ∇cRdabN + 2 Lc[d
NN
Ra]b

Using these results we can complete the calculation:

∇c∇dLab = ∇a∇bLcd+∇a(RcbdeN
e)+∇cRcafb = (RdabeN

e)−RcafdL
f
b−RcafbL

f
d

= ∇a∇bLcd + ΠΣ∇aRcbdN + 2 La[c

NN
Rb]d + ΠΣ∇cRdabN + 2 Lc[d

NN
Ra]b

− (ΠΣRcafd + LcfLad − LcdLaf )L
f
b − (ΠΣRcafb + LcfLab − LcbLaf )L

f
d

= ∇a∇bLcd + ΠΣ∇aRcbdN + ΠΣ∇cRdabN +��
��

Lac
NN
Rbd − Lab

NN
Rcd + Lcd

NN
Rab −��

��
Lca

NN
Rdb

−ΠΣRcafdL
f
b−LcfLadL

f
b+LcdLafL

f
b−ΠΣRcafbL

f
d−LcfLabL

f
d+LcbLafL

f
d

This is equivalent to the claim.

The Simons’s identity has a useful contracted form.

Proposition 1.2.21 (Contracted Simons’s identity). The intrinsic Laplacian

of the shape tensor has the following expression

∆Lab = (n− 1)∇a∇bH + ΠΣ∇aRicbN + ΠΣ∇cRcabN − LabRicNN + (n− 1)H
NN
Rab

+ ΠΣRicafL
f
b − ΠΣRcafbL

cf + (n− 1)HL2
ab − Lab|L|2

Proof. Contracting (with ḡab) the indices a and b in the Simons’s identity we
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Chapter 1 Riemannian geometry of hypersurfaces

see that

(n− 1)∇c∇dH = ∆Lcd + ḡabΠa′b′c′d′

abcd ∇a′Rc′b′d′N + ḡabΠa′b′c′d′

abcd ∇c′Rd′a′b′N

− (n− 1)H
N
Rcd + LcdRicNN

− ḡabΠa′b′c′d′

abcd Rc′a′fd′L
f
b′ − ḡabΠa′b′c′d′

abcd Rc′a′fb′L
f
d

+ ḡab
(

LfaLcdL
f
b + LfaLcbL

f
d − LfcLadL

f
b − LfcLabL

f
d

)
and using

ḡabΠa′

a Πb′

b = Πa′

a Πb′

b g
ab

we obtain

(n− 1)∇c∇dH = ∆Lcd + ΠΣ∇aRcadN − ΠΣ∇cRicdN − (n− 1)H
NN
Rcd + LcdRicNN

− ΠΣRcafdL
fa − ΠΣRiccfL

f
d

+ LfaLcdL
fa +���

���LfaLc
aLf d −����

��
LfcLadL

fa − (n− 1)LfcHLf d

that completes the proof.

1.3 Variations of Riemannian hypersurfaces

In Chapter 5 we shall examine a conformal invariant of hypersurfaces that

arises from a variational problem. In this section we prepare the necessary

background for that. This material is known classically, see e.g. [79], [38]. We

reformulate the identities in the abstract index notation and derive a formula

for the variation of the umbilicity tensor (Proposition 5.1.2), that to our best

knowledge is not found in the literature, at least in the form that we need.

1.3.1 Variations of embeddings

Let Σ be a hypersurface in a Riemannian manifold (M, g), and let Σ be rep-

resented as an image of some embedding f : Σ→M .

Definition 1.3.1. A variation of an embedding f : Σ → M is a smooth 1-

parametric family of embeddings f (t) : Σ → M such that f (0) = f . Here I is

an open interval (−ε, ε) for some ε > 0.

The image of Σ under f (t) will be denote by either Σt or Σt whatever is

convenient. The definition requires that Σt is an embedded hypersurface in M

for all t, and Σ0 = Σ.
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1.3 Variations of Riemannian hypersurfaces

Each point p ∈ Σ gives rise to a curve p(t) := f (t)(p) in M . Let Wp := ṗ = d
dt
p

be the velocity field of the curve p(t). Fixing t and letting p vary along Σ we

obtain a vector field W (t) along the hypersurface Σt. We refer to these vector

fields as the velocity fields of the corresponding hypersurfaces. For the initial

hypersurface Σ = Σ0 the velocity field will be denoted by V = W (0). The

vector field V is commonly referred to as the variation(al) vector field of the

variation f t.

Definition 1.3.2. The variation f (t) of the hypersurface Σ is called normal

if V = ϕN along Σ for some smooth function ϕ : Σ → R. In other words, we

require the velocity of the initial hypersurface Σ be either orthogonal to Σ, or

vanish.

Clearly, the velocity V of a normal variation vanishes at the points p ∈ Σ

where ϕ does, and the closure of the complement of all such points is the

support supp(ϕ) of the function ϕ.

1.3.2 Normal variations of Riemannian hypersurfaces

For each point p ∈ Σ we can consider restrictions of the tensorial quantities

onto the curve pt and thus we can talk about their covariant derivative Dt

along this curve (see [48], p.57, or [21], p.50).

For the sake of readability of calculations we use a shorthand notation for

the binormal part
NN
Rab of the background Riemannian curvature:

NN
Rab = Ra,c,b,dN

cNd (1.65)

and for the binormal part
NN
Ric of the background Ricci tensor

NN
Ric = RicabN

aNb (1.66)

Notice that due to the symmetries of the Riemann tensor the quantity
NN
Rab

is symmetric and has both indices tangential, that is
NN
RabN

b = 0, so it can be

identified with a section of the intrinsic tensor bundle E (ab).

We shall also use the notation L2
ab := La

cLcb.

It is be convenient to use the symbol of “variational derivative” δ0, which,

when applied to the tensorial objects, is understood as the covariant derivative

Dt along the curve pt at t = 0, but when it acts on the components of tensors

it will be a synonym for d
dt

∣∣
t=0

.
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Chapter 1 Riemannian geometry of hypersurfaces

Theorem 1.3.3. Let Σt be a normal variation of the hypersurface Σ in the

manifold M with the velocity vector field V along Σ = Σ0 such that V a = ϕNa.

Each of the quantities ḡab, dΣ, Na, Lab and H are defined for all t ∈ I at the

points pt ∈ Σt, and give rise to tensor fields along the curves pt.

The covariant derivatives δ0 := Dt|t=0 of these quantities (induced by the

background Levi-Civita connection) along the curve pt at t = 0 are given by

the following expressions:

δ0 ḡab = 2ϕLab (1.67)

δ0 ḡ
ab = −2ϕLab (1.68)

δ0 dΣ = ϕn̄H dΣ (1.69)

δ0 Na = −∇a
ϕ (1.70)

δ0 Lab = −∇a∇bϕ+ ϕ
(

L2
ab −

NN
Rab

)
(1.71)

δ0 n̄H = −∆ϕ− ϕ
(
|L|2 +

NN
Ric
)

(1.72)

These identities are well known in the theory of geometric evolution equa-

tions and in the geometry of minimal submanifolds.

Proofs using the normal coordinates can be found in [38] or, in an invariant

notation, in [2] and [3].

Yano in [79] has developed the theory of variations of Riemannian subman-

ifolds in the full generality. His results agree with the stated, at least for the

case of hypersurfaces (he uses different sign conventions, however).

For the proof we need to recall two elementary facts from the differential

geometry that will facilitate our calculations.

Lemma 1.3.4. For two vector fields X and Y defined along a curve pt in a

Riemannian manifold (M, g) we have

d
dt
g(X, Y ) = g(DtX, Y ) + g(X,DtY ) (1.73)

Proof. This is the compatibility of the Levi-Civita connection with the metric

applied to the pullback connection Dt on the curve pt.

See [48], p.57, or [21], p.50.

Recall also that DtX = ∇WX for W = ṗ if the field X along the curve pt is

extendible.
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1.3 Variations of Riemannian hypersurfaces

Lemma 1.3.5 (Symmetry lemma). Let F : I ×J →M be a smooth map such

that for each t ∈ I the map Ft = F (t, ·) is a regular curve, and for each s ∈ J
the map Fs = F (·, s) is again an regular curve, see Fig. 1.1. Then

Dt
∂Ft
∂s

= Ds
∂Fs
∂t

Proof. This is essentially the torsion-freeness of the background Levi-Civita

connection applied to the pullback connection Dt along a curve γ(t), cf. Propo-

sition 1.1.38.

An elementary proof can be found in [48], p.97, or [21], p.68.

s ∈ J

t
∈
I

Γ
s

Γ t

M

Γ

Figure 1.1: Parametrized surface in a manifold

We shall also need to differentiate the determinant of the intrinsic metric,

so the we give the required formula here.

Lemma 1.3.6. Let A(t) be a smooth 1-parametric family of nondegenerate

n × n-matrices A : I → Mn(R), where I = (−ε, ε) for some ε > 0. Then the

following identity holds

d
dt

det(A) = det(A) tr(A−1 d
dt
A) (1.74)

Proof. This result is standard, and a proof can be found in many sources. One

of the shortest ways to show this is to observe that if A(0) = I with I = In

being n × n-unit matrix, then A = I + tB for some other smooth family of

matrices B(t), and

det(I + tB) = I + t tr(B) +O(t2) (1.75)
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Chapter 1 Riemannian geometry of hypersurfaces

To see that one may use the formula for the determinant

det(A) =
∑
σ∈Sn

(−1)sgn(σ)

n∏
i=1

ai,σ(i) (1.76)

The equation (1.75) is a first-order Taylor expansion that immediately yields

d
dt

det(A) = tr( d
dt
A), for A(0) = I (1.77)

The general case A(t) = A(0) + tB is obtained form the previous one by

rewriting

det(A+ tB) = det(A) det(I + tA−1B)

that yields the claim since B = d
dt
A.

Remark 1.3.7. Before we start the proof let us notice that at the points where

the function ϕ vanishes, all the identities in Theorem 1.3.3 hold trivially, so

we shall assume that ϕ(p) 6= 0 everywhere in the proof.

Proof of Theorem 1.3.3. We can use the fact that all the quantities are tenso-

rial (the mean curvature is even a scalar), and for a given point p ∈ Σ they

are defined along the curve pt that arises form the variation.

Choosing some coordinates yla, λ = 1, . . . , n in a neighborhood U ⊆ M

around p we can assume that the embedding f : Σ→M is locally represented

as f : Ū → U for some Ū ∈ Σ with local coordinates xi, i = 1, . . . , n̄ on it. The

coordinate vector fields ∂i push forward by f t on all the hypersurfaces Σt, so

we get fields fi = f∗(∂i) along each Σ. In particular, the fields fi are defined

along the curve pt for each p ∈ Σ.

We can notice that the construction of the fields f ti is smooth and therefore

they form a set of vector fields on the whole U .

The unit normal Nt to each Σt is given as the unique solution of the system{
g(Nt, f ti ) = 0 i = 1, . . . , n̄

g(Nt,Nt) = 1
(1.78)

compatible with the orientations on Σ and M (locally there is no loss of gen-

erality here, of course).

The construction of the fields Nt is again defined smoothly, so we can assume

that the unit normal field N along the hypersurface is extended onto U this

way.
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1.3 Variations of Riemannian hypersurfaces

From now on we shall drop the label t from the notation for fi and N

assuming that the context clarifies when they depend on the parameter t ∈ I.

On each Σt the intrinsic metric induced by the embedding f t is given now

by the components in the frame {fi} as

ḡij = g(fi, fj)

Regarding these components as scalar fields along pt we can calculate

δ0 ḡij = δ0 g(fi, fj) = 2 g(δ0fi, fj)

= 2 g(∇V fi, fj) = 2 g(∇fi(ϕN), fj), fj)

= 2 g(∇fi(ϕN), fj) = 2 g((∇fiϕ)N + ϕ∇fiN, fj)

= 2ϕLij

We have used the defining identities (1.78) for the unit normals Nt, the Wein-

garten equation represented in the components with respect to the coordinate

frame {fi}
Lij = g(∇fiN, fj), (1.79)

and the fact that for a fixed i the fields fi and W arise as the velocity fields of

a family of curves on a parametrized surface as in Fig. 1.1: we take Γt to be pt,

and Γs to be γi(s), the coordinate curve with the velocity fi. The Symmetry

Lemma now allows to commute the derivatives ∇V fi = ∇fiV .

To differentiate the components of the inverse intrinsic metric ḡij we use the

identity

ḡij ḡjk = δik

where on the right hand side we have the Kronecker symbol (the components

of the identity map), and the Einstein summation is used.

Differentiating the above display we get

0 = (δ0 ḡ
ij)ḡjk + ḡijδ0 ḡjk = (δ0 ḡ

ij)ḡjk + 2ϕLjkḡ
ij

from where we obtain

(δ0 ḡ
ij) = −2ϕLij

The Riemannian volume form dΣ of the intrinsic metric ḡ on each Σt is
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Chapter 1 Riemannian geometry of hypersurfaces

given in the coordinates as

dΣ =
√

det ḡdxi ∧ · · · ∧ dxn̄

Since we have fixed the coordinate system on Ū ⊆ Σ and pushed it forward

on Σt, the form dxi ∧ · · · ∧ dxn̄ is constant on pt for all t, and we only need to

differentiate
√

det ḡ. The components ḡij form a non-degenerate matrix, so we

are in the conditions of Lemma 1.3.6

δ0

√
det ḡ =

δ0 det ḡ

2
√

det ḡ
=

det ḡ tr(ḡikδ0ḡkj)

2
√

det ḡ
= det ḡ 1

2
(ḡij2ϕLij) = ϕn̄H det ḡ

The unit normal N is determined by the equations (1.78) and the choice of

orientations on M and Σ so that the frame {f1, . . . , fn̄,N is positively oriented

in TpM at each point p where they are defined.

Differentiating the equation g(N,N) = 1 we obtain 2 g(∇V N,N), that is

∇V N is tangent to Σt, so we can write

∇V N = ξifi

for some functions ξi that are components of vector ∇V N in the frame {fi}.

To determine these ξi we differentiate the equation g(N, fj) and get

0 = δ0g(N, fj) = g(∇V N, fj) + g(N,∇V fj)

= g(ξifi, fj) + g(N,∇fjV ) = g(ξifi, fj) + g(N,∇fj(ϕN))

= g(ξifi, fj) + g

(
N, (∇fjϕ)N + ϕ∇fjN

)
= ξj +∇fjϕ

Notice that ∇fjϕ = ∇fjϕ, and that the function ϕ can be extended arbi-

trarily off the initial Σ for this purpose.

Thus, we get

∇V N = −(∇i
ϕ)fi

To make the calculations more readable let us write ∇i for ∇fi .

In this notation the Gauss equation implies

∇ifj = −NLij
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1.3 Variations of Riemannian hypersurfaces

and the Weingarten equation becomes

∇iN = Li
jfj

The components of the shape tensor Lij in the coordinate frame {fi} are

given by (1.79). Differentiating these components we compute

δ0Lij = δ0g(∇iN, fj) = g(∇V∇iN, fj) + g(∇iN,∇V fj)

= g (∇i∇V N + R(V, fi)N, fj) + g(∇iN,∇jV )

= −g
(
∇i((∇

k
ϕ)fk), fj

)
+ R(ϕN, fi, fj,N) + g(∇iN,∇j(ϕN))

= −g
(
fk∇i∇

k
ϕ, fj

)
− g

(
(∇k

ϕ)∇ifk, fj

)
− ϕR(fi,N, fj,N)

+ g
(
Li
kfk,N∇jϕ+ ϕ∇jN

)
= −∇i∇jϕ+ g

(
(∇k

ϕ)NLik, fj

)
− ϕR(fi,N, fj,N)

+ ϕg
(
Li
kfk,Lj

lfl
)

= −∇i∇jϕ− ϕR(fi,N, fj,N) + ϕLi
kLkj

It is remaining now to apply the equations we have already received to the

definition of the mean curvature:

n̄H = ḡijLij

Differentiating, we get

δ0n̄H = (δ0ḡ
ij)Lij + ḡijδ0Lij

= −2ϕLijLij + ḡij
(
−∇i∇jϕ− ϕR(fi,N, fj,N) + ϕLi

kLkj
)

= ∆ϕ− ϕRic(N,N)− ϕLijLij

Rewriting the results of these calculations using the abstract index notation

and our conventions (such that identification of TΣ with a subspace of TM

and using the same indices in both bundles), we obtain the expressions as

claimed.

These identities will be used in Chapter 5 after we have discussed the confor-

mal geometry of hypersurfaces. In particular, we shall re-interpret the quan-

tities in Theorem 1.3.3 as having a certain conformal weight.
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Chapter 2

Conformal geometry of

hypersurfaces

2.1 Background and notation from conformal

geometry

From now on we start assuming that M is a smooth manifold with dimension

dimM = n ≥ 3.

2.1.1 Conformal structure

Two Riemannian metrics ĝ and g are said to be conformally equivalent , or

conformal to each other, if there exist a smooth strictly positive (nowhere

vanishing) function Ω such that ĝ = Ω2g.

It is straightforward to verify that this is indeed an equivalence relation. An

equivalence class is called a conformal structure on manifold M . A manifold M

equipped with a conformal structure c is termed a conformal manifold (M, c).

We only deal with the case of Riemannian conformal structures in this the-

sis, but clearly these definitions work for pseudo-Riemannian metrics since

multiplying by a positive function does not change the signature.

2.1.2 Conformal densities

A conformal structure is equivalent to fixing a R+-ray subbundle G in the

space of all Riemannian metrics Mab ⊂ E(ab). A choice of scale g ∈ c is then

equivalent to a section of G.

The bundle G is a R+-principal bundle, and it is convenient to pass to the

associated vector bundles E [w] that arise via representations λ ∈ R+ 7→ (r ∈
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R→ λ−w/2r). We refer to sections of E [w] as densities of conformal weight w.

They can be seen as functions f : G → R that are homogeneous in the sense

that f(x,Ω2g) = Ωwf(x, g) where x ∈M .

Alternatively, we can start with the determinant line bundle Λn(TM) of

manifold M and consider its tensor square (Λn(TM))2 which is a line bundle

again. This way we eliminate the need to distinguish cases when manifold M

is oriented or not because (Λn(TM))2 is always trivializable. Thereofre there

exists its 2n-th root, ((Λn(TM))2)1/2n, and we refer to it as the bundle of

densities with conformal weight 1 and denote it by E [1]. Taking wth powers

of E [1] we obtain the bundles E [w] of densities with conformal weight w. A

detailed discussion see e.g. in [17].

A choice of a metric g in TM induces a volume form εg that trivializes

(Λn(TM))2 and its powers. Locally, in a choice of coördinates, the volume

form is given by εg =
√
|g| dx1 ∧ · · · ∧ dxn where |g| is the determinant of the

matrix (gij) in these coördinates. One can observe now that for a conformally

rescaled metric ĝ = Ω2g the representative of section f ∈ E [1] in the new

induced trivialization becomes f̂ = Ωf whereas sections f of conformal weight

w rescale as f̂ = Ωwf .

The conformal class c on manifold M determines the tautological section

gab ∈ E(ab)[2] that we call the conformal metric. Its inverse gab is a section of

E (ab)[−2].

The conformal metric gab induces the isomorphism Ea ∼= Ea[2] and from

now on we use it to raise and lower indices without mention. For instance,

Rab
c
d ∈ E[ab] ⊗ Ecd has no weight (i.e.w = 0) but Rabcd = gceRab

e
d has the

weight 2.

2.1.3 Conformal rescaling rules

The bundle E [w] is trivialized (symbolically, E [w]
g
= M ×R) by any choice of a

metric g ∈ c, and this metric induces the canonical connection ∇ = ∇g. When

a new representative ĝab = Ω2g in the conformal class is chosen, the connection

∇ on E [w] rescales as

∇̂af = ∇af + Υawf (2.1)

for f ∈ E [w]. Here

Υa := ∇a log Ω (2.2)

Let us give a quick justification for (2.1). The density bundle E [w] acquires

a connection associated with a metric g which is induced by the Levi-Civita
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2.1 Background and notation from conformal geometry

connection of g on the n-forms. The choice of a metric also trivializes the

bundle E [w] so a section s ∈ E [w] becomes a function [s]g ∈ E , and because

all connections agree on functions, we can define [∇as]g := da[s]g using the

differential da. For another choice of scale ĝ = Ω2g the function representing

section s becomes [s]ĝ = Ωw[s]g. Computing the connection in the new scale

we get

[∇as]ĝ = (d[s]ĝ)a = da(Ω
w[s]g) = Ωwda[s]g + [s]gwΩw−1daΩ

= Ωw
(

da[s]g + (Ω−1daΩ)w [s]g

)
= Ωw

(
da[s]g + Υaw [s]g

)
Returning to the densities we confirm the rescaling rule (2.1).

The Levi-Civita connection on tensor bundles rescales according to the fol-

lowing rules (can be proved by the Koszul formula, Proposition 1.1.9):

∇̂aX
b = ∇aX

b + ΥaX
b −XaΥ

b + ΥcX
cδa

b (2.3)

∇̂aXb = ∇aXb −ΥaXb −ΥbXa + ΥcXcgab (2.4)

Using the Leibniz rule one can obtain a more general formula (cf. [64])

∇̂afb1...bk =∇afb1...bk + (w − k)Υafb1...bk

−Υb1fab2...bk − · · · −Υbkfb1...bk−1a

+ Υcfcb2...bkgab1 + · · ·+ Υcfb1...bk−1cgabk

(2.5)

where fb1...bk ∈ Eb1...bk [w].

We can rewrite (2.3) as

∇̂aV
b = ∇aV

b + Aa
b
cV

c

where

Aa
b
c = δa

bΥc + δc
bΥa −Υbgac

and then use R∇̂ = R∇ +∇ ∧ A + A ∧ A to compute the conformal rescaling

of the Riemannian curvature.

Indeed,

(∇∧ A)ab
c
d = δb

c∇aΥd +���
��:0

δd
c∇aΥb − (∇aΥ

c)gbd − (a↔ b)

(A ∧ A)ab
c
d = (δa

cΥe + δe
cΥa −Υcgae)(δb

eΥd + δd
eΥb −Υegbd)− (a↔ b)
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Chapter 2 Conformal geometry of hypersurfaces

so expanding, raising index d and simplifying we get

R̂ab
cd = Rab

cd − 4∇[aΥ
[cδb]

d] + 4 δ[a
[cΥb]Υ

d] − 4 δ[a
[cδb]

d] ΥeΥ
e

2

Introducing the notation

Λab := −∇aΥb + ΥaΥb − 1
2
ΥcΥ

cgab (2.6)

we can represent the Riemannian curvature’s rescaling rule as

R̂ab
cd = Rab

cd + 4 δ[a
[cΛb]

d] (2.7)

This implies that the Weyl tensor (appropriately weighted) is conformally

invariant

Ŵabcd = Wabcd (2.8)

while the Schouten tensor rescales as

P̂ab = Pab + Λab (2.9)

The Schouten scalar’s rescaling rule will be useful too:

Ĵ = J−∇ ·Υ + (1− n
2
)|Υ|2 (2.10)

The Laplacian on E [w] rescales according to the formula

∆̂f = ∆f + (n+ 2w − 2)Υ · ∇f + w(∇ ·Υ)f + w(n+ w − 2)Υ ·Υf (2.11)

There is a curvature modified Laplacian, the so called “box” operator �,

�f := ∆f + wJf (2.12)

that has a more suggestive transformation rule

�̂f = �f + (n+ 2w − 2)
(

Υ · ∇f + w |Υ|
2

2
f
)

(2.13)

This equation shows that on E [2−n
2

] the box operator is conformally invariant

and is known as the conformal Laplacian, or the Yamabe operator.
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2.1 Background and notation from conformal geometry

2.1.4 Twisted versions of the conformal rescaling rules

If we have a vector bundle F over a manifold M with a connection ∇F , and the

manifold M is equipped with a conformal class c, for each choice of a metric

g ∈ c it makes sense to speak about the connection ∇F ⊗ ∇g in the bundle

F [w] := F ⊗ E [w] that we shall refer to as the (conformally) weighted bundle

F [w] with conformal weight w.

The connection ∇F ⊗ ∇g is the connection ∇F coupled to the Levi-Civita

connection∇g, and we shall denote this coupled connection by the same symbol

∇F , assuming the choice of a metric implicitly. As usual, if another metric

ĝ = Ω2g has been chosen in the conformal class c, the corresponding (rescaled)

connection will be denoted by ∇̂F .

The bundle F [w] can also be seen as the bundle E [w] twisted with a vector

bundle F . If the connection in the bundle F is conformally invariant (inde-

pendent from the conformal structure), the rescaling rules stated above have

their twisted analogues that remain formally unchanged, the connection being

replaced with the F -twisted Levi-Civita connection ∇F .

Indeed, for any f ∈ F [w] the F -connection twisted to the Levi-Civita con-

nection on E [w] rescales as

∇̂Fa f = ∇Fa f + Υaw f (2.1-⊗)

To verify this we apply the Leibniz rule to a decomposable section fΦ = ϕ⊗ξΦ

where ϕ ∈ E [w] and ξΦ ∈ FΦ, so we have

∇̂Fa f = (∇̂aϕ)⊗ ξΦ + ϕ⊗∇Fa ξΦ = (∇aϕ+ Υawϕ)⊗ ξΦ + ϕ⊗∇Fa ξΦ

= (∇aϕ)⊗ ξΦ + Υawϕ⊗ ξΦ + ϕ⊗∇Fa ξΦ = ∇Fa (ϕ⊗ ξΦ) + Υaw (ϕ⊗ ξΦ)

= ∇Fa fΦ + Υaw f
Φ

and then extend this property to arbitrary fields in F [w] by the linearity of

connections.

Using the same technique we can establish the connection rescaling rules for

F -twisted tangent and cotangent bundles with conformal weight w, that is

∇̂FaXb = ∇FaXb + (w + 1)ΥaX
b −XaΥ

b + ΥcX
cδa

b (2.3-⊗)

for a section Xa ∈ Ea ⊗F [w], and

∇̂FaXb = ∇FaXb + (w − 1)ΥaXb −ΥbXa + ΥcXcgab (2.4-⊗)
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Chapter 2 Conformal geometry of hypersurfaces

for Xa ∈ Ea ⊗F [w], where we have suppressed the F -indices (i.e. Φ,Ψ, . . .).

It is useful to write down the rescaling identities for the divergences of the

weighted (co-)vectors with values in F , as we shall see in the next few para-

graphs, and we do so:

∇̂FaXa = ∇FaXa + (n+ w)ΥaX
a

where Xa ∈ Ea ⊗F [w], and

∇̂FaXa = ∇FaXa + (n+ w − 2)ΥaXa

for Xa ∈ Ea ⊗F [w], and we have omitted the label F from the notation for a

better readability.

The Laplacian of the twisted connection still retains the conformal rescaling

rule of the usual Laplacian, so if f ∈ F [w],

∆̂Ff = ∆Ff +(n+2w−2)Υ ·∇Ff +w(∇·Υ)f +w(n+w−2)|Υ|2f (2.11-⊗)

The usual calculation is repeated literally step by step, and we give it here

in the full form because this observation is crucial for our constructions of

invariant differential operators in Chapter 3. Let us compute,

∆̂Ff =∇̂Fa∇̂Fa f = ∇̂Fa
(
∇Fa f + wΥaf

)
= ∇̂Fa∇Fa f︸︷︷︸

[w]

+wf∇̂a Υa︸︷︷︸
[0]

+wΥa∇̂Faf

=∇Fa∇Fa f + (n+ w − 2)Υa∇Fa f + wf
(
∇aΥa + (n− 2)ΥaΥa

)
+ wΥa

(
∇Faf + wΥaf

)
(we have indicated the weights of some terms by underbracing them).

Distributing the factors and simplifying the expressions we get

∆̂Ff = ∆Ff+(n+w−2)Υ·∇Ff+wf∇·Υ+wf(n−2)|Υ|2+wΥ·∇Ff+w2|Υ|2f

that confirms the formula (2.11-⊗).

This result is so important for us that we state it separately but formulate

for the twisted box operator �F that plays a distinguished rôle in the theory

of invariant operators. Notice that we have relied on the fact that we do not

commute the covariant derivatives, and the curvature of ∇F is not involved.

Proposition 2.1.1. The twisted box operator �F : F [w] → F [w − 2] rescales
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2.1 Background and notation from conformal geometry

according to the identity (2.13) where the operators � and ∇ are replaced by

their twisted counterparts, that is

�̂Ff = �Ff + (n+ 2w − 2)
(

Υ · ∇Ff + w |Υ|
2

2
f
)

(2.13-⊗)

Proof. As usual, applying the rescaling rules for ∆F and J, we have

�̂Ff =∆̂Ff + Ĵwf

= ∆Ff + (n+ 2w − 2)Υ · ∇Ff + w(∇F ·Υ)f + w(n+ w − 2)|Υ|2f

+ Jw f − w f∇ ·Υ + (1− n
2
)|Υ|2w f

and after some simplifications the result follows.

2.1.5 The conformal Bianchi identities

For the sake of completeness and for the future references we give the derivation

of the versions of the Bianchi identities suitable for the conformal geometry.

As usual, we assume that dimM ≥ 3.

Definition 2.1.2. The Cotton tensor Yabd is defined as

Yab
c := 2∇[aPb]

c (2.14)

Proposition 2.1.3 (The Bianchi identity for the Weyl tensor). The Weyl

tensor satisfies the following identity

∇[pWab]
cd = 4 δ[p

[cYab]
d] (2.15)

Proof. Using equations (1.29) and (1.30) we compute

0 = 3∇[pRab]
cd

= ∇pRab
cd +∇aRbp

cd +∇bRpa
cd

= ∇p(Wab
cd + 4 δ[a

[cPb]
d]) +∇a(Wbp

cd + 4 δ[b
[cPp]

d]) +∇b(Wpa
cd + 4 δ[p

[cPa]
d])

= 3∇[pWab]
cd + 4 δ[a|

[c∇pP|b]
d] + 4 δ[b|

[c∇aP|p]
d] + 4 δ[p|

[c∇bP|a]
d]

= 3∇[pWab]
cd + δa

c∇pPb
d − δbc∇pPa

d + δb
d∇pPa

c − δad∇pPb
c

+δb
c∇aPp

d − δpc∇aPb
d + δp

d∇aPb
c − δbd∇aPp

c

+δp
c∇bPa

d − δac∇bPp
d + δa

d∇bPp
c − δpd∇bPa

c
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Rearranging we get

0 = 3∇[pRab]
cd = 3∇[pWab]

cd − δpc∇aPb
d + δp

c∇bPa
d + δp

d∇aPb
c − δpd∇bPa

c

−δac∇bPp
d + δa

c∇pPb
d + δa

d∇bPp
c − δad∇pPb

c

−δbc∇pPa
d + δb

c∇aPp
d + δb

d∇pPa
c − δbd∇aPp

c

= 3∇[pWab]
cd − 4 δp

[c∇[aPb]
d] − 4 δa

[c∇[bPp]
d] − 4 δb

[c∇[pPa]
d]

or

3∇[pWab]
cd = 12 δ[p

[c∇aPb]
d]

that proves the claim.

Corollary 2.1.4 (The once contracted Bianchi identity for the Weyl tensor).

∇cWab
cd = (n− 3)Yab

d (2.16)

Proof. Rewriting the Bianchi identity for the Weyl tensor (2.15) as

3∇[pWab]
cd = 3 δ[p

cYab]
d − 3 δ[p

dYab]
c

and then as

∇pWab
cd+∇aWbp

cd+∇bWpa
cd = δp

cYab
d+δa

cYbp
d+δb

cYpa
d−δpdYab

c−δadYbp
c−δbdYpa

c

we can contract the indices p and c to get

∇cWab
cd+���

��∇aWbc
cd+���

��∇bWca
cd = δc

cYab
d+δa

cYbc
d+δb

cYca
d−δcdYab

c−����δa
dYbc

c−����δb
dYca

c

where some terms obviously vanish due to trace-freeness of the Weyl and Cot-

ton tensors. Continuing we obtain

∇cWab
cd = nYab

d + Yba
d + Yba

d − Yab
d

which is equivalent to the claim.

