http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
MODELLING OF GEYSERS

Nenny Miryani Saptadji

A thesis submitted in partial fulfilment of
the requirements of the degree of Doctor of Philosophy

Department of Engineering Science
School of Engineering, University of Auckland
New Zealand
1995
ABSTRACT

Geysers that discharge water and steam intermittently to the atmosphere are one of the rarest natural phenomena associated with geothermal systems. Several approaches including laboratory experiments, field observations and mathematical and numerical modelling studies are used in the present study to explain the behaviour of geysers and the important parameters controlling the eruption of geysers. A particular study is made of three geysers at Rotorua geothermal field: Pohutu, Prince of Wales Feathers and Waikorohihi.

The existing mathematical model (Steinberg et al., 1981a) is studied and an improved mathematical model is developed to accommodate two-phase flow and the variation in fluid properties with temperature. Both the existing and the improved mathematical models are used to model Pohutu and are able to reproduce not only the interval between eruptions but also the durations of the cavern filling and the duration of the pre-play stage observed by the author on the 20th of August 1993.

Fully transient numerical models, which include the eruption process itself, are developed using MULKOM and the AUTOUGH2 simulators and produce reasonably good agreement with the analytical solutions and experimental data. The model provides information about the processes inside the geyser system and models the surface discharge which cannot be modelled using the Steinberg type of model. A fully transient model for Pohutu, which is developed using the AUTOUGH2 simulator, is able to reproduce the behaviour observed by the author on the 20th of August 1993.

The results of sensitivity studies show that of the three Rotorua geysers, the Feathers is the most sensitive to changes in the rate of the hot upflow from depths. Both the Feathers and Waikorohihi are more sensitive to temperature changes than Pohutu. Pohutu is currently a vigorous geyser with preliminary pulsating spring behaviour; large changes in the rate and temperature of the hot upflow would be required to stop it erupting. All geysers are sensitive to variations in the water level and temperature in Te Horu.
ACKNOWLEDGMENTS

This study was made possible through a NZ MERT ODA fellowship as part of the Energy Cooperation Programme between New Zealand and the Republic of Indonesia. The scholarship provided by the NZ MERT over the period 1989-1994 and the support of Assoc. Prof. Derek H. Freeston in arranging the scholarship are gratefully acknowledged. The study grant provided by the Geothermal Institute and the Department of Engineering Science of University of Auckland for the past year is acknowledged.

I would like sincerely thank my supervisors Assoc. Prof. M. J. O’Sullivan and Assoc. Prof. D. H. Freeston for their guidance and advice throughout this research. I also thank A/P M. J. O’Sullivan for thoroughly proofreading my thesis and making suggestions. Their help in all aspects of my study is very much appreciated.

Thanks also to the staff of the Geothermal Institute and of the Department of Engineering Science for their help in providing my study needs. Special thanks to Mr. Oscar Huissje for his help in accommodating my research needs and personal requests, and to Dr. David Bullivant and Michael O’Sullivan who made some necessary changes to MULGRAPH.

The staff of the Embassy of the Republic of Indonesia are acknowledged for their help with my passport, Bryan Lythe and Angela Clark for their help with my visa, and Prof. M.P. Hochstein, Dr. Suprijadi and Andrea Soengkono, Mr. Ray Tyson, Assoc. Prof. M. J. O’Sullivan for their support with my visa application.

I am grateful to my colleagues Pan Hesong, Djoko Suratri, Heru Putranto and Benny Dictus for their assistance in the laboratory work. The suggestions from the technicians of the Thermodynamic Laboratory: Allen Eaton and Martin Ryder were very welcome. I would like also to thank Dr. Judith Grant for correcting my early draft and to Chen Song for help with some of the drawings.

I greatly appreciate the help and friendship of Greg Bignall and Juliet Newson for comments, suggestions and companionship. I also thank Juliet for the use of her computer over the past year which allowed me to work efficiently from home.

Danny Herman and his wife Titien Suartini have my deepest gratitude for their friendship, continuous support and encouragement in so many ways. Titien and their children Intan, Januar and Ariezka provided invaluable logistical support in producing the final draft.

My father was for many years an encouragement, support and driving force throughout my career. His presence is sadly missed. This thesis would not have been possible to complete without loving support from my mother. My sisters and brothers and their families back home have been very supportive in many ways.

A lot of friends have made my life in Auckland while studying memorable - too many to name them all, but I particularly wish to thank my friends and colleagues mentioned here. Greg Bignall and Lisa Noonan for always sparing some time to discuss my problems and giving needed support. I thank Budihardi and and his wife Indri, Chris Descantes, Cedric Malate, Herry Setiawan and his wife Tine, Dewi Mulyono, Tony Sumartono and Aam, Djoko Suratri and his wife Mamay for their encouragement and friendship not only when they were in New Zealand but also after they returned to their home countries. Marion Irwin Gadsby, Ammabelle Hermosilla, Reddy Setiawan and his wife Ella, Steve Torrens, Zhang Lan, Markos Melaku, Essy Nezhadkhoujeh, Darwin Sirait, Charlotte Severnne and Jane Brotheridge have been great friends to be associated with.
TABLE OF CONTENTS

ABSTRACT ... i

ACKNOWLEDGMENTS ... iii

TABLE OF CONTENTS .. v

LIST OF FIGURES .. xi

LIST OF TABLES .. xxv

NOTATIONS AND SYMBOLS ... xxix

CHAPTER 1 INTRODUCTION ... 1

1.1. Background and objective of the study ... 1

1.2. Thesis structure ... 9

CHAPTER 2 LITERATURE REVIEW ... 11

2.1. Geyser performance ... 11

2.2. Water chemistry .. 17

2.3. Surface features of a geyser ... 18

2.4. Mechanism of eruption ... 18

2.5. Conceptual model of a subsurface geyser system 20

2.6. Irregularity in the performance of a geyser .. 23

2.7. Laboratory models ... 25

2.8. Field measurements (experiments) ... 26

2.9. Mathematical and numerical models .. 28

2.10. Data for the Rotorua geysers ... 30

CHAPTER 3 LABORATORY MODELLING ... 31

3.1. Configuration of the models ... 31

3.2. Mechanism of eruption ... 37

3.3. Processes within the system between eruptions ... 40

3.4. An overflowing cone geyser ... 43

3.5. A non-overflowing cone geyser .. 49
5.3. A two-feed-point model .. 153
5.3.1. Mass balance ... 153
5.3.2. Energy balance ... 155
5.3.3. A test problem ... 156
5.3.4. Model studies ... 165
5.4. Summary ... 171

