http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
Non-Markovian
Quantum Trajectories

Michael Wong Jack

This copy is intended for examination purposes only.
Abstract

The technique of quantum trajectories (stochastic Schrödinger equations or Monte Carlo wave functions) for open systems is generalized to the non-Markovian regime. I consider a microscopic model of an open system consisting of a boson field coupled linearly (with an excitation preserving coupling) to a localized system. The model allows for a field with an arbitrary dispersion relation and an arbitrary mode-dependent coupling to the system. The trajectories are formulated as continuous measurements of the output field from the system. For a general dispersive field these measurements must be distributed in space for this formulation to be possible. The result of this formulation is a non-Markovian equation for the system conditioned on the measurements. A method of numerically simulating this equation has been determined and implemented in some test cases. Numerical simulation is possible if one can introduce a finite memory time for the evolution of the reduced system.

As an illustration, the method is applied to the spectral detection of the emission from a driven two-level atom and also to an atom radiating into an electromagnetic field where the free space modes of the electromagnetic field are altered by the presence of a cavity. In both cases the non-Markovian behaviour arises from the uncertainty in the time of emission of a photon that is later detected (or reabsorbed), although, in the second case, the non-Markovian behaviour is intrinsic to the system environment coupling whereas, in the spectral detection case, it is a consequence of the choice of measurement process.

The generalization of the techniques of quantum trajectories to the non-Markovian regime promises to make a range of open system problems where the Born-Markov approximation is invalid tractable to numerical simulation.
Acknowledgments

I would like to dedicate this thesis to the memory of Prof. Dan Walls who died a few weeks before this thesis was submitted. I will remember Dan for his easygoing nature and his enthusiasm, which always managed to get the best out of those around him. Dan acted as my supervisor during the three years of my Ph.D. He provided me with support and guidance during this time and encouraged me to pursue my own interests. I'd like to thank Dan for the confidence he instilled in me to take part in the world of physics research.

Thanks go to my other supervisor, Dr. Matthew Collett. Without Matthew’s help I would never have completed a thesis on the topic of non-Markovian trajectories. Matthew originally encouraged me to consider the topic of this thesis and over the past three years he has provided me with endless assistance on the technical details of this topic. His intimate knowledge of the subtleties of open systems has proven invaluable.

The work on the Markov approximation for the output coupler was carried out in collaboration with Dr. Martin Naraschewski and I would like to thank him for his efforts.

Thanks go to Matthew and Dr. Joe Hope for helping to proofread parts of this thesis. I would like to thank Joe, also, for useful discussions about non-Markovian physics. I would also like to thank Dr. Janne Ruostekoski for the coffee breaks and helpful discussions, my office mate Jevon Longdell for helpful discussions, and Michael Dunstan for taking on the job of computer guru when I had problems.

Finally, I would like to thank my partner xiao Xuan for her boundless patience and support during the past three years and my family for always being there when I need them.
Contents

Abstract iii

Acknowledgments v

List of Publications xi

List of Figures xiv

1 Introduction 1
 1.1 Open Systems ... 1
 1.2 Non-Markovian Quantum Trajectories 2
 1.2.1 An Atom in Free Space 2
 1.2.2 An Atom in a Damped Cavity 3
 1.2.3 Spectral Detection 4
 1.3 Trajectories and Continuous Measurements 5
 1.3.1 Retrodiction 5
 1.3.2 Environmental Measurements in Terms of the System 6
 1.4 Thesis Outline 7

2 A Model Environment 9
 2.1 A Linear Vacuum-Preserving Interaction 9
 2.1.1 Quantum Optics 11
 2.1.2 Atomic Output Coupler 13
 2.1.3 The Memory Function 14
 2.1.4 The Campbell-Baker-Hausdorff Theorem 16
 2.2 Heisenberg Equations Approach 18
 2.2.1 The Quantum Langevin Equation 18
 2.2.2 Input-Output Formalism 19
 2.3 Reduced Density Matrix Approach 23
 2.3.1 An Initial Vacuum State 24
 2.4 Summary ... 25

3 The Born-Markov Approximation 27
 3.1 The Master Equation 27
 3.1.1 A Finite Memory Time 27
 3.1.2 One Emission-Absorption Event per Memory Time 28
CONTENTS

3.1.3 Coarse Grained Time .. 29
3.1.4 The Factorization Approximation 29
3.2 Born-Markov Approximation for Measurements 31
3.3 Summary .. 32

4 The Atomic Output Coupler

4.1 Introduction .. 33
4.2 The Output Coupler as an Open System 35
 4.2.1 Memory Time of the Trapped Atoms 36
 4.2.2 Green's Functions .. 38
4.3 Radio-Frequency Output Coupler 39
 4.3.1 Free Space .. 39
 4.3.2 Gravity ... 42
 4.3.3 Collisional Repulsion and Anti-Trapping 44
 4.3.4 Summary .. 46
4.4 Raman Output Coupler .. 47
4.5 Discussion ... 49

5 Measurement Processes ... 51

5.1 Measurement Theory .. 51
 5.1.1 Projective Measurements 51
 5.1.2 Non-Projective Measurements 52
 5.1.3 Continuous Measurements 54
 5.1.4 Measurements Distributed in Time 54
5.2 Measurements of the Output Field 55
 5.2.1 A Particle Detector .. 57
 5.2.2 Particle Counting .. 58
 5.2.3 Output Field Measurements and Quantum Trajectories ... 59
 5.2.4 Quadrature Phase Measurements 63
 5.2.5 Summary .. 65
5.3 Measurement Channels .. 65
 5.3.1 Directional Channels 67
 5.3.2 Spectral Channels ... 69