Corollary 2.1.5 (The twice contracted Bianchi identity for the Weyl tensor).

∇aPab = ∇bJ (2.17)

Proof.

0 = Yab
a = 2∇[aPb]

a = ∇aPb
a −∇bPa

a
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Corollary 2.1.6. The Cotton tensor is divergence-free:

∇dYab
d = 0 (2.18)

Proof. Indeed,

∇dYab
d = 2∇d∇[aPb]

d

= ∇d∇aPb
d −∇d∇bPa

d

= ∇a∇dPb
d + Rda

d
ePb

e − Rda
e
bPe

d −∇b∇dPa
d − Rdb

d
ePa

e + Rdb
e
aPe

d

= ∇a∇bJ−∇b∇aJ + RicaePb
e − RicbePa

e − RdaebP
ed + RdbeaPed

= 0

due to torsion-freeness of the Levi-Civita connection and the “swap” symmetry

of the Riemann tensor.

2.2 Hypersurfaces in conformal geometry

Let now M be a manifold of dimension n ≥ 3 endowed with a conformal

structure c, and Σ be an embedded hypersurface.

2.2.1 The induced conformal structure

For each choice of a metric g from the conformal class c the hypersurface inher-

its the induced metric ḡ, and for another metric ĝ = Ω2g from the conformal

class c, the induced metric agrees with the rescaling of the metric ḡ in the

conformal class of the metric ḡ on the hypersurface:

̂̄g = (Ω|Σ)2ḡ

2.2.2 Densities on hypersurfaces

For each choice of a scale the densities on M are represented by functions, and

therefore can be restricted onto Σ. Regarding the densities as homogeneous

functions on the ray bundle of metrics representing the conformal structure

ensures that the restriction of the bundle of densities of weight w descends to

the bundle of densities of the same weight on the hypersurface.
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Chapter 2 Conformal geometry of hypersurfaces

2.2.3 Canonical sections along hypersurfaces

Let Σ be a hypersurface represented as the zero locus of a defining function

s : M → R with ds 6= 0 along Σ.

From the point of view adopted in conformal geometry, the unit normal

Na = |∇s|−1∇as

has a conformal weight. Indeed, since gab ∈ Eab[−2], the quantity

|∇s| =
√

gab(∇as)∇bs

must have the weight −1. This implies that Na ∈ Ea[1]. This, of course, agrees

with the fact that

|N|2 = gabNaNb = 1 (2.19)

where 1 is seen as a constant section of E ≡ E [0].

Given a conformal weight the unit (co)normal is conformally invariant along

the hypersurface

N̂a = Na

Extending the Levi-Civita connection to act on Ea[1] and considering the

restricted bundle Ea[1]|Σ with the pullback connection ∇a : Eb[1]|Σ → Ea ⊗
Eb[1]|Σ we can differentiate the section Nb ∈ Eb[1]|Σ and get

Lab := ∇aNb

As usual, differentiating (2.19) we see that LabN
b = 0 and thus Lab can be

seen as a section of E (ab)[1] (i.e. with values in the intrinsic bundles). This

is the conformally weighted shape tensor (we have distinguished it from the

shape tensor used in the Riemannian geometry with the boldfaced letter “L”).

The mean curvature can be seen as a density of weight −1 along the hyper-

surface

H := n̄−1 ḡabLab

and for this reason we use the boldface letter “H” instead of the usual mean

curvature H = (dim Σ)−1ḡabIIab from the Riemannian geometry of hypersur-

faces. We could refer to H as the mean curvature density, but it is customary

to speak about the mean curvature, while the precise meaning should be clear

from the context.
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Proposition 2.2.1. The conformal rescaling properties of the (conformally

weighted) shape tensor and the mean curvature are

L̂ab = Lab + Υ · N ḡab (2.20)

Ĥ = H + Υ · N (2.21)

Proof. Using (2.4-⊗) and the definitions, we compute along the hypersurface:

◦̂
Lab = ∇̂aNb = Πa

a′∇a′Nb = Πa
a′
(
∇a′Nb −ΥbNa′ + ΥcNcga′b

)
=
◦
Lab + ΥcNcḡab

and contracting (2.20) yields (2.21).

Corollary 2.2.2. The trace free part
◦
Lab ≡ L(ab)◦ of the (conformally weighted)

shape tensor
◦
Lab := Lab −Hḡab (2.22)

is conformally invariant:
◦̂
Lab =

◦
Lab.

We prefer to term
◦
Lab the umbilicity tensor for the sake of brevity. This is a

fundamental conformal invariant of hypersurfaces, the precise meaning of that

is discussed in Chapter 4.

2.2.4 The conformal Gauss equations

We can decompose the ambient Riemannian curvature R and the intrinsic

Riemannian curvature R Riemannian curvatures in the Gauss equation (1.59)

according to (1.45) to get

R = W + g ? P (2.23)

and

R = W + ḡ ? P (2.24)

One has to be careful with these equations because the tensors in (2.23) live

in vector bundle of different ranks to those in (2.24) This is emphasized with

the overlines, however.

Since the total tangential projection ΠΣ is a linear operator, we may apply

it to (2.23) and write

ΠΣR = ΠΣW + ḡ ? ΠΣP (2.25)

Indeed, ΠΣg = ḡ.

Now both equations (2.24) and (2.25) live in the same dimension, so we can

legitimately perform algebraic operations with them.
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Our goal now is to decompose into Weyl and Schouten parts all the terms of

the Gauss equation. At the same time, we want to decompose the shape tensors

into the trace-free and the trace part, which is logically the same process as

the Weyl-Schouten decomposition.

The Kulkarni-Nomizu product is bilinear, so we can write

L ? L =
◦
L ?

◦
L + 2Hḡ ?

◦
L +H2ḡ ? ḡ (2.26)

The two latter terms in this equation are already in the pure trace form,

that is their trace-free part is zero . The first term, however, is not trace-free

yet, as we can see:

Ric(
◦
L ?

◦
L) = tr(

◦
L ?

◦
L) = −2

◦
L ◦

◦
L

Indeed, explicitly,

δc
a(2

◦
La

c
◦
Lb

d − 2
◦
Lb

c
◦
La

d) = −2
◦
Lb

a
◦
La

d

The scalar part of
◦
L ?

◦
L is then

Scal(
◦
L ?

◦
L) = −2 |

◦
L|2

so we can compute the Schouten part of
◦
L ?

◦
L as

P(
◦
L ?

◦
L) = 1

n−3

(
− 2

◦
L ◦

◦
L− −2|

◦
L|2

2(n−2)
ḡ
)

= 1
n−3

(
|
◦
L|2

(n−2)
ḡ − 2

◦
L ◦

◦
L
)

Let us temporarily write the decomposition of
◦
L ?

◦
L as

◦
L ?

◦
L = W(

◦
L ?

◦
L) + ḡ ? P(

◦
L ?

◦
L)

So far, we can represent the Gauss equation as follows

ΠΣW+ḡ?ΠΣP = W+ḡ?P− 1
2

(
W(

◦
L?

◦
L)+ḡ?P(

◦
L?

◦
L)+2Hḡ?

◦
L+H2ḡ?ḡ

)
Examining the terms we find that ΠΣW is not trace-free or pure trace yet,

but has a decomposition

ΠΣW = W(ΠΣW) + ḡ ? P(ΠΣW)
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where

P(ΠΣW) = − 1
n−3

NN
W (2.27)

Here we use the notation for the “bi-normal” part of the ambient Weyl tensor

NN
Wbd := Πb

b′Πd
d′Wa′b′c′d′N

a′N c′ (2.28)

Indeed, here is the calculation

δc
aΠa′

aΠ
b′
bΠ

c
c′Π

d
d′Wab

cd = δc
a(δa

a′ −NaN
a′)(δc′

c −Nc′N
c)Πb′

bΠ
d
d′Wa′b′

c′d′

= (δa
a′ −NaN

a′)(δc′
a −Nc′N

a)Πb′
bΠ

d
d′Wa′b′

c′d′

= (δc′
a′ −Nc′N

a′ −Nc′N
a′ +Nc′N

a′)Πb′
bΠ

d
d′Wa′b′

c′d′

= −Πb′
bΠ

d
d′Wa′b′

c′d′Na′Nc′

Observe that in Wab
cdNaNc indices b and d are both tangential in the sense

that tensoring them to the unit normal yields zero. Thus we may identify
N
Wbd

as defined above with Wab
cdNaNc. Formally,

WabcdN
aN c = Πb

b′Πd
d′Wa′b′c′d′N

a′N c′

since we identify the intrinsic tensor bundle with the annihilator of the unit

normal.

Thus, we have

Ric(ΠΣW) = −
N
W (2.29)

and also

Scal(ΠΣW) = 0 (2.30)

that proves (2.27) by an application of (1.46) in the dimension n̄ = n− 1.

Collecting the bits together we obtain the equation

W(ΠΣW)− 1
n−3

ḡ ?
N
W + ḡ ? ΠΣP =

W + ḡ ? P− 1
2

(
W(

◦
L ?

◦
L) + ḡ ? P(

◦
L ?

◦
L) + 2Hḡ ?

◦
L +H2ḡ ? ḡ

)
that we rewrite by moving the Weyl parts to the left hand side, and the

Schouten parts to the right hand side, and thus get

W
(

ΠΣW−R + 1
2

◦
L ?

◦
L
)

= ḡ ?
(

1
n−3

N
W−ΠΣP + P− 1

2
P(
◦
L ?

◦
L)−H

◦
L− H2

2
ḡ
)

Since the LHS is trace-free and the RHS is a pure trace, this can only hold
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when both sides are zero.

We must also state that this equation only makes sense in dimensions n > 3.

When n > 3, or equivalently n̄ > 2, the map ḡ ? · is injective, so we obtain

the following equation

ΠΣP− P = 1
n−3

N
W − 1

2(n−3)

(
|
◦
L|2

(n−2)
ḡ − 2

◦
L ◦

◦
L
)
−H

◦
L− H2

2
ḡ

that we can represent in the following form

ΠΣP− P = 1
n−3

N
W + 1

n−3

◦
L ◦

◦
L−H

◦
L− |

◦
L|2

2(n−3)(n−2)
ḡ − H2

2
ḡ (2.31)

Rearranging as

ΠΣP− P +H
◦
L + H2

2
ḡ = 1

n−3

( N
W +

◦
L ◦

◦
L− |

◦
L|2

(n−2)
ḡ
)

we obtain an explicit expression for the so called Fialkow tensor

F := ΠΣP− P +H
◦
L + H2

2
ḡ

and immediately see it conformal invariance. This tensor has been studied by

R.Stafford [68], A.Juhl1 [39] and S.Curry [20].

We want to have another consequence of these results, namely an expression

for ΠΣW −W that would be a more suitable candidate for the role of the

conformal Gauss equation.

Subtracting from the tangential projection of the Weyl-Schouten decompo-

sition of the ambient Riemannian curvature (2.25) the decomposition for the

intrinsic Riemannian curvature (2.24) we get

ΠΣR− R = ΠΣW −W + ḡ ?
(

ΠΣP− P
)

Now we can apply the Gauss equation to the left hand side, and use (2.26)

to get

−1
2

( ◦
L ?

◦
L + 2Hḡ ?

◦
L +H2ḡ ? ḡ

)
= ΠΣW −W + ḡ ?

(
ΠΣP− P

)

1It was A.Juhl who attributed this tensor to A. Fialkow, and this suggested to us the
terminology.
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2.2 Hypersurfaces in conformal geometry

Substituting (2.31)

− 1
2

( ◦
L ?

◦
L + 2Hḡ ?

◦
L +H2ḡ ? ḡ

)
=

ΠΣW −W + ḡ ?
(

1
n−3

NN
W + 1

n−3

◦
L ◦

◦
L−H

◦
L− |

◦
L|2

2(n−3)(n−2)
ḡ − H2

2
ḡ
)

and rearranging as

ΠΣW−W = −1
2

◦
L?

◦
L−ḡ?

(
1

n−3

NN
W+ 1

n−3

◦
L◦

◦
L−���H

◦
L− |

◦
L|2

2(n−3)(n−2)
ḡ−ZZZ

H2

2
ḡ+�

��
H
◦
L+ZZZ

H2

2
ḡ
)

after some cancellations we arrive to

W − ΠΣW = 1
2

◦
L ?

◦
L + ḡ ? 1

n−3

(NN
W +

◦
L2 − |

◦
L|2

2(n−2)
ḡ
)

(2.32)

that we refer to as the conformal Gauss equation.

Remark 2.2.3. One has to be careful when interpreting the conformal Gauss

equation in the proposed form since it is not a Weyl-Schouten decomposition:

some terms are not totally-trace free!

Remark 2.2.4. Rewriting (2.32) as

W = ΠΣW + 1
2

◦
L ?

◦
L + ḡ ? 1

n−3

(NN
W +

◦
L2 − |

◦
L|2

2(n−2)
ḡ
)

(2.33)

we can state it as that the intrinsic Weyl curvature of a hypersurface is de-

termined by the totally projected ambient Weyl curvature and the “umbilic”

curvature up to a trace term (which has some normal part of the ambient cur-

vature in it). The trace term is an effect of the traces of the totally projected

Weyl and the “umbilic” curvatures, since the intrinsic Weyl tensor is totally

trace free. Passing to the trace free parts we can modify this statement to

W = (ΠΣW)◦ +
(

1
2

◦
L ?

◦
L
)
◦

(2.34)

where by (·)◦ we have denoted the trace-free part of the embraced tensor.

As an immediate consequence of (2.34) we recover a result that according

to Yano [78] is due to Schouten:

Proposition 2.2.5. A totally umbilic hypersurface in a conformally flat back-

ground is again conformally flat with respect to the induced conformal struc-

ture.
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Chapter 2 Conformal geometry of hypersurfaces

2.2.5 The conformal Codazzi equations

The Weyl-Schouten decomposition of the Riemannian curvature proves to be

also useful for the representation of the Codazzi equation in the form suitable

for conformal geometry. The calculations and the statements are less involved

then for the Gauss equations but we need to use some new notation to expose

the real meaning of the terms.

Proposition 2.2.6 (The conformal Codazzi equation). The intrinsic exterior

covariant derivative of the umbilicity tensor
◦
La

c viewed as a 1-form on the

hypersurface Σ is expressed in terms of the ambient curvatures as

2∇[a

◦
Lb]

c = Wab
cdNd + 2 δ[a

c∇b]H + 2 δ[a
cPb]

dNd (2.35)

Proof. Rewrite the Codazzi equation for hypersurfaces as

Πa′
aΠ

b′
bRa′b′

cdNd = ∇aLb
c −∇bLa

c

Using the Weyl-Schouten decomposition of the Riemannian curvature

Rab
cd = Wab

cd + 4δ[a
[cPb]

d]

we rewrite the Codazzi equation as

Πa′
aΠ

b′
b(Wa′b′

cd + 4δ[a′
[cPb′]

d])Nd = ∇a(Lb
c +Hδb

c)−∇b(La
c +Hδa

c)

Expanding all the terms in the above display we arrive to

Πa′
aΠ

b′
b(Wa′b′

cdNd + δa′
cPb′

dNd − δb′cPa′dNd +���
���δb′

dPa′
cNd −����

��
δa′

dPb′
cNd)

= ∇a

◦
Lb

c + δb
c∇aH −∇b

◦
La

c − δac∇bH

After simplifications we get

Wab
cdNd + 2 δ[a

cPb]
dNd = 2∇[a

◦
Lb]

c − 2 δ[a
c∇b]H

where we have used the notation

Wab
cd := Πa′

aΠ
b′
bWa′b′

cd

δa
b := Πa′

aδa′
b
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2.2 Hypersurfaces in conformal geometry

and

Pa
b = Πa′

aPa′
b

The underline reminds that these quantities are seen as k-forms on Σ with

values in the ambient bundles.

The corollary is much wider known than the full form from the previous

proposition.

Corollary 2.2.7 (The contracted conformal Codazzi equation). The exterior

covariant divergence of the umbilicity tensor
◦
Lab viewed as a 1-form on the

hypersurface Σ is given by

∇a ◦
Lab = (n̄− 1)

[
Pb

dNd +∇bH
]

(2.36)

Proof. Rewriting the conformal Codazzi equation in the expanded form

Wab
cdNd = ∇a

◦
Lb

c −∇b

◦
La

c − δac∇bH + δb
c∇aH − δacPbdNd + δb

cPa
dNd

we can contract (with the intrinsic metric) the indices a and c to get

0 = ∇a

◦
Lb

a − 0− n̄∇bH +∇bH − n̄Pb
dNd + Pb

dNd

where n̄ = n− 1 is the dimension of the hypersurface Σ.
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Chapter 3

Invariant calculus for conformal

hypersurfaces

In the first section of this chapter we give a fairly brief overview of conformal

tractor calculus. The emphasis is made on the ways of obtaining invariant

operators acting on tractor bundles. Some useful formulas are presented, such

as explicit expressions for the action of the box operator and the Thomas-D

operator on the standard tractors, as well as on the sections of the adjoint

tractor bundles. In Appendix C one can find the similar facts related to the

symmetric 2-tractor bundle.

The the second section is devoted to a detailed treatment of the tractor

calculus of hypersurfaces. We define the tractor bundles that arise on a hy-

persurface in a conformal manifold, and describe the metric connections that

are available in these bundles.

In the culmination of this chapter we introduce twisted versions of the intrin-

sic tractor operators, and also construct a specific, so called triple-D operator,

and discuss their properties.

3.1 The conformal tractor calculus

A conformal manifold (M, c) can be regarded as a parabolic geometry with the

structure group SO(n+1, 1) and a certain parabolic subgroup P (the stabilizer

of the unit ray in the flat model). As it is shown in [18] such geometries possess

a canonical vector bundle that can be identified with the associated bundle of

the Cartan geometry.
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Chapter 3 Invariant calculus for conformal hypersurfaces

3.1.1 The standard conformal tractor bundle

To equip a conformal manifold (M, c) with a canonical tractor bundle TM one

can consider the following construction (see [17]).

The density bundle E [1] has the 2-jet exact sequence (see e.g. [66])

0→ E(ab)[1]→ J2(E [1])→ J1(E [1])→ 0

where the bundle E(ab)[1] splits by the conformal metric gab into the trace-

free and the trace part as E(ab)[1] = E(ab)◦[1] ⊗ E [−1], and thus the bundle

E(ab)◦[1] turns out to be a smooth subbundle of J2(E [1]). The standard confor-

mal co-tractor bundle is then defined as the quotient TA := J2(E [1])/E(ab)◦[1].

Taking into consideration the 1-jet exact sequence of E [1]

0→ Ea[1]→ J1(E [1])→ E [1]→ 0

we obtain a composition series for TA that (cf. [12], see also [6, pp.2-3]) can

be expressed as

TA := E [1]
�� Ea[1]

�� E [−1]

where the semidirect product
�� is used to show that the presentation of a

section changes when the metric is moved within the conformal class.

The bundle TA has a metric and compatible connection ∇T , which are in-

variant with respect to the underlying conformal structure.

To keep things simple, we adopt (as in [22]) the following

Definition 3.1.1. The standard conformal tractor bundle TM or T A in the

index notation, on the conformal manifold (M, c) is defined for any choice of

metric g from the conformal class c by

T A g
= E [1]⊕ Ea[−1]⊕ E [−1]

so that if V A ∈ T A is an arbitrary section that in a choice of a metric g can

be written as

[V A]g =

 σ

µa

ρ

 (3.1)

but when the metric is moved within the conformal class to ĝ = Ω2g, the
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3.1 The conformal tractor calculus

presentation of section V A changes to

[V A]ĝ =

 σ

µa + Υaσ

ρ−Υbµ
b − 1

2
ΥbΥ

bσ

 (3.2)

Remark 3.1.2. There are reasons to denote the tractor bundle by symbol EA.

For instance, this would emphasize the affinity of the tractor bundle both with

bundles Ea and E [w]. We choose to use a separate letter (T ) for the tractor

bundles to stick closer to our conventions.

The tractor bundle is equipped with a metric hAB that we call the tractor

metric . For any two tractors UA and V B and a choice of a metric g ∈ c so

that

UA =

 σ

µa

ρ

 and V B =

 σ′

µ′b

ρ′


the metric is given by

hABU
AV B := σρ′ + gabµ

aµ′b + ρσ′ (3.3)

It is easily checked that this definition is invariant with respect to conformal

rescalings.

The tractor metric hAB is assigned the conformal weight 0 and allows to

identify the bundles TA and T A, so we no longer distinguish the co-tractor and

tractor bundles in the sequel.

More importantly, the tractor bundle possesses a connection ∇T that in any

choice of metric g ∈ c and for any V A ∈ T A as above is defined by

∇Ta V B g
=

 ∇aσ − µa
∇aµ

b + δa
bρ+ Pa

bσ

∇aρ− Pabµ
bσ

 (3.4)

where ∇a in the right hand side is the Levi-Civita connection of the metric

g, and Pab is the corresponding Schouten tensor. In the standard way, this

connection is extended to all tensor products of tractor and tensor bundles,

the resulting (coupled 1 ) connection being referred to as the tractor connection

throughout this thesis.

The tractor connection is compatible with the tractor metric:

1In the terminology from page 71 this is the Levi-Civita-twisted-to-tractor connection.

87



Chapter 3 Invariant calculus for conformal hypersurfaces

Proposition 3.1.3. The standard conformal tractor bundle T A equipped with

the tractor metric hAB and the tractor connection ∇T is a Riemannian tractor

bundle in the sense that ∇Ta hBC = 0.

A proof will be given shortly in the next section after we develop the neces-

sary tools for calculations.

3.1.2 The standard tractor projectors

The usual vector-like notation quickly becomes inconvenient when the number

of tractor indices grows. In order to facilitate calculations we introduce (as in

[32]) the following operators

XA : EA → E [1]

ZA
a : EA → Ea[−1]

YA : EA → E [−1]

(3.5)

These operators act on an arbitrary tractor V A, as in (3.1), by the rules

XAV
A = σ

ZA
aV A = µa

YAV
A = ρ

(3.6)

The operators (3.5) can be seen as sections of the corresponding bundles:

XA ∈ EA[1]

ZA
a ∈ EAa[−1]

YA ∈ EA[−1]

(3.7)

Using the inverse tractor (hAB) and the conformal (gab) metrics we can

construct sections Y A ∈ EA[−1], ZA
a ∈ EAa[1] and XA ∈ EA[1].

These sections allow us to write any tractor V A ∈ T A as

V A = Y Aσ + ZA
aµ

a +XAρ (3.8)

The operator XA is invariant, however Y A and ZA
a transform under rescal-
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3.1 The conformal tractor calculus

XA ZA
b Y A

XA 0 0 1
ZAa 0 gab 0
YA 1 0 0

Table 3.1: Contractions of the standard tractor projectors

ing of the metric according to the rules

X̂A = XA

ẐA
a = ZA

a +XAΥa

Ŷ A = Y A − ZA
aΥ

a − 1
2
ΥaΥaX

A

(3.9)

These identities easily follow from the tractor rescaling rule (3.2).

The operators XA, ZA
a and YA, as well as XA, ZA

a, Y
A etc, will be referred

to as the standard (conformal) tractor projectors .

The tractor metric (3.3) can be expressed in terms of the standard tractor

projectors by the following identity:

hAB = YAXB + ZA
aZB

bgab +XAYB (3.10)

When performing calculations, it is convenient to use the tractor metric in

the form of a multiplication table (cf. [32]), see Table 3.1.

The tractor connection (3.4) can be expressed (or even defined) in terms of

its action on the standard tractor projectors, as it is given below:

∇bX
A = ZA

b

∇bZ
A
a = −Y Agba −XAPba

∇bY
A = ZA

aPb
a

(3.11)

We can now demonstrate the power of the tractor projectors.
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Chapter 3 Invariant calculus for conformal hypersurfaces

Proof of Proposition 3.1.3. A straightforward calculation:

∇chAB = ∇c(YAXB + ZA
aZB

bgab +XAYB)

= (∇cYA)XB + YA∇cXB + (∇cZA
a)ZB

bgab

+ZA
a(∇cZB

b)gab + (∇cXA)YB +XA(∇cYB)

= ZA
aPacXB + YAZB

bgbc + (−YAδca −XAPc
a)ZB

bgab

+ZA
a(−YBδcb −XBPc

b)gab + ZA
agacYB +XAZB

bPbc

= ���
���:

1
ZA

aXBPac +���
�:2

YAZBc −����:
2

YAZBc −����
��:3

XAZB
bPcb

−����
��:4

ZA
aYBgac −����

��:1
ZA

aXBPca +���
���:

4
ZA

aYBgac +���
���:

3
XAZB

bPbc = 0

where we have used the identities (3.11), the Leibniz rule and the symmetry

of the Schouten tensor Pab = Pba.

The tractor Laplacian ∆T := ḡab∇Ta∇Tb , in the following denoted by ∆, acts

on the standard tractor projectors by the rules

∆XA = −Y A n−XA J

∆ZA
a = −2ZA

bP
b
a −XA∇bPab

∆Y A = −Y A J + ZA
a∇bPb

a −XA|P|2
(3.12)

These formulas easily follow from (3.11), the Leibniz rule and the conformal

Bianchi identity (2.17).

The action of the tractor box operator � := ∆ + Jw on the standard tractor

projectors is then given by the identities

�XA = −Y A n

�ZA
a = −2ZA

bP
b
a −XA∇aJ + JZA

a

�Y A = −2Y A J + ZA
a∇aJ−XA|P|2

(3.13)

Using the Leibniz rule, the identities (3.13), (3.12) and (3.13) one can com-

pute the action of the operators ∆ and � on any tractor. Sometimes the

quasi-Leibniz-type rules (as in (1.14)) help to organize the calculations.

Now we introduce the notation for some special tractor bundles that prove

to be quite useful for our discussion. In fact, these bundles play an important

role in the invariant theory, but we only will be able to mention this in passing.
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3.1 The conformal tractor calculus

3.1.3 The adjoint tractor bundle

For our purposes we only need the following simple definition.

Definition 3.1.4. The adjoint tractor bundle AAA′ is defined as the antisym-

metric part of the tensor square of the standard tractor bundle, that is

AAA′ := T[AA′] ≡ T[A ⊗ TA′]

Remark 3.1.5. The use of the primed indices in this context is intentional:

a pair AA′ will be considered as skew. A notation that is more suitable for

general k-form tractors can be used as well, namely sequentially numbered

indices are assumed to be skewed over. See e.g. [12] or [64] for more details.

Definition 3.1.6. The adjoint tractor projectors YAA′
a,WAA′ ,ZAA′aa

′
,XAA′

a

are the sections defined by the following identities:

YAA′
a := 2Y[AZA′]

a

WAA′ := 2Y[AXA′]

ZAA′aa
′
:= 2Z[A

aZA′]
a′

XAA′
a := 2X[AZA′]

a

(3.14)

Remark 3.1.7. In the index-free manner this can be stated as

Y = Y ∧Z
W = Y ∧X
Z = Z∧Z
X = X∧Z

where ∧ in this case denotes the wedge product in the tractor bundle indices

(as in [12]).

An arbitrary adjoint tractor VAA′ ∈ AAA′ of weight 0 can be represented as

VAA′
g
= YAA′

aυa + WAA′ω + ZAA′aa
′
ζaa′ + XAA′

aξa (3.15)

where υa ∈ Ea[2], ω ∈ E , ζaa′ ∈ E[aa′][2] and ξ ∈ Ea[−2].
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Chapter 3 Invariant calculus for conformal hypersurfaces

Proposition 3.1.8. The adjoint projectors rescale conformally as

ŶAA′
a′ = YAA′

a′ + WAA′Υ
a′ − ZAA′aa

′
Υa + XAA′

a
(

ΥaΥ
a′ − δaa

′ |Υ|2
2

)
ŴAA′ = WAA′ + XAA′

aΥa

ẐAA′aa
′
= ZAA′aa

′
+ XAA′

b(δb
a′Υa − δbaΥa′)

X̂AA′
a′ = XAA′

a′

(3.16)

where, as usual, Υa := ∇a log Ω for the rescaling ĝ = Ω2g.

Proof. Straightforward calculations using (3.9) and (3.14).

Remark 3.1.9. From these identities we can recover the composition series for

the adjoint tractor bundle:

A = Ea[2]
�� E

⊕
E[aa′][2]

�� Ea[−2]

where VAA′ as above is regarded as

V
g
=

 w

ya xa

zaa′


Definition 3.1.10 (Adjoint tractor metric). The tractor metric hAB induces

a metric h[AA′][BB′] in the adjoint tractor bundle that can be represented as

h[AA′][BB′]
g
= 1

2
YAA′

aXBB′
bgab−1

2
WAA′WAA′+

1
4
ZAA′aa

′ZBB′bb
′
gabga′b′+

1
2
XAA′

aYBB′
bgab

The standard tractor connection extends to a connection in the adjoint trac-

tor bundle via the Leibniz rule, and it can be expressed by its action on the

adjoint tractor projectors as follows:

Proposition 3.1.11.

∇bYAA′
a′ = ZAA′aa

′
Pab −WAA′Pb

a′

∇bWAA′ = YAA′
agab − XAA′

aPab

∇bZAA′aa
′
= 2YAA′

[aδb
a′] + 2XAA′

[aPb
a′]

∇bXAA′
a′ = ZAA′aa

′
gab + WAA′δb

a′

(3.17)

Proof. Straightforward calculations using (3.11) and (3.14).
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3.1 The conformal tractor calculus

It will be useful in our calculations to have the explicit identities for the

action of the tractor Laplacian on the adjoint projectors, so collect them here.

Proposition 3.1.12.

∆YAA′
a′ = −YAA′

a′J−WAA′∇a′J + ZAA′aa
′∇aJ + XAA′

a
[
2 P2

a
a′ − δaa

′|P|2
]

∆WAA′ = −2WAA′J− XAA′
a∇bPab

∆ZAA′aa
′
= 4ZAA′c[aPc

a′] + 2XAA′
[a∇a′]J

∆XAA′
a′ = YAA′

a′(2− n)− XAA′
a′J

(3.18)

3.1.4 Invariant tractor operators

We briefly remind (see [26] and [27]) the construction of the basic invariant

operators of the conformal tractor calculus.

We have already defined some invariant tractor operators of zeroth dif-

ferential order, namely XA : E [w] → TA[w], XAA′
a : Ta[w] → A ⊗ T [w] and

XAB : T [w]→ T(AB) ⊗ T [w]. These are the simplest examples of the so called

bottom operators (see e.g. [22] and [64]). Informally we say that they place a

section into the bottom slot of the resulting tractor.

Operators on densities

Let us introduce the following operator [27]. It can be viewed as an invariant

operator on densities of zeroth order.

Definition 3.1.13. The weight operator w : E [w]→ E [w] is defined as

w(f) = wf (3.19)

The significance of the weight operator is based on the following elementary

but rather useful fact.

Proposition 3.1.14. The weight operator satisfies the Leibniz rule:

w(f1f2) = f1w(f2) + f2w(f1) (3.20)

Examining the rescaling behavior of the tractor expression for the covariant

derivative of a weighted section ZA
a∇af . using (2.1) and (3.9), one can come

up with the following.
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Chapter 3 Invariant calculus for conformal hypersurfaces

Definition 3.1.15. The pre-D operator DA acts on E [w] by the rule defined

in a choice of scale as

[DAf ]g = Y Awf + ZA
a∇af (3.21)

Remark 3.1.16. This operator was denoted by D̃A in [26] and [27]. We have

changed the notation in order to have accented versions of it that we use for

hypersurface versions of the tractor operators.