CHAPTER 6 THE DEVELOPMENT OF A FULLY TRANSIENT
MODEL OF A GEYSER USING A NUMERICAL APPROACH 173

6.1. MULKOM and AUTOUGH2 ... 174
6.2. Modelling Steinberg's problem .. 176
6.2.1. Model description .. 176
6.2.2. MULKOM model ... 179
6.2.3. AUTOUGH2 model .. 193
6.3. Modelling laboratory experiments using AUTOUGH2 194
6.3.1. Model description .. 194
6.3.2. Numerical experiments ... 195
6.3.3. Modelling results .. 196
6.4. Sensitivity Study ... 199
6.4.1. Permeability of the channel and the chamber 199
6.4.2. Permeability of the cold recharge zone 205
6.4.3. Inflow rate of hot water .. 205
6.4.4. Temperature of hot and cold inflow 214
6.4.5. Ambient temperature .. 217
6.4.6. Pressure of cold water zone 221
6.4.7. Atmospheric pressure .. 222
6.4.8. Porosity of the cold recharge zone 223
6.4.9. Size of the vent .. 223
6.4.10. Relative permeability curves 224
6.5. Summary ... 233

CHAPTER 7 DATA FOR THE ROTORUA GEYSERS 235

7.1. Subsurface parameters for the Rotorua geysers 236
7.2. Field observations .. 247
7.3. Processes within the system 259
7.4. Estimation of subsurface parameters for Pohutu and the Feathers ... 263
7.5. Summary ... 266
CHAPTER 8 MATHEMATICAL MODELS OF GEYSERS AT Rotorua Geothermal Field

8.1. Mathematical models ... 267
 8.1.1. Pohutu .. 268
 8.1.2. Prince of Wales Feathers 274
 8.1.3. Waikorohihi ... 278
8.2. Sensitivity Analysis ... 282
 8.2.1. Pohutu geyser .. 283
 8.2.2. Prince of Wales Feathers geyser 287
 8.2.3. Waikorohihi geyser 290
8.3. Summary ... 293

CHAPTER 9 MODELS OF POHUTU Geyser

9.1. Model parameters ... 296
9.2. Simulation using mathematical models 298
 9.2.1. Simulation using the Steinberg model 299
 9.2.2. Simulation using the variable density model 305
 9.2.3. Sensitivity Study 309
9.3. Simulations using AUTOUGH2 317
 9.3.1. Grid layout ... 317
 9.3.2. Model parameters 317
 9.3.3. Performance of the geyser 319
 9.3.4. Processes occurring within the system 324
 9.3.5. Sensitivity study 325
 9.3.5.1. Mass flow rate of the hot upflow 325
 9.3.5.2. Temperature of the hot and cold inflow 332
 9.3.5.3. Pressure in Te Horu 337
 9.3.5.4. Atmospheric pressure and ambient temperature 340
 9.3.5.5. Size of the vent 340
 9.3.5.6. Size of the chamber 342
 9.3.5.7. Permeability of the channel and the chamber 345
 9.3.5.8. Relative permeability 345
9.4. Summary ... 346

CHAPTER 10 CONCLUSIONS AND SUMMARY 349

10.1. Summary and conclusions 349
10.2. Recommendations for further work 359
REFERENCES ...363

APPENDICES

<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>FLUID PROPERTY CORRELATIONS</td>
<td>373</td>
</tr>
<tr>
<td>B</td>
<td>DUNS & ROS CORRELATIONS</td>
<td>377</td>
</tr>
<tr>
<td>C</td>
<td>ORKISZEWSKI CORRELATIONS</td>
<td>381</td>
</tr>
<tr>
<td>D</td>
<td>CALCULATION PROCEDURE FOR THE VARIABLE DENSITY MODEL</td>
<td>385</td>
</tr>
<tr>
<td>E</td>
<td>SIMULATION RESULTS FROM THE VARIABLE DENSITY MODEL</td>
<td>387</td>
</tr>
<tr>
<td>F</td>
<td>SOME RESULTS FROM THE NUMERICAL MODELLING STUDY</td>
<td>391</td>
</tr>
<tr>
<td>G</td>
<td>DATA FOR POHUTU AND THE FEATHERS GEYSERS</td>
<td>395</td>
</tr>
<tr>
<td>H</td>
<td>RESULTS OF THE SIMULATIONS OF POHUTU GEYSER USING THE VARIABLE DENSITY MODEL</td>
<td>401</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1.1	A view of Whakarewarewa thermal area showing Pohutu geyser and Prince of Wales Feathers geyser in eruption .. 2	
Figure 1.2	A closer view of Pohutu geyser and Prince of Wales Feathers geyser in eruption .. 2	
Figure 1.3	The Taupo Volcanic Zone of the North Island of New Zealand 3	
Figure 1.4	The location of the geysers along the Te Puia Fault 5	
Figure 2.1	The conceptual model for the Rotorua-Whakarewarewa geothermal system ... 22	
Figure 3.1a	Configuration of model 1 ... 33	
Figure 3.1b	Three different designs for the plumbing system of model 1 33	
Figure 3.2	Schematic diagram of model 2 .. 35	
Figure 3.3	Models for a cone geyser and a pool geyser .. 36	
Figure 3.4	Flow regimes for vertical two-phase flow ... 39	
Figure 3.5	Taylor bubbles and slugs of liquid successively rising in the channel 39	
Figure 3.6	Taylor bubbles and slugs of liquid successively rising in the channel 41	
Figure 3.7	A sketch of counter-flow process in the model constricted at the top end of its channel .. 42	
Figure 3.8	Inflow rate and temperatures for the model of an overflowing cone geyser ... 45	
Figure 3.9	Temperature-with-depth curve (a overflowing cone geyser) 46	
Figure 3.10	Schematic time log of the processes involved in an overflowing geyser in one cycle ... 47	
Figure 3.11	Schematic time log of processes during the filling of the chamber .. 48	
Figure 3.12	Inflow rate and temperatures in the model for a non-overflowing geyser ... 51	
Figure 3.13	Temperature profiles (non-overflowing geyser) 52	
Figure 3.14	Schematic time log of processes involved in a non-overflowing geyser in one cycle ... 52	
Figure 3.15	Inflow rate and temperatures for the model of a pool geyser 55	
Figure 3.16	Temperature profiles (pool geyser) .. 56	
Figure 3.17	Schematic time log of the processes involved in a pool geyser in one cycle ... 57	
Figure 3.18	Relationship between the water level in the channel before the eruption and the height of eruption	59
Figure 3.19	Relationship between the eruption height and the volume of residual water after an eruption	60
Figure 3.20	Schematic time log of processes involved in different types of geysers in one cycle	61
Figure 4.1	Conceptual model of a geyser (after Steinberg et al., 1981a)	64
Figure 4.2	Temperature, pressure and inflow rate of cold water	75
Figure 4.3	Sensitivity of the geyser to changes in inflow rates	77
Figure 4.4	Sensitivity of the geyser to changes in inflow temperatures	78
Figure 4.5	Conceptual model for the laboratory model	80
Figure 4.6a	Temperature in the chamber (overflowing geyser, exp-1)	87
Figure 4.6b	Rate of inflow of cold water (overflowing geyser, exp-1)	88
Figure 4.6c	Pressure in the chamber (overflowing geyser, exp-1)	88
Figure 4.7a	Temperature in the chamber for the model using an assumption that the temperature in the chamber when the eruption begins is 108.4°C (overflowing geyser, exp-1)	89
Figure 4.7b	Rate of inflow of cold water for the model using an assumption that the temperature in the chamber when the eruption begins is 108.4°C (overflowing geyser, exp-1)	89
Figure 4.8a	Temperature in the chamber (overflowing geyser, exp-4)	91
Figure 4.8b	Rate of inflow of cold water (overflowing geyser, exp-4)	91
Figure 4.9a	Temperature in the chamber for the model using an assumption that the temperature in the chamber when the eruption begins is 108.4°C (overflowing geyser, exp-4)	92
Figure 4.9b	Rate of inflow of cold water for the model using an assumption that the temperature in the chamber when the eruption begins is 108.4°C (overflowing geyser, exp-4)	92
Figure 4.10a	Temperature in the chamber (non-overflowing geyser, exp-2)	95
Figure 4.10b	Rate of inflow of cold water (non-overflowing geyser, exp-2)	95
Figure 4.10c	Pressure in the chamber (non-overflowing geyser, exp-2)	96
Figure 4.10d	Comparison between water temperature in the mathematical model for a non-overflowing geyser (exp-2) and the boiling temperature	96
Figure 4.11a Temperature in the chamber for the model using an assumption that the temperature in the chamber when the eruption begins is 108.4°C (non-overflowing geyser, exp-2) 97
Figure 4.11b Rate of inflow of cold water for the model using using an assumption that the temperature in the chamber when the eruption begins is 108.4°C (non-overflowing geyser, exp-2) 97