6 Markovian Quantum Trajectories 73

6.1 The Born-Markov Approximation 74
6.2 Measurements of the Output Field 76
 6.2.1 Operations and Effects 76
 6.2.2 Particle Counting .. 78
 6.2.3 Quadrature Phase Measurements 79
6.3 Recovering the Reduced Density Matrix 81
 6.3.1 From Perfect Measurement to no Measurement 82
6.4 Summary ... 82
CONTENTS

7 Coherent Oscillations of Two Condensates 83
 7.1 The Phase of a Bose-Einstein Condensate 83
 7.2 Counting Atoms Leaking Out of a Trap 85
 7.3 Measurement-Induced Phase 87
 7.4 Summary .. 88

8 Formulating non-Markovian Trajectories 91
 8.1 Non-Markovian Quantum Trajectories 91
 8.1.1 A Finite Memory Time 91
 8.1.2 The Conditioned State of the System 93
 8.1.3 Measurement Probabilities 96
 8.1.4 Relation to a Continuous Measurement Process 97
 8.2 Particle Counting 98
 8.2.1 Recovering the Reduced Density Matrix 100
 8.2.2 Consistency Condition 102
 8.2.3 Probabilities for Counting Measurements 103
 8.2.4 Multiple Channels 105
 8.3 Quadrature Phase Measurements 107
 8.4 Unravelling Without Measurement 110
 8.5 Summary ... 112

9 Simulating non-Markovian Trajectories 115
 9.1 Numerical Simulations 115
 9.1.1 The Finite Memory Time Approximation 115
 9.1.2 The Schrödinger Picture 117
 9.2 Simulating Particle Counting 118
 9.2.1 The Three Simplest Cases 118
 9.2.2 Binary Notation 121
 9.2.3 An Explicit Example 122
 9.2.4 General Algorithm for Particle Counting 125
 9.3 Discussion ... 127

10 Radiation into a Structured Continuum 129
 10.1 Introduction 129
 10.2 An Atom Radiating into a Damped Cavity 130
 10.2.1 Non-Markovian Quantum Trajectory Treatment 131
 10.2.2 Extended System Treatment 132
 10.2.3 Comparison Between Treatments 133
 10.3 Summary ... 135

11 Spectral Detection 137
 11.1 Optical Spectral Detection 138
 11.1.1 Spectral Channels 139
 11.1.2 Photodetection 140
 11.2 Simulations 141
 11.3 Correlations in the Mollow Spectrum 144
11.3.1 The Frequency Filter 145
11.3.2 The Prism .. 150
11.4 Summary .. 153

12 Conclusion .. 155
 12.1 Summary ... 155
 12.2 Further Work ... 156
 12.2.1 Applications of the Method 157
 12.2.2 General Developments 158

A Memory Function in Free Space 161

B Complete Sets of Measurement States 165
 B.1 Counting Measurements 165
 B.2 Quadrature Phase Measurements 167

C Replacing a Cavity by its Spectral Response 169
 C.1 An Atom Inside a Cavity 169
 C.2 A Filter Cavity .. 171
List of Publications

The following is a chronological list of refereed publications on which this thesis is based:

List of Figures

2.1 Schematic of a one-dimensional field interacting with a system 20
4.1 Schematic of an atomic output coupler. 40
4.2 Plot of the memory function for a particle in a gravitational potential. 44
4.3 Comparison between the case when a particle is given a well-defined
 momentum kick and when it is not for the Raman output coupler. . . 48
5.1 Schematic of a unidirectional one-dimensional field that interacts with
 a system and is then measured. 57
5.2 Schematic of a spectrometer. 66
5.3 Schematic of a one-dimensional field that interacts with a system and
 is then measured. 67
7.1 One run of the measurement process showing the build up of coherent
 oscillations . 88
7.2 Another run of the measurement process 89
9.1 A Markovian trajectory. 119
9.2 A non-Markovian trajectory in the M=2 case. 120
9.3 A non-Markovian trajectory in the M=3 case. 121
10.1 Waiting time distribution for the photons leaving a cavity containing
 a radiating atom . 132
10.2 Correlation function of an atom radiating into a damped cavity 133
10.3 Spectrum of an atom radiating into a damped cavity 134
10.4 Plot of the detection probabilities over a single trajectory of an atom
 radiating into a damped cavity. 135
10.5 Plot of the expectation values over a single trajectory of an atom
 radiating into a damped cavity. 136
11.1 Schematic of the filtering situation. 145
11.2 Waiting time distributions in the filter case 147
11.3 Probability of detecting a transmitted or reflected photon during a
 single run . 148
11.4 Plot of the conditioned expectation values during a single run in the
 filter case . 149
11.5 Schematic of the prism-like spectral detection situation. 150
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.6</td>
<td>Waiting time distributions in the prism case.</td>
<td>151</td>
</tr>
<tr>
<td>11.7</td>
<td>Plot of the probabilities of detecting a photon from the various peaks of the spectrum during one run.</td>
<td>152</td>
</tr>
<tr>
<td>11.8</td>
<td>Plot of the conditioned expectation values in the prism case</td>
<td>153</td>
</tr>
</tbody>
</table>