Proposition 3.1.17. The pre-D operator DA : E [w]→ E [w − 1]

1. satisfies the Leibniz rule: DA(f1f2) = f1DAf2 + f2DAf1

2. rescales as

D̂Af = DAf +XA
(

Υa∇af + |Υ|2
2
wf
)

(3.22)

Having the conformal deformation accumulated in the bottom slot (i.e. in

the XA term), we can easily construct an invariant operator by “wedging out”

the deformation.

Definition 3.1.18. The double-D operator DAP acts on E [w] according to the

formula

DAPf := 2X[PDA]f (3.23)

Proposition 3.1.19. The double-D operator DA′ : E [w]→ E [w]

• satisfies the Leibniz rule: DAP (f1f2) = f1DAP (f2) + f2DAP (f1)

• is conformally invariant.

One minor inconvenience of the double-D operator is that the result of its

action has two more tractor indices. This, actually, is an advantage since

these indices can be interpreted in terms on the adjoint tractor bundle. More

precisely, the double-D operator can be seen as D : T → A⊗ T .

Proposition 3.1.20. The double-D operator in terms of the adjoint tractor

projectors can be expressed in a choice of scale as

DAA′f
g
= WAA′wf − XAA′

a∇af (3.24)

Remark 3.1.21. If we adopt the expression from this proposition as the def-

inition of the double-D operator, then we can prove its invariance using the
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3.1 The conformal tractor calculus

formulas for the conformal rescaling of the adjoint tractor projectors (Propo-

sition 3.1.8):

D̂AA′f =ŴAA′wf − X̂AA′
a∇̂af

=WAA′wf + XAA′
aΥawf − XAA′

a(∇af + Υawf) = DAA′f

We can interpret the double-D operator as placing the derivative of f into

the bottom slot of an adjoint tractor and compensating the conformal trans-

formation by another slot.

It is possible to construct another invariant operator on densities that adds

only one tractor index to the result.

The key idea is to notice that the pre-D operator rescales (3.22) up to a

constant coefficient by the same quantity as the box operator on densities 2.13

does. This immediately shows leads to the following

Definition 3.1.22. The Thomas-D (or tractor-D) operator DA is defined on

E [w] as

DAf := (n+ 2w − 2)DAf −XA�f (3.25)

We have recovered the celebrated Thomas-D operator from [6] or [69].

Even it is obvious in our approach, we record its important property.

Proposition 3.1.23. The Thomas-D operator DA : E [e]→ E [w−1] is confor-

mally invariant.

The operators that we have just described can be extended to a much larger

class of domains.

Twisted operators

Let (F , D) be a vector bundle on M with an invariant connection D.

Definition 3.1.24. A conformally invariant differential operator P defined

on E [w] is said to be strongly invariant if it can be extended to act on the

weighted bundle F [w] equipped with the twisted Levi-Civita connection ∇D

so that the new operator denoted as PF or PD is again conformally invariant.

Theorem 3.1.25. The operators w, DAP and DA are strongly invariant.

Proof. The invariance operator w is obvious. The double-D operator is of

the first differential order, and its strong invariance is immediate. The strong
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Chapter 3 Invariant calculus for conformal hypersurfaces

invariance of the Thomas-D operator

DFAf = (n+ 2w − 2)DFAf −XA�
Ff (3.26)

where DFA is the pre-D operator twisted with F , and �F is the twisted box

operator, follows from (2.1-⊗) and Proposition 2.1.1.

Invariant operators on tractors

It was noticed by M.Eastwood that the Thomas-D operator can act on sec-

tions of any tractor bundle as the tractor derivative on any weighted tractor

rescales by the same rule as the Levi-Civita on densities. T.P.Branson and

A.R.Gover [13] have extended the notion of strong invariance to operators

acting on sections twisted with arbitrary vector bundles equipped with an in-

variant connection. This is the point of view, which is extensively used in the

present thesis.

Since the tractor connection (3.4) is conformally invariant, the operators w,

DAP and DA can act invariantly on tractor bundles with any conformal weight.

3.1.5 The action of the tractor operators on the tractor

projectors

In explicit calculations it is convenient to have the formulas for action of the

operators DA, DAA′ and DA handy. We collect them in the present section. Of

course, they are just consequences of the definitions and the Leibniz rule.

The pre-D operator on the tractor projectors

The action of the pre-D operator on the standard tractor projectors is given

by the identities

DAYB = −YAYB + ZA
aZB

bPab (3.27a)

DAZB
b = −2Y(AZB)

b − ZAaXBPa
b (3.27b)

DAXB = YAXB + ZA
aZBa = hAB −XAYB (3.27c)
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3.1 The conformal tractor calculus

It is also quite useful to observe that

DAYA = J (3.28a)

DAZA
b = 0 (3.28b)

DAXA = n+ 1 (3.28c)

and

Y ADAf = 0 (3.29a)

ZA
bDAf = ∇bf (3.29b)

XADAf = wf (3.29c)

Example 3.1.26. These identities can be used to compute the iterated action

of the pre-D operator on a weighted section f of some natural bundle (scalars,

tensors, tractors) with weight w (that is tensored with E [w]).

Here is a complete calculation.

DBDAf = DB(YAwf + ZA
a∇af)

= (DBYA)wf + YAw(DBf) + (DBZA
a)∇af + ZA

aDB∇af

= (−YBYA + ZB
bZA

aPba)wf + YAw(YBwf + ZB
b∇bf)

+ (−2Y(BZA)
a − ZBbXAPb

a)∇af + ZA
a(YBw∇af + ZB

b∇b∇af)

= YBYA(−wf + w2f)

+ YAZB
bw∇bf − 2Y(BZA)

a∇af + ZA
aYBw∇af

+ ZB
bZA

a(∇b∇af + wPbaf)

− ZBbXAPb
a∇af

(3.30)

After some simplifications we get

DBDAf = YBYA(w − 1)wf + 2Y(BZA)
a(w − 1)∇af

+ ZB
bZA

a(∇b∇af + wPabf)− ZBbXAPb
a∇af

(3.31)

As an easy corollary we immediately obtain

DADAf = �f (3.32)
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The double-D operator on the tractor projectors

The following identities will be useful for the concrete calculations in Chapter

4.

The action of the double-D operator on the standard tractor projectors is

given by the following identities

DAPYB = 2X[AYP ]YB − 2X[AZP ]
aZB

bPab (3.33a)

DAPZB
b = 2X[AYP ]ZB

b + 2X[AZP ]
bYB + 2X[AZP ]

aXBPa
b (3.33b)

DAPXB = 2X[PhA]B = −2X[AhP ]B (3.33c)

In fact, it is more convenient to have this action expressed in terms of the

adjoint tractor projectors, so we also record the following formulæ, that are

easily obtained using (3.24):

DAA′YB = −WAA′YB − XAA′
aZB

bPab

DAA′ZB
b = −WAA′ZB

b + XAA′
aYBδa

b + XAA′
aXBPa

b

DAA′XB = WAA′XB − XAA′
aZB

bgab

(3.34)

The double-D operator of the adjoint tractor projectors can be expressed

purely in terms of the adjoint tractor projectors. This is again a direct conse-

quence of (3.24) and the definitions (3.14).

DAA′YBB′
b′ = −2WAA′YBB′

b′ − XAA′
aZBB′bb

′
Pab + XAA′

aWBB′Pa
b′

DAA′WBB′ = −XAA′
aYBB′

bgab + XAA′
aXBB′

bPab

DAA′ZBB′bb
′
= −2WAA′ZBB′bb

′
+ 2XAA′

[bYBB′
b′] − 2XAA′

aXBB′
[bPa

b′]

DAA′XBB′
b′ = −XAA′

aWBB′δa
b′ − XAA′

aZBB′bb
′
gab

(3.35)

The Thomas-D operator on the tractor projectors

The action of the Thomas-D operator on the standard tractor projectors has

quite involved explicit form. We record it here for the sake of completeness

and for future references.

Proposition 3.1.27. The Thomas-D operator acts on the standard tractor

projectors according to the following identities:
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3.1 The conformal tractor calculus

DAYB = − (n− 4)YAYB + 2XAYBJ + (n− 4)ZA
aZB

bPab

−XAZB
b∇bJ−XAXB|P|2

DAZB
b = − 2(n− 4)Y(AZB)

b − (n− 4)ZA
aXBPa

b

+ 2XAZB
c(Pc

b + δc
bJ) +XAXB∇bJ

DAXB = nhAB

(3.36)

Proof. Using the definition (3.25), the identities(3.27), (3.13) and that the

weights of YA, ZA
a and XA are −1, −1 and 1, respectively, we compute:

DAYB = (n− 2− 2)DAYB −XA�YB

= (n− 4)(−YAYB + ZA
aZB

bPab)−XA(−2YB J + ZB
b∇bJ−XB|P|2)

= − (n− 4)YAYB + 2XAYBJ + (n− 4)ZA
aZB

bPab −XAZB
b∇bJ−XAXB|P|2

DAZB
b = (n− 2− 2)DAZB

b −XA�ZB
b

= (n− 4)(−2Y(AZB)
b − ZAaXBPa

b)−XA(−2ZB
cPc

b −XB∇bJ− JZB
b)

= − 2(n− 4)Y(AZB)
b − (n− 4)ZA

aXBPa
b + 2XAZB

c(Pc
b + δc

bJ) +XAXB∇bJ

DAXB = nDAXB −XA�XB

= n(hAB −XAYB)−XA(−YBn) = nhAB

Corollary 3.1.28. The tractor-contracted action of the Thomas-D operator

of the standard tractor projectors is given by these expressions

DAYA = (n− 2)J

DAZA
b = 0

DAXA = n(n+ 1)

(3.37)

The Thomas-D operator does not enjoy the Leibniz rule, so sometimes it is

useful to have a replacement that could be called the quasi-Leibniz rule.

Proposition 3.1.29. For sections ϕ and ψ with weights wϕ and wψ respec-

tively the action of the Thomas-D on their tensor product (denoted by juxta-
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position) satisfies the following identity:

DA(ϕψ) = ψDAϕ+ ϕDAψ + 2
(
wψψDAϕ+ wϕϕDAψ −XA(∇bϕ)∇bψ

)
(3.38)

Proof. A straightforward calculation using the definitions:

DA(ϕψ) = (n+ 2(wϕ + wψ)− 2)DA(ϕψ)−XA�(ϕψ)

= (n+ 2(wϕ + wψ)− 2)(ψDAϕ+ ϕDAψ)−XA(ψ�ϕ+ 2(∇bϕ)∇bψ + ϕ�ψ)

= ψ
(

(n+ 2wϕ − 2) + 2wψ

)
DAϕ− ψXA�ϕ

+ ϕ
(

(n+ 2wψ − 2) + 2wϕ

)
DAψ − ϕXA�ψ − 2XA(∇bϕ)∇bψ

In the real world calculations, for example, in the procedures that we de-

scribe in Chapter 4, more useful are the the following identities, that can be

verified either directly, using the definition (3.25), or by an application of the

contracted versions (3.37) of the identities from Proposition 3.1.27 and the

quasi-Leibniz rule (3.38).

Proposition 3.1.30. Let f be a section of weight w. The following formu-

las are useful for the calculations of the contracted action of the Thomas-D

operator:

DAYAf = (n+ 2w − 2)Jf −�f

DAZA
af = (n+ 2w − 2)∇af

DAXAf = (n+ 2w + 2)(n+ w)f

(3.39)

We may informally refer to an application of the identities (3.39) as an

elimination of tractor indices with the Thomas-D operator.

3.1.6 The curvature tractors

In this section we collect the definitions and some useful identities related to

the tractor curvature, the Weyl tractor and the related quantities.

We also give very explicit calculations, which may be useful in mastering

the tractor calculus techniques.
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3.1 The conformal tractor calculus

The tractor curvature

Definition 3.1.31. The tractor curvature Ωab
C
DV

D is the curvature of the

tractor connection (3.4). It is given by the equation

Ωab
C
DV

D = 2∇[a∇b]V
C (3.40)

To express the tractor curvature explicitly we begin with the following

Lemma 3.1.32. The action of the tractor curvature Ωab
C
D on the standard

tractor projectors is given by the identities

Ωab
C
DY

D = ZC
cYab

c

Ωab
C
DZ

D
c = −ZC

d

(
2 Pd[agb]c + 2 δd[aPb]c

)
−XCYabc

Ωab
C
DX

D = 0

(3.41)

where Yab
d is the Cotton tensor (2.14).

Proof. Straightforward computations:

2∇[a∇b]Y
C = ∇a∇bY

C − (a↔ b) = ∇a(Z
C
cP

c
b)− (a↔ b)

= (∇aZ
C
c)Pcb + ZC

c∇aPcb − (a↔ b)

= (−Y Cgac −XC
CPac)Pcb + ZC

c∇aPcb − (a↔ b)

=���
��−Y CPab −

XXXXXXXCPacP
c
b + 2ZC

c∇[aPcb]

2∇[a∇b]Z
C
c = ∇a∇bZ

C
c − (a↔ b)

= ∇a(−Y Cgbc −XCPbc)− (a↔ b)

= −(∇aY
C)gbc − (∇aX

C)Pbc −XC∇aPbc − (a↔ b)

= −ZC
dPdagbc − ZC

dδ
d
aPbc −XC∇aPbc − (a↔ b)

= −ZC
d

(
2 Pd[agb]c + 2 δd[aPb]c

)
− 2XC∇[aPb]c
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2∇[a∇b]X
C = ∇a∇bX

C − (a↔ b) = ∇aZ
C
cδ
c
b − (a↔ b)

= (−Y Cgac −XCPac)δ
c
b − (a↔ b)

= −Y Cgacδ
c
b −XCPacδ

c
b − (a↔ b)

= − Y Cgab︸ ︷︷ ︸
sym. in a,b

− XCPab︸ ︷︷ ︸
sym. in a,b

−(a↔ b) = 0

Theorem 3.1.33. Tractor curvature is explicitly given in a choice of scale by

the expression

Ωab
C
D = ZC

cXD Yab
c + ZC

cZD
dWab

c
d −XCZD

dYabd (3.42)

where Wabcd is the Weyl tensor, and Yabd is the Cotton tensor (2.14).

Viewing the tractor curvature as a 2-form with values in the adjoint tractor

bundle, we can present (3.42) as

ΩabCD = 1
2
ZCDcdWabcd − XCD

cYabc (3.43)

Proof. Let us consider an arbitrary tractor V C g
= Y Cy +ZC

cz
c +XCx. Using

the Leibniz rule for the curvature (1.12) and that the Levi-Civita connection

is torsion free, 2∇[a∇b]f = 0, we compute

2∇[a∇b]V
C = 2y∇[a∇b]Y

C + (2∇[a∇b]Z
C
c)z

c + ZC
c2∇[a∇b]z

c + 2x∇[a∇b]X
C

= y ZC
cYab

c + ZC
c

(
Rab

c
d − 2 Pc[agb]d − 2 δc[aPb]d

)
zd − 2zdXCYabd

Noticing that Rab
c
d − 2 Pc[agb]d − 2 δc[aPb]d = Wab

c
dz
d is the Weyl tensor by

(1.30), we get

Ωab
C
DV

D = ZC
c yYab

c + ZC
c z

dWab
c
d −XC zdYabd

By (3.6) we have y = XDVD; zd = ZD
dVD; x = Y DVD

Thus we can write

Ωab
C
DV

D = ZC
cXD Yab

cV D + ZC
cZD

dWab
c
dV

D −XCZD
dYabdV

D

which is equivalent to the claim.
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Rewriting this as

ΩabCD = ZC
cXD Yabc + ZC

cZD
dWabcd −XCZD

cYabc

= Z[C
cZD]

dWabcd + 2Z[C
cXD] Yabc

and using (3.14) we obtain (3.43).

Proposition 3.1.34. The tractor curvature is conformally invariant

Proof. The curvature of a conformally invariant connection is indeed invariant.

Alternatively, we may check this by a direct calculation:

Ω̂abCD = 1
2
ẐCDcdŴabcd − X̂CD

cŶabc

= 1
2
(ZCDcd − 2XCD

[cΥd])Wabcd − XCD
c(Yabc −WabcdΥ

d)

= 1
2
ZCDcdWabcd −(((((

(((XCD
cWabcdΥ

d − XCD
cYabc +((((

((((XCD
cWabcdΥ

d

The Weyl tractor

The tractor curvature Ωab
C
D has tensor indices, but we would like to have

an invariant section with only tractor indices, which represents the curvature.

This would allow us to apply the invariant tractor operators to this section

and obtain more invariant sections. Such a tractor WABCD was proposed by

A.R.Gover in [26] and [27] without an explicit derivation. Here we present our

version of the calculations based on the adjoint tractor calculus.

Definition 3.1.35. The tractor expression of the tractor curvature is

ΩABCD := ZA
aZB

bΩabCD = 1
2
ZABabΩabCD

Proposition 3.1.36. ΩABCD rescales as

Ω̂ABCD = ΩABCD − XAB
aΥbΩabCD

Proof. By Proposition 3.1.8, 1
2
ẐABabΩabCD = 1

2
(ZABab−2XAB

[aΥb])ΩabCD.

Corollary 3.1.37. The lifted tractor expression 3X[A′ΩAB]CD is invariant.

Definition 3.1.38. The Weyl tractor WABCD is defined by

WABCD = 3
n−2

DA′X[A′ΩAB]CD (3.44)
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Definition 3.1.39. The Bach tensor Bbd is defined by the identity

Bbd := PacWabcd +∇aYabd (3.45)

Proposition 3.1.40. Explicitly the Weyl tractor is given in a choice of scale

by

WABCD =n−4
4

(
ZABabZCDcdWabcd − ZABabXCD

cYabc − XAB
bZCDcdYcdb

)
+ XAB

bXCD
cBcb

(3.46)

Corollary 3.1.41. The Bach tensor is conformally invariant in dimension

dimM = 4.

Proof of Proposition 3.1.40. Using the Thomas-D operator we can eliminate

the auxiliary index A′ in the lifted tractor expression 3X[A′ΩAB]CD

DA′3X[A′ΩAB]CD = DA′
(
XA′ΩABCD +XAΩBA′CD +XBΩA′ACD

)
= DA′

(
XA′ΩABCD

)
+ DA′

(
XAΩBA′CD

)
+ DA′

(
XBΩA′ACD

)
= DA′

(
XA′ΩABCD

)
−DA′

(
ΩA′BCDXA

)
+ DA′

(
ΩA′ACDXB

)

Substituting the definition of ΩABCD we get

DA′3X[A′ΩAB]CD

= DA′
(
XA′ΩABCD

)
− 1

2
DA′
(
ZA′BabΩabCDXA

)
+ 1

2
DA′
(
ZA′AabΩabCDXB

)
= DA′

(
XA′ΩABCD

)
−1

2
DA′
(

2Z[A′
aZB]

bΩabCDXA

)
+1

2
DA′
(

2Z[A′
aZA]

bΩabCDXB

)
= DA′

(
XA′ΩABCD

)
− 1

2
DA′
(

2ZA′
aZB

bΩabCDXA

)
+ 1

2
DA′
(

2ZA′
aZA

bΩabCDXB

)
= DA′

(
XA′ΩABCD

)
−DA′

(
ZA′

a(XAZB
b − ZAbXB)ΩabCD

)
= DA′

(
XA′ΩABCD

)
−DA′

(
ZA′

aXAB
bΩabCD

)

Using (3.39) and noticing that w(ΩABCD) = −2 ΩABCD and w(XAB
b) = 0
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we can write

DA′3X[A′ΩAB]CD = DA′
(
XA′ΩABCD

)
−DA′

(
ZA′

aXAB
bΩabCD

)
= (n− 4 + 2)(n− 2)ΩABCD − (n− 2)∇a(XAB

bΩabCD)

= (n− 2)2ΩABCD − (n− 2)(∇aXAB
b)ΩabCD − (n− 2)XAB

b∇aΩabCD

Let us now compute ∇aΩabCD from the last term in the above display:

∇aΩabCD = ∇a
(

1
2
ZCDcdWabcd − XCD

cYabc

)
= 1

2
(∇aZCDcd)Wabcd + 1

2
ZCDcd∇aWabcd − (∇aXCD

c)Yabc − XCD
c∇aYabc

Using (3.17) we continue

∇aΩabCD = 1
2
(2YCD

[cgd]a + 2XCD
[cPd]a)Wabcd + 1

2
ZCDcd∇aWabcd

−(ZCDac + WCDgac)Yabc − XCD
c∇aYabc

= (((
((((

(
YCD

cgdaWabcd + XCD
cPdaWabcd + 1

2
ZCDcd∇aWabcd

−ZCDacYabc −
hhhhhhhWCDgacYabc − XCD

c∇aYabc

where some terms go away since Wabcd and Yabc are totally trace free.

The conformal Bianchi identity (2.15) implies that

∇aWabcd = 2(n− 3)∇[cPd]b = (n− 3)Ycdb

so we get

∇aΩabCD = 1
2
(n− 3)ZCDcdYcdb − ZCDcdYcbd + XCD

c
(

PdaWabcd −∇aYabc

)
= 1

2
(n− 3)ZCDcdYcdb − ZCDcdYcbd − XCD

cBcb

The symmetries Y[abc] = 0 and Yabc = −Ybac of the Cotton tensor imply

that

Yabc + Ybca + Ycab = 0

and thus

Ycbd − Ydbc = Ycbd + Ybdc = −Ydcb = Ycdb
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Using this we rewrite the term ZCDcdYcbd as

ZCDcdYcbd = 2Z[C
cZD]

dYcbd = ZC
cZD

d2Y[c|b|d]

= ZC
cZD

d
(

Ycbd − Ydbc

)
= ZC

cZD
dYcdb = 1

2
ZCDcdYcdb

Hence we get

∇aΩabCD = 1
2
(n− 3)ZCDcdYcdb − 1

2
ZCDcdYcdb − XCD

cBcb

and thus

∇aΩabCD = 1
2
(n− 4)ZCDcdYcdb − XCD

cBcb

Substituting our intermediate results into all the terms of the expression for

DA′3X[A′ΩAB]CD, which we have obtained above. we see that

3DA′X[A′ΩAB]CD = (n− 2)2ΩABCD − (n− 2)(ZABab +���
��WABgab)ΩabCD

− (n− 2)XAB
b
[

1
2
(n− 4)ZCDcdYcdb − XCD

cBcb

]
Collecting the terms and simplifying, we get

WABCD = (n− 4)ΩABCD − n−4
4
XAB

bZCDcdYcdb + XAB
bXCD

cBcb

Recalling that ΩabCD = 1
2
ZCDcdWabcd − XCD

cYabc and thus

ΩABCD = 1
2
ZABabΩabCD = 1

4
ZABabZCDcdWabcd − 1

2
ZABabXCD

cYabc

we recover the sought expression (3.46) for the the Weyl tractor.

Lifted tractor expressions

A (tractor-valued) quantity with some tensor indices can be embedded into a

section of a pure tractor bundle by contracting each tensor index, say, a with

the corresponding tractor projector, ZA
a in our case. The resulting tractor

expression need not to be invariant, but because the projector ZA
a rescales

through adding XAΥa, the tractor expression can be made invariant by addi-

tionally skewing over the index A (in the considered case) with one more XA′

(where we have used the primed A just to keep the correspondence with the

original index). In fact, if the tensor has additional tensor symmetries, it may

require less X-s to eliminate the non-invariance. The invariant tractors con-

structed this way are called the lifted tractor expressions for the corresponding
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tensors, that may have values in tractor bundles.

This procedure is better explained for the concrete examples.

We have already seen the tractor expression ΩABCD for the tractor curvature

ΩabCD, and the lifted tractor expression 3X[A′ΩAB]CD for it.

The tractor expression for the Weyl tensor Wabcd is

CABCD = ZA
aZB

bZC
cZD

dWabcd

,

Using the curvature tensor symmetries we see that the tractor CA′ABCDD′

defined as

CA′ABCDD′ = 9X[A′CAB] [CDXD′] (3.47)

is invariant. It is called the lifted tractor expression for the Weyl tensor.

Similarly, for the Cotton tensor Yabd we form the tractor expression

CABD = ZA
aZB

bZD
dYabd

and the symmetries of Yabd ensure that the lifted tractor expression for the

Cotton tensor CA′ABDD′ defined as

CA′ABDD′ = 6X[A′CAB] [DXD′] (3.48)

is invariant.

We shall use these lifted tractor expressions in the procedure of constructing

the so-called quasi-Weyl invariants in Chapter 4.

3.2 Tractor calculus on hypersurfaces

For a hypersurface Σ in a manifold M of dimension dimM > 3 we can con-

sider two bundles that arise as the standard conformal tractor bundles of the

respective conformal structures on M and Σ. Recall that we use the induced

conformal structure on the hypersurface.

The first bundle is the restriction onto the hypersurface Σ of the tractor

bundle TM of the background manifold M . We call this bundle the ambient

tractor bundle. It is defined whenever dimM ≥ 3.

The second bundle is the standard tractor bundle TΣ of the hypersurface

itself, and for it to be defined defined we need to require that dim Σ ≥ 3, or,

equivalently, dimM > 3.
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When the background dimension dimM = 3 there is no conformal structure

on the hypersurface Σ because dim Σ = 2, but the embedding provides enough

additional structure to define a suitable bundle as a replacement of the intrinsic

tractor bundle [11]. In fact, we shall use the same construction to define the

intrinsic tractor bundle of the hypersurface in both cases dimM = 3 and

dimM > 3.

3.2.1 The ambient tractor bundle

As we said earlier, we identify the hypersurface with the image of the inclusion

ι : Σ → M which is according to our assumptions is an embedding. The

pullback bundle ι∗T along the embedding is identified with the restriction T |Σ
of the background bundle T onto the hypersurface Σ. In the spirit of our

conventions we may use T as the core symbol for the ambient tractor bundle

using the underline to emphasize the relation to the pullback construction.

As we have already noticed in the section on the pullback connection in

Chapter 1, the index range for the pullback bundle can be reused because the

fibers of both bundles are isomorphic as vector spaces and, in particular, have

the same rank. Thus, we continue using the initial Latin capitals {A,B,C, . . . }
as the index range for the ambient tractor bundle.

Definition 3.2.1. The pullback bundle T A of the background tractor bundle

T A along the inclusion ι : Σ→M is termed the ambient tractor bundle of the

hypersurface Σ. It is well defined for M of dimM ≥ 3.

In practice, when working with hypersurfaces, we often suppress the restric-

tion (pullback) from the notation, so that eventually T A may be used instead

of T A|Σ or T A. The actual meaning of the symbol T A should be then clear

from the context.

The ambient tractor bundle T A receives the pullback connection ι∗∇T de-

noted again by ∇a. Here ∇T means the tractor connection of the background

tractor bundle T A.

Definition 3.2.2. The pullback connection ∇a in the ambient tractor bundle

T A is called the ambient tractor connection along the hypersurface.

The ambient connection is thus a map ∇b : T A → Eb ⊗ T A. We always

view the ambient connection as coupled to the Levi-Civita connection of of

the intrinsic metric on the hypersurface, so it is really defined in a choice of

a scale. Nevertheless, since the background tractor connections is invariant
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3.2 Tractor calculus on hypersurfaces

with respect to the conformal rescalings of the background metric, and the

tangential projection operator Πa
b is conformally invariant, we obviously have

the following property.

Proposition 3.2.3. The ambient tractor connection ∇a along the hypersurface

is conformally invariant when acting on ambient tractors of zero conformal

weight.

The ambient tractor bundle T A is equipped with the restriction onto Σ of

the metric in the background tractor bundle T A.

Definition 3.2.4. The restriction of the background tractor metric hAB onto

the hypersurface is a metric in the ambient tractor bundle and is termed the

ambient tractor metric. Again, we suppress references to the restriction from

the notation.

When working with hypersurfaces, we shall treat the standard tractor pro-

jectors Y A, ZA
a and XA as sections of the ambient tractor bundle T A ≡ T A|Σ

corresponding to a choice of the ambient scale.

Definition 3.2.5. In this context Y A, ZA
a and XA will be termed the ambient

tractor projectors .

The ambient tractor connection acts on the ambient tractor by the same

formulas as in (3.11) but the index b is additionally projected to the hypersur-

face.

More precisely, let us introduce the notation Pa
b for the ambient Schouten

tensor with the first index projected tangentially onto the hypersurface:

Pa
b := Πa′

aPa′
b (3.49)

When we use the notation P and the like, we always regard the underlined

quantities as the ambient (tensor-, tractor-)valued k-forms on the hypersurface,

so in this case Pa
b is seen as a section of Ea ⊗ Eb.

Using this notation we record the action of the ∇a on XB, ZB
b and Y B as

follows.

Proposition 3.2.6. The action of the ambient tractor connection ∇ on the

standard ambient tractor projectors is given by the following identities:

∇aX
B = ZB

bΠ
b
a

∇aZ
B
b = −Y Bḡab −XBPab

∇aY
B = ZB

bPa
b

(3.50)
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Chapter 3 Invariant calculus for conformal hypersurfaces

The intrinsic tractor metric ḡab in the above identities should be viewed as

a section of Ea⊗Eb too, but because Πa′
aga′bN

b = Πa′
aNa′ = 0, both indices of

Πa′
aga′b are tangential, so no new notation such as ḡ

ab
is needed. Nevertheless,

sometimes it is convenient to have a symbol for Πa′
aδa′

b in calculations. We

shall define

δa
b := Πa′

aδa′
b (3.51)

and this notation will be frequently used later. We view δa
b as a section

δa
b ∈ Ea ⊗ Eb. The ambiguity of this notation is inevitable, and a due care

is needed when dealing with it. We shall always comment on the meaning in

danger of confusion.

Even though the properties of the ambient tractor connection ∇a and the

ambient tractor metric hAB are now immediate consequences of the standard

constructions in the pullback bundle, we shall record them for the future ref-

erences.

Proposition 3.2.7. The ambient tractor bundle T A equipped with the ambient

tractor connection ∇a and the ambient tractor metric hAB is a Riemannian

tractor bundle in the sense that the metric is compatible with the connection,

∇ahBC = 0

3.2.2 The normal tractor

The hypersurface Σ inherits a conformal structure from the background mani-

fold M and so it has its own tractor bundle TΣ which has the rank n̄+2 = n+1.

Since the rank of TM is n+2, the relation between these bundles is not imme-

diately clear. It would be desirable to have a way to identify the hypersurface

tractor bundle with a subbundle of the ambient tractor bundle T ≡ TM |Σ
similar to what we have for the tangent bundle of the hypersurface. A solution

that we adopt here was first suggested by T.P.Branson and A.R.Gover in [11].

Definition 3.2.8. The normal tractor NA (introduced in [6]) is a section of the

ambient tractor bundle along the hypersurface that in a choice of the ambient

scale is given by

NA g
= ZA

aN
a −XAH (3.52)

where Na is the unit normal along the hypersurface regarded as a section of

Ea[−1], and H is the mean curvature density.
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3.2 Tractor calculus on hypersurfaces

Notice that by the definition the normal tractor (3.52) has the conformal

weight zero.

Proposition 3.2.9. The normal tractor NA is conformally invariant along the

hypersurface, N̂A = NA, and has the unit length with respect to the ambient

tractor metric, NANA = 1.

Proof. The invariance is verified by a quick calculation

N̂A = ẐA
aN

a −XAĤ = (ZA
a +XAΥa)N

a −XA(H + ΥaN
a) = NA

Similarly, we check the length

(ZA
bNb −XAH)(ZA

aN
a −XAH) = δa

bNbN
a = NaN

a = 1

Definition 3.2.10. The line bundle generated by the normal tractor NA is

called the tractor tractor bundle NA along the hypersurface.

As in the case of the (tensor) normal bundle N a of the hypersurface, the

tractor normal bundle of the hypersurface is equipped with the flat connection,

called the tractor normal connection and denoted again by the symbol ∇N .

3.2.3 The tractor projection operators

Following our usual strategy, which we have described in Section 1.1.13, we

define the projection operators acting in the ambient tractor bundle of Σ.

Definition 3.2.11. The tractor normal projection operator π⊥ is denoted by

NA
B and defined as

NA
B g

= NANB (3.53)

Proposition 3.2.12. The tractor normal projection operator on T is a linear

conformally invariant operator of the conformal weight zero. It is idempotent

NA
BNB

C = NA
C

and its image is the normal tractor bundle N .

The following expressions of the action of the tractor normal projection

operator on the ambient tractor projectors are useful in the calculations.
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Chapter 3 Invariant calculus for conformal hypersurfaces

Proposition 3.2.13. The action of the tractor normal projection operator on

the ambient standard conformal tractor projectors is given by the following

identities

NA
BY A = −HNB

NA
BZA

a = NaN
B

NA
BXA = 0

(3.54)

Proof. Straightforward calculations using Table 3.1:

NA
BY A = NANBY A = (ZA

a′Na′ −XAH)NBY A = −HNB

NA
BZA

a = (ZA
a′Na′ −XAH)NBZA

a = NaN
B

NA
BXA = (ZA

a′Na′ −XAH)NBXA = 0

A complimentary operator to the normal tractor projection operator NA
B

is the tractor projection operator ΠA
B.

Definition 3.2.14. The tractor projection operator π> on the ambient tractor

bundle T is denoted by ΠA
B and defined as

ΠA
B := δAB − NA

B (3.55)

where δAB is the identity operator δAB : T B → T A.

Proposition 3.2.15. The tractor projection operator is a linear conformally

invariant operator of zero conformal weight. It is idempotent

ΠA
BΠB

C = ΠA
C

and annihilates the normal tractor bundle

ΠA
BNA = 0

.

Proposition 3.2.16. The action of the tractor projection operator ΠA
B on

the ambient standard conformal tractor projectors is given by the following
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3.2 Tractor calculus on hypersurfaces

identities

ΠA
BY A = Y B + ZB

bHNb −XBH2

ΠA
BZA

a = ZB
bΠ

b
a +XBHNa

ΠA
BXA = XB

(3.56)

Proof. Straightforward calculations using (3.54) yield

ΠA
BY A = Y B + HNB = Y B + ZB

bHNb −XBH2

ΠA
BZA

a = ZB
a − NaN

B = ZB
a − ZB

bN
bNa +XBHNa = ZB

bΠ
b
a +XBHNa

ΠA
BXA = XB

3.2.4 The intrinsic tractor bundle

As we have noticed above, the image of the tractor normal projection operator

is the tractor normal bundle of the hypersurface. It turns out that the image

of the tractor projection operator can be identified with the tractor bundle of

the hypersurface by a conformally invariant isometric isomorphism.

Theorem 3.2.17. The image ΠT (T ) of the tractor projection operator is iso-

metrically isomorphic to the hypersurface tractor bundle TΣ’ where the iso-

morphism TΣ→ (NA)⊥ ≡ T A given by

Y A
Σ 7→ Ȳ A = Y A + ZA

aN
aH− H2

2
XA

ZA
Σ a 7→ Z̄A

a = ZA
bΠ

b
a

XA
Σ 7→ X̄A = XA

(3.57)

This theorem justifies the following definition

Definition 3.2.18. The intrinsic tractor bundle T A of the hypersurface Σ is

a subbundle of the ambient tractor bundle of Σ defined as the image of the

tractor projection operator ΠA
B : T A → T B.

Equivalently, we may define the intrinsic tractor bundle as the annihilator

(NA)⊥ := {V A ∈ T A|NAV
A = 0} of the normal tractor with respect to the

ambient tractor metric hAB.

Proof of Theorem 3.2.17. This result is essentially due to Branson and Gover

[11]. We give an elementary proof following [34] and [68].

Since the normal tractor bundle NA has the rank 1, the direct sum decom-

position T A = T A⊕NA shows that the image of the tractor projector has the

same rank as the hypersurface tractor bundle TΣ, that is n+ 1.
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Chapter 3 Invariant calculus for conformal hypersurfaces

In order to construct an isomorphism that preserves the tractor metric we

may try to find sections Ȳ A, Z̄Aa and X̄A that generate the image of ΠB
A in

the sense that any V A with NAV
A = 0 is represented as

V A = Ȳ Aσ + Z̄Aaµa + X̄Aρ

for some σ ∈ E [1], µa ∈ Ea[−1] and ρ ∈ E [−1], and such that the map

Y A
Σ 7→ Ȳ A, ZA

Σa 7→ Z̄Aa,XA
Σ 7→ X̄A

is injective, whereas Ȳ A, Z̄Aa and X̄A satisfy the same properties as the hy-

persurface tractor projectors Y A
Σ , ZA

Σa and XA
Σ . More precisely, we wish that

the contractions of the Ȳ A, Z̄Aa and X̄A were given by a table similar to the

Table 3.1 with the intrinsic quantities used, and the conformal rescaling rules

of Ȳ A, Z̄Aa and X̄A agreed with the corresponding rules for Y A
Σ , ZA

Σa , XA
Σ .

Examining the identities (3.56) we see that XA and ZA
bΠ

ba are suitable

candidates for X̄A and Z̄Aa respectively.

To find a section Ȳ A we may assume that

Ȳ A = Y Aα + ZA
aβ

a +XAγ

The condition X̄AȲ
A = 1 yields α = 1. From Z̄AbȲ

A = 0 we get βa = βNa

for some β ∈ E [−1]. Plugging all that in the condition ȲAȲ
A = 0 we see that

(YA + ZAaβNa +Xaγ)(Y A + ZA
aβNa +XAγ) = 0

or, γ = −β2

2
.

It remains to notice that

NAȲ
A = (ZA

a′Na′ −XAH)(Y A + ZA
aβNa −XAβ

2

2
) = 0

implies β = H.

The mapping (3.57) is clearly is linear and injective.

Straightforward calculations using (3.9) and Πa
bΥ

b = Υ
a

where Υa = ∇a log Ω
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3.2 Tractor calculus on hypersurfaces

and Υa = ∇ log Ω for Ω = Ω|Σ, and ĝab = Ω2gab, show that

̂̄Y A = Ȳ A − Z̄A
aΥ

a − X̄A |Υ|2
2̂̄ZA

a 7→ Z̄A
a + X̄AΥâ̄XA 7→ X̄A

(3.58)

so that the rescaling rules of Ȳ A, Z̄A
a and X̄A agree with those for the tractor

projectors Y A
Σ , ZA

Σ a and XA
Σ in the “genuine” tractor bundle TΣ.

Remark 3.2.19. From now on we shall identify the hypersurface tractor bundle

TΣ with the bundle (NA)⊥ using the map (3.57).

Definition 3.2.20. The sections Ȳ A, Z̄A
a, X̄

A defined in the right hand side

of (3.57) will be termed the intrinsic tractor projectors .

Using the isomorphism from Theorem 3.2.17 we translate the tractor metric

and the tractor connection from T̄Σ into the bundle T A to act on the intrinsic

tractor projector by the same formulas as we have for Y A
Σ , ZA

Σ a. We record

this as the following definitions.

Definition 3.2.21. The intrinsic tractor metric h̄AB is a section of T(AB) that

in a choice of the ambient scale g ∈ c is given by the formula

h̄AB = ȲAX̄B + Z̄A
aZ̄B

bḡab + X̄AȲB

It is clear that actually h̄AB ∈ T (AB) where T (AB) ≤ T(AB).

Likewise, we define the tractor connection in T A.

Definition 3.2.22. The intrinsic tractor connection ∇a in T A is given in a

choice of scale by its action on the intrinsic tractor projectors as follows:

∇bȲ
A = Z̄A

aP
a
b

∇bZ̄
A
a = −Ȳ Aḡba − X̄APba

∇bX̄
A = Z̄A

b

(3.59)

where Pab is the Schouten tensor of the intrinsic metric ḡab on the hypersurface

Σ.

Proposition 3.2.23. The bundle T A equipped with the metric h̄AB and the

connection ∇a as above is a Riemannian vector bundle over the hypersurface

Σ in a conformal manifold (M, c).
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Chapter 3 Invariant calculus for conformal hypersurfaces

Proof. We only need to verify that ∇ah̄BC = 0, but the proof of Proposition

3.1.3 on page 89 is literally repeated with the corresponding intrinsic quantities

used.

The following expressions are particularly useful for our further investiga-

tions.

Proposition 3.2.24. The action of the tractor projector operator on the am-

bient tractor projectors is given in terms of the intrinsic tractor projectors by

the identities:
ΠA

BX
B ḡ

= X̄A

ΠA
BZ

B
b
ḡ
= Z̄A

a + X̄A HNb

ΠA
BY

B ḡ
= Ȳ A − X̄A H2

2

(3.60)

where we use the scale afforded by the metric ḡ induced from a choice of scale

g in the ambient conformal structure.

Proof. The proof is immediate from (3.56) and (3.57).

Using these identities it is easy to verify that ΠA′
AΠB′

BhA′B′ = h̄AB.

3.2.5 The projected ambient tractor connection

As Branson and Gover observed in [11], the projected connection ∇> does

not agree with the intrinsic tractor connection ∇, so for the tractor bundles

along the hypersurface the usual Gauss theorem does not hold for the tractor

bundles, The difference of the connections connection in the intrinsic tractor

bundle is examined in the next section.

Definition 3.2.25. The projected ambient tractor connection ∇> in the in-

trinsic tractor bundle T is denoted by
v

∇ and defined on a tractor V A ∈ T A

as
v

∇bV
A := ΠA

A′∇bV
A′ (3.61)

Proposition 3.2.26. The intrinsic bundle equipped with the intrinsic tractor

metric h̄AB and the projected ambient tractor connection
v

∇ is a Riemannian

vector bundle in the sense that
v

∇ah̄BC = 0.

Proof. Straightforward calculations.
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Proposition 3.2.27. The action of the projected ambient tractor connection
v

∇ on the intrinsic tractor projectors is given by the following identities

v

∇bȲ
A = Z̄A

a

v

Pab
v

∇bZ̄
A
a = −Ȳ Aḡba − X̄A

v

Pba
v

∇bX̄
A = Z̄A

b

(3.62)

where
v

Pab := ΠΣPab + H
◦
Lab + H2

2
ḡab (3.63)

Proof. Applying the identities (3.50) for the action of the ambient tractor

derivatives to the explicit expressions of Ȳ A, Z̄A
a, X̄

A as in (3.57) we compute:

∇bȲ
A = ∇b(Y

A + ZA
aN

aH−XAH2

2
)

= ∇bY
A + (∇bZ

A
a)N

aH + ZA
a(∇bN

a)H + ZA
aN

a∇bH− (∇bX
A)H

2

2

−XA∇b
H2

2

= ZA
aPb

a + (−Y Aḡba −XAPba)N
aH + ZA

aLb
aH + ZA

aN
a∇bH

− ZA
aΠ

a
b
H2

2
−XAH∇bH

= ZA
aPb

a + ZA
aLb

aH + ZA
aN

a∇bH− ZA
aΠ

a
b
H2

2
−XAPbaN

aH

−XAH∇bH

= ZA
aΠ

b′
b

(
Πa

a′
(
Pa
′
b′ + HLa

′
b′ − δa

′
b′

H2

2

)
+ NaNa′P

a′
b′ + Na∇b′H

)
−XAΠb′

b

(
H∇b′H + Pb′aN

aH
)

∇bZ̄
A
a = ∇b(Z

A
a′Π

a′
a) = (∇bZ

A
a′)Π

a′
a + ZA

a′∇bΠ
a′
a

= Πa′
aΠ

b′
b(−Y Agb′a′ −XAPb′a′) + ZA

a′(−NaLb
a′ − Na′Lba)

= −Y AΠa′
aΠ

b′
bgb′a′ − ZA

a′Π
b′
b

(
Na′Lb′a + NaLb′

a′
)
−XAΠa′

aΠ
b′
bPb′a′

∇bX̄
A = ∇bX

A = ZA
aΠ

a
b = Z̄A

b

Evaluating the tractor projector operator on the ambient tractor projectors

using (3.60), we express the result in terms of the intrinsic tractor projectors

and, after some simplifications, obtain the desired result:
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ΠA
A′∇bȲ

A′ = ΠA
A′Z

A′
aΠ

b′
b

(
Πa

a′

(
Pa
′
b′ + HLa

′
b′ − δa

′
b′

H2

2

)
+ NaNa′P

a′
b′ + Na∇b′H

)
− ΠA

A′X
A′Πb′

b

(
H∇b′H + Pb′aN

aH
)

= (Z̄A
a + X̄AHNa)Π

b′
b

(
Πa

a′

(
Pa
′
b′ + HLa′

b′ − δa
′
b′

H2

2

)
+ NaNa′P

a′
b′ + Na∇b′H

)
−XAΠb′

b

(
H∇b′H + Pb′aN

aH
)

= Z̄A
a

(
Πb′

bΠ
a
a′

(
Pa
′
b′ + HLa′

b′ − δa
′
b′

H2

2

))
+((((

((((
(

X̄AHNa′Π
b′
bP

a′
b′

+
hhhhhhhhX̄AHΠb′

b∇b′H−
hhhhhhhhX̄AΠb′

bH∇b′H−(((((
((((

X̄AΠb′
bPb′aN

aH

= Z̄A
a

(
Πb′

bΠ
a
a′

(
Pa
′
b′ + HLa

′
b′ − δa

′
b′

H2

2

))

ΠA
A′∇bZ̄

A′
a = −ΠA

A′Y
A′Πa′

aΠ
b′
bgb′a′

− ΠA
A′Z

A′
a′Π

b′
b

(
Na′Lb′a + NaLb′

a′
)

− ΠA
A′X

AΠa′
aΠ

b′
bPb′a′

= −(Ȳ A − H2

2
X̄A)ḡba

− (Z̄A
a′ + X̄AHNa′)Π

b′
b

(
Na′Lb′a + NaLb′

a′︸ ︷︷ ︸ )
− X̄AΠa′

aΠ
b′
bPb′a′

= −Ȳ Aḡba − Z̄A
a′NaLb

a′

− X̄A(Πa′
aΠ

b′
bPb′a′ −

H2

2
X̄Aḡba + HLba)

ΠA
A′∇bX̄

A′ = ΠA
A′Z

A′
aΠ

a
b = (Z̄A

a + X̄AHNa)Π
a
b = Z̄A

a

Denoting
v

Pab := Πa′
aΠ

b′
bPb′a′− H2

2
X̄Aḡba+HLba and using Lab =

◦
Lab+Hḡab

we confirm the claim.

Definition 3.2.28. Tensor
v

Pab defined by (3.63) in Proposition 3.2.27 will be

referred to as the Schouten–Fialkow tensor .
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An interesting property of the tensor
v

Pab is that it rescales under conformal

changes of the ambient metric by the same rule as the intrinsic Schouten tensor

Pab does (whenever it is defined).

Proposition 3.2.29. The Schouten–Fialkow tensor
v

Pab under a conformal

rescaling of the ambient metric transforms as

v̂

Pab =
v

Pab + Λab

where Λab = −∇aΥb + ΥaΥb− |Υ|
2

2
ḡab, that is by the same rule as the intrinsic

Schouten tensor Pab (when dimM > 3).

Proof. According to (2.9), the intrinsic Schouten tensor Pab rescales under

the change of the intrinsic metric ̂̄gab = Ω
2
ḡab as P̂ab = Pab + Λab = Pab −

∇aΥ + ΥaΥb − |Υ|2
2

ḡab. Here Ω = Ω|Σ (we consider the conformal structure

induced from the background manifold), and Υ = ∇a log Ω is the 1-form (2.2)

that contributes to the conformal rescaling (2.3) of the intrinsic Levi-Civita

connection ∇a on the hypersurface Σ. The chain rule implies that Υa =

Πa
a′Υa′ .

In the decomposition Ea = Ea ⊕Na we can write Υa = Υa + (Υ · N)Na and

therefore |Υ|2 = |Υ|2 + (Υ · N)2.

Rescaling the totally projected ambient Schouten tensor ΠΣPab, we compute:

Π̂ΣPab = Πa
a′Πb

b′
(

Pa′b′ −∇a′Υb′ + Υa′Υb′ − |Υ|
2

2
ga′b′

)
= ΠΣPab − Πb

b′
(
∇aΥb′ + Nb′∇a(Υ · N) + (Υ · N)∇aNb′

)
+ ΥaΥb − |Υ|

2

2
ḡab

Noticing that by the Gauss formula Πb
b′∇aΥb′ = Πb

b′(∇aΥb′ −Nb′La
cΥc) =

∇aΥb, and using Πb
b′∇aNb′ = Lab, we rewrite the above display as

Π̂ΣPab = ΠΣPab −∇aΥb − (Υ · N)Lab + ΥaΥb − |Υ|
2

2
ḡab

Substituting Lab =
◦
Lab + Hḡab and |Υ|2 = |Υ|2 + (Υ · N)2, we obtain

Π̂ΣPab = ΠΣPab + Λab − (Υ · N)
◦
Lab − (Υ · N)Hḡab − (Υ·N)2

2
ḡab

The last three terms in the right hand side of the above equation turn out to

be the conformal deformation of H
◦
Lab+ H2

2
ḡab. Indeed, using Ĥ = H+(Υ ·N)
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and Ĥ2 = H2 + 2(Υ · N)H + (Υ · N)2, we compute

Ĥ
◦
Lab + Ĥ2

2
ḡab = H

◦
Lab + (Υ · N)

◦
Lab + H2

2
ḡab + (Υ · N)Hḡab + (Υ·N)2

2
ḡab

Adding up, we obtain the claim.

Remark 3.2.30. The advantage of
v

Pab is that it is defined on hypersurfaces

in 3-dimensional background manifolds (when dimM = 3). Following [11]

we define Pab :=
v

Pab in this dimension, so Proposition 3.2.29 formally holds

for m = dimM ≥ 3. Moreover, as noticed in loc.cit., this allows to define

the intrinsic tractor connection on 2-dimensional hypersurfaces as ∇ :=
v

∇
consistently with the definition of the intrinsic Schouten tensor in this case.

3.2.6 The intrinsic tractor contorsion

As we see, there are two connections ∇ and
v

∇ that are both naturally defined

on the intrinsic tractor bundle T A. Each of them has its own raison d’être.

Arguably,
v

∇ has some advantages compared to ∇, one of them is that it is

defined in all dimensions dimM ≥ 3, and another one is that the tractor Gauss

formula for
v

∇ is just its definition, so the Gauss–Codazzi decomposition of

the corresponding curvature has simpler expressions. On the other hand, the

intrinsic tractor connection ∇ reflects the induced conformal structure on the

hypersurface. The dimensional issue can be resolved as proposed by Branson

and Gover in [11] by simply defining ∇ to be equal to
v

∇ when dimM = 3.

Definition 3.2.31. The intrinsic tractor contorsion SaBC is defined by the

equation
v

∇aV
B = ∇aV

B − SaBCV C (3.64)

where V B ∈ T B is an intrinsic tractor.

Remark 3.2.32. The sign in the equation has been chosen for at least two

reasons, the first one is to keep consistent with the notation in [68], and the

second one is the equation ∇aV
B =

v

∇aV
B − NBLaCV C for V B ∈ T B.

Using Proposition 3.2.27 it is not difficult now to give an explicit formula

for the intrinsic tractor contorsion SaBC .

Proposition 3.2.33. The intrinsic tractor contorsion is given explicitly in a

choice of scale by the equation

SaBC
ḡ
= X̄BZ̄C

cFac − Z̄B
bX̄CFab (3.65)
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3.2 Tractor calculus on hypersurfaces

where

Fab :=

{ v

Pab − Pab when dimM > 3

0 when dimM = 3
(3.66)

Proof. Pick an intrinsic tractor V A ∈ T A presented in a choice of scale as

V A = Ȳ Aσ + Z̄A
aµ

a + X̄Aρ (3.67)

The projected ambient tractor connection acts on the intrinsic tractor pro-

jectors by the equations (3.62), and is coupled to the intrinsic Levi-Civita

connection when acting on the tensor indices.

Differentiating the tractor (3.67) by
v

∇b using equations (3.62) and the Leib-

niz rule we compute

v

∇bV
A = (

v

∇bȲ
A)σ + Ȳ A∇bσ + (

v

∇bZ̄
A
a)µ

a + Z̄A
a∇bµ

a + (
v

∇bX̄
A)ρ+ X̄A∇bρ

= Z̄A
a

v

Pabσ + Ȳ A∇bσ + (−Ȳ Aḡba − X̄A
v

Pba)µ
a + Z̄A

a∇bµ
a + Z̄A

bρ+ X̄A∇bρ

= Ȳ A∇bσ − Ȳ Aḡbaµ
a + Z̄A

a∇bµ
a + Z̄A

aδ
a
bρ+ Z̄A

a

v

Pabσ + X̄A∇bρ− X̄A
v

Pbaµ
a

= Ȳ A
(
∇bσ − ḡbaµ

a
)

+ Z̄A
a

(
∇bµ

a + δ
a
bρ+

v

Pabσ
)

+ X̄A
(
∇bρ−

v

Pbaµ
a
)

Similarly, using (3.59), we have

∇bV
A = Ȳ A

(
∇bσ − ḡbaµ

a
)

+ Z̄A
a

(
∇bµ

a + δ
a
bρ+ P

a
bσ
)

+ X̄A
(
∇bρ− Pbaµ

a
)

Subtracting these expressions we get

v

∇bV
A −∇bV

A = Z̄A
a(

v

Pab − P
a
b)σ − X̄A(

v

Pba − Pba)µ
a

but σ = X̄AV
A and µa = Z̄A

aV A, so we can rewrite the above display, at the

same time renaming the indices, as

v

∇aV
B −∇aV

B = Z̄B
b(

v

Pba − P
b
a)X̄CV

C − X̄B(
v

Pac − Pac)Z̄C
cV C

= X̄CZ̄
B
bF baV C − X̄BZ̄C

cFacV C

where we have used the notation Fab as defined in the Proposition.

Definition 3.2.34 (Fialkow tensor). We refer to the tensor Fab in equation

(3.66) as the Fialkow tensor . For the motivation of this name see [39].

Proposition 3.2.35. The Fialkow tensor Fab is hypersurface conformal in-

variant of zero conformal weight
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Chapter 3 Invariant calculus for conformal hypersurfaces

Proof. This immediately follows from the conformal invariance of the projected

ambient tractor connection
v

∇ and the intrinsic tractor connection ∇.

Another way to prove this is to use Proposition 3.2.29. This approach was

essentially done in [68].

We can also give an explicit expression for the Fialkow tensor for hypersur-

faces

Proposition 3.2.36. When n = dimM > 3 the Fialkow tensor is a linear

combination of the canonical hypersurface invariants, the ambient Weyl tensor,

the unit normal and the umbilicity tensor:

Fab = 1
n̄−2

( N
Wab +

◦
L2
ab −

|
◦
L|2
n̄−1

ḡab

)
(3.68)

In dimM = 3 it is defined to be zero by (3.66).

Proof. Follows directly from (2.31).

This shows, in particular, that Fab is not trivial in general (for dimM > 3).

Remark 3.2.37. Using the notation for the adjoint tractors we can represent

the intrinsic tractor contorsion as

SaBC = XBC
cFac (3.69)

where XBC
c is as in (3.14).

This again justifies the choice of the sign for SaBC .

Even though it is now obvious for many reasons, we record the following

important property of the intrinsic tractor contorsion.

Proposition 3.2.38. The intrinsic tractor contorsion SaBC is a conformally

invariant End(T )-valued 1-form of weight 0 on the hypersurface Σ in a con-

formal manifold M of dimension n = dimM ≥ 3. It vanishes identically when

dimM = 3.

3.2.7 The tractor Weingarten equations

The ambient tractor bundle T A of the hypersurface Σ is now represented as a

direct sum of subbundles

T A = T A ⊕NA

and the projection operators π> and π⊥ are expressed using the normal tractor,

so we are in the situation F = F> ⊕F⊥ examined in Section 1.1.13.
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3.2 Tractor calculus on hypersurfaces

We introduce the tractor direct sum connection (the tractor van der Waerden–

Bortolotti connection)
⊕

∇ =

( v

∇ 0

0 ∇N

)

where now
v

∇ 6= ∇ (except n̄ = 2) and ∇N denotes the connection in the

tractor normal bundle NA.

Using the general observations made in Section 1.1.13, the difference oper-

ator Aa
B
C between the ambient tractor connection ∇ and the tractor direct

sum connection
⊕

∇ is expressed as A = S + H where the operators Ha
B
C and

Sa
B
C are now defined by

Ha
B
C = (∇aΠ

B
D)ΠD

C

and

Sa
B
C = (∇aN

B
D)ND

C

Computing these derivatives, we get, for instance

∇aΠB
C = ∇a

(
δB

C − NBNC
)

= −(∇aNB)NC − NB∇aN
C

As before, we introduce the shape 1-form in the tractor bundle.

Definition 3.2.39. The tractor shape 1-form LaB is defined as

LaB := ∇aN
B (3.70)

Proposition 3.2.40 (The tractor Weingarten equations). The operators Ha
B
C

and Sa
B
C are given by the formulas

Sa
B
C = LaBNC

Ha
B
C = −NBLaC

(3.71)

Proof. Straightforward computations, or an application of the abstract Wein-

garten equations from Section 1.1.13.

Proposition 3.2.41. The tractor shape 1-form can be identified with a purely

intrinsic section:

LaB ≡ Πa
cΠD

BLcD

Proof. Indeed, 0 = ∇a(NBNB) = 2 NB∇aN
B and the index a in the ambient

tractor connection is tangential.
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Proposition 3.2.42. Explicitly the tractor shape 1-form viewed as an intrinsic

section can be expressed as

LaB
ḡ
= Z̄B

b
◦
Lab − X̄B

(
N
Pa +∇aH

)
(3.72)

where
N
Pa := Πa

bPacN
c.

Proof. A straightforward calculation:

LaB = ∇aNB = ∇a

(
ZB

bNb −XBH
)

=
(
∇aZB

b
)
Nb + ZB

b (∇aNb)− (∇aXB) H−XB∇aH

=
(
−YBδab −XBPa

b
)

Nb + ZB
bLab − ZBbḡabH−XB∇aH

=���
���

���
���−YBδabNb + ZB

bLab − ZBbḡabH−XB

(
Pa

bNb +∇aH
)

where we have used the notation δa
b := Πa

a′δa′
b ≡ Πa

b and Pa
b := Πa

a′Pa′
b.

Now the claim is clear.

Remark 3.2.43. Using the contracted conformal Codazzi equation (2.36), we

can give a nicer expression (3.83) for the tractor shape 1-form. The formula

(3.72) allows us to derive the conformal Codazzi equations from the tractor

versions of the Gauss and Codazzi equations independently from our previous

computations. We will show this shortly.

3.2.8 The tractor Gauss–Weingarten formula

Theorem 3.2.44 (The tractor Gauss–Weingarten formula).

∇aV
B =

⊕

∇aV
B + (NCLaB − NBLaC)V C (3.73)

for an ambient tractor V B ∈ T B.

Proof. A direct consequence of the definitions ∇ =
⊕

∇ + A, A = S + H and

the tractor Weingarten equations (3.71).

Similar to the usual hypersurface geometry, in practice the tractor Gauss–

Weingarten formula is used separately for intrinsic and normal tractors.

Corollary 3.2.45 (The tractor Gauss formula).

∇aV
B =

v

∇aV
B − NBLaCV C (3.74)
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3.2 Tractor calculus on hypersurfaces

Proof. This follows immediately from (3.73) if V B ∈ T B.

Corollary 3.2.46 (The tractor Weingarten formula). This is just the defini-

tion (3.70) of the tractor shape 1-form in our approach.

Corollary 3.2.47 (The Gauss-Stafford formula). The difference between the

ambient ∇a and intrinsic ∇a tractor connections acting on an intrinsic tractor

V B ∈ T B can be now represented by the following equation

∇aV
B = ∇aV

B − (SaBC + NBLaC)V C (3.75)

Proof. This formula first appeared in R.Stafford’s thesis (see [68, p.35]). It

follows immediately from the definition (3.64) of the intrinsic tractor contorsion

SaBC and the tractor Gauss formula (3.74).

Proposition 3.2.48. The difference between 2
v

∇[aLb]C and 2∇[aLb]C is given

by

2
v

∇[aLb]C = 2∇[aLb]C + X̄C2Fc[a
◦
Lb]

c

Proof. Using the formula (3.75), we compute

v

∇aLbC = ∇aLbC −
(
NCLaD + SaCD

)
LbD

= ∇aLbC − NCLaDLbD − SaCDLbD

and thus 2
v

∇[aLb]C = 2∇[aLb]C − 2 NCL[a
DLb]D − 2 S[a

CDLb]D.

But 2L[a
DLb]D = 0 and

2 S[a
CDLb]D =

(
X̄CZ̄D

dFad − Z̄C
cX̄DFac

)(
Z̄D

e

◦
Lb

e − X̄D

(
N
Pb +∇bH

))
− (a↔ b) = X̄C2Fd[a

◦
Lb]

d

3.2.9 The tractor Gauss and Codazzi equations

The connections ∇a,
v

∇a and ∇a have the corresponding curvature operators

denoted by Ωab
C
D,

v

Ωab
C
D and Ωab

C
D respectively.

Notice that in Ωab
C
D the first two indices are (tensor-) tangential, and the

second pair are the ambient tractor indices. It is clear that

Ωab
C
D = Πa′

aΠ
a′
aΩab

C
D

where Ωab
C
D is the restriction to Σ of the tractor curvature on manifold M .

The notation Ωab
C
D agrees with the convention that the underlined objects
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Chapter 3 Invariant calculus for conformal hypersurfaces

represent ambient-valued forms on Σ (that is the tensor indices are tangential

in this case).

The quantities
v

Ωab
C
D and Ωab

C
D have only (tensor or tractor) tangential

indices.

Decomposing orthogonally (with respect to the normal tractor) the dif-

ference of the curvatures Ω = K∇ and
⊕

Ω = K
⊕
∇ using the tractor Gauss–

Weingarten formula (3.73), and taking tractor-orthogonal parts we get tractor

analogue of the Gauss equation

The unit normal tractor and the tractor projection operator allow us to apply

the general Gauss–Codazzi–Ricci decomposition of the curvature, so that we

can express the ambient tractor curvature acting on the intrinsic tractors in

terms of the tractor shape form and the projected ambient tractor connection.

Theorem 3.2.49 (The tractor Gauss equation). Along the hypersurface Σ, the

curvature
v

Ω of the projected ambient tractor connection is equal to the totally

tractor-projected part of the ambient curvature ΠΣΩ plus the exterior square

L ∧ L of the tractor shape 1-form:

v

Ωab
C
D = ΠC

C′ΠD
D′Ωab

C′
D′ + 2L[a

CLb]D (3.76)

or, succinctly,
v

Ω = ΠΣΩ + L ∧ L (3.77)

Theorem 3.2.50 (The tractor Codazzi equation). The intrinsic exterior deriva-

tive of the shape tractor 1-form is the normal part of the ambient tractor cur-

vature along the hypersurface, that is

2
v

∇[aLb]C = Ωab
C
DND (3.78)

or, with the indices suppressed,

v

∇∧ L = Ω • N (3.79)

where • denotes the algebraic action of the ambient tractor curvature on trac-

tors (that is the contraction of a tractor with Ω in the last index).

Proof of Theorems 3.2.49 and 3.2.50. Follows directly from Theorem 1.1.22

Theorem 1.1.22, using Proposition 1.1.25 and Equation 3.71.

Alternatively, the calculation from the proof of Theorem 1.2.15 can be re-

peated with the corresponding changes.
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3.2 Tractor calculus on hypersurfaces

This time, we have the difference of connections ∇ =
⊕

∇ + A with Aa
B
C =

NCLaB − NBLaC .

Computing

(
⊕

∇∧ A)[ab]
C
D = 2

⊕

∇[aAb]
C
D =

⊕

∇a(NDLbC − NCLbD)− (a↔ b)

= (
v

∇aLbC)ND +���
��

��:0
LbC∇Na ND − (

v

∇aLbD)NC −����
��:0

LbD∇Na NC − (a↔ b)

= 2
v

∇[aLb]DND − 2
v

∇[aLb]DNC

and

(A ∧ A)[ab]
C
D = Aa

C
EAb

E
D − (a↔ b)

= (NELaC − NCLaE)(NDLbE − NELbD)− (a↔ b)

= −LaCLbD − LaELbENCND︸ ︷︷ ︸
symmetric in a and b

−(a↔ b)

= −2L[a
CLb]D

and extracting the orthogonal parts of Ω =
⊕

Ω +
⊕

∇∧A+A∧A, we recover the

claim.

It is interesting to notice, that the tractor Gauss (3.77) and Codazzi (3.79)

equations imply the conformal Gauss (2.34) and Codazzi equations (2.35).

The conformal Gauss equation revisited

Proposition 3.2.51. The curvature
v

Ωab
C
D of the projected ambient tractor

connection
v

∇a is expressed explicitly in a choice of intrinsic scale ḡ ∈ c̄ as

v

Ωab
CD ḡ

= Z̄C
cZ̄

D
d

v

Wab
cd − 2X̄ [CZ̄D]

d

v

Yab
d (3.80)

where
v

Wab
cd := Rab

cd − 4δ[a
[c

v

Pb]
d] (3.81)

and
v

Yab
d = 2∇[a

v

Pb]
d (3.82)

Proposition 3.2.52. The curvature Ωab
C
D of the ambient tractor connection

∇a is given explicitly by

Ωab
C
D = Πa

eΠb
fΩef

C
D
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where Ωab
C
D is the background tractor curvature. This can be further specified

to

Ωab
CD = ZC

cZ
D
dWab

cd − 2X [CZD]
dYab

d

where Wab
c
d = Πa

eΠb
fWef

c
d and Yab

d = Πa
eΠb

fYef
d.

Proposition 3.2.53. The tractor projected part of the ambient tractor cur-

vature (ΠΣΩ)ab
CD := ΠC

EΠD
FΩab

EF is explicitly given in an intrinsic scale

ḡ ∈ c̄ by

(ΠΣΩ)ab
CD ḡ

= Z̄C
cZ̄

D
d(ΠΣW )ab

cd − 2 X̄ [CZ̄D]
d

( N
Wab

dH + (ΠΣY)ab
d
)

where
N
Wab

d := Wab
deNe

Proof. We use the expressions (3.60) to compute:

ΠC
EΠD

FΩab
EF = ΠC

EΠD
F

(
ZE

eZ
F
fWab

ef −XEZF
fYab

f +XFZE
eYab

e
)

= (Z̄C
e + X̄CHNe)(Z̄

D
f + X̄DHNf )Wab

ef

− X̄C(Z̄D
f + X̄DHNf )Yab

f + X̄D(Z̄C
e + X̄CHNe)Yab

e

= Z̄C
eZ̄

D
fWab

ef + X̄CZ̄D
fHNeWab

ef

+ Z̄C
eX̄

DHNfWab
ef +

(((
((((

(((
((

X̄CX̄DH2NeNfWab
ef

− X̄CZ̄D
fYab

f −
hhhhhhhhhX̄CX̄DHNfYab

f + X̄DZ̄C
eYab

e +
hhhhhhhhhX̄DX̄CHNeYab

e

Observing that Z̄C
eZ̄

D
fWab

ef = Z̄C
cZ̄

D
d(ΠΣW )ab

cd and Z̄D
fYab

f = Z̄D
d(ΠΣY)ab

d,

we get the claim.

Proposition 3.2.54. The exterior square of the tractor shape 1-form is given

explicitly by

2L[a
CLb]D = Z̄C

cZ̄
D
d2

◦
L[a

c
◦
Lb]

d − 2 Z̄ [C
cX̄

D]

(
2
◦
L[a

c
N
Pb] + 2

◦
L[a

c∇b]H

)
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Proof. We compute:

2L[a
CLb]D =

(
Z̄C

c

◦
La

c − X̄C

(
N
Pa +∇aH

))(
Z̄D

d

◦
Lb

d − X̄D

(
N
Pb +∇bH

))
− (a↔ b)

= Z̄C
cZ̄

D
d2

◦
L[a

c
◦
Lb]

d − Z̄C
cX̄

D

(
2
◦
L[a

c
N
Pb] + 2

◦
La

c∇bH

)
− X̄CZ̄D

d

(
2
◦
L[b

d
N
Pa] + 2

◦
L[b

d∇a]H

)

Comparing the expressions for
v

Ωab
CD, (ΠΣΩ)ab

CD and 2L[a
CLb]D and equat-

ing the coefficients at Z̄C
cZ̄

D
d we obtain from the tractor Gauss equation 3.76

that

Wab
cd − 4δ[a

[cFb]d] = (ΠΣW )ab
cd + 2

◦
L[a

c
◦
Lb]

d

or

Wab
cd = (ΠΣW )ab

cd + 2
◦
L[a

c
◦
Lb]

d + 4δ[a
[cFb]d]

This is clearly a version of the conformal Gauss-Weyl equation (2.32).

Taking the totally trace-free parts (denoted by the subscript ◦) and sup-

pressing the indices, we recover the known equation (2.34) (cf. [56])

W = (ΠΣW)◦ + (
◦
L ?

◦
L)◦

Taking traces in the above equation, we get

0 = (ΠΣW)ab
ad + 2

◦
L[a

a
◦
Lb]

d + 4δ[a
[aFb]d]

but

ḡac(ΠΣW)abcd = gacΠa
a′Πb

b′Πc
c′Πd

d′Wa′b′c′d′

= gac
(
δa
a′ −NaN

a′
)(

δc
c′ −NcN

c′
)

Πb
b′Πd

d′Wa′b′c′d′

=
(
ga
′c′ −Na′Nc′ −����Nc′Na′ +���

�
Na′Nc′

)
Πb

b′Πd
d′Wa′b′c′d′

and therefore ḡac(ΠΣW)abcd = −
NN
Wbd where

NN
Wbd := Πb

b′Πd
d′Wa′b′c′d′N

a′Nc′ .

Similarly,

2
◦
L[a

a
◦
Lb]

d =
◦
La

a
◦
Lb

d −
◦
Lb

a
◦
La

d = −
◦
L2
b
d
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and

4δ[a
[aFb]d] = δa

aFbd − δbaFad + δb
dFaa − δadFba

= n̄Fbd −Fbd + δb
dFaa −Fbd

= (n̄− 2)Fbd + δb
dFaa

We obtain that 0 = −
NN
Wbd −

◦
L2
bd + (n̄− 2)Fbd + ḡbdFaa

Taking traces again we get 0 = −|
◦
L|2+(2n̄−2)Faa and therefore Faa = |

◦
L|2

2(n̄−1)

Thus we have Fbd = 1
n̄−2

(
NN
Wbd +

◦
L2
bd −

|
◦
L|2

2(n̄−1)
ḡbd

)
.

The conformal Codazzi equation revisited

Proposition 3.2.55. The tractor projected part of the action of the ambient

tractor curvature on the normal tractor is given explicitly in an intrinsic scale

ḡ ∈ c̄ by

ΠΣ (Ω · N)ab
C = ΠC

EΩab
E
DND ḡ

= Z̄C
cWab

cdNd − X̄C
N
Yab

where
N
Yab := Yab

dNd = Πa
a′Πb

b′Ya′b′
dNd

Proposition 3.2.56. The tractor exterior covariant derivative
v

∇ ∧ L of the

tractor shape 1-form LaB with respect to the projected ambient tractor connec-

tion is given explicitly by

2
v

∇[aLb]C = Z̄C
c

(
2∇[a

◦
Lb]

c − 2 δ[a
c

N
Pb] − 2 δ[a

c∇bH)

)
−X̄C

(
2 Π[b

c(∇a]Pcd)N
d + 2 (ΠΣP)c[bLa]

c + 2 N[aLb]
c

N
Pc + 2

v

Pc[a
◦
Lb]

c

)
Comparing the Z-slots in the expressions for the terms of (3.78), we recover

the conformal Codazzi equation (2.35)

2∇[a

◦
Lb]

c = Wab
cdNd + 2 δ[a

c
N
Pb] + 2 δ[a

c∇bH)

Contracting the indices a and b, we obtain the contracted conformal Codazzi

equation (2.36)

∇a ◦
Lab = (n̄− 1)

[N
Pb +∇bH

]
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Proposition 3.2.57. The tractor shape form can be also presented as

LaB
ḡ
= Z̄B

b
◦
Lab − 1

n̄−1
X̄B∇

b ◦
Lab (3.83)

Proof. One needs to use the contracted conformal Codazzi equation to rewrite

the last term of (3.72).

3.3 Invariant tractor operators on hypersurfaces

Using the intrinsic tractor bundle, we can construct the tractor invariant oper-

ators acting on densities along the hypersurface, which we denote as DAP and

DA and term the intrinsic double-D and the intrinsic Thomas-D operators ,

respectively.

As we have noticed in Section 3.1.4, the tractor operators can be twisted

with any vector bundle equipped with an invariant connection, in particular,

with a tractor bundle. We can use the projected ambient tractor connection
v

∇ to twist the operators DAP and DA and obtain the operators
v

DAP and
v

DA,

which may be more convenient in some calculations, as the tractor Gauss and

Codazzi equations allude.

The most crucial observation (which is due to A.R.Gover) developed in the

present thesis is that this twisting can be done not only with the intrinsic

tractor bundle, but also with the ambient tractor bundle of the hypersurface.

The latter approach gives us a hope to escape certain restrictions, which are

known from representation theory, and obtain a possibly larger class of invari-

ants than it would be available from just the intrinsic conformal structure of

the hypersurface.

Moreover, the operators should act tangentially (see e.g. in [11] or [29]) on

the normal tractors to ensure that the results remain independent of the choice

of an oriented defining function.

We introduce now the operators, which will be termed the twisted intrinsic

tractor operators where the word “twisted” before “intrinsic” will always mean

“twisted with the ambient tractor bundle” unless stated otherwise.

One can repeat the construction of the double-D and Thomas-D operator

and obtain their twisted intrinsic versions by considering the following op-

erator. The required properties of the twisted intrinsic operators also follow

immediately from the general considerations, which we discuss in Sections 2.1.3

and 3.1.4.

131



Chapter 3 Invariant calculus for conformal hypersurfaces

Definition 3.3.1. The twisted intrinsic pre-D operator D
A

is the intrinsic

pre-D operator twisted with the ambient tractor bundle. Explicitly, it can be

given by the expression

D
A
f := Ȳ Awf + Z̄A

a∇af (3.84)

Remark 3.3.2. This is the first occurrence where our conventions to overline

the intrinsic objects and to underline the operators twisted with the ambient

tractor connection ∇ are combined in one symbol. This notation is proved to

be convenient in the constructions of invariants, which we present in the next

chapter.

The twisted intrinsic pre-D operator possesses the properties, which we need

to construct the invariant tractor operators as we did in Section 3.1.4.

Proposition 3.3.3. The twisted intrinsic pre-D operator acts on weighted

ambient tractors and has the following properties:

1. it satisfies the Leibniz rule;

2. it acts tangentially;

3. it rescales according to the equation

D̂
A
f = D

A
f + X̄A(Υ

a∇af + |Υ|2
2
wf) (3.85)

The rescaling rule of the twisted pre-D operator allows us to introduce a

version of the double-D operator

Definition 3.3.4. The twisted intrinsic double-D operator DAP is

DAPf := 2X̄[PDA]f (3.86)

Proposition 3.3.5. The twisted double-D operator DAP acts on weighted am-

bient tractors and has the following properties

1. it satisfies the Leibniz rule;

2. it acts tangentially;

3. it is conformally invariant.
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3.3 Invariant tractor operators on hypersurfaces

In the usual tractor calculus we use the box operator �f that can be ob-

tained from the pre-D operator as DADAf = �f . If we can compute the

corresponding identity for the twisted pre-D operator. A short calculation

shows that

D
A
DAf = ∆f + Jwf + H2

2
n̄wf = ∆f + J̄wf + n̄2−4n̄+2

(n̄−2)(n̄−1)
|
◦
L|2wf

where we have used J+H2

2
n̄ = J̄+ n̄2−4n̄+2

(n̄−2)(n̄−1)
|
◦
L|2 that follows from the contracted

Gauss–Schouten equation (2.31).

The trailing term that we have obtained in the expression for D
A
DAf is

conformally invariant, so dropping it off will not hurt the conformal behavior

of the remaining part. This way we arrive to the following object.

Definition 3.3.6. The twisted intrinsic box operator � is

�f := ḡab
(
∇a∇bf + Pabwf

)
= ∆f + J̄wf (3.87)

Proposition 3.3.7. The twisted intrinsic box operator � acts on weighted

ambient tractors and has the following rescaling rule

�̂f = �f + (n̄+ 2w − 2)
(

Υ
a∇af + |Υ|2

2
wf
)

(3.88)

Proof. This is a special case of Proposition 2.1.1.

Hence this is the right candidate for our needs, and we give the following

Definition 3.3.8. The twisted Thomas-D operator DA is

DAf := (n̄+ 2w − 2)DAf − X̄A�f (3.89)

Proposition 3.3.9. The twisted Thomas-D operator DA acts on weighted am-

bient tractors and has the following properties

• it acts tangentially;

• it lowers the conformal weight by 1;

• it is conformally invariant.

Remark 3.3.10. The action of the twisted intrinsic operators adds some in-

trinsic indices to the result, which may also have ambient indices, for instance

NADAV
B = 0, but in general NBDAV

B 6= 0. This requires a certain level of

attention when performing actual calculations.
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Chapter 3 Invariant calculus for conformal hypersurfaces

Another possible way to construct an invariant tractor operator, which is

able to act on ambient tractors, is to consider the background pre-D operator

DA restricted onto the hypersurface.

Definition 3.3.11. We denote this operator by DA an refer to it as the ambient

pre-D operator. Its action is given by the formula

DAf
g
= Y Awf + ZA

a∇af (3.90)

The underline in the notation DA is used to remind that the definition of

this operator uses the ambient connection ∇a.

This operator has a sightly different rescaling property.

Proposition 3.3.12. The ambient pre-D operator is defined on weighted trac-

tor densities along the hypersurface and has the following properties:

1. It satisfies the Leibniz rule DA(f1f2) = f1DA(f2) + f2DA(f1);

2. It acts tangentially;

3. it has the following rescaling rule:

D̂Af = DAf − NAN ·Υwf +XA(Υ
a∇af + |Υ|2

2
wf −Hwf) (3.91)

Proof. Everything is straightforward. The rescaling rule is found to be

D̂Af = DAf − ZA
aN

aN ·Υwf +XA(Υ
a∇af + |Υ|2

2
wf)

and then rewritten as in the statement.

At the expense of adding three indices, we still are able to construct an

invariant operator out of DA.

Definition 3.3.13. The triple-D operator DABC is given by

DABCf := 6N[CXBDA]f (3.92)

We keep the underlining in the notation for this operator to emphasize that

it acts in tangential directions along the hypersurface.

Proposition 3.3.14. The triple-D operator acts on weighted ambient tractors

and has the following properties:
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3.3 Invariant tractor operators on hypersurfaces

1. it satisfies the Leibniz rule DABC(f1f2) = f1DABC(f2) + f2DABC(f1);

2. it acts tangentially;

3. it is conformally invariant D̂ABCf = DABCf

3.3.1 The hypersurface Weyl tractors

Recall that the curvature of the ambient tractor connection can be viewed

as an ambient-bundle-valued intrinsic 2-form Ωab
C
D defined by Ωab

C
DV

D =

2∇[a∇b]V
C . Keeping this point of view, we define the ambient tractor expres-

sion of the ambient tractor connection as

ΩABCD := ZA
aZB

bΩabCD

and subsequently the corresponding W-tractor is defined by

WABCD := 3
n̄−2

D
A′

X[A′ΩAB]CD = 3
n−3

D
A′

X[A′ΩAB]CD

The purpose of introducing this version of the W-tractor is to be able to

compare it with its intrinsic

WABCD := 3
n̄−2

D
A′

X̄[A′ΩAB]CDWABCD = 3
n−3

D
A′

X̄[A′ΩAB]CD

and the “projected ambient”

v

WABCD := 3
n̄−2

v

DA′X̄[A′
v

ΩAB]CD = 3
n−3

v

DA′X̄[A′
v

ΩAB]CD

counterparts, where ΩABCD := Z̄A
aZ̄B

bΩabCD and
v

ΩABCD := Z̄A
aZ̄B

b
v

ΩabCD are

the corresponding tractor expressions of the curvatures of the intrinsic and the

projected ambient tractor connections respectively.
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Chapter 4

Construction of Hypersurface

Conformal Invariants

In the previous chapter we have described the ingredients, which now can be

used to make various families of conformal invariants of hypersurfaces. We

modify the ideas of [26] and [27] and define some classes of such invariants.

Before we start talking about invariants of hypersurfaces, let us briefly recall

the basic definitions and present a slightly simplified construction of conformal

invariants following [27].

4.1 Elements of conformal invariant theory

Generally speaking, an invariant is a function, which does not change its values

when its arguments are transformed in a certain way (cf. e.g. [54]). The value

of the function may be an element of a certain class, a representative of which

is obtained by evaluation of the function on a concrete choice of arguments,

and then the whole class is regarded as the value of the invariant. This notion,

of course, is very broad, since it has applications in many (if not every!) areas

of mathematics.

Metric invariants

We begin with the following definition (cf.[5], [24], [27]).

Definition 4.1.1. Let (M, g) be a (pseudo)-Riemannian manifold. A scalar

metric invariant is a function P (g) that in any choice of local coordinates (xi)

around each point p ∈ M is expressed as a universal polynomial in (det g)−1

and ∂k1 . . . ∂isgij, s ≥ 0, such that for any local diffeomorphism ϕ of M

P (ϕ∗g) = ϕ∗P (g) (4.1)
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Chapter 4 Construction of Hypersurface Conformal Invariants

Remark 4.1.2. To be more precise, this is the definition of a local polynomial

scalar-valued differential invariant of the Riemannian structure of manifold M .

At least within this chapter we only speak about local differential invariants,

therefore these adjectives can be safely dropped off. In the next chapter we

will be dealing with global invariants too.

Remark 4.1.3. If we allow in the Definition 4.1.1 that P has values in a tensor

or a vector bundle, we obtain tensor or vector-bundle valued invariants.

Metric Weyl invariants

Definition 4.1.1 gives no information about the existence of metric invariants,

however examples can be easily given using the standard objects of Riemannian

geometry. For instance, the scalar curvature is a scalar metric invariant: it is

a complete contraction of the Riemannian curvature.

The Riemannian curvature Rabcd and Ricci curvature Ricab are examples of

tensor valued invariants. There is also a metric-invariant first-order differential

operator, the Levi-Civita connection∇a, associated with the given Riemannian

metric. Using these objects as building blocks we can manufacture an infinite

series of metric invariants.

Definition 4.1.4. A scalar Weyl metric invariant is a linear combination of

complete contractions (denoted by contr) of the following two forms:

even invariants,

• contr
(
g−1 · · · · · g−1 · R(k1) · · · · · R(kr)

)
and odd invariants, defined if the manifold M is oriented,

• contr
(
ε · g−1 · · · · · g−1 · R(k1) · · · · · R(kr)

)
where in the above displays

R
(k)
abcd,p1...pk

:= ∇p1 . . .∇pkRabcd

and g−1 is the inverse Riemannian metric, that is gab, and ε is the Riemannian

volume form.

Remark 4.1.5. The classical invariant theory ([73]) guarantees that all metric

invariants can be obtained as Weyl invariants, so we have a complete set of

invariants of Riemannian structure. See also [5].
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4.1 Elements of conformal invariant theory

Remark 4.1.6. Taking partial contractions of the monomials in the definition

and tensor parts thereof we get tensor-valued metric invariants. Again, all

tensor-valued metric invariants can be obtained through this procedure.

Remark 4.1.7. We can also consider invariant differential operators built from

the iterated Levi-Civita connection and the Riemannian curvature, with some

indices contracted, using g−1. All metric invariant differential operators arise

this way.

We deal with more sophisticated examples in this thesis, actually. The trac-

tor curvature is a E[ab] ⊗ T[CD]-valued metric invariant for each choice of a

Riemannian metric from the conformal structure. Looking a little bit further,

we can say that the normal tractor is an ambient-tractor valued metric invari-

ant on a hypersurface, with a metric in the background manifold fixed. (this

is just a part of the truth, however).

The tractor operators DA, DAP and DA discussed in Chapter 3 are, of course,

metric invariant differential operators when a metric on M is fixed.

In fact, all invariant tractors and invariant operators, acting on tractors, are

examples of metric invariants for each choice of a metric on M .

Conformal invariants

Some metric invariants behave nicely when the metric is rescaled by a positive

function. The best possible behavior is described in the following definition,

however there are other types of deformation, which are encountered in inter-

esting classes of objects (e.g. Q-like quantities) that we touch upon in the next

chapter.

Definition 4.1.8. A scalar conformal invariant of conformal weight w is a

metric invariant with values in the bundle E [w] of densities of conformal weight

w, if in addition to the requirements of Definition 4.1.1 it also satisfies the

following rescaling property:

P (Ω2g) = P (g)

for any smooth nonvanishing positive function Ω: M → R

We work with conformally weighted sections of vector bundles, or vector

bundle valued densities, in order to simplify the notation and calculations. If

we worked this with nonweighted scalars, we would have to write the condition
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Chapter 4 Construction of Hypersurface Conformal Invariants

in the above definition as P (Ω2g) = ΩwP (p) Working with densities absorbs

the factors Ωw in the definitions and calculations.

It is easy to see that the only scalar conformal invariants of zero weight

are constants, so it is essential to consider arbitrary weights. Throughout this

thesis we will only deal with integer weights.

It is well known that for manifolds of dimM = 2 there are no local invariants

of conformal structure, more precisely, any two metrics are locally conformally

equivalent (cf. the uniformization theorem).

Starting from dimension 3, there are examples of conformally invariant quan-

tities and maps. For instance, on 3-dimensional manifolds the Cotton tensor

is invariant. In contrast with this, the Weyl tensor is invariant in any dimen-

sion n ≥ 3, however in dimension n = 3 the Weyl tensor is identically zero

(and it is not defined for dimension n = 2). Notice that we can form scalar

invariants from these tensors taking their complete contractions, as discussed

earlier. Thus, on any manifold of dimM ≥ 3 there is a conformally invariant

scalar density |W|2 = WabcdW
abcd. In dimension n = 3 a similar role is played

by |Y|2 = YabdY
abd.

The problem of finding all conformal and CR invariants was posed by Charles

Fefferman in [23] as an attempt to find the coefficients of the asymptotic ex-

pansion of the Bergman kernel of a strictly pseudoconvex domain in Cn. This

stimulated an active research and generated rich literature.

To find a conformal invariant with certain properties one may take a Weyl in-

variant as above, and examine its conformal transformation behavior. Adding

lower order terms may, in principle, cancel out the transformation, and an

invariant will be constructed. This process is feasible for lower orders, and

some examples have been found using it (e.g. the Yamabe and Paneitz oper-

ators, see e.g. [58]), but when the order grows, the number of terms increases

exponentially, and the search of suitable cancellations becomes an extremely

tedious endeavor.

Fortunately, there are ways to construct infinite series of conformal invari-

ants. Fefferman and Graham ([24] and [25]) proposed a solution based on

finding an ambient space M̃ with the Riemannian structure such that the

Weyl invariants of this ambient structure give rise to conformal invariants of

the initial manifold M . This so-called ambient construction gives a complete

solution if the dimension of M is odd, while for even dimensional manifolds it

has an obstruction at a finite order.
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4.1 Elements of conformal invariant theory

Conformal Weyl invariants

Using methods of tractor calculus, Gover in [27] developed a method that

works for both odd and even dimensional cases, and, save for some exceptional

cases [7], yields a complete solution of the problem of generating all conformal

invariants. This is the construction we describe in the nutshell here. It can be

seen as a construction of conformal invariants that replaces the Weyl invariants

of the Riemannian structure.

Definition 4.1.9. A scalar conformal Weyl invariant is a linear combination

of complete contraction of the following two forms,

even invariants,

• contr
(

h−1 · · · · · h−1 ·W(k1) · · · · ·W(kr)
)

and odd invariants, defined when M is oriented,

• contr
(
η · h−1 · · · · · h−1 ·W(k1) · · · · ·W(kr)

)
where in the above displays

W
(k)
ABCD,P1...Pk

:= DP1 . . .DPk
WABCD

By construction, the Weyl invariants are conformally invariant densities that

form a family with a countable list of generating elements.

Allowing partial contractions we obtain tractor valued Weyl invariants, that

can be used further to extract tensor or scalar valued conformal invariants

arising the the projected parts of tractors ([6]).

For instance, in dimension 3, the Weyl tractor WABCD has the projecting

part containing the Cotton tensor Yabd, that gives another proof that this tensor

is conformally invariant on 3-dimensional manifolds. In dimension 4 the Weyl

tractor WABCD is just XAB
bXd

CDBbd, and the projecting part is essentially the

Bach tensor Bbd, so it is invariant in dimensions 4. In dimensions n > 4 the

projecting part of the Weyl tractor contains the Weyl tensor Wabcd.

The Weyl tractor has conformal weight −2 and in dimension 6 we have a

dimension-dependent conformal invariant DPWABCD = XP�WABCD, which

can be used to form a density, e.g. DPWABCDDPWABCD.

One can also use other conformally invariant operators say, the double-D

operator, to obtain invariants in the described way. We refer to them as the

generalized Weyl invariants .
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Chapter 4 Construction of Hypersurface Conformal Invariants

Conformal quasi-Weyl invariants

Not all invariants arise as conformal Weyl invariants described above. For

instance DADB(WCDAEWCD
B
E) explicitly (see e.g. [26]) is of the form

1
2
(n− 4)2(n− 6)(n− 8)FG + constant×Wab

deW
fg
abWdefg

where FG is the invariant obtained by Fefferman and Graham in [24] using the

ambient construction. This shows that in dimensions 4, 6 and 8 the tractor

formula DADB(WCDAEWCD
B
E) gives a trivial invariant (a multiple of lower

order invariants).

There is another construction of so called quasi-Weyl invariants, which gives

a wider set of invariants. In [27] it is shown that almost all conformal invariants

can be obtained as quasi-Weyl, the missed cases having orders that fit into

finite segments with the determined limits.

We give here a simplified version of the quasi-Weyl construction which is

equivalent to the original one, given in [27].

We present this construction in the three steps as follows.

Step 1. If dimM > 3, then we take a juxtaposition of a finite number of

monomials of the form

DPP ′ . . .DQQ′CA′ABCDD′

and contract some indices with the tractor metric or the tractor volume form.

Here CA′ABCDD′ is the lifted tractor expression of the Weyl tensor (3.47).

If dimM = 3, then the construction is the same but instead of CA′ABCDD′

the lifted tractor expression of the Cotton tensor CA′ABDD′ is used, see (3.48).

Step 2. Let us for the simplicity assume that we have contracted all the

unprimed indices in the previous step (this is not necessary, of course). Con-

sider the symmetric trace-free part of the resulting tractor. In the considered

case it will have only primed indices.

If it turns out that some of the X-s in the resulting expression can be moved

to the leftmost position, that is we get an expression of the form

X(I′ . . .XJ ′JK′...L′)◦

then we have an object JK′...L′ which is invariant due to the injectivity of the

map of taking the symmetric trace-free part (see [27, p. 230]).

Step 3. If the goal is to construct a scalar invariant density, we eliminate all
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4.1 Elements of conformal invariant theory

the remaining tractor indices in JK′...L′ by the Thomas-D operator we obtain

an indexless density:

DK′ . . .DL′JK′...L′

Leaving out some indices not contracted will produce a tractor valued in-

variant.

Definition 4.1.10. Any linear combination of tractors obtained through the

three step algorithm described above is called a conformal quasi-Weyl invari-

ant .

Ultimately, we would like to be able to work with the tractor formulæ in-

stead of using tensors. As with the Weyl invariants, we can extract invariant

projecting parts from tractors when needed.

Example 4.1.11. Let us demonstrate this process. We can consider a coupled

invariant

hABDAA′DBB′f

where f is some weighted section with weight w. This is an invariant operator

of zero weight. It can be thought as arising from the Laplacian ∇a∇af by

replacing the ∇-s with D-s. Applying it to other Weyl or quasi-Weyl invariants

we can get further examples.

Expanding the inner double-D operator by (3.24) and using the identities

for the action of the double-D operator on adjoint tractor projectors and Table

A.5, after some simplifications we obtain

hABDAA′DBB′f =− wnXA′YB′ − 2w2X(A′YB′)f − wZA′aZB′bgabf

− (w − 1)ZA′
aXB′∇af − wXA′ZB′

b∇bf − (n− 1)XA′ZB′
b∇bf

+XA′XB′(∆f + wJf)

(4.2)

Symmetrizing with respect to indices A′ and B′ we get

hABDA(A′|DB|B′)f =−X(A′YB′)

(
w(n+ 2w − 2)

)
f

− wZ(A′
aZB′)

bgabf − 2wX(A′YB′)

−X(A′ZB′)
b
(
n+ 2w − 2

)
∇bf

+X(A′XB′)(∆f + wJf)

(4.3)
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The trace free part of this with respect to the tractor metric is now

hABDA(A′|DB|B′)◦f =−X(A′YB′)◦

(
w(n+ 2w − 2)

)
f

−X(A′ZB′)◦
b
(
n+ 2w − 2

)
∇bf

+X(A′XB′)◦(∆f + wJf)

(4.4)

or,

hABDA(A′|DB|B′)◦f = −X(A′DB′)◦f (4.5)

where DAf is the Thomas-D operator (3.25).

This turns out to be not a good example since when we eliminate the tractor

index we get DADAf = 0. This problem can be circumvented by changing the

weight of the original expression that we start with, e.g. for hABf 2DAA′DBB′f

the above computations lead to DAf 2DAf which is not zero in general

4.2 The notion of hypersurface invariants

4.2.1 Metric invariants of hypersurfaces

When we represent a hypersurface Σ as level set of smooth oriented function

s : M → R, we want that geometric objects on the hypersurface, which we ex-

press using the defining functions, remain invariant when the defining function

is changed.

Example 4.2.1. As we know from Proposition 1.2.9, the unit normal

Na = |∇s|−1∇as

is independent of the choice of an oriented defining function. This is a funda-

mental example of hypersurface metric invariants, which we define now.

Let Σ be an oriented embedded hypersurface in an oriented Riemannian

manifold (M, g), and let Σ be locally represented as the zero set of a smooth

oriented defining function.

Definition 4.2.2. A scalar hypersurface metric invariant P (s, g) is a universal

polynomial expression in the variables from the list ∂k1 . . . ∂kpgij, g
ij, (det g)−1,

∂k1 . . . ∂kps, |∇s|−1 such that

1. P (s, g) is natural, in the sense that for any diffeomorphism φ : M →M
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we have

P (φ∗s, φ∗g) = φ∗P (s, g)

2. P (s, g)|Σ is independent of the choice of oriented defining function, that

is for any two oriented defining functions s′ and s of Σ we have

P (s′, g)|Σ = P (s, g)|Σ

Remark 4.2.3. Allowing the values of P (s, g) to be in tensor (vector) bundles,

we get tensor (vector-bundle) valued invariants.

Example 4.2.4. Background metric invariants1 restricted to the hypersurface

are obviously hypersurface metric invariants in the sense of the above definition

(since they do not depend on the defining function at all).

This class of invariants is important for us because we want the Weyl invari-

ants of the background structure to be included into the scope. For instance,

the background Riemann and Weyl curvatures are in this class, as well as their

covariant derivatives in any (not only tangential) directions.

Example 4.2.5. The projection operator Πa
b = δa

b − NaN
b is an ambient-

valued hypersurface invariant since it is a linear combination of the invariants

δa
b and Na.

Example 4.2.6. Projected quantities Πa′
a . . . Ta′... (where Ta′... is a background

invariant) are hypersurface invariants.

Example 4.2.7. Intrinsic metric invariants, that is the metric invariants of

the induced Riemannian structure2 ḡ on the hypersurface Σ, are hypersurface

metric invariants.

Example 4.2.8. The invariants, which are not intrinsic, are termed extrinsic.

The background scalar curvature Scal, or any background scalar Weyl invari-

ant, such as |R|2 or |W|2 restricted to the hypersurface, are extrinsic invariants.

We could say that the extrinsic invariants depend on the embedding Σ ↪→M ,

but the induced structure does depend on the embedding too: ḡab = Πc
aΠ

d
bgcd.

This can be clarified if we regard the hypersurface as a Riemannian manifold

isometrically embedded into another Riemannian manifold M . Then the in-

trinsic metric invariants are those that we have on Σ without any embedding.

1Invariants of the Riemannian structure g on the background manifold M
2That is, they arise from ḡ by Definition 4.1.1
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A classical striking example of an intrinsic invariant is the Gauss curvature

(cf. Theorema Egregium).

The interaction between the intrinsic and extrinsic invariants is rather subtle,

as the equations of Gauss and Codazzi allude.

4.2.2 Conformal invariants of hypersurfaces

Adding the appropriate modifications to the notion of hypersurface metric

invariants, we obtain the following definition.

Definition 4.2.9. A scalar hypersurface conformal invariant of weight w is a

E [w]-valued metric invariant P (g, s) of a hypersurface Σ = Z(s) in a conformal

manifold (M, c) such that for any rescaling of the metric ĝ = Ω2g the following

holds:

P (Ω2g, s) = P (g, s)

Remark 4.2.10. As before, we may allow P (g, s) to have values in (weighted)

tensor or vector bundles.

Remark 4.2.11. Again we can distinguish background, projected, ambient, ex-

trinsic and intrinsic conformal invariants (We can safely drop off the adjective

“hypersurface” from this terminology).

Example 4.2.12. The ambient conformal metric gab (the conformal metric

in the ambient bundle Ea along Σ) is identified with the restriction onto Σ of

the background conformal metric on (M, c). It is a background tensor-valued

conformal invariant of conformal weight 2. It inverse gab has weight −2.

The intrinsic metric ḡab is both projected and intrinsic conformal invariant

of weight 2.

The projection operator Πa
b = δa

b−NaN
b is an ambient conformal invariant

of weight 0.

Example 4.2.13. The unit conormal Na and the unit normal Na are ambient

conformal invariants, that is a conformally invariant sections of the ambient

bundles Ea[1] and Ea[−1].

Example 4.2.14. The curvature invariants Wabcd (the background Weyl ten-

sor), ΠΣWabcd (the projected background Weyl tensor) and Wabcd (the Weyl

tensor of the intrinsic metric) fall under this definition too.

The square of the norm of the background Weyl tensor |W|2 = WabcdW
abcd

is a background scalar conformal invariant of weight −4.
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We can add similar constructions using the Cotton tensor Yabd and the Bach

tensor Bbd in the appropriate dimensions.

Example 4.2.15. The umbilicity tensor
◦
Lab is an extrinsic hypersurface con-

formal tensor-valued invariant of weight 1.

Example 4.2.16. Another interesting example is the binormal part of the

ambient Weyl tensor
NN
Wbd := WabcdN

aN c (4.6)

It is a symmetric trace-free conformally invariant tensor along hypersurface.

It is an extrinsic invariant that can be seen as section of an intrinsic bundle

E (bd)◦ because both its indices are tangential:
NN
WbdN

b =
NN
WbdN

d = 0.

Example 4.2.17. The Fialkow tensor (cf. (3.66))

Fab = ΠΣPab − Pab +H
◦
Lab + H2

2
ḡab

is an extrinsic conformal invariant on hypersurfaces of dimension n̄ > 2 (and

it is defined to be 0 when n̄ = 2).

Example 4.2.18. According to the conformal Gauss equation (2.32)or (2.34),

the intrinsic Weyl tensor is a combination of extrinsic conformal invariants.

The conformal Codazzi equation (2.35) expresses the intrinsic exterior co-

variant derivative of the umbilicity tensor as an extrinsic quantity.

Using the quantities described above, the list of examples of hypersurface in-

variants can be continued. Say, we can consider a quantity |W|2FabW
a
cdeW

bcde
,

and so on.

Generalizing the mentioned examples we can define a class of metric hyper-

surface invariants that we shall call the Weyl metric hypersurface invariants

Definition 4.2.19. A scalar hypersurface metric Weyl invariant is a linear

combination of complete contractions of the following two forms:

even invariants

• contr
(
g · g · · · · · g ·R(k1) · · · · ·R(kr) · N(l1) · · · · · N(ls)

)
and odd invariants, that require orientations on M and Σ,

• contr
(
ε · g · g · · · · · g ·R(k1) · · · · ·R(kr) · N(l1) · · · · · N(ls)

)
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Chapter 4 Construction of Hypersurface Conformal Invariants

In the above displays

R
(k)
abcd,p1...pk

:= ∇p1 . . .∇pkRabcd

and {
N

(0)
a := Na

N
(l)
a,q1...ql := ∇q1

. . .∇ql
Na for l ≥ 1

All these quantities are considered along the hypersurface Σ. For the R(k)

this means that we restrict to Σ the result of the differentiation that takes

place on the background manifold. The N(k) may be seen as the sections of the

ambient bundles along Σ. Here g, R and ε are the background tensors (defined

on M).

Remark 4.2.20. If we allow partial contractions in the above definitions, we

obtain tensor valued Weyl invariants. The remaining indices are in general

ambient, so taking tangential projections on all indices may be desirable.

The definition of N(l) is suggested by the fact that we only have the listed

object being surely independent of extensions. The normal derivatives of the

normal tensor do not enjoy this property.

To understand the set of all invariants of this sort one perhaps needs to call

for the other methods of the invariant theory. An attempt to give a complete

solution to the problems of classifying the invariants of immersions of manifolds

with the metric tensors is given in [53].

4.3 Constructions of conformal invariants of

hypersurfaces

We introduce the notions of conformal hypersurface Weyl and hypersurface

quasi-Weyl invariants extending the corresponding constructions for the case

of conformal structure on a manifold (Section 4.1) by adding iterated tangential

invariant differential operators acting on the normal tractor.

4.3.1 Conformal Weyl invariants of hypersurfaces

We are now able to present the construction of hypersurface conformal invari-

ants that mimics the corresponding definition of metric Weyl invariants with

the appropriate modifications.
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4.3 Constructions of conformal invariants of hypersurfaces

Definition 4.3.1. A scalar hypersurface conformal Weyl invariant is a linear

combination of complete contractions (using the tractor metric h) of one of

the following form

even invariants

• contr
(

h · · · · · h ·W(k1) · · · · ·W(kr) · N(l1) · · · · · N(ls)
)

odd invariants (require orientations)

• contr
(
η · h · · · · · h ·W(k1) · · · · ·W(kr) · N(l1) · · · · · N(ls)

)
where

W
(k)
ABCD,P1...Pk

:= DP1 . . .DPk
WABCD

and now the symbols N(l) have tractor indices:{
N

(0)
A := NA

N
(l)
A,Q1...Ql

:= DQ1
. . .DQl

NA for l ≥ 1

All these quantities are considered along the hypersurface Σ. For the W(k)

this means that we restrict to Σ the result of the differentiation that takes

place on the background manifold. The N(k) may be seen as the sections of

the ambient tractor bundles along Σ. Here h, W and η are the background

tractors (defined on M).

Remark 4.3.2. If we allow partial contractions in the above definition, we ob-

tain tractor valued invariants. The tractor indices may be then projected

into the intrinsic tractor bundles using the tractor projection operator ΠA
B.

Now an index, which comes from the normal tractor in the construction, will

not necessarily vanish in the projection (see the end of this chapter where we

compute DANB explicitly).

Extracting projecting parts from the resulting tractors we obtain tensor-

valued invariants.

Example 4.3.3. The normal tractor NA = N
(0)
A trivially falls under this defi-

nition. This means that the tractor projection operator ΠA
B is a linear combi-

nation of tractor valued conformal hypersurface Weyl invariants, and therefore

is a Weyl invariant too. In other words, taking tractor projections preserves

the property of being conformal hypersurface Weyl invariant.

Example 4.3.4. The shape 2-tractor LAB is symmetric 2-tractor defined as

LAB := ΠB′
BDANB′ is a conformal hypersurface Weyl invariant. It is examined

in a higher detail in the last section of this chapter.

149



Chapter 4 Construction of Hypersurface Conformal Invariants

Example 4.3.5. The tractor-binormal part of the Weyl tractor
NN
WBD is a

symmetric 2-tractor, defined as

NN
WBD := WABCDNANC (4.7)

which is another useful example of conformal hypersurface Weyl invariants.

Proposition 4.3.6. The tractor
NN
WBD has the following properties

1. it can be identified with a purely intrinsic section, because
NN
WBDNB = 0

and
NN
WBDNC = 0;

2. explicitly (in an intrinsic scale) it is given by

NN
WBD

ḡ
= (n− 4)

(
Z̄B

bZ̄D
dWabcdN

aNc + 2Z(B
bX̄D)YabcN

aNc
)

+ X̄BX̄DBcbN
bNc

(4.8)

where Wabcd, Yabc and Bcb are the background Weyl, Cotton and Bach tensors,

respectively. Recall that n = dimM .

We are not limited with the Thomas-D operator, of course, and using the

(background or twisted intrinsic) double-D or triple-D operators is a viable

way to expand the class of possible invariants, which we can construct.

Definition 4.3.7. If in Definition 4.3.1 we replace

• in the terms W
(k)
ABCD,P1...Pk

some (or all) of the Thomas-D operators DP

with the double-D operators DPP ′ ,

• and\or in the terms N
(l)
A,Q1...Ql

some (or all) of the twisted intrinsic Thomas-

D operators DP with the twisted intrinsic double-D operators DPP ′ or

with the triple-D operator DABC ,

we obtain a potentially larger class of invariants, which we term generalized

hypersurface conformal Weyl invariants invariants .

Observe that simple expressions like DAA′NB often lead to trivial examples,

DAA′NB = −XAA′
a∇aNB =XA′ZA

a
(
ZB

b
◦
Lab −XB(. . . )

)
−XAZA′

a
(
ZB

b
◦
Lab −XB(. . . )

)
so one may need to apply the double-D operator a number of times to recover

an interesting invariant.
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4.3 Constructions of conformal invariants of hypersurfaces

4.3.2 Conformal quasi-Weyl invariants of hypersurfaces

The construction of conformal Weyl invariants can produce expressions that

“degenerate” in some dimensions. This is an interesting phenomenon that we

do not discuss here. See e.g. [7], [26], [27]. The construction of quasi-Weyl

invariants provides an approach to address this issue, but, more importantly,

it yields a wider class of conformal invariants.

As before, we describe the construction of conformal hypersurface quasi-

Weyl invariants in the following three steps.

Step 1. If dimM > 3, then we take a juxtaposition of a finite number of

monomials of the form

DPP ′ . . .DQQ′CA′ABCDD′

and of a finite number of juxtapositions of monomials of the form

DRR′ . . .DSS′NEE′

and contract some indices with the tractor metric or the tractor volume form.

Here CA′ABCDD′ is the lifted tractor expression (3.47) of the background Weyl

tensor, and NAA′ is the adjoint normal tractor :

NAA′
g
= XAA′

aNa (4.9)

If dimM = 3 the construction is the same but instead of CA′ABCDD′ the

lifted tractor expression (3.48) of the Cotton tensor CA′ABDD′ is used, see

equation.

The resulting expression can be contracted with a finite number of instances

of the tractor metric and/or the tractor volume form. We also may take a

tensor part of the result.

Step 2. Take the symmetric trace-free part of the resulting tractor.

Let us assume fro the simplicity that only primed indices remain in our

expression after contracting them with the tractor metric and/or the tractor

volume form.

If it turns out that some of the X-s in the resulting expression can be moved

to the leftmost position, that is we get an expression of the form

X(I′ . . .XJ ′JK′...L′)◦
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Chapter 4 Construction of Hypersurface Conformal Invariants

then the object JK′...L′ is invariant due to the injectivity of the operation of

taking the symmetric trace-free part.

Step 3. Eliminating the remaining tractor indices in JK′...L′ by the twisted

intrinsic Thomas-D operator we obtain an indexless density:

D
K′

. . .D
L′

JK′...L′

Definition 4.3.8. Any linear combination of tractors obtained through the

three step algorithm described above is called a hypersurface conformal quasi-

Weyl invariant .

Contracting all the indices we obtain scalar valued hypersurface conformal

quasi-Weyl invariants. If we leave some tractor indices free (not contracted

with the tractor metric and/or the tractor volume form), the resulting tractor

becomes a tractor-valued conformal quasi-Weyl hypersurface invariant.

Example 4.3.9. The restrictions onto the hypersurface of background confor-

mal quasi-Weyl invariants are obviously covered with the above construction.

Example 4.3.10. The normal tractor can be recovered from the the tractor

expression D
A′NAA′ .

4.4 Examples of hypersurface conformal invariants

The normal tractor has weight w = 0 and therefore we can write that

DANB = (n− 3)Z̄A
a∇aNB − X̄A∆NB

and this implies that when the background dimension is n = 3, the tangential

tractor Laplacian ∆NB of the normal tractor is a conformally invariant sec-

tion along the hypersurface (that has the dimension n̄ = 2 in this case). Its

projecting part is then a conformally invariant (tensor)-density, which we are

going to extract.

Let us compute the tangential tractor Laplacian explicitly:

∆NC = ḡab∇a∇bNC

= ḡab∇a

(
ZC

c
◦
Lbc − 1

n̄−1
XC∇

c ◦
Lbc

)
= ḡab

(
(∇aZC

c)
◦
Lbc + ZC

c∇a

◦
Lbc − 1

n̄−1
(∇aXC)∇c ◦

Lbc − 1
n̄−1

XC∇a∇
c ◦
Lbc

)
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4.4 Examples of hypersurface conformal invariants

where in the first line we have used we have used that ∇bNC = ZC
c
◦
Lbc −

1
n̄−1

XC∇
c ◦
Lbc in the ambient splitting.

We need to recall the following rules for the ambient tractor covariant deriva-

tive: ∇aZC
c = −YCδac−XCPa

c and ∇aXC = ZC
cḡac. The ambient derivatives

of the intrinsic tensors can be rewritten using the Gauss formula in terms of

the intrinsic connection, the shape tensor and the normal vector, and we apply

this to the terms ∇a

◦
Lbc and ∇a∇

c ◦
Lbc to obtain

∇a

◦
Lbc = ∇a

◦
Lbc − NbLa

f
◦
Lfc − NcLa

f
◦
Lbf

and

∇a∇
c ◦
Lbc = ∇a∇

c ◦
Lbc − NbLa

f∇c ◦
Lfc

Plugging all these identities into the expression for the tangential Laplacian

obtained above, we continue:

∆NC = ḡab
(

(−YCδac −XCPa
c)
◦
Lbc + ZC

c(∇a

◦
Lbc − NbLa

f
◦
Lfc − NcLa

f
◦
Lbf )

− 1
n̄−1

ZC
cḡac∇

e ◦
Lbe − 1

n̄−1
XC(∇a∇

c ◦
Lbc − NbLa

f∇c ◦
Lfc)

)
Distributing the factors and collecting the terms, after some simplifications

we get

∆NC = ḡab
(
− YC

◦
Lba + ZC

c(∇a

◦
Lbc − NbLa

f
◦
Lfc − NcLa

f
◦
Lbf − 1

n̄−1
ḡac∇

e ◦
Lbe)

−XC(Pa
c
◦
Lbc + 1

n̄−1
(∇a∇

c ◦
Lbc − NbLa

f∇c ◦
Lfc)

)
Contracting the indices a and b with the inverse intrinsic metric ḡab and using

that
◦
Lba is trace free (ḡab

◦
Lba = 0) and that Lab has no normal components, we

further simplify the last display to the following form:

∆NC = ZC
c
(
∇b ◦

Lbc − NcL
bf
◦
Lbf − 1

n̄−1
∇e ◦

Lce

)
−XC

(
Pbc

◦
Lbc + 1

n̄−1
(∇b∇c ◦

Lbc)
)

After a few final simplifications we record this result as an expression for the

tangential tractor Laplacian of the normal tractor in the ambient splitting:

∆NC = ZC
c
(
n̄−2
n̄−1
∇b ◦

Lbc−Nc|
◦
L|2
)
−XC

(
(ΠΣP)bc

◦
Lbc + 1

n̄−1
(∇b∇c ◦

Lbc)
)

(4.10)

where n̄ = n − 1 is the dimension of the hypersurface Σ, and (ΠΣP)ab is the

totally projected part of the ambient Schouten tensor.

It is easy to decompose this tractor into the intrinsic and normal parts just
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Chapter 4 Construction of Hypersurface Conformal Invariants

by inspection:

∆NC = ZC
c n̄−2
n̄−1
∇b ◦

Lbc − ZCcNc|
◦
L|2 −XC

(
(ΠΣP)bc

◦
Lbc + 1

n̄−1
(∇b∇c ◦

Lbc)
)

= ZC
c n̄−2
n̄−1
∇b ◦

Lbc −
(

NC +XCH
)
|
◦
L|2 −XC

(
(ΠΣP)bc

◦
Lbc + 1

n̄−1
(∇b∇c ◦

Lbc)
)

= ZC
c n̄−2
n̄−1
∇b ◦

Lbc −XC

(
(ΠΣP)bc

◦
Lbc + 1

n̄−1
(∇b∇c ◦

Lbc) + H|
◦
L|2
)
− NC |

◦
L|2

One can also apply the formulas for the action of the tractor projection

operator (3.60) and get the same result. We can now write the component of

∆NC in the intrinsic tractor bundle T C as follows:

ΠC′
C∆NC′ = Z̄C

c n̄−2
n̄−1
∇b ◦

Lbc−X̄C

(
1

n̄−1
(∇b∇c ◦

Lbc)+(ΠΣP)bc
◦
Lbc+H|

◦
L|2
)

(4.11)

We also notice that the normal component is NC′
C∆NC′ = −NC |

◦
L|2.

For the reasons that we explain in the next chapter, we introduce a special

notation W for the coefficient at X̄C in (4.11):

W := 1
n̄−1
∇b∇c ◦

Lbc + (ΠΣP)bc
◦
Lbc + H|

◦
L|2 (4.12)

Proposition 4.4.1. In the ambient dimension n = 3, that is when the dimen-

sion of Σ is n̄ = 2, the density

W(2) = (∇b∇c ◦
Lbc) + (ΠΣP)bc

◦
Lbc + H|

◦
L|2 (4.13)

is conformally invariant.

Proof. When n̄ = 2 the coefficient at Z̄C
c in (4.11) vanishes.

In the previous section we have mentioned the shape 2-tractor LAB defined

as

LAB := ΠB′
BDANB′ (4.14)

as an example of hypersurface conformal Weyl invariants.

Proposition 4.4.2. The shape 2-tractor LAB is a symmetric 2-tractor (so

the name is justified), more precisely, it can be identified with a section of

the intrinsic tractor bundle T (AB), which explicitly it is given (in an intrinsic

scale) by

LAB = (n̄− 2)Z̄AB
ab
◦
Lab − n̄−2

n̄−1
W̄AB

a∇b ◦
Lab + X̄ABW (4.15)

where W is given by (4.12), and we use the intrinsic symmetric 2-tractor pro-

jectors Z̄AB
ab, W̄AB

a, and X̄AB, see Appendix C.
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4.4 Examples of hypersurface conformal invariants

In [34] it was proposed to call the quantity

LAB = (n̄−2)Z̄AB
abLab− n̄−2

n̄−1
W̄a

AB∇
b
Lab+ X̄AB( 1

n̄−1
∇a∇b

Lab+P
ab

Lab) (4.16)

as the tractor second fundamental form3 for n̄ > 2.

The tractor (4.16) is obtained by the application of the intrinsic middle

operator (cf. [64]) to the tractor shape 1-form. In [34] and [68] some examples

of hypersurface conformal invariants that arise from LAB are studied in detail.

The shape-2 tractor in either form, (4.16) or (4.14), can be used to make

further conformal Weyl invariants, and it has properties similar to those of the

umbilicity tensor (trace-free, conformally invariant).

The tractors LAB and LAB have the conformal weight −1. The intrinsic box

operator (2.12) becomes the conformal Laplacian on sections of this weight in

dimension n̄ = 4.

Applying to LAB the formula (C.17) for the intrinsic box operator on reduced

symmetric 2-tractors (see Appendix C), we obtain the expression

�LAB = ŪAB
a
(
− 2(n̄− 2)∇b ◦

Lab + (n̄+ 2) n̄−2
n̄−1
∇b ◦

Lab

)
+ V̄AB

(
2(n̄− 2) P

ab ◦
Lab + 2 n̄−2

n̄−1
∇a∇b ◦

Lab − nW
)

+ Z̄AB
ab
(
− 4(n̄− 2) Pca

◦
Lbc − 2(n̄− 2)J̄

◦
Lab

+ (n̄− 2)�
◦
Lab − 4 n̄−2

n̄−1
∇b∇

c ◦
Lac + 2 ḡabW

)
+ . . .

(the lower slots shown as . . . are not essential here).

In dimension n̄ = 4 we see that one of the projecting parts of the above trac-

tor appears at the term Z̄AB
ab (cf. the rescaling formula (C.11) for symmetric

2-tractors). This way we obtain a new example of hypersurface conformal

invariants:

∆
◦
Lab − 4

3
∇(a∇

c ◦
Lb)c + 1

3
ḡab∇

c∇d ◦
Lcd + ḡab(ΠΣP)cd

◦
Lcd − 4P(a

c
◦
Lb)c − J̄

◦
Lab + H|

◦
L|2ḡab

which can be further simplified, using the Simons and Weitzenböck identities.

3 Our analysis in this thesis has shown that the tractor shape 1-form LaB is a better
candidate for this role. More precisely, by the tractor second fundamental form one
should understand the operator Ha

B
C = −NBLaC , cf. (3.71).
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Chapter 5

Towards higher dimensional

analogues of the Willmore

functional

5.1 The Willmore functional in 2 dimensions

5.1.1 Notes on the history of the Willmore functional

The bending energy of a an immersed surface Σ (with or without boundary)

in the Euclidean space R3 is a classically known functional

U(Σ) :=

∫∫
Σ

H2dΣ (5.1)

where H is the mean curvature and dΣ is the induced volume form. It has a

long and fascinating history of study, with many mysteries and surprises. Al-

ready S.D. Poisson began generalizing the Euler’s theory of elastica to surfaces

that lead to this functional. It also appeared in the work of Sophie Germain

who proposed it as a tool to explain the phenomenon of Chladni’s vibrating

plates. The functional 5.1 usually referred to as the bending energy in the

context of the theory of elasticity and the mechanics of solids.

In 1923 G.Thomsen published the results of his PhD work in conformal

geometry of surfaces [70] where he studied some variational problems related

to the integral

C(Σ) :=

∫∫
Σ

(
1

R1

− 1

R2

)2

dΣ (5.2)

Here R1 and R2 are the principal radii of curvature of the surface Σ. Recall

that the principal curvatures are the minimal and maximal values of the normal

curvature at a given point p of the surface. The normal curvature is the signed
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Chapter 5 Towards higher dimensional analogues of the Willmore functional

curvature of the curve of intersection of the surface Σ and the plane Π passing

through the point p on the surface in the direction of the unit normal N

to the surface at that point (see Fig. 5.1). When the plane Π is rotated

around the unit normal, the normal curvatures vary in general. Since we

can parametrize the positions of the planes Π by the angles of rotation with

respect to a fixed direction, which can be viewed as the points on the unit

circle, the minimal κmin =: κ1 and maximal kκmax =: κ2 values of the normal

curvature are achieved due to compactness of the unit circle. These values are

called the principal curvatures of the surface at the given point. Their inverses

R1 = κ−1
min and R2 = κ−1

max are the principal radii of curvature of the surface Σ.

If the principal curvatures are equal, the point p, is called umbilic. If all the

points of the surface are umbilic, the surface is called totally umbilic.

N

p
Rp

Π

Σ

κp(Π) = 1/Rp

Figure 5.1: Normal curvature

The integrand in (5.2) can be rewritten as

(κ1 − κ2)2 = (κ1 + κ2)2 − 4κ1κ2 = 4H2 − 4K

that shows the equivalence of (5.1) and (5.2) on closed1 surfaces: C = 4U−4χ,

where χ is the Euler characteristic of Σ, by the Gauss–Bonnet theorem.

Among other things, G.Thomsen obtained the Euler–Lagrange equation for

1 The case when the surface Σ has boundary is qualitatively different form the point of
view of conformal geometry, so we consider only closed surfaces. Another justification
for this restriction is that we are interested in the applications where Σ is the boundary
of some manifold.
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the functional (5.2). In the final footnote to his paper he attributed this

equation to an apparently unpublished work of W.Shadow. G.Thomsen was a

student of W.Blaschke who published a three-volume treatise on geometry [9].

In the volume III of this work Blaschke discusses conformal properties of the

integrand in 5.2 and mentions the results of Thomsen in connection with this.

More than 40 years later, T.J. Willmore proposed in 1965 [75] to study

the critical surfaces of the functional (5.1) and obtained its Euler–Lagrange

equation independently. He writes in [76] that he believed that this result

was knew, and was surprised to learn that it had been already known since

Thomsen and Schadow. After Willmore’s work on the functional (5.1), it got

into focus of active mathematical research. The famous Willmore’s conjecture

states that the only critical point of this functional on the class of surfaces

of genus higher than one is the Hopf–Clifford torus up to conformal rescaling

of the ambient space, which is either Euclidean 3-dimensional space or the 3-

dimensional sphere. This conjecture stimulated a rich mathematical literature

and was completely solved only recently by A.Neves and F.Marques [51].

The work of Blaschke [9] is only available in German, so the results on the

functional (5.1) have not become widely known until White [74] published in

1973 a concise proof of conformal invariance of (5.1) for surfaces R3 using

direct computations of the change of principal curvatures under inversion of

R3 with respect to a sphere with center not lying on the surface.

Clearly, the integrand in (5.2) vanishes at the umbilic points of the surface.

It can be shown, using the adapted coordinate system chosen at a point p

on the surface, that the principal curvatures are the eigenvalues of the shape

operator La
b of Σ at this point, which can be diagonalized by rotating the

adapted system to the normal form, and the matrix of the shape operator will

have the form

(
κ1 0

0 κ2

)
. This shows that the integrand of (5.2) is the square

of the length of the trace-free part of the second fundamental form, which we

call the umbilicity tensor
◦
Lab.

This observation suggests the generalization of the functional (5.2) to the

case of surfaces in arbitrary Riemannian spaces that we refer to as the Willmore

functional.

Definition 5.1.1. The Willmore functional W(Σ) is defined on an embedded

hypersurface Σ in a Riemannian manifold (M, g) of dimension n = 3 as

W(Σ) =

∫
Σ

|
◦
L|2 dΣ (5.3)
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5.1.2 The variation of the umbilicity tensor

A stationary point of functional (5.3) is called a Willmore surface. The nec-

essary condition for for a surface to be a stationary point is known as the

Euler–Lagrange equation for this functional. In order to find this equation it

is convenient to have the identity, which we derive now.

Proposition 5.1.2. Let f t of f : Σn−1 → Mn be a normal variation as in

Chapter 1, and V = ϕN be its variational vector, where ϕ : Σ → R is smooth

compactly supported function on Σ. For each point p ∈ Σ we have the umbilic-

ity tensor
◦
Lab defined along the curve pt.

The variation of the umbilicity tensor
◦
Lab at t = 0 is given by

δ0

◦
Lab = −∇(a∇b)◦ϕ− ϕ

NN
R(ab)◦ + ϕ

◦
L2

(ab)◦ +
2ϕ|

◦
L|2

(n− 1)
ḡab (5.4)

where ∇(i∇j)◦ϕ = ∇i∇jϕ−n̄−1ḡij∆ϕ is the trace-free part of the intrinsic Hes-

sian of the variational function ϕ, and
NN
R(ab)◦ =

NN
RacbdN

cNd − n̄−1RiccdN
cNdḡab

is the trace-free part of the binormal part of the Riemannian curvature of the

manifold M evaluated along the hypersurface Σ = Σ0.

Proof. Since by definition
◦
Lab = Lab−Hḡab, using Theorem 1.3.3 we compute:

δ0

◦
Lab = δ0Lab − (δ0H)ḡab − Hδ0ḡab

= −∇a∇bϕ+ ϕ
(

L2
ab −

NN
Rab

)
+ n̄−1ḡab∆ϕ+ n̄−1ϕ

(
|L|2 +

NN
Ric
)
ḡab − 2ϕHLab

= −∇(a∇b)◦ϕ− ϕ
NN
R(ab)◦ + ϕL2

ab + n̄−1ϕ|L|2ḡab − 2ϕHLab

Now we need to decompose the shape tensor in the last three terms of the

above display using Lab =
◦
Lab + Hḡab.

Notice that L2
ab =

◦
L2
ab + 2 H

◦
Lab + H2 ḡab and |L|2 = |

◦
L|2 + H2 n̄ so that we

have

δ0

◦
Lab = −∇(a∇b)◦ϕ− ϕ

NN
R(ab)◦ + ϕ

( ◦
L2
ab + 2 H

◦
Lab + H2 ḡab

)
+ n̄−1ϕ

(
|
◦
L|2 + H2 n̄

)
ḡab − 2ϕH

( ◦
Lab + Hḡab

)
= −∇(a∇b)◦ϕ− ϕ

NN
R(ab)◦ + ϕ

◦
L2
ab + n̄−1ϕ|

◦
L|2ḡab

We observe now that tr
◦
L2
ab = ḡab

◦
La

c
◦
Lcb = |

◦
L|2 and so the trace free part of

◦
L2
ab is

◦
L2

(ab)◦ =
◦
L2
ab − n̄|

◦
L|2ḡab. This suffices to confirm the claim.

160



5.1 The Willmore functional in 2 dimensions

5.1.3 The Euler–Lagrange equation of the Willmore

functional

Now we compute the Euler–Lagrange equation of the Willmore functional (5.3)

of a closed embedded oriented surface Σ in an oriented connected 3-dimensional

Riemannian manifold (M, g).

Using a standard argument one can show that the tangential component

of the variation vector field acts on Σ by diffeomorphism, and so amounts to

a reparametrization of the surface and does not change the integral over the

surface.

Proposition 5.1.3. The necessary condition (the Euler–Lagrange equation)

for an embedded 2-dimensional hypersurface Σ to be a critical point of the

Willmore functional W(Σ) =
∫

Σ
|
◦
L|2dΣ is

∇a∇b ◦
Lab +

◦
Lab

NN
R(ab)◦ +H|

◦
L|2 = 0 (5.5)

Proof. Let us present the Willmore functional (5.3) as

W =

∫
Σ

ḡacḡbd
◦
Lab

◦
LcddΣ

and apply the variational operator δ0. We obtain

δ0W = δ0

∫
Σ

ḡacḡbd
◦
Lab

◦
LcddΣ

=

∫
Σ

[
2 (δ0 ḡac)ḡbd

◦
Lab

◦
LcddΣ + 2 ḡacḡbd(δ0

◦
Lab)

◦
LcddΣ + ḡacḡbd

◦
Lab

◦
Lcd(δ0 dΣ)

]

Substituting the identities (1.68),(5.4) and (1.69) into the last line we get

(recall that we work in the case n = dimM = 3, so n̄ = 2)

δ0W =

∫
Σ

[
2 (−2ϕLac)ḡbd

◦
Lab

◦
LcddΣ

+ 2 ḡacḡbd
(
−∇(a∇b)◦ϕ− ϕ

NN
R(ab)◦ + ϕ

◦
L2

(ab)◦ +
2ϕ|

◦
L|2

(n− 1)
ḡab

) ◦
LcddΣ

+ ḡacḡbd
◦
Lab

◦
Lcd 2ϕH dΣ

]
Notice that in the first term we have the shape tensor Lac =

◦
Lac + Hḡac,
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Chapter 5 Towards higher dimensional analogues of the Willmore functional

and we can rewrite this term as

−4ϕ (
◦
Lac + Hḡac)

◦
L2
acdΣ = (−4ϕ

◦
Lac

◦
L2
ac − 4ϕH|

◦
L|2)dΣ

using the fact that

ḡac
◦
L2
ac = |

◦
L|2

The second term of the expression for δW(f) above can be rewritten as

2
◦
Lab
(
−∇(a∇b)◦ϕ− ϕ

NN
R(ab)◦ + ϕ

◦
L2

(ab)◦ +
2ϕ|

◦
L|2

(n− 1)
ḡab

)
dΣ

= (−2
◦
Lab∇(a∇b)◦ϕ− 2ϕ

◦
Lab

NN
R(ab)◦ + 2ϕ

◦
Lab

◦
L2

(ab)◦)dΣ

The remaining term is easy to handle, it is just

2ϕH|
◦
L|2 dΣ

Adding up these intermediate results, we continue the calculation as

δ0W =

∫
Σ

[
− 4ϕ

◦
Lac

◦
L2
ac − 4ϕH|

◦
L|2

− 2
◦
Lab∇(a∇b)◦ϕ− 2ϕ

◦
Lab

NN
R(ab)◦ + 2ϕ

◦
Lab

◦
L2

(ab)◦

+ 2ϕH|
◦
L|2
]

dΣ

Collecting the terms, we get

δ0W =

∫
Σ

[
− 2

◦
Lab∇(a∇b)◦ϕ− 2ϕ

◦
Lac

◦
L2
ac − 2ϕH|

◦
L|2 − 2ϕ

◦
Lab

NN
R(ab)◦

]
dΣ

Integrating the first term in the last display by parts (and suppressing the

volume form dΣ for brevity)∫
Σ

◦
Lab∇(a∇b)◦ϕ =

∫
Σ

◦
Lab∇a∇bϕ = −

∫
Σ

(∇a

◦
Lab)∇bϕ =

∫
Σ

ϕ∇a∇b

◦
Lab

we arrive to the equation

δ0W = −2

∫
Σ

ϕ
[
∇a∇b ◦

Lab +
◦
Lac

◦
L2
ac + H|

◦
L|2 +

◦
Lab

NN
R(ab)◦

]
dΣ
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5.1 The Willmore functional in 2 dimensions

One can regard the term
◦
Lac

◦
L2
ac as the trace of the cube of a trace-free

symmetric 2 × 2-matrix. More formally, the Cayley–Hamilton theorem for

a 2 × 2-matrix A yields A2 + a1A + a2I = 0 where a1 = − tr(A), a2 =

−1
2

(tr(A2)− (tr(A))2). Thus, when tr(A) = 0 we have A2 = tr(A2)
2
I and

A3 = tr(A2)
2
A, so tr(A3) = tr(A2)

2
tr(A) = 0. This means that

◦
Lac

◦
L2
ac vanishes

on a 2-dimensional hypersurface.

Using the fact that ϕ is an arbitrary smooth function on an open subset of

hypersurface Σ, which is assumed to be closed (compact, without boundary),

we deduce the claim.

Remark 5.1.4. In case of the Euclidean background, equation (5.5) reduces to

the known form ([76, 14]),

∆H + 2(H2 −K)H = 0

because in the adapted normal coordinates at a point of the surface the um-

bilicity tensor would look as

◦
La

b =

(
κ1 0

0 κ2

)
−

(
κ1+κ2

2
0

0 κ1+κ2

2

)
=

(
κ1−κ2

2
0

0 κ2−κ1

2

)

and therefore |
◦
L|2 = trḡ

◦
L2 = 1

2
(κ1−κ2) = 2(H2−K). By the contracted con-

formal Codazzi equation (2.36) for dim Σ = n̄ = 2 in the Euclidean background

(Pab = 0) yields ∇a ◦
Lab = ∇bH.

5.1.4 The Willmore invariant

The left hand side of the Euler–Lagrange equation (5.5) for the Willmore

functional (5.3) is an important hypersurface conformal invariant. Clearly,

it generalizes the Willmore invariant for surfaces in 3-dimensional Euclidean

space to the case of arbitrary Riemannian background.

A.R.Gover conjectured [30] that in dimension n = 3 this quantity should

coincide with the invariant (4.13) obtained from ΠA′
A�NA′ . As we can see

now, this is indeed the case.

It was also pointed to the author by A.R.Gover [31], that this quantity

was used in [1, pp.592,609] as a conformally invariant density of weight −3

on the boundary of a 3-dimensional manifold, where it was discovered by an

asymptotic analysis of the Yamabe equation.
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Chapter 5 Towards higher dimensional analogues of the Willmore functional

Proposition 5.1.5. The left hand side of (5.5) coincides with the quantity

W(2) = ∇a∇b ◦
Lab + (ΠΣP)ab

◦
Lab + H|

◦
L|2 (5.6)

from Proposition 4.4.1. It is conformally invariant with respect to rescalings

of the background metric.

Definition 5.1.6. The quantity W(2) defined by (5.6) is called the Willmore

invariant W(2) of a hypersurface in a 3-dimensional conformal manifold.

Proof. Recall that Ricab = (n− 2)Pab + Jgab and thus Ric(ab)◦ = (n− 2)P(ab)◦,

which in dimensionn = 3 becomes Ric(ab)◦ = P(ab)◦. Notice also that
NN
R(ab)◦ =

NN
W(ab)◦ + (ΠΣP)(ab)◦, but W = 0 in dimension n = 3, so the equality of W and

the left hand side of (5.5) is clear.

The Willmore functional is invariant with respect to the rescaling of the

background metric, and the condition to be equal to zero is also trivially con-

formally invariant. This implies the conformal invariance of W(2).

Alternatively, we may verify the conformal invariance of W by using the

conformal rescaling rules of its ingredients. We shall perform this verification

as is quite instructive.

The following conformal rescaling identity

∇̂
a

∇̂
b ◦
Lab = ∇a∇b ◦

Lab+(n−2)
◦
Lab∇

a
Υ
b
+(2n−6)Υ

a∇b ◦
Lab+(n−4)(n−2)Υ

a
Υ
b ◦
Lab

is easy to obtain using the rules for the rescaling of the Levi-Civita connection

(see e.g. Stafford, p. 36). Here n is the ambient dimension: n = dimM .

We compute in dimension n = 3(or n̄ = 2):

Ŵ(2) = ∇̂a∇̂b ◦
Lab + ̂(ΠΣP)ab

◦
Lab + Ĥ|

◦
L|2

= ∇a∇b ◦
Lab +

◦
Lab∇

a
Υ
b −����

�
Υ
a
Υ
b ◦
Lab

+
◦
LabΠa′

aΠb′
bPa

′b′ −
◦
LabΠa′

aΠb′
b∇a′Υb′ +((((

((((
((◦

LabΠa′
aΠb′

bΥa′Υb′

+ H|
◦
L|2 + NcΥ

c|
◦
L|2

where we have canceled two terms using the chain rule Πa
bΥb = Υa.

Collecting and rearranging the remaining terms we get

Ŵ(2) = ∇a∇b ◦
Lab +

◦
LabΠa′

aΠb′
bPa

′b′ + H|
◦
L|2

+
◦
Lab
(
∇aΥb − Πa

a′Πb
b′∇a′Υb′ + NcΥ

c
◦
Lab

)
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5.2 A 4-dimensional analogue

where the last three terms (in the parentheses) annihilate due to the Gauss

and Weingarten formulas:

Πb
b′∇aΥb′ = Πb

b′∇a

(
Υb′ + (NcΥc)Nb′

)
= Πb

b′
(
∇aΥb′ − Nb′La

cΥc + Nb′∇a(N
cΥc) + (NcΥc)Lab′

)
= ∇aΥb + (NcΥc)Lab

Observing that
◦
LabLab =

◦
Lab

◦
Lab = |

◦
L|2 we confirm that Ŵ(2) = W(2).

5.2 A 4-dimensional analogue

5.2.1 The Branson–Gover operators

The Q-curvature originates from the work of T.P.Branson (1953 – 2006) in con-

formal geometry. It can be seen as a generalization of the Gaussian curvature

on 2-dimensional surfaces to the Riemannian manifolds of higher dimensions.

In [12] T.P.Branson and A.R.Gover have proposed a new families of opera-

tors that shed more light on the nature of the Q-curvature and give ways to

further generalizations.

We are interested in the Branson–Gover’s Qk-operators because of their

strong invariance on the closed vector bundle valued forms, that has been

proved by T.P.Branson and A.R.Gover in [13], Theorem 5.3. This allows to

apply them to the tractor shape 1-form, and provided it is closed we obtain a

hypersurface conformal invariant. It turns out that in conformally flat back-

ground of dimension n > 3 the shape tractor 1-form LaB is certainly closed.

The precise condition is given in the Proposition below.

From the the tractor Codazzi equation (3.78) we can notice that L is d
v
∇-

closed for n ≥ 3 in the conformally flat background, but in the ambient di-

mension 3 the connection
v

∇ is taken to be the intrinsic tractor connection

∇ by definition. We can improve this observation by directly computing the

∇-exterior derivative of L.

Proposition 5.2.1. Let (M, c) be a conformal manifold of dimension n > 3.

The intrinsic covariant exterior derivative of the shape tractor 1-form L of a

hypersurface Σ in M is given in a choice of conformal scale ḡ ∈ c̄ explicitly by

the formula

2∇[cLa]B
ḡ
= Z̄B

bWcabdN
d − 1

n−3
X̄B∇

b
(WcabdN

d) (5.7)
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Chapter 5 Towards higher dimensional analogues of the Willmore functional

where c̄ is the induced conformal class on Σ.

Proof. Recall that L in a choice of scale is expressed as

LaB
ḡ
= Z̄B

b
◦
Lab −

1

n− 2
X̄B∇

b ◦
Lab

Differentiating this with respect to ∇ and applying the Leibniz rule we get

∇cLaB = (∇cZ̄B
b)
◦
Lab + Z̄B

b∇c

◦
Lab − 1

n−2
(∇cX̄B)∇b ◦

Lab − 1
n−2

X̄B∇c∇
b ◦
Lab

= (−ȲBδcb − X̄BPc
b)
◦
Lab + Z̄B

b∇c

◦
Lab − 1

n−2
Z̄B

bḡbc∇
d ◦
Lad − 1

n−2
X̄B∇c∇

b ◦
Lab

= −ȲB
◦
Lac + Z̄B

b
(
∇c

◦
Lab − 1

n−2
ḡbc∇

d ◦
Lad

)
− X̄B

(
Pc

b
◦
Lab + 1

n−2
∇c∇

b ◦
Lab

)
Skewing over the indices c and a we obtain

2∇[cLa]B = Z̄B
b
(

2∇[c

◦
La]b − 2

n−2
ḡb[c∇

d ◦
La]d

)
− X̄B

(
2 P[c

b
◦
La]b + 2

n−2
∇[c∇

b ◦
La]b

)
(5.8)

To handle the first term we rewrite the conformal Codazzi equation in the

form

Wab
cdNd = 2∇[a

◦
Lb]

c − 2 δ[a
cPb]

dNd − 2 δ[a
c∇b]H

and using the contracted conformal Codazzi equation obtain a compact form

of the (full) conformal Codazzi equation as

Wab
cdNd = 2∇[a

◦
Lb]

c − 2
n−2

δ[a
c∇b ◦

Lb]d

The second term in (5.8) after substituting the contracted conformal Codazzi

equation (2.36) and simplifying using the torsion-freeness of the Levi-Civita

connection, i.e. 2∇[c∇a]H = 0, becomes 2 P[c
b
◦
La]b + 2∇[c

N
Pa] where

N
Pa = Πa′

aPa′bN
b

where Pab is the ambient Schouten tensor restricted to the hypersurface Σ.

We claim now that

2∇[c

N
Pa] = 1

n−3
∇b

(WcabdN
d)− 2 P[c

b
◦
La]b (5.9)
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5.2 A 4-dimensional analogue

Indeed, the contracted Codazzi equation implies that

2∇[c

N
Pa] = 2

n−2
∇[c∇

b ◦
La]b (5.10)

We can swap the derivatives:

ḡbd∇c∇d

◦
Lab = ḡbd

(
∇d∇c

◦
Lab − Rcd

e
a

◦
Leb − Rcd

e
b

◦
Lae)

= ∇b∇c

◦
Lab + R

b
c
e
a

◦
Leb − Ricc

e
◦
Lae

After skewing the indices c and a the second term vanishes due to the swap

symmetry of the Riemannian curvature, and the third one becomes

Ricc
e
◦
Lae = (n̄− 2)Pc

e
◦
Lae + J̄

◦
Lac = (n− 3)Pc

e
◦
Lae + J̄

◦
Lac

Thus we have

2∇[c∇
b ◦
La]b = 2∇b∇[c

◦
La]b − 2(n− 3)P[c

e
◦
La]e

5.2.2 QΣ-density

Coupled Q-operators

The operator QD
1 : E1⊗F → E1⊗F , introduced in [28, 13], is given explicitly

by the formula

Q1 := dDδD − 4P# + 2J (5.11)

where F is a vector bundle with a connection D, dD is the exterior covariant

derivative associated to D, and δD is the formal adjoint of dD. By E1 we denote

the bundle of 1-forms.

Claim 5.2.2. Operator Q1 is Q-like on closed 1-forms in dimension 4.

Proof. Write the action of Q-operator on a 1-form ua explicitly

Qua = −∇a∇bub − 4 Pa
bub + 2 Jua

Using (2.1), (2.4), (2.9) and (2.10) we compute in dimension n = 4

Q̂ua = −(∇a − 2Υa)(∇bub + 2Υbub)− 4Pa
bub + 4(∇aΥ

b)ub − 4ΥaΥ · u

+���
��

2|Υ|2ua + 2Jua − 2(∇ ·Υ)ua −�����2|Υ|2ua
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Chapter 5 Towards higher dimensional analogues of the Willmore functional

Opening the parentheses we get some more cancellations

Q̂ua = −∇a∇bub − 2∇a(Υ
bub) + 2Υa∇ · u+���

��4ΥaΥ · u− 4Pa
bub

+ 4(∇aΥ
b)ub −����

�
4ΥaΥ · u+ 2Jua − 2(∇ ·Υ)ua

Collecting the terms we arrive to the expression

Q̂ua = Qua − 2∇a(Υ
bub) + 2Υa∇ · u+ 4(∇aΥ

b)ub − 2(∇ ·Υ)ua

= Qua − 2(∇aΥ
b)ub − 2Υb∇aub + 2Υa∇ · u+ 4(∇aΥ

b)ub − 2(∇ ·Υ)ua

= Qua + 2(∇aΥ
b)ub − 2Υb∇aub + 2Υa∇ · u− 2(∇ ·Υ)ua.

Note that up to this point we have not used that u is closed, or any other

properties of u. Neither have any derivatives been commuted. The calculation

so far is an expansion of the transformation formulas.

Now to identify the transformation terms we compute

δd (Υua) = −2∇b∇[bΥua] = 2∇b∇[aΥub]

= ∇b∇a(Υub)−∇b∇b(Υua)

= ∇b
(

Υaub + Υ∇aub

)
−∇b

(
Υbua + Υ∇bua

)
= (∇bΥa)ub + Υa∇ · u+���

��
Υb∇aub +

XXXXXXΥ∇b∇aub

−(∇ ·Υ)ua −Υb∇bua −���
��

Υb∇bua −
XXXXXXΥ∇b∇bua

where the cancellations occur because we assume that ua is closed which is

equivalent to

∇aub = ∇bua.

Thus, using that ∇aΥb = ∇bΥa and again that ∇aub = ∇bua, we get

Q̂ua = Qua + 2δd (Υua), (5.12)

which is consistent with [13, Theorem 5.3].

Now observe that, at the level of a formal algebraic calculation, the entire

calculation leading to (5.12) used only the identities

∇aΥb = ∇bΥa and ∇aub = ∇bua.

No other commutation of the derivatives was required. Therefore for the oper-

ator (5.11) we have the following result, which is just the specialization of [13,
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5.2 A 4-dimensional analogue

Theorem 5.3] to the case n = 4. Here C1(F) denotes F -valued 1-forms which

are closed with respect to dD.

Theorem 5.2.3. For any vector bundle with connection (F , D)

QD,ĝ
1 κ = QD,g

1 κ+ 2δDdD(Υκ),

for κ ∈ C1(F) and ĝ = e2Υg.

Now we want to use the fact that for a hypersurface Σ embedded in a

conformally flat manifold the tractor shape 1-form LaB := ∇aNB is closed.

If the ambient manifold has dimension 5 then for each metric ḡ, from the

conformal class on Σ, we can construct the quantity

Qḡ
Σ := LaBQḡ

1LaB. (5.13)

Theorem 5.2.4. On a closed hypersurface Σ, embedded in conformally flat

5-manifold M , we have that

QΣ :=

∫
Σ

Qḡ
Σ,

is independent of the choice of metric ḡ from the conformal class c̄Σ.

Proof. First observe that Qḡ
Σ has conformal weight −4, and so it has the right

weight to integrate against the conformal measure. Rescaling to ̂̄g = e2Υḡ, we

have

Q
̂̄g
Σ = LaBQ1LaB + 2LaBδ∇d∇(ΥLaB),

where ∇ denotes the intrinsic tractor connection on Σ.

Since the tractor metric is preserved by ∇, integrating by parts the second

term we get ∫
Σ

LaBδ∇d∇ (ΥLaB) = 0,

since d∇L = 0.

Remark 5.2.5. Note that there are other quantities with some properties similar

to Qḡ
Σ. Most obviously there is the usual Q-curvature Qḡ determined by the

intrinsic structure (Σ, ḡ). This takes values in conformal weight −n densities

and and transforms under conformal changes ḡ 7→ ̂̄g = e2Υḡ according to

Q
̂̄g = Q

̂̄g + P4Υ
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Chapter 5 Towards higher dimensional analogues of the Willmore functional

where P4 is the Paneitz operator on functions. In a given scale ḡ the latter

takes the form δQ1d, with Q1 the differential operator from above (see [28],

and so ∫
Σ

Q
̂̄g

is also a global invariant of even dimensional conformal hypersurfaces.

Moreover tr(
◦
L4) is also a conformally invariant density of weight −4. Thus

we apparently have a family of global invariants∫
Σ

(
αQḡ

Σ + βQḡ + γ tr(
◦
L4)
)

depending on the 3 parameters α, β, γ ∈ R.

Variation of embedding

We shall see that QΣ may be distinguished from the total Q-curvature by

considering total metric variations.

We consider a compactly supported variation of the embedding of the form

f t = f + tφN . Computing δ := ∂
∂t

∣∣
t

= 0 we obtain the following result.

Theorem 5.2.6. Let Σ be a 4 dimensional hypersurface in a conformal flat

manifold (M, c). Then

δQΣ =

∫
Σ

φW(4) (5.14)

where the coefficient of variation W(4) is a natural weight −5 density-valued

conformal invariant of the hypersurface. This takes the form

W(4) g
= a · ∆̄2Hg + lower order terms, (5.15)

where g is any metric in c and a is a non-zero constant. So the Euler–Lagrange

equation of the action QΣ, with respect to embedding variation, has linear

leading term.

Proof. Everything is obvious by construction, except the claim concerning the

leading term. Expanding the formula for QΣ we obtain

QΣ = LaBQ1LaB = −2
3

◦
Lab∇a∇

e ◦
Leb−4

◦
LabPa

e
◦
Leb+2 J̄

◦
Lab

◦
Lab− 2

9
(∇b ◦

La
b)∇

e ◦
Lae.

Thus

QΣ = 4
9
(∇b ◦

La
b)∇

e ◦
Lae+÷S+lower order terms = 4(∇a

H)∇aH+÷S+lower order terms,
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5.2 A 4-dimensional analogue

where ÷S is some divergence. From this the formula forW(4) follows easily as

δH = 1
2
∆̄φ+ lower order terms.

This shows that W(4) = 0 is an analogue of the Willmore equation and QΣ

is a dimension 4 analogue of the rigid string action.

Lemma 5.2.7 (Expansion of QΣ). The quantity QΣ is given explicitly by

LaBQ1LaB = −n−3
n−2

◦
Lab∇a∇

e ◦
Leb − 4

◦
LabPa

e
◦
Leb + 2 J̄

◦
Lab

◦
Lab − n−3

(n−2)2 (∇b ◦
La

b)∇
e ◦
Lae

where n is the dimension of the background manifold M .

Proof. Recall that

LaB
ḡ
= Z̄B

b
◦
Lab − 1

n−2
X̄B∇

b ◦
Lab (5.16)

Differentiating with respect to the intrinsic tractor connection yields

∇cLaB = −ȲB
◦
Lac + Z̄B

b
(
∇c

◦
Lab − 1

n−2
ḡbc∇

d ◦
Lad

)
− X̄B

(
Pc

b
◦
Lab + 1

n−2
∇c∇

b ◦
Lab

)
so the divergence becomes

∇eLeB = Z̄B
b
(
∇e ◦

Leb − 1
n−2
∇d ◦

Lbd

)
− X̄B

(
Pef

◦
Lef + 1

n−2
∇e∇f ◦

Lef

)
or

∇eLeB = n−3
n−2

Z̄B
b∇e ◦

Leb − X̄B

(
Pef

◦
Lef + 1

n−2
∇e∇f ◦

Lef

)
Differentiating this with respect to the intrinsic coupled tractor connection

we see that

∇a∇
eLeB = n−3

n−2
(∇aZ̄B

b)∇e ◦
Leb + n−3

n−2
Z̄B

b∇a∇
e ◦
Leb

− (∇aX̄B)
(

Pef
◦
Lef + 1

n−2
∇e∇f ◦

Lef

)
− X̄B∇a

(
Pef

◦
Lef + 1

n−2
∇e∇f ◦

Lef

)
= n−3

n−2
(−ȲBδab −XBPa

b)∇e ◦
Leb + n−3

n−2
Z̄B

b∇a∇
e ◦
Leb

− Z̄Bbḡab
(

Pef
◦
Lef + 1

n−2
∇e∇f ◦

Lef

)
− X̄B∇a

(
Pef

◦
Lef + 1

n−2
∇e∇f ◦

Lef

)
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Chapter 5 Towards higher dimensional analogues of the Willmore functional

so we get

−∇a∇
eLeB = ȲB

n−3
n−2
∇e ◦

Lae

+ Z̄B
b
(
− n−3

n−2
∇a∇

e ◦
Leb + ḡabP

ef
◦
Lef + ḡab

1
n−2
∇e∇f ◦

Lef

)
+ X̄B

(
∇a

(
Pef

◦
Lef + 1

n−2
∇e∇f ◦

Lef

)
+ n−3

n−2
Pa

b∇e ◦
Leb

)

The next term to consider is

−4 Pa
eLeB = −4 Pa

e
(
Z̄B

b
◦
Leb − 1

n−2
X̄B∇

b ◦
Leb

)
= −4 Z̄B

bPa
e
◦
Leb + 4

n−2
X̄BPa

e∇b ◦
Leb

The last term in the expression (5.11) is

2 J̄LaB = Z̄B
b2 J̄

◦
Lab − 2

n−2
X̄B J̄∇b ◦

Lab

Adding up we obtain

Q1LaB = −∇a∇
e
LeB − 4 Pa

eLeB + 2 J̄LaB

= ȲB
n−3
n−2
∇e ◦

Lae

+ Z̄B
b
(
− n−3

n−2
∇a∇

e ◦
Leb + ḡabP

ef
◦
Lef + ḡab

1
n−2
∇e∇f ◦

Lef − 4 Pa
e
◦
Leb + 2 J̄

◦
Lab

)
+ X̄B

(
∇a

(
Pef

◦
Lef + 1

n−2
∇e∇f ◦

Lef

)
+ n−3

n−2
Pa

b∇e ◦
Leb + 4

n−2
Pa

e∇b ◦
Leb − 2

n−2
J̄∇b ◦

Lab

)

Contracting this to (5.16) we arrive to

LaBQ1LaB =
◦
Lab
(
− n−3

n−2
∇a∇

e ◦
Leb + ḡabP

ef
◦
Lef + ḡab

1
n−2
∇e∇f ◦

Lef

− 4 Pa
e
◦
Leb + 2 J

◦
Lab

)
− n−3

(n−2)2 (∇b ◦
La

b)∇
e ◦
Lae

which simplifies to

LaBQ1LaB = −n−3
n−2

◦
Lab∇a∇

e ◦
Leb − 4

◦
LabPa

e
◦
Leb + 2 J̄

◦
Lab

◦
Lab − n−3

(n−2)2 (∇b ◦
La

b)∇
e ◦
Lae

In contrast the situation is rather different for the total Q-curvature.

Proposition 5.2.8. Let Σ be a 4 dimensional hypersurface in any conformal
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5.2 A 4-dimensional analogue

5-manifold (M, c). Then

δ

∫
Σ

Q = b ·
∫

Σ

ϕBab

◦
Lab, (5.17)

where b is a non-zero constant and Bab is the Bach tensor of the hypersurface.

Proof. Under any compactly supported deformation of the metric the infinitesi-

mal change of
∫
Q (in dimension 4) is the Bach tensor integrated against the in-

finitesimal metric deformation [33]. On the other hand lower order terms with

compactly supported normal variations of embedding of the form f t = f+tϕN

and δ := ∂
∂t
|t=0 we have δḡ = −2ϕL.

Remark 5.2.9. The expression 5.15 shows that for the Euler–Lagrange of the

total Q-curvature the leading term is at least quadratic in the hypersurface

curvature quantities. In particular this vanishes at level of linearisation.

Nevertheless the Branson Q-curvature of the first fundamental form is an

interesting object on hypersurfaces. Observe that totally umbilic hypersurfaces

are critical for the total Q-curvature functional.
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Appendix A

Multiplication Tables

YAA′
b WAA′ ZAA′bb′ XAA′

b

YAA′
a 0 0 0 2 δab

WAA′ 0 −2 0 0

ZAA′aa
′

0 0 4 δ[a
[bδ

a′]
b′] 0

XAA′
a 2 δab 0 0 0

Table A.1: Complete contractions of the adjoint tractor projectors

YAB UAB
e VAB ZABef WAB

e XAB

YAB 0 0 0 0 0 1
UAB

c 0 0 0 0 2δe
c 0

VAB 0 0 2 0 0 0

ZAB
cd 0 0 0 δ(c

(eδ
d)
f) 0 0

WAB
c 0 2δe

c 0 0 0 0
XAB 1 0 0 0 0 0

Table A.2: Complete contractions of symmetric 2-tractor projectors

hCA YAB UAB
b VAB ZAB

ab WAB
b XAB

YC 0 0 YB 0 ZB
b XB

ZC
c 0 YBgcb 0 ZB

(bga)c XBgcb 0
XC YB ZB

b XB 0 0 0

Table A.3: Mixed contractions of standard with symmetric 2-tractor projectors

hCA YAB
b WAB ZABab XAB

b

YC 0 −YB 0 ZB
b

ZC
c −YBgcb 0 2ZB

[bga]c −XBgcb

XC ZB
b XB 0 0

Table A.4: Mixed contractions of standard with adjoint tractor projectors
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A
p
p
en
d
ix

A
M
u
ltip

lication
T
ab

les

hA
′B′ YBB′

b′ WBB′ ZBB′bb
′ XBB′

b′

YAA′
a′ YAYBga

′b′ −ZAa
′
YB 2YAZB

[bgb
′]a′ YAXBga

′b′ + ZA
a′ZB

b′

WAA′ −YAZBb
′ −2X(AYB) 0 XAZB

b′

ZAA′aa
′

2ZA
[aYBga

′]b′ 0 2ZA
aZB

[bgb
′]a′ + 2ZA

a′ZB
[b′gb]a 2ZA

[aXBga
′]b′

XAA′
a′ XAYBga

′b′ + ZA
a′ZB

b′ ZA
a′XB 2XAZB

[bgb
′]a′ XAXBga

′b′

Table A.5: Partial contractions of adjoint projectors

hCD YDB UDB
b VDB ZDB

db WDB
b XDB

YAC 0 0 YAYB 0 YAZB
b YAXB

UAC
a 0 YAYBgab ZA

aYB YAZB
(dgb)a YAXBgab + ZA

aZB
b ZA

aXB

VAB YAYB YAZB
b YAXB +XAYB 0 XAZB

b XAXB

ZAC
ac 0 ZA

(aYBgc)b 0 ZA
(agc)(dZB

b) ZA
(aXBgc)b 0

WAC
a ZA

aYB ZA
aZB

b +XAYBgab ZA
aXB XAZB

(bgd)a XAXBgab 0
XAC XAYB XAZB

b XAXB 0 0 0

Table A.6: Partial contractions of symmetric 2-tractor projectors

hAC YCD UCD
d VCD ZCD

cd WCD
d XCD

YAB
b 0 −YBYDgbd ZB

bYD YBZD
(cgd)b ZB

bZD
d − YBXDgbd ZB

bXD

WAB −YBYD −YBZDd 2X[BYD] 0 XBZD
d XBXD

ZABab 0 2YDZB
[bga]d 0 2ZB

[b|ZD
(cgd)|a] 2XDZB

[bga]d 0

XAB
b ZB

bYD ZB
bZD

d −XBYDgbd ZB
bXD −XBZD

(cgd)b −XBXDgbd 0

Table A.7: Mixed contractions of adjoint with symmetric 2-tractor projectors

176



Appendix B

Using Cadabra for tractor

computations

In the course of our research we have encountered a great deal of tedious

computations that would be desirable to perform with a computer algebra

system.

One of such systems is Ricci for Mathematica [47], which has been used for

tractor calculations for some time. For example, L.J. Peterson1 has applied this

package to obtain a number of important identities [32]. D.H.Grant [34] pro-

vides detailed listings with examples of computations, related to hypersurface

conformal invariants. While the bundle Mathematica+Ricci is a convenient

and powerful tool, it is not always accessible due to the license restrictions of

Mathematica (Ricci is free). Another minor issue is that an effort is required

to rewrite Ricci’s output into a publishable form.

Cadabra ([59], [60] and [61]) is a open-source2 standalone application, which

is specifically dedicated for handling polynomial tensor expressions with mul-

tiple ranges of indices. It is very well suited for the abstract index notation

conventions that we have adopted in this thesis. It accepts the input and pro-

duces the output in a subset of LATEX that makes it very convenient for further

reusing.

We have used Cadabra to make a lot of trial-and-error calculations and to

double check the results obtained by hand. Many examples in this thesis, the

multiplication tables from Appendix A, and the identities from Appendix C

were obtained and verified with the help of Cadabra.

1The author is grateful to Larry Peterson, who kindly explained to him how to get started
with this package, during one of his visits to the University of Auckland.

2Available in the standard repository of Ubuntu.
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Appendix B Using Cadabra for tractor computations

The basics of Cadabra and a comprehensive documentation are available at

its website [59].

In order to give an idea how Cadabra can be used for tractor calculations,

we demonstrate the steps to compute the tractor Laplacian of the symmetric

2-tractor projector XAB, see equation (C.14).

First of all, we need to specify the ranges for tensor and tractor indices.

#---Define bundles--------------------------------------------------

{a,b,c,d,e,f,f#}::Indices(vector, position=fixed):

{A,B,C,D,E,F,F#}::Indices(tractor,position=fixed):

After that, Cadabra needs to be informed about the tensors, which serve as

the metrics and the Kronecker symbols in the corresponding bundles. This is

done by setting the properties of the tensors.

#---Define tensors--------------------------------------------------

#------Metric tensors

g_{a b}::Metric:

g^{a b}::InverseMetric:

g^{a}_{b}::KroneckerDelta:

g_{a}^{b}::KroneckerDelta:

#---------The tractor metric

h_{A B}::Metric:

h^{A B}::InverseMetric:

h^{A}_{B}::KroneckerDelta:

h_{A}^{B}::KroneckerDelta:

There might be other tensors with the imposed symmetries:

#------Other tensors

{P_{a b}, P^{a b}}::Symmetric:

The symmetries are used by the algorithms of manipulating with the terms

of expressions that we shall mention later.

The main feature of Cadabra for us is its ability to use the Leibniz rule,

which is implemented by declaring the derivative operators:

#---Define derivatives-------------------------------------------

# \nabla_{#}::Derivative:

# \nabla^{#}::Derivative:
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The problem specific information is supplied by creating rules.

#---The rules defining the symmetric 2-tractor projectors

YY:=(YY_{A B}->Y_{A}Y_{B});

UU:=(UU_{A B}^{b}->Y_{A}Z_{B}^{b}+Y_{B}Z_{A}^{b});

VV:=(VV_{A B}->Y_{A}X_{B}+X_{A}Y_{B});

ZZ:=(ZZ_{A B}^{a b}->\frac{1}{2} (Z_{A}^{a}Z_{B}^{b}

+Z_{B}^{a}Z_{A}^{b}));

WW:=(WW_{A B}^{b}->Z_{A}^{b}X_{B}+Z_{B}^{b}X_{A});

XX:=(XX_{A B}->X_{A}X_{B});

One of the efficient methods to implement covariant constants is to use

@unwrap command. It requires that the user explicitly specifies which objects

have nontrivial derivatives with respect to the derivation operator.

#---Inform that the following objects have \nabla derivatives

{P_{a b}, P^{a b},P_{a}^{b}, P^{a}_{b}}::Depends(\nabla):

{Y_{A},Z_{A}^{a},X_{A}}::Depends(\nabla):

{YY_{A B}, UU_{A B}^{a}, VV_{A B}, ZZ_{A B}^{a b},

WW_{A B}^{a}, XX_{A B}}::Depends(\nabla):

We also need to inform Cadabra how to differentiate the quantities in the

question, which is done by adding the rules for the action of the tractor con-

nection to the script:

#---Define tractor derivative rules-----------------------------

#---For the standard 1-tractor projectors

DerY:=(\nabla_{b?}{Y^{A?}}->Z^{A?}_{c}P_{b?}^{c},

\nabla_{b?}{Y_{A?}}->Z_{A?}^{c}P_{b?}_{c});

DerZ:=(\nabla_{b?}{Z^{A?}_{a?}}->-X^{A?}P_{a? b?}-Y^{A?}g_{a? b?},

\nabla_{b?}{Z_{A?}^{a?}}->-X_{A?}P_{b?}^{a?}-Y_{A?}g_{b?}^{a?});

DerX:=(\nabla_{b?}{X^{A?}}->Z^{A?}_{b?},

\nabla_{b?}{X_{A?}}->Z_{A?}^{c} g_{b? c});

#---For the standard symm. 2-tractor projectors

DerYY:=(\nabla_{c?}{YY_{A? B?}}->UU_{A? B?}^{a}P_{a c?});

DerUU:=(\nabla_{c?}{UU_{A? B?}^{a?}}->-2 YY_{A? B?}g^{a?}_{c?}

-VV_{A? B?} P^{a?}_{c?}+2 ZZ_{A? B?}^{a? b}P_{b c?});

DerVV:=(\nabla_{c?}{VV_{A? B?}}->UU_{A? B?}^{a}g_{a c?}

+WW_{A? B?}^{a}P_{a c?});

DerZZ:=(\nabla_{c?}{ZZ_{A? B?}^{a? b?}}->
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Appendix B Using Cadabra for tractor computations

-\frac{1}{2}UU_{A? B?}^{a?} g^{b?}_{c?}

-\frac{1}{2} UU_{A? B?}^{b?} g^{a?}_{c?}

-\frac{1}{2} WW_{A? B?}^{a?} P^{b?}_{c?}

-\frac{1}{2} WW_{A? B?}^{b?} P^{a?}_{c?});

DerWW:=(\nabla_{c?}{WW_{A? B?}^{a?}} ->

-VV_{A? B?} g^{a?}_{c?} + 2 ZZ_{A? B?}^{a? b} g_{c? b}

- 2 XX_{A? B?} P^{a?}_{c?});

DerXX:=(\nabla_{c?}{XX_{A? B?}} -> WW_{A? B?}^{a} g_{a c?});

The sequence of commands

XX:=XX_{A B}; # define the expression to work with

DXX:=\nabla_{c}{@(XX)}; #the first derivative

@substitute!(%)(@(DerXX)); # apply the rule of differentiation

DDXX:=\nabla_{d}{@(DXX)}; #the second derivative

@prodrule!(%); # distribute the derivatives using the Leibniz rule

@unwrap!(%); # drop the covariant constants

@substitute!(%)(@(DerWW)); # apply the rule of differentiation

@distribute!(%):@canonicalise!(%):@prodsort!(%):

@eliminate_kr!(%):@eliminate_metric!!(%);

LXX:=g^{c d} @(DDXX); # contract the derivatives, get the Laplacian

@distribute!(%): @canonicalise!(%): @prodsort!(%);

will produce the following output

LXX := −V V ABgcdg
cd + 2ZZABcdg

cd − 2PcdXXABg
cd;

It is now easy to rewrite this expression as desired (C.14).
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Appendix C

Symmetric 2-tractors

Calculus for symmetric 2-tractors

As we have seen in Chapter 4, some of the interesting examples of hypersur-

face conformal invariants turn out to be symmetric 2-tractors, that is sections

of T(AB). In order to save space and simplify the notation, we introduce a

modification of the tractor calculus for this specific case. This is no more than

specialization of the technique of standard tractor projectors in view of the

composition series for T(AB) that we represent as

E [2]
�� Ea[2]

�� E [0]

⊕
Eab[2]

Ea[0]
�� E [−2] (C.1)

This comes from considering a symmetrized tensor product of two tractors

taken in forms

UA = YAσ + ZA
aµa +XAρ (C.2)

VB = YBσ
′ + ZB

bµ′b +XAρ
′ (C.3)

and then organizing the terms according to their contribution into the other

terms under conformal transformation.

A weightless tractor with two indices, i.e. a section V AB of T AB = T A⊗T B,

can be seen as a finite sum of decomposable tractors V AV B representable in

the form

V AV B = Y AY BV ++ + Y AZB
bV

+b + Y AXBV +−

+ ZA
aY

BV a+ + ZA
aZ

B
bV

ab + ZA
aX

BV a−

+XAY BV −+ +XAZB
bV
−b +XAXBV −−

(C.4)

181



Appendix C Symmetric 2-tractors

or as a matrix

V AV B =

 V ++ V +b V +−

V a+ V ab V a−

V −+ V −b V −−

 (C.5)

If we symmetrize (C.4) we will get

V (AV B) == Y (AY B)V [2] + 2Y (AZB)
bV

[0]b + 2Y (AXB)V [0]

+ Z(A
aZ

B)
bV

[−2](ab) + 2Z(A
aX

B)V [−2]a +X(BXA)V [−2]
(C.6)

where the numbers in brackets are the homogeneities of the terms.

We define the following sections YAB, UAB
a, VAB, ZAB

ab, WAB
a, XAB that

we shall refer to as the symmetric 2-tractor projectors

YAB := Y(AYB) = YAYB

UAB
a := 2Y(AZB)

a

VAB := 2Y(AXB)

ZAB
ab := Z(A

aZB)
b = ZA

(aZB
b)

WAB
a := 2Z(A

aXB)

XAB := X(AXB) = XAXB

(C.7)

In terms of these projectors any symmetric 2-tractor VAB ∈ T(AB) can be

written as

VAB = YABy + UAB
aua + VABv + ZAB

abzab + WAB
awa + XABx (C.8)

which corresponds to the vector-like notation
y

ua

v | zab

wa

x

 (C.9)

where we think of this object as an element of (C.1)
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Proposition C.0.10. The conformal transformation rules for the symmetric

2-tractor projectors are:

ŶAB = YAB − UAB
aΥa − VAB

|Υ|2
2

+ ZAB
abΥaΥb + WAB

a |Υ|2
2

Υa + XAB
|Υ|4

4

ÛAB
a = UAB

a + VABΥa − 2ZAB
abΥb −WAB

b(ΥaΥb + δab
|Υ|2

2
)− XAB|Υ|2Υa

V̂AB = VAB −WAB
aΥa − XAB|Υ|2

ẐABab = ZAB
ab + WAB

(aΥb) + XABΥaΥb (C.10)

ŴAB
a = WAB

a + 2XABΥa

X̂AB = XAB

Proof. Straightforward calculations using (3.9) and (C.7).

Remark C.0.11. It is instructive to write down the above rescaling rules in the

”vector” notation , so we get the following transformation law

̂
y

ua

v | zab

wa

x

 =


ŷ

ûa

v̂ | ẑab

ŵa

x̂

 (C.11)

where

ŷ = y

ûa = ua −Υay

v̂ = v − |Υ|
2

2
u+ Υaua

ẑab = zab + ΥaΥby − 2Υaub

ŵa = wa + |Υ|2
2

Υaw − (ΥbΥa + δba
|Υ|2

2
)ub −Υav + δa

cΥbzcb

x̂ = x+ |Υ|4
4
y − |Υ|2Υaua − |Υ|2v + ΥaΥbzab + Υawa

In particular, these identities visualize the meaning of the composition series

(C.1) for the symmetric 2-tractors, that is they show how the transformation

propagates to the subspaces under conformal rescalings.
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Appendix C Symmetric 2-tractors

Proposition C.0.12. The standard tractor connection acts on the symmetric

2-tractor projectors according to the following rules:

∇cY
AB = UAB

bPc
b

∇dUAB
c = 2 ZABceP

e
d − 2 YABgdc − VABPdc

∇cV
AB = WAB

dPdc + UAB
c

∇cZ
AB

ab = −UAB
(agb)c −WAB

(aPb)c

∇dWAB
c = −VABgdc − 2XABPdc + 2ZABcd

∇cX
AB = WAB

c

(C.12)

Proof. Straightforward calculations using (3.11) and (C.7).

Using these identities and the Leibniz rule we can give an explicit expression

for ∇cVAB

Proposition C.0.13. The tractor derivative of an arbitrary symmetric 2-

tractor VAB is given by the formula

∇cVAB = YAB

(
∇cy − 2uc

)
(C.13)

+ UAB
b
(
∇cub + Pbcy + gbcv − zcb

)
+ VAB

(
∇cv − Pc

bub − wc
)

+ ZAB
ab
(
∇czab + 2 Pacub + 2gacwb

)
+ WAB

b
(
∇cwb + Pbcv − Paczab + gbcx

)
+ XAB

(
∇cx− 2Pc

bwb

)
Next we record the formulas for the tractor Laplacian of VAB.

Proposition C.0.14. The action of the tractor Laplacian on the symmetric

2-tractor projectors is given by the following identities

∆YAB = −2 YABJ + UAB
a∇aJ− VAB|P|2 + 2 ZAB

abP2
ab

∆UAB
a = −UAB

b
(

4 Pab + Jδab
)
− VAB∇aJ + 2 ZAB

ab∇bJ−WAB
b
(

2 P2
b
a + |P|2δab

)
∆VAB = −2nYAB − 2 VABJ + 4 ZAB

abPab + WAB
a∇aJ− 2 XAB|P|2

∆ZAB
ab = 2 YABgab + 2 VABPab − 4 ZAB

c(aPb)c −WAB
(a∇b)J + 2 XABP2ba

∆WAB
a = −(n+ 2)UAB

a −WAB
b
(

4 Pab + Jδab
)
− 2 XAB∇aJ

∆XAB = −nVAB + 2 ZAB
abgab − 2 XABJ (C.14)
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Proof. Using on the identities for the tractor connection acting on the sym-

metric 2-tractor projectors we compute:

∆YAB = ∇c∇cYAB

= ∇c(UAB
bPbc)

= (∇cUAB
b)Pbc + UAB

b∇cPbc

= (−2 YABgcb − VABPcb + 2 ZAB
dcPd

b)Pbc + UAB
b∇bJ

= −2 YABJ + UAB
b∇bJ− VAB|P|2 + 2 ZAB

abP2
ab

∆UAB
a = gdc∇d∇cUAB

a

= gdc∇d(−2 YABδc
a − VABPc

a + 2 ZAB
aePec)

= gdc
(
− 2∇dYABδc

a − (∇dVAB)Pc
a − VAB∇dPc

a

+ 2 (∇dZAB
ae)Pec + 2 ZAB

ae∇dPec
)

= −2gda∇dYAB − (∇dVAB)Pda − VAB∇aJ

+ 2 (∇dZAB
ae)Pe

d + 2 ZAB
ae∇eJ

= −2gda (UAB
bPbd)− (UAB

bgbd + WAB
bPbd)Pda − VAB∇aJ

+ 2 (−UAB
(aδe)d −WAB

(aPe)d)Pe
d + 2 ZAB

ae∇eJ

= −2 UAB
bPb

a − UAB
bPb

a −WAB
bP2

b
a − VAB∇aJ

− UAB
aδedPe

d − UAB
eδadPe

d −WAB
aPedPe

d

−WAB
ePadPe

d + 2 ZAB
ae∇eJ

= −2 UAB
bPb

a − UAB
bPb

a −WAB
bP2

b
a − VAB∇aJ

− UAB
aJ− UAB

ePe
a −WAB

a|P|2 −WAB
eP2

e
a + 2 ZAB

ae∇eJ

= −UAB
b(4 Pb

a + Jδb
a)− VAB∇aJ + 2 ZAB

ae∇eJ−WAB
b(2 P2

b
a + δb

a|P|2)

∆VAB = ∇c∇cVAB

= ∇c
(

UAB
bgbc + WAB

bPbc
)

= (∇cUAB
b)gbc + (∇cWAB

b)Pbc + WAB
b∇cPbc

= (−2 YABgcb − VABPcb + 2 ZAB
dcPd

b)gbc+

(−VABgcb + 2ZAB
dcδd

b − 2XABPcb)Pbc + WAB
b∇bJ

= −2 YABn− VABJ + 2 ZAB
dcPdc − VABJ+

2ZAB
bcPbc − 2XAB|P|2 + WAB

b∇bJ
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= −2nYAB − 2 VABJ + 4 ZAB
bcPbc + WAB

b∇bJ− 2XAB|P|2

∆ZAB
ab = ∇c∇cZAB

ab

= ∇c(−UAB
(aδb)c −WAB

(aPb)c)

= −∇cUAB
(aδb)c −∇cWAB

(aPb)c −WAB
(a∇cP

b)c

= 1
2

(
− (−2 YABgca − VABPca + 2 ZAB

dcPd
a)δbc

− (−2 YABgcb − VABPcb + 2 ZAB
dcPd

b)δac

− (−VABgca + 2ZAB
dcδd

a − 2XABPca)Pbc

− (−VABgcb + 2ZAB
dcδd

b − 2XABPcb)Pac
)
−WAB

(a∇b)J

= 1
2

(
2 YABgab + VABPab − 2 ZAB

dbPd
a + 2 YABgab + VABPab − 2 ZAB

daPd
b

+ VABPab − 2ZAB
acPbc + 2XABP2ba + VABPab − 2ZAB

bcPac + 2XABP2ab
)

−WAB
(a∇b)J

= 1
2

(
4 YABgab + 2VABPab − 4 ZAB

dbPd
a − 4 ZAB

daPd
b + 2VABPab + 4XABP2ba

)
−WAB

(a∇b)J

= 2 YABgab + VABPab − 2 ZAB
dbPd

a − 2 ZAB
daPd

b + VABPab + 2XABP2ba

−WAB
(a∇b)J

= 2 YABgab + 2 VABPab − 4 ZAB
d(aPd

b) −WAB
(a∇b)J + 2 XABP2ba

∆WAB
a = ∇c∇cWAB

a

= ∇c(−VABδc
a + 2ZAB

abgbc − 2XABPc
a)

= −(∇cVAB)δc
a + 2(∇cZAB

ab)gbc − 2(∇cXAB)Pc
a − 2XAB∇cPc

a

= −(UAB
bδb

c + WAB
bPb

c)δc
a

+ 2(−UAB
(agb)c −WAB

(aPb)c)gbc − 2WAB
bδb

cPc
a − 2XAB∇aJ

= −UAB
a −WAB

bPb
a − UAB

an− UAB
a

−WAB
aJ−WAB

bPb
a − 2WAB

bPb
a − 2XAB∇aJ

= −(n+ 2)UAB
a −WAB

b(4Pb
a + Jδb

a)− 2XAB∇aJ
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∆XAB = ∇c∇cXAB

= ∇cWAB
bgbc

= (−VABgcb + 2ZAB
cb − 2XABPcb)gbc

= −nVAB + 2ZAB
cbgbc − 2XABJ

It is now straightforward to derive the action of the box operator �f =

∆f+Jwf on the symmetric 2-tractor projectors, so we just give the statement

and omit the proof.

Proposition C.0.15. The box operator � acts on the symmetric 2-tractor

projectors as follows

�YAB = −4 YABJ + UAB
a∇aJ− VAB|P|2 + 2 ZAB

abP2
ab

�UAB
a = −UAB

b
(

4 Pab + 3Jδab
)
− VAB∇aJ + 2 ZAB

ab∇bJ

−WAB
b
(

2 P2
b
a + |P|2δab

)
�VAB = −2nYAB − 2 VABJ + 4 ZAB

abPab + WAB
a∇aJ− 2 XAB|P|2

�ZAB
ab = 2 YABgab + 2 VABPab − 4 ZAB

c(aPb)c − 2ZAB
abJ

−WAB
(a∇b)J + 2 XABP2ba

�WAB
a = −(n+ 2)UAB

a −WAB
b
(

4 Pab + Jδab
)
− 2 XAB∇aJ

�XAB = −nVAB + 2 ZAB
abgab

(C.15)

Applying this to a symmetric 2-tractor we can obtain the full expression.

Proposition C.0.16. The box operator of a symmetric 2-tractor of weight w

is given explicitly by

�VAB = YAB

(
− (4 Jy −�y)− 4∇bub − 2n v + 2 gabzab

)
+ UAB

a
(
y∇aJ + 2Pac∇cy − (4 Pbaub + 3Jua −�ua)

+ 2∇av − 2∇bz(ab) − (n+ 2)wa

)
+ VAB

(
− |P|2y −

(
ub∇bJ + 2 Pc

b∇cub

)
(C.16)

−
(

2 Jv −�v
)

+ 2 Pabzab − 2∇awa − nx
)

+ ZAB
ab
(

2 P2
aby +

(
2ub∇aJ + 4 Pac∇cub

)
+ 4 Pabv

− 4 Pcaz(bc) − 2Jzab + �zab + 4∇bwa + 2 gabx
)

+ WAB
a
(
−
(

2 P2
a
b + |P|2δba

)
ub +

(
v∇aJ + 2 Pac∇cv

)
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− z(ab)∇bJ− 2 Pbc∇cz(ab) −
(

4 Pcawc + Jwa −�wa
)

+ 2∇ax
)

+ XAB

(
− 2 |P|2v + 2 P2bazab −

(
4 Pc

a∇cwa + 2wa∇aJ
)

+ �x
)

This expression looks rather intimidating and hard to use in practice. For-

tunately, many examples employ the reduced symmetric 2-tractors on which

the expression is much simpler.

Definition C.0.17. The tractors of the form

VAB = ZAB
abzab + WAB

awa + XABx

are termed the reduced symmetric 2-tractors .

The reduced symmetric 2-tractors form an invariant linear subbundle of the

bundle of all symmetric 2-tractors.

Restricting to the reduced symmetric 2-tractors we obtain more manage-

able formulas, yet the we can produce interesting examples from this class.

The shape 2-tractor LAB, the tractor
NN
WAB and their powers, such as L

(k)
AB :=

LA
C1 . . .LCk−1B, and the symmetric parts of their partial contractions are of

this form (see Chapter 4).

Proposition C.0.18. On a reduced symmetric 2-tractor VAB the action of the

box operator is given by

�VAB = YAB

(
2 gabzab

)
+ UAB

a
(
− 2∇bz(ab) − (n+ 2)wa

)
+ VAB

(
2 Pabzab − 2∇awa − nx

)
(C.17)

+ ZAB
ab
(
− 4 Pcaz(bc) − 2Jzab + �zab + 4∇bwa + 2 gabx

)
+ WAB

a
(
− z(ab)∇bJ− 2 Pbc∇cz(ab) −

(
4 Pcawc + Jwa −�wa

)
+ 2∇ax

)
+ XAB

(
2 P2bazab −

(
4 Pc

a∇cwa + 2wa∇aJ
)

+ �x
)
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The Thomas-D operator on symmetric 2-tractors

Explicit calculations with the tractor-D operator can be very tedious as the

following results demonstrate.

The reason for deriving these identities was to find some interesting examples

out of the shape 2-tractor LAB and the binormal part of the Weyl tractor
NN
WAB.

Proposition C.0.19. The action of the tractor-D operator on a symmetric

2-tractor VAB ∈ TAB[w] is given explicitly by the following expression

DCVAB = YAB

[
(n+ 2w − 2)wYCy + (n+ 2w − 2)ZC

c
(
∇cy − 2uc

)
(C.18)

+XC

(
(4 Jy −�y) + 4∇bub + 2n v − 2 gabzab

)]
+ UAB

a
[
(n+ 2w − 2)wYCua

+ (n+ 2w − 2)ZC
c
(
∇cua + Pacy + gacv − zac

)
+XC

(
− y∇aJ− 2Pac∇cy

+ (4 Pbaub + 3Jua −�ua)− 2∇av + 2∇bzab + (n+ 2)wa

)]
+ VAB

[
(n+ 2w − 2)wYCv + (n+ 2w − 2)ZC

c
(
∇cv − Pc

bub − wc
)

+XC

(
|P|2y +

(
ub∇bJ + 2 Pc

b∇cub

)
+
(

2 Jv −�v
)
− 2 Pabzab + 2∇awa + nx

)]
+ ZAB

ab
[
(n+ 2w − 2)wYCzab + (n+ 2w − 2)ZC

c
(
∇czab + 2 Pacub + 2gacwb

)
+XC

(
− 2 P2

aby −
(

2ub∇aJ + 4 Pac∇cub

)
− 4 Pabv + 4 Pcazbc + 2Jzab −�zab − 4∇bwa − 2 gabx

)]
+ WAB

a
[
(n+ 2w − 2)wYCwa

+ (n+ 2w − 2)ZC
c
(
∇cwa + Pacv − Pbczab + gacx

)
+XC

((
2 P2

a
b + |P|2δba

)
ub −

(
v∇aJ + 2 Pac∇cv

)
+ zab∇bJ + 2 Pbc∇czab +

(
4 Pcawc + Jwa −�wa

)
− 2∇ax

)]
+ XAB

[
(n+ 2w − 2)wYCx+ (n+ 2w − 2)ZC

c
(
∇cx− 2Pc

bwb

)
+XC

(
2 |P|2v − 2 P2bazab +

(
4 Pc

a∇cwa + 2wa∇aJ
)
−�x

)]
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Proposition C.0.20. The action of the tractor-D operator on a reduced sym-

metric 2-tractor VAB is given by the expression

DCVAB = YAB

[
XC

(
− 2 gabzab

)]
(C.19)

+ UAB
a
[
(n+ 2w − 2)ZC

c
(
− zac

)
+XC

(
2∇bzab + (n+ 2)wa

)]
+ VAB

[
(n+ 2w − 2)ZC

c
(
− wc

)
+XC

(
− 2 Pabzab + 2∇awa + nx

)]
+ ZAB

ab
[
(n+ 2w − 2)wYCzab + (n+ 2w − 2)ZC

c
(
∇czab + 2gacwb

)
+XC

(
4 Pcazbc + 2Jzab −�zab − 4∇bwa − 2 gabx

)]
+ WAB

a
[
(n+ 2w − 2)wYCwa+

(n+ 2w − 2)ZC
c
(
∇cwa − Pbczab + gacx

)
+XC

(
zab∇bJ + 2 Pbc∇czab +

(
4 Pcawc + Jwa −�wa

)
− 2∇ax

)]
+ XAB

[
(n+ 2w − 2)wYCx+ (n+ 2w − 2)ZC

c
(
∇cx− 2Pc

bwb

)
+XC

(
− 2 P2bazab +

(
4 Pc

a∇cwa + 2wa∇aJ
)
−�x

)]
In the process of making invariants we shall frequently need to eliminate an

index with the tractor-D operator, so explicit identities for this will be useful.

Proposition C.0.21. The tractor-contracted action of the tractor-D operator

on a symmetric 2-tractor VAB is given by

DAVAB = YB

[
(n+ 2w + 2)Jy −�y + (n+ 2w + 2)∇aua (C.20)

+ (n2 + 3nw + 2w2 − 2w)v − (n+ 2w) gabzab

]
+ ZB

b
[
− y∇bJ− 2Pbc∇cy + (n+ 2w + 2)Pabua+

(n+ 2w + 1)Jub −�ub

− 2∇bv + (n+ 2w)∇azab + (n+ 2w)(n+ w)wb

]
+XB

[
|P|2y + ub∇bJ + 2 Pc

b∇cub + (n+ 2w)Jv −�v − (n+ 2w) Pabzab

+ (n+ 2w)∇awa + (n+ w − 1)(n+ 2w)x
]

And again, this expression simplifies on the reduced tractors.

Proposition C.0.22. On a reduced symmetric 2-tractor VAB the tractor-
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contracted action of the tractor-D operator is given by

DAVAB = YB

(
− (n + 2w) zaa

)
(C.21)

+ ZB
b
(

(n + 2w)∇azab + (n + 2w)(n + w)wb

)
+ XB

(
− (n + 2w)Pabzab + (n + 2w)∇awa + (n + w − 1)(n + 2w)x

)

To complete the picture let us also give the formulas for the action of the

double-D operator on the symmetric 2-tractor projectors (C.7), which may be

useful too:

DAA′YBC = −2WAA′YBC − XAA′
aUBC

cPca

DAA′UBC
c = −2WAA′UBC

c + 2XAA′
aYBCδa

c + XAA′
aVBCPa

c − 2XAA′
aZBC

bcPba

DAA′VBC = −XAA′
aUBC

cgac − XAA′
aWBC

cPac

DAA′ZBC
bc = −2WAA′ZBC

bc + XAA′
aUBC

(bδa
c) + XAA′

aWBC
(bPa

c) (C.22)

DAA′WBC
c = XAA′

aVBCδa
c − 2XAA′

aZBC
bcgab + 2XAA′

aXBCPa
c

DAA′XBC = 2WAA′XBC − XAA′
aWBC

cgac

Many of the formulas in this section have been obtained or verified using

Cadabra, see Appendix B.
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Index

Abstract Gauss formula, 21

Abstract Gauss–Weingarten formula,

23

Abstract index notation, 4

Abstract Weingarten equations, 23

Adjoint normal tractor, 151

Adjoint tractor bundle, 91

Adjoint tractor metric, 92

Adjoint tractor projectors, 91

Ambient (tangent) bundle, 45

Ambient connection, 46

Ambient construction, 140

Ambient metric, 46

Ambient pre-D operator, 134

Ambient tensor bundles, 46

Ambient tractor bundle, 108

Ambient tractor connection, 108

Ambient tractor metric, 109

Ambient tractor projectors, 109

Bach tensor, 104

Background manifold, 42

Background tangent bundle, 45

Bending energy, 157

Box operator, 70

Closed manifold, 43

Codifferential, 13

Components in a basis, 5

Concrete indices, 7

Conformal densities, 68

Conformal metric, 68

Conformal quasi-Weyl invariant, 143

Conformal Weyl invariant, 141

Conformally equivalent metrics, 67

Connection in vector bundle, 7

Contorsion, 19

Core symbol, 4

Cotton tensor, 73

Coupled connection, 8

Covariant exterior derivative, 13

Curvature, 14

Curvature operator, 14

Defining function, 43

Difference of connections, 19

Difference of curvatures, 20

Difference of Laplacians, 20

Difference operator, 19

Differential operator, 4

Direct sum connection, 9

Direct sum metric, 26

Double forms, 34

Double-D operator, 94

Dual bundle, 7

Einstein summation, 5

Elimination of tractor indices, 100
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Embedding, 42

Extrinsic invriants, 145

Fialkow tensor, 121

Forms Laplacian, 18

Generalized hypersurface conformal

Weyl invariants, 150

Generalized Weyl invariants, 141

Hypersurface, 43

Hypersurface conformal Weyl invari-

ant, 149

Hypersurface conformal invariant, 146

Hypersurface conformal quasi-Weyl

invariant, 152

Hypersurface metric invariant, 144

Hypersurface metric Weyl invariant,

147

Immersion, 42

Index range, 4

Inner product, 5

Intrinsic connection, 49

Intrinsic double-D operator, 131

Intrinsic metric, 48

Intrinsic tangent bundle, 48

Intrinsic tensor bundles, 48

Intrinsic Thomas-D operator, 131

Intrinsic tractor bundle, 113

Intrinsic tractor connection, 115

Intrinsic tractor contorsion, 120

Intrinsic tractor metric, 115

Intrinsic tractor projectors, 115

Kronecker symbol, 5

Kulkarni–Nomizu product, 34

Laplacian, rough Laplacian, 17

Levi-Civita connection, 12

Lifted tractor expressions, 106

Linear connection, 9

Mean curvature, 50, 76

Metric vector bundle, 11

Natural operator, 4

Normal bundle, 47

Normal projection operator, 48

Oriented defining function, 45

Pre-D operator, 94

Principal curvatures, 158

Principal radii of curvature, 158

Projection operator, 48

Pullback bundle, 29

Pullback connection, 31

Reduced symmetric 2-tractors, 188

Restriction along a map, 30

Riemannian connection, 12

Riemannian curvature tensor, 32

Riemannian manifold, 11

Riemannian metric, 11

Riemannian vector bundle, 11

Schouten scalar, 33

Schouten tensor, 33

Schouten–Fialkow tensor, 118

Section of a vector bundle, 3

Shape 1-forms, 29

Shape 2-tractor, 154

Shape tensor, 50

Simons’s identity, 55

Slice chart, 42

Slice coordinates, 42

Standard tractor projectors, 88, 89

Strongly invariant operator, 95

Submanifold, 42
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Symmetric 2-tractor projectors, 182

Tangential Laplacian, 53

Tensor indices, 6

Thomas-D operator, 95

Torsion, 10

Torsion free connection, 10

Totally umbilic surface, 158

Tractor bundle, 86

Tractor connection, 87

Tractor curvature, 102

Tractor Laplacian, 90

Tractor metric, 87, 89

Tractor normal bundle, 111

Tractor normal connection, 111

Tractor normal projection operator,

111

Tractor projection operator, 112

Tractor shape 1-form, 123

Triple-D operator, 134

Twisted conformal densities, 71

Twisted intrinsic box operator, 133

Twisted intrinsic double-D operator,

132

Twisted intrinsic pre-D operator, 132

Twisted intrinsic Thomas-D opera-

tor, 133

Umbilic point, 158

Umbilicity tensor, 77

van der Waerden–Bortolotti connec-

tion, 21

Variational derivative, 59

Variational vector field, 59

Vector bundle map, 4

Vector bundle metric, 7

Vector-bundle valued forms, 12

Wedge product, 12

Weighted vector bundle, 71

Weitzenböck identity, 18

Weyl tensor, 33

Weyl tractor, 103

Willmore functional, 159

Willmore invariant, 164
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