Figure 4.12a Temperature in the chamber (non-overflowing geyser, exp-5) ... 99
Figure 4.12b Rate of inflow of cold water (non-overflowing geyser, exp-5) 99
Figure 4.12c Comparison between water temperature in the mathematical model for a non-overflowing geyser (exp-5) and the boiling temperature 100

Figure 4.13a Temperature in the chamber for the model using an assumption that the temperature in the chamber when the eruption begins is 108.4°C (non-overflowing geyser, exp-5) 100
Figure 4.13b Rate of inflow of cold water for the model using using an assumption that the temperature in the chamber when the eruption begins is 108.4°C (non-overflowing geyser, exp-5) 101

Figure 4.14 Comparison between observed and calculated interval between eruptions assuming that an eruption occurs when the temperature in the chamber is equal to the boiling point temperature for the channel filled with water (Tch2) 103
Figure 4.15 Comparison between actual and calculated interval between eruptions assuming that an eruption occurs when the temperature in the chamber is 4°C above the boiling point temperature for the channel filled with water (Tch2) 104
Figure 4.16 Comparison between actual and calculated interval between eruptions assuming that an eruption occurs when the temperature in the chamber is 4°C above the boiling point temperature for the channel filled with water (Tch2) and the inflow rates are 3% greater than the observed values 105

Figure 5.1 Processes for the filling of the chamber 112
Figure 5.2 Rate of inflow of cold water as a function of time 113
Figure 5.3 Processes of the filling of the channel 120
Figure 5.4a Rate of inflow of cold water for case 1 as calculated using VDM and the Duns and Ros correlation (overflowing geyser, Td=90°C) 129
Figure 5.4b Rate of inflow of cold water for case 5 as calculated using VDM and the Duns and Ros correlation (overflowing geyser, $T_d=T_{i-1}$ for $T_{i-1}<100^\circ C$, $T_d=100^\circ C$ for $T_{i-1}>100^\circ C$). .. 129

Figure 5.5a Water level for case 1 as calculated using VDM and the Duns and Ros correlation (overflowing geyser, $T_d=90^\circ C$) 130

Figure 5.5b Water level for case 5 as calculated using VDM and the Duns and Ros correlation (overflowing geyser, $T_d=T_{i-1}$ for $T_{i-1}<100^\circ C$, $T_d=100^\circ C$ for $T_{i-1}>100^\circ C$). .. 130

Figure 5.6a Temperature in the chamber for case 1 as calculated using VDM and the Duns and Ros correlation (overflowing geyser, $T_d=90^\circ C$) 131

Figure 5.6b Temperature in the chamber for case 5 as calculated using VDM and the Duns and Ros correlation (overflowing geyser, $T_d=T_{i-1}$ for $T_{i-1}<100^\circ C$, $T_d=100^\circ C$ for $T_{i-1}>100^\circ C$) .. 131

Figure 5.7a The enthalpy of the fluid for cases 1, 2 and 3 (overflowing geyser) as calculated using VDM and the Duns and Ros correlation 132

Figure 5.7b The enthalpy of the fluid for cases 1, 4 and 5 (overflowing geyser) as calculated using VDM and the Duns and Ros correlation 132

Figure 5.8 Comparison between the Steinberg model and the variable density model ... 133

Figure 5.9a Rate of inflow of cold water for case 1 as calculated using VDM and the Orkiszewski correlation (overflowing geyser, $T_d=90^\circ C$) 136

Figure 5.9b Water level for case 1 as calculated using VDM and the Orkiszewski correlation ... 136

Figure 5.9c Temperature in the chamber for case 1 as calculated using VDM and the Orkiszewski correlation (overflowing geyser, $T_d=90^\circ C$) 137

Figure 5.9d Enthalpy of the fluid for case 1 as calculated using the Duns and Ros and Orkiszewski correlation (overflowing geyser, $T_d=90^\circ C$) 137

Figure 5.10a Comparison between the actual and the calculated intervals between eruptions for cases 1, 2 and 3 as calculated using VDM and Duns & Ros correlation for overflowing geysers 139

Figure 5.10b Comparison between the actual and the calculated intervals between eruptions for cases 1, 4 and 5 as calculated using VDM and Duns & Ros correlation for overflowing geysers 139
Figure 5.11a Comparison between the actual and the calculated interval between eruptions for cases 1, 2 and 3 as calculated using VDM and Orkiszewski correlation for overflowing geysers. .. 140

Figure 5.11b Comparison between the actual and the calculated interval between eruptions for cases 1, 4 and 5 as calculated using VDM and Orkiszewski correlation for overflowing geysers. .. 140

Figure 5.12a Comparison between interval of eruptions calculated using Duns and Ros correlation with those calculated using Orkiszewski correlation for case 1 (overflowing geysers, T_d=90°C). 141

Figure 5.12b Comparison between interval of eruptions calculated using Duns and Ros correlation with those calculated using Orkiszewski correlation for case 5 .. 141

Figure 5.13a Rate of inflow of water for case 2 as calculated using VDM and the Duns and Ros correlation (non-overflowing geyser). .. 145

Figure 5.13b Water level for case 2 as calculated using VDM and the Duns and Ros correlation .. 145

Figure 5.13c Enthalpy of the fluid for case 2 as calculated using VDM and the Duns and Ros correlation .. 146

Figure 5.13d Temperature in the chamber as calculated using VDM and the Duns and Ros correlation .. 146

Figure 5.14a Rate of inflow of cold water for case 1 as calculated using VDM and the Orkiszewski correlation (non-overflowing geyser) 149

Figure 5.14b Water level for case 1 as calculated using VDM and the Orkiszewski correlation .. 150

Figure 5.14c Temperature in the chamber for case 1 as calculated using VDM and the Orkiszewski correlation (non-overflowing geyser) 150

Figure 5.15a Comparison between actual and calculated interval between eruptions .. 151

Figure 5.15b Comparison between actual and calculated intervals between eruptions .. 152

Figure 5.16a Temperature of water in the chamber for case 1 (T_d=temperature in the chamber for T<100°C, T_d=100°C for T>100°C) as calculated using VDM and the Duns and Ros correlation and the Steinberg model (two feed point model) .. 159
Figure 5.16b Temperature of water in the chamber for case 1 ($T_d = \text{temperature in the chamber}$ for $T<100^\circ\text{C}$, $T_d=100^\circ\text{C}$ for $T>100^\circ\text{C}$) as calculated using VDM and the Orkiszewski correlation and the Steinberg model (two feed point model).......................... 160

Figure 5.16c Comparison between the Steinberg model and the variable density model for case 1 .. 161

Figure 5.17a Temperature of water in the chamber for case 2 ($T_d = \text{temperature in the chamber}$) as calculated using VDM and the Duns and Ros correlation and the Steinberg model (two feed point model)........ 162

Figure 5.17b Temperature of water in the chamber for case 2 ($T_d = \text{temperature in the chamber}$) as calculated using VDM and the Orkiszewski correlation and the Steinberg model (two feed point model)........ 162

Figure 5.17c Comparison between the Steinberg model and the variable density model for case 2 .. 163

Figure 5.18a Temperature of water in the chamber for case 3 ($T_d = 90^\circ\text{C}$) as calculated using VDM and the Duns and Ros correlation and the Steinberg model (two feed point model).......................... 164

Figure 5.18b Temperature of water in the chamber for case 3 ($T_d = 90^\circ\text{C}$) as calculated using VDM and the Orkiszewski correlation and the Steinberg model (two feed point model).......................... 164

Figure 5.18c Comparison between the Steinberg model and the variable density model for case 3 .. 165

Figure 5.19 Sensitivity of the geyser to changes in inflow rates as predicted using VDM and the Duns & Ros correlation .. 167

Figure 5.20 Sensitivity of the geyser to changes in inflow rates as predicted using VDM and the Orkiszewski correlation .. 167

Figure 5.21 Boundaries between regions for different surface features, as predicted by the present model and the Steinberg model.. 168

Figure 5.22 Comparison between case 1 and case 3 .. 168

Figure 5.23 Sensitivity of the geyser to changes in inflow temperature as predicted using VDM and the Duns & Ros correlation .. 169

Figure 5.24 Sensitivity of the geyser to changes in inflow temperature as predicted using VDM and the Orkiszewski correlation .. 170

Figure 5.25 Boundaries between regions for different surface features, as predicted by the variable density model and the Steinberg model...... 170
Figure 6.1 Conceptual model for Steinberg's problem .. 176
Figure 6.2 Computer model for Steinberg's problem ... 177
Figure 6.3 Relative permeability of water and steam as a function of liquid
saturation .. 181
Figure 6.4a Mass flow rate discharge to the atmosphere (Steinberg-like
MULKOM model) ... 183
Figure 6.4b Heat flow rate discharged to the atmosphere (Steinberg-like
MULKOM model) ... 183
Figure 6.5a Mass flow rate discharge to the atmosphere (Steinberg-like
MULKOM model) ... 184
Figure 6.5b Heat discharge to the atmosphere (Steinberg-like MULKOM
model) ... 184
Figure 6.5c The inflow rate of cold water to the chamber (Steinberg-like
MULKOM model) ... 185
Figure 6.5d The steam saturation in the chamber (Steinberg-like MULKOM
model) ... 185
Figure 6.5e The pressure in the chamber (Steinberg-like MULKOM model) 186
Figure 6.5f The temperature in the chamber (Steinberg-like MULKOM model) .. 186
Figure 6.6 Conditions at the end of the chamber filling (Steinberg-like
MULKOM model) ... 188
Figure 6.7 Conditions during the channel filling (Steinberg-like MULKOM
model) ... 188
Figure 6.8 Conditions during the overflowing stage (Steinberg-like
MULKOM model) ... 189
Figure 6.9 Conditions during the eruption (Steinberg-like MULKOM model) 189
Figure 6.10 The inflow of cold water, the pressure and the temperature of
water in the chamber .. 192
Figure 6.11a Mass flow rate of fluid discharged to the atmosphere
(AUTOUGH2 model) ... 193
Figure 6.11b Heat flow rate to the atmosphere (AUTOUGH2 model) 194
Figure 6.12 Grid layout for modelling experimental data 195
Figure 6.13 Results of the simulation for case 1 ... 197
Figure 6.14 Results of the simulation for case 2 .. 198
Figure 6.15 Mass flow rate discharge to the atmosphere versus time for
k = 9 x 10^{-8} m^2 and k = 9 x 10^{-8} m^2 (AUTOUGH2 model) 201
Figure 6.16	The pressure in the chamber (a), the inflow rate of cold water to the chamber (b) and the temperature in the chamber (c) versus time for \(k = 9 \times 10^{-8} \text{ m}^2 \) and \(k = 2 \times 10^{-8} \text{ m}^2 \) (AUTOUGH2 model). .. 202
Figure 6.17	Sensitivity of geyser performance to changes in permeability of the channel and the chamber .. 203
Figure 6.18	Sensitivity of geyser performance to changes in permeability of the channel and the chamber .. 204
Figure 6.19	Mass flow rate discharge to the atmosphere versus time for permeability of the recharge block of \(3.0 \times 10^{-11} \text{ m}^2 \) and \(2.2 \times 10^{-11} \text{ m}^2 \) (AUTOUGH2 model) .. 206
Figure 6.20	Sensitivity of geyser performance to changes in the permeability of the recharge block .. 207
Figure 6.21	Sensitivity of geyser performance to changes in the permeability of the recharge block .. 208
Figure 6.22	Mass flow rate of fluid discharge to the atmosphere versus time for \(G_h = 1 \text{ kg/s}, G_h = 2 \text{ kg/s} \) and \(G_h = 0.8 \text{ kg/s} \) (AUTOUGH2 model) .. 210
Figure 6.23	Sensitivity of geyser performance to changes in the rate of hot inflow .. 211
Figure 6.24	Inflow rate of cold water versus time for \(G_h = 1 \text{ kg/s}, G_h = 2 \text{ kg/s} \) and \(G_h = 0.8 \text{ kg/s} \) .. 212
Figure 6.25	Sensitivity of geyser performance to changes in the rate of hot inflow .. 213
Figure 6.26a	Mass flow rate of fluid discharge to the atmosphere versus time for \(T_h = 180^\circ \text{C}, T_h = 200^\circ \text{C} \) and \(T_h = 220^\circ \text{C} \) (AUTOUGH2 model) .. 215
Figure 6.26b	Sensitivity of geyser performance to changes in the temperature of hot inflow .. 216
Figure 6.27a	Sensitivity of geyser performance to changes in the temperature of cold inflow .. 218
Figure 6.27b	Sensitivity of geyser performance to changes in the temperature of cold inflow .. 219
Figure 6.28	Sensitivity of geyser performance to changes in the ambient temperature .. 220
Figure 6.29	Sensitivity of geyser performance to changes in the pressure of the cold recharge zone .. 221
Figure 6.30 Sensitivity of geyser performance to changes in the atmospheric pressure. ... 222	
Figure 6.31 Sensitivity of geyser performance to changes in the atmospheric pressure. ... 223	
Figure 6.32 Relative permeability of water and steam as a function of liquid saturation... 225	
Figure 6.33 Relative permeability of water and steam as a function of liquid saturation... 226	
Figure 6.34 Mass flow rate discharge to the atmosphere versus time for the case of S_{LR}=0.10 and S_{VR}=0.2 ... 227	
Figure 6.35 Mass flow rate discharge to the atmosphere versus time for the case of S_{LR}= 0.0 and S_{VR}= 0.30 (base case) and of S_{LR}= 0.3 and S_{VR}= 0.05 (case 3) ... 228	
Figure 6.36 Pressure in the chamber versus time for the case of S_{LR}= 0.0 and S_{VR}= 0.30 (base case) and of S_{LR}= 0.3 and S_{VR}= 0.05 (case 3) ... 229	
Figure 6.37 Inflow rate of cold water to the chamber versus time for the case of S_{LR}= 0.0 and S_{VR}= 0.30 (base case) and of S_{LR}= 0.3 and S_{VR}= 0.05 (case 3) ... 230	
Figure 6.38 Steam saturation in the chamber versus time for the case of S_{LR}= 0.0 and S_{VR}= 0.30 (base case) and of S_{LR}= 0.3 and S_{VR}= 0.05 (case 3) ... 231	
Figure 6.39 Sensitivity of geyser performance to changes in relative permeability curves ... 232	
Figure 7.1 The conceptual model of the Rotorua geysers (after Weir et al., 1992) ... 236	
Figure 7.2 Sites of observation ... 247	
Figure 7.3 Schematic time log of the surface activity of Pohutu geyser in one cycle ... 250	
Figure 7.4 Water discharging in a burst for the first time from Pohutu geyser. Water is continuously discharged from the Feathers geyser after the full column eruption has stopped ... 250	
Figure 7.5 Pohutu geyser at the beginning of a full column eruption ... 251	
Figure 7.6 Schematic time log of the surface activity of the Feathers geyser in one cycle ... 252	
Figure 7.7 Summary of activity for Pohutu geyser on the 20th of August 1993 in one cycle ... 252	
Figure 7.8 Summary of activity for the Feathers geyser on the 20th of August 1993 in one cycle ... 253	
Figure 7.9a Duration of full column eruptions of Pohutu 254	
Figure 7.9b Duration of full column eruptions for the Feathers 255	
Figure 7.10 Duration of falling stage for Pohutu 256	
Figure 7.11 Duration of quiet stage for Pohutu 257	
Figure 7.12 Duration of pre-play stage for Pohutu 258	
Figure 7.13a Intervals between eruptions for Pohutu 258	
Figure 7.13b Intervals between eruptions for the Feathers 259	
Figure 7.14 Schematic time log of the surface activity and the processes within the system for one cycle of the Pohutu geyser 260	
Figure 7.15 Duration of cavern filling for Pohutu 260	
Figure 7.16 Schematic time log of the surface activity and the processes within the system for one cycle of the Feathers geyser 261	
Figure 7.17 Improved conceptual model for the Rotorua geysers 262	
Figure 8.1 Pressure, temperature and inflow rate of cold water for the model of Pohutu (case B) ... 270	
Figure 8.2a Temperature in the cavern for the model of Pohutu for cases A, B and C ... 271	
Figure 8.2b Temperature in the cavern for the model of Pohutu for cases A and D ... 272	
Figure 8.3a Contours of constant duration of cavern filling and a contour of interval between eruptions of 51 minutes for various hot and cold inflow as calculated using the Steinberg model 273	
Figure 8.3b Contours of constant duration of water overflowing (pre-play) and a contour of interval between eruptions of 51 minutes for various hot and cold inflow as calculated using the Steinberg model 273	
Figure 8.4 Sensitivity of the model results for the Feathers to the choice of the value chosen for the volume of residual water after an eruption (Vo) ... 275	
Figure 8.5 Pressure, temperature and inflow rate of cold water for the model of the Feathers for case C ... 277	
Figure 8.6	Temperature in the cavern for the model of the Feathers for cases C and D ... 278
Figure 8.7	Sensitivity of the model results for the Waikorohihi to the value chosen for the volume of residual water after an eruption (Vo). 279
Figure 8.8	Pressure, temperature and inflow rate of cold water for the model of Waikorohihi for case B ... 281
Figure 8.9	Temperature in the cavern for the model of Waikorohihi 282
Figure 8.10	Sensitivity of Pohutu to changes in inflow rates 285
Figure 8.11	Sensitivity of Pohutu to changes in inflow temperatures 286
Figure 8.12	Sensitivity of the Feathers to changes in inflow rates 288
Figure 8.13	Sensitivity of the Feathers to changes in inflow temperatures. I. Hot springs ... 289
Figure 8.14	Sensitivity of Waikorohihi to changes in inflow rates 292
Figure 8.15	Sensitivity of Waikorohihi to changes in inflow temperatures 292
Figure 9.1a	Contours of constant duration of cavern filling and interval between eruptions of 428 s for various hot and cold inflow (Steinberg model) ... 300
Figure 9.1b	Contours of constant duration of water overflowing (pre-play stage) and interval between eruptions of 428 s for various hot and cold inflow (Steinberg model) ... 301
Figure 9.1c	Contours of interval between eruptions of 428 s, of duration of cavern filling of 305 s and of duration of water overflowing (pre-play stage) 123 s for various hot and cold inflow (Steinberg model) ... 301
Figure 9.2a	Contours of constant duration of cavern filling and interval between eruptions of 428 s for various hot and cold inflows as calculated using the Steinberg model ... 303
Figure 9.2b	Contours of constant duration of water overflowing (pre-play stage) and interval between eruptions of 428 s for various hot and cold inflows as calculated the Steinberg model ... 303
Figure 9.2c	Contours of interval between eruptions of 428 s, of duration of cavern filling of 305 s and of duration of water overflowing (pre-play stage) of 123 s for various hot and cold inflows as calculated using the Steinberg model ... 304
Figure 9.3a Temperature in the cavern for the model of Pohutu as predicted by the Steinberg model for case 1 .. 304
Figure 9.3b Temperature in the cavern for the model of Pohutu as predicted by the Steinberg model for case 2 .. 305
Figure 9.4 Contours of interval between eruptions of 428 s, of duration of cavern filling of 305 s and of duration of pre-play of 123 s for various hot and cold inflows (case 1-B, variable density model) 306
Figure 9.5 Contours of interval between eruptions of 428 s, of duration of cavern filling of 305 s and of duration of pre-play of 123 s for various hot and cold inflows (case 1-C, variable density model) 307
Figure 9.6 Temperature in the cavern of the model for Pohutu as predicted using the variable density model for case 1-B and 1-C 308
Figure 9.7a Sensitivity of Pohutu to changes in inflow temperatures (model 1) ... 313
Figure 9.7b Sensitivity of Pohutu to changes in inflow temperatures (model 2) 313
Figure 9.7c Sensitivity of Pohutu to changes in inflow temperatures (model 3) ... 314
Figure 9.8a Sensitivity of Pohutu to changes in inflow rates (model 1) .. 315
Figure 9.8b Sensitivity of Pohutu to changes in inflow rates (model 2) .. 315
Figure 9.8c Sensitivity of Pohutu to changes in inflow rates (model 3) .. 316
Figure 9.9 Grid layout for Pohutu ... 318
Figure 9.10a Mass discharge to the atmosphere for the AUTOUGH2 model of Pohutu ... 321
Figure 9.10b Heat discharge to the atmosphere for the AUTOUGH 2 model of Pohutu ... 321
Figure 9.11a Inflow rate of cold water to the chamber for the AUTOUGH2 model of Pohutu ... 322
Figure 9.11b Pressure in the chamber for the AUTOUGH2 model of Pohutu ... 322
Figure 9.11c Temperature in the chamber for the AUTOUGH2 model of Pohutu ... 323
Figure 9.11d Steam saturation in the chamber for the model of Pohutu ... 323
Figure 9.12 Sensitivity of Pohutu geyser to changes in inflow rate of hot water (AUTOUGH2 model) ... 327
Figure 9.13 Inflow rate of cold water to the chamber in the model for Pohutu versus time ... 328
Figure 9.14 Mass flow rate discharge to the atmosphere in the model for Pohutu versus time ... 329
Figure 9.15a The result of simulation for the model of Pohutu 330
Figure 9.15b The result of simulation for the model of Pohutu 331
Figure 9.16 Sensitivity of Pohutu geyser to changes in temperature of the deep hot inflow ... 333
Figure 9.17 The result of simulation for the model of Pohutu 334
Figure 9.17 The result of simulation for the model of Pohutu 335
Figure 9.18 Sensitivity of Pohutu geyser to changes in temperature of the cold inflow ... 336
Figure 9.19 Sensitivity of Pohutu geyser to changes in pressure in Te Horu (AUTOUGH2 model) ... 338
Figure 9.20 The result of simulation for the model of Pohutu 339
Figure 9.21 The sensitivity of Pohutu to changes in the size of the vent (AUTOUGH2 model) ... 341
Figure 9.22 Mass flow rate discharge to the atmosphere in the model for Pohutu versus time ... 343
Figure 9.23 Sensitivity of Pohutu geyser to the size of the chamber (AUTOUGH2 model) ... 344
Figure 10.1 Surface activity and processes involved in Pohutu in one cycle 352
Figure 10.2 Surface activity and processes involved in the Feathers in one cycle ... 352
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Summary of the activity of Pohutu</td>
<td>13</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Duration of eruption of Pohutu geyser</td>
<td>15</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Summary of the activity of the Feathers</td>
<td>16</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Summary of the activity of Waikorohihi</td>
<td>17</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Chloride concentrations in the erupted water</td>
<td>17</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>The dimensions of the components for model 1</td>
<td>32</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>The dimensions of the components for model 2</td>
<td>34</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Interval between eruptions and duration of water play for the overflowing geyser</td>
<td>49</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Comparison between temperature in an overflowing geyser and that in a non-overflowing geyser</td>
<td>52</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Interval between eruptions and duration of water play for the non-overflowing geyser</td>
<td>53</td>
</tr>
<tr>
<td>Table 3.6</td>
<td>Interval between eruptions and duration of water play for the pool geyser</td>
<td>57</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Classification of surface features (after Steinberg et al., 1981a)</td>
<td>72</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Model parameters of Steinberg et al. (1981a)</td>
<td>73</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Additional model parameters for the test problem</td>
<td>74</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Regions of surface features for $G_c=5$ kg/s</td>
<td>77</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Regions of surface features for $T_c=75^\circ$C</td>
<td>79</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>The dimensions of the geyser model</td>
<td>84</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>Model parameters for experiment 1</td>
<td>85</td>
</tr>
<tr>
<td>Table 4.8</td>
<td>Additional data for simulation of experiment 1</td>
<td>86</td>
</tr>
<tr>
<td>Table 4.9</td>
<td>Comparison between mathematical and laboratory models for experiment 1</td>
<td>86</td>
</tr>
<tr>
<td>Table 4.10</td>
<td>Model parameters for experiment 4</td>
<td>90</td>
</tr>
<tr>
<td>Table 4.11</td>
<td>Model parameters for experiment 2</td>
<td>93</td>
</tr>
<tr>
<td>Table 4.12</td>
<td>Comparison between the mathematical and laboratory models for experiment 2</td>
<td>94</td>
</tr>
<tr>
<td>Table 4.13</td>
<td>Model parameters for experiment 5</td>
<td>98</td>
</tr>
<tr>
<td>Table 4.14</td>
<td>Data used for simulations</td>
<td>103</td>
</tr>
<tr>
<td>Table 4.15</td>
<td>Data used for simulations</td>
<td>104</td>
</tr>
</tbody>
</table>
Table 5.1 The initial conditions and model parameters for experiment 1 124
Table 5.2 Cases to be simulated using variable density model 125
Table 5.3 Simulation results using VDM and Duns & Ros correlation (Case 1,
T_d=90°C) .. 126
Table 5.4 Comparison between the laboratory and mathematical models for
experiment 1 .. 127
Table 5.5 Comparison between the laboratory and mathematical models for
experiment 1 .. 134
Table 5.6 Simulation results using VDM & Orkiszewski correlation (Case-1,
T_d=90°C) .. 135
Table 5.7 Data used for simulation of overflowing geysers 138
Table 5.8 The initial condition and model parameters for experiment 2 142
Table 5.9 Simulation results using VDM and Duns & Ros correlation 144
Table 5.10 Simulation results using VDM and Orkiszewski correlation 148
Table 5.11 Data used for simulation experimental results using variable
density model ... 152
Table 5.12 Simulation results using VDM and Duns & Ros correlation for case 1 158
Table 5.13 Simulation results using VDM and Orkiszewski correlation 159
Table 6.1 Rock Properties .. 178
Table 6.2 Model parameters .. 180
Table 6.3 The Performance of the Geyser (Steinberg like MULKOM model) . 182
Table 6.4 Model parameters .. 196
Table 6.5 Model parameters .. 196
Table 6.6 The average inflow rates of cold water in the AUTOUGH2 model . 200
Table 6.7 The sensitivity of geyser performance to changes in the size of the
vent ... 224
Table 6.8 The sensitivity of geyser performance to S_{LR} (S_{VR} =0.30) 225
Table 6.9 The sensitivity of geyser performance to changes in S_{VR}
(S_{LR} =0.10).. 226
Table 7.1 Observed data for the Rotorua geysers (Weir et al., 1992) 237
Table 7.2 Parameters for the Rotorua geysers (Weir et al., 1992) 237
Table 7.3 Properties of eruption plumes resulting from adiabatic flashing of
water at a given temperature to 100°C 238
Table 7.4 Increase in chloride concentration during eruption 241
Table 7.5a Possible cavern depth, cavern temperature and eruption rate for Pohutu (A\text{eff}=0.09 \text{ m}^2) ... 243
Table 7.5b Possible cavern depth, cavern temperature and eruption rate for Pohutu for effective areas of the vent (A\text{eff}) range from 0.08m\text{2} to 0.12 m\text{2} ... 243
Table 7.6a Possible cavern depth and temperature for the Feathers (A\text{eff}=0.083 m\text{2}) ... 244
Table 7.6b Possible cavern depth, cavern temperature and eruption rate for the Feathers for effective areas of the vent (A\text{eff}) range from 0.01m\text{2} to 0.11 m\text{2} ... 244
Table 7.7a Possible cavern depth and temperature for Waikorohihi (A\text{eff}=0.045 m\text{2}) ... 245
Table 7.7b Possible cavern depth, cavern temperature and eruption rate for Waikorohihi for effective areas of the vent (A\text{eff}) range from 0.01m\text{2} to 0.11 m\text{2} ... 245
Table 7.8 Summary of activity for Pohutu geyser on the 19\text{th} and 20\text{th} of August 1993 ... 253
Table 7.9 Summary of activity for the Feathers geyser on the 19\text{th} and 20\text{th} of August 1993 ... 253
Table 7.10 Estimates of average duration of cavern filling and duration of heating for Pohutu and the Feathers .. 261
Table 7.11 Possible cavern depth, cavern temperature and eruption rate for Pohutu ... 263
Table 7.12 Possible cavern depth, cavern temperature and eruption rate for the Feathers ... 264
Table 7.13 Observed data and subsurface parameters for Pohutu and the Feathers ... 265
Table 7.14 Observed data and subsurface parameters for the Pohutu and the Feathers geyser .. 266
Table 8.1 Model parameters for Pohutu (Weir et al., 1992) ... 268
Table 8.2 Summary of model results for Pohutu (Steinberg model) .. 269
Table 8.3 Model Parameters for Feathers (Weir et al., 1992) ... 274
Table 8.4 Summary of model results for the Feathers ... 274
Table 8.5 Model Parameters for Waikorohihi (Weir et al., 1992) .. 278
Table 8.6 Summary of model results for the Waikorohihi ... 279
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.7</td>
<td>Summary of model parameters for Pohutu, the Feathers and Waikorohihi</td>
<td>282</td>
</tr>
<tr>
<td>8.8</td>
<td>Sensitivity of Pohutu</td>
<td>283</td>
</tr>
<tr>
<td>8.9</td>
<td>Sensitivity of the geysers to variations in the hot inflow</td>
<td>285</td>
</tr>
<tr>
<td>8.10</td>
<td>Sensitivity of the Feathers</td>
<td>287</td>
</tr>
<tr>
<td>8.11</td>
<td>Sensitivity of Waikorohihi</td>
<td>291</td>
</tr>
<tr>
<td>9.1</td>
<td>Average observed data for Pohutu</td>
<td>295</td>
</tr>
<tr>
<td>9.2</td>
<td>Model parameters for Pohutu (from Weir et al., 1992)</td>
<td>296</td>
</tr>
<tr>
<td>9.3</td>
<td>List of cases for modelling the performance of Pohutu geyser</td>
<td>297</td>
</tr>
<tr>
<td>9.4</td>
<td>Subcases studied for modelling Pohutu geyser</td>
<td>297</td>
</tr>
<tr>
<td>9.5</td>
<td>Estimates for the inflow rates of water for Pohutu</td>
<td>298</td>
</tr>
<tr>
<td>9.6</td>
<td>Summary of the model results for Pohutu (Steinberg model)</td>
<td>300</td>
</tr>
<tr>
<td>9.7</td>
<td>Additional model parameters for the three subcases studied in modelling Pohutu geyser</td>
<td>306</td>
</tr>
<tr>
<td>9.8</td>
<td>Summary of the model results for Pohutu (variable density model)</td>
<td>307</td>
</tr>
<tr>
<td>9.9</td>
<td>Models for Pohutu geyser</td>
<td>309</td>
</tr>
<tr>
<td>9.10</td>
<td>Variation of interval between eruptions</td>
<td>311</td>
</tr>
<tr>
<td>9.11</td>
<td>Percentage increase and decrease in the interval between eruptions for Pohutu</td>
<td>311</td>
</tr>
<tr>
<td>9.12</td>
<td>Sensitivity of Pohutu to variations in the hot inflow</td>
<td>312</td>
</tr>
<tr>
<td>9.13</td>
<td>Sensitivity of Pohutu to 10% changes in several parameters</td>
<td>316</td>
</tr>
<tr>
<td>9.14</td>
<td>Parameters used in the model</td>
<td>318</td>
</tr>
<tr>
<td>9.15</td>
<td>Model parameters for Pohutu</td>
<td>319</td>
</tr>
<tr>
<td>9.16</td>
<td>Comparison between the AUTOUGH2 model and the observed data</td>
<td>320</td>
</tr>
<tr>
<td>9.17</td>
<td>Models for Pohutu geyser</td>
<td>324</td>
</tr>
<tr>
<td>9.18</td>
<td>The sensitivity of Pohutu to changes in atmospheric pressure</td>
<td>340</td>
</tr>
<tr>
<td>9.19</td>
<td>Sensitivity of Pohutu to changes in the size of the vent (Pressure in Te Horu = 2.55 bar)</td>
<td>342</td>
</tr>
<tr>
<td>9.20</td>
<td>Sensitivity of Pohutu to changes in permeability</td>
<td>345</td>
</tr>
<tr>
<td>9.21</td>
<td>Comparing key model results</td>
<td>346</td>
</tr>
</tbody>
</table>
NOTATIONS AND SYMBOLS

A = cross sectional area (m²)
A_L = cross sectional area occupied by the liquid phase (m²)
A_{eff} = effective area of the vent (m²)
c = specific heat (kJ/kg.K)
c_h = specific heat of hot water (kJ/kg.K)
c_c = specific heat of cold water (kJ/kg.K)
c_p = specific heat of water in the chamber (kJ/kg.K)
c_r = specific heat of rock (kJ/kg.K)
Cl^i = chloride concentration of the erupted water when first ejected (ppm)
Cl^f = chloride concentration of the erupted water at the end of eruption (ppm)
d = diameter of the chamber (m)
d_h = diameter of the channel (m)
d_{t1} = duration of the chamber filling (s)
d_{t1a} = actual duration of the chamber filling (s)
d_{t2} = duration of the channel filling (s)
d_{t2'} = duration of the channel filling+duration of the heating up for non-overflowing geyser (s)
d_{t3} = duration of the heating up until eruption (s)
d_{tcr} = interval between eruptions (s)
d_{twp} = duration of the water play (s)
d_p = duration of eruption for Pohutu (s)
d_r = duration of eruption for the Feathers (s)
d_w = duration of eruption for Waikorohihi (s)
E = energy contained in the fluid (kJ)
E_0 = energy contained in the residual water (kJ)
E_{twp} = energy contained in the fluid at the beginning of the chamber filling (kJ)
E_c = energy transferred to the system by the cold water (kJ)
E_d = energy losses carried by the overflowing water (kJ)
E_h = energy transferred to the system by the hot water (kJ)
E_q = energy input to the system (kJ)
E_p = eruption rate for Pohutu (kg/s)
E_f = eruption rate for the Feathers (kg/s)
E_w = eruption rate for Waikorohihi (kg/s)
F_1 = function of the liquid viscosity number (N_L)
\[F_2 = \text{function of the liquid viscosity number (N}_f \text{)} \]
\[F_3 = \text{function of the liquid viscosity number (N}_f \text{)} \]
\[F_4 = \text{function of the liquid viscosity number (N}_f \text{)} \]
\[F_5 = \text{function of the liquid viscosity number (N}_f \text{)} \]
\[F_6 = \text{function of the liquid viscosity number (N}_f \text{)} \]
\[F_7 = \text{function of the liquid viscosity number (N}_f \text{)} \]
\[g = \text{acceleration due to gravity (m}^2\text{/s)} \]
\[G = \text{total inflow of cold and hot water entering the chamber (kg/s)} \]
\[G_L = \text{mass flow rate of the liquid (kg/s)} \]
\[G_S = \text{mass flow rate of the steam (kg/s)} \]
\[G_1 = \text{total inflow of cold and hot water during stage-1, the chamber filling (kg/s)} \]
\[G_2 = \text{total inflow of hot and cