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ABSTRACT

The fermentation of sugars from biomass to produce liquid fuels is

receiving widespread attention as a renewable source of energry. For suctr

processes to become competitive with current alternatives, technology must

be improved to increase the efficienqg and productivity of the operation.

Using ethanol fermentation by Sacchatomgces cereyisiae yeast as a model

system, two aspects of the process were considered in det,ail.

The first aspect concerned the use of cell recycle in a continuous

fermentation. A new technique was developed for ttre rapid settling of

yeast cells in ttre fernentation redium and involved the addition of dense,

inert particles to a yeast suspension at pll 4.5, followed by a rapid

change in pH to 8.0 - 9.0. Large flocs forned imnediateJ-y and settled

rapidly' leaving a clear supernatant. Separations of 99.9t were possible,

even at yeast concentrations of 50 g/L (dr:y weight) and increases in

settling rate of up to 1500 fold were observed. lrlhen the pH was returned

to 4.5rthe flocs were destroyed.

Seeded settling at constant pH was possible although the flocs were

smaller, the settling rates were lower and sigrnificantly more seed was

required. Flocculation was also found to be influenced to a greater

extent by certain components in solution.

Nickel powder was used extensively in ijrese experiments although

severar other materials were tested, with ground iron sand showing

potential for application on a larger scale.

The pH switching technique for seeded settling was used to recycle



al-

yeast cells in a semi-continuous fenentation. Application of the tech-

nique to this and similar systems is discussed.

The factors affecting yeast/lnert porrvder flocculation is discussed

and a model is proposed to explain the observed experimental behaviour

for flocculation, both at constant pH and with rapid pII switching.

The second aspect of ethanol production considered in ttris thesis

was the distillation stage. Equipment and techniques were developed to

obtain basic mass transfer information in binary or multi-component

systems. A new design of evaporation cell was used to measure the

evaporation of ethanol and water mixtures into an air stream in a wind

tr:nnel. fhis enabled the effect of liquid concentration on evaporation

rate to be studied dynarnically from batch tests. Radiochemical labelling

was used to measure liquid concentrations and proved to be a relatively

simple, rapid and precise analytical technique. Coupled with the direct

measurement of liquid displacement, precise information on the evaporation

Ioss of bottr ethanol and water components was obtained.

The pure component evaporation data agreed well wittr literature

correlations and, for ttre binary Iiquid mixtures, good agreement was

found between the experimental.Iy determined mass transfer flux ratios and

those predicted from Gil1iland''s solution to the multi-component gas

diffusion equations.

The velocity dependence of the overall mass transfer coefficients

enabled estimates to be rade of the d: stribution of diffusional resistance

between the gas and liquid phases.
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For the ethanol-wat€r system diffusion was gas film controlled

and the overall mass transfer driving forces could best be represented

in terms of vapour concentration.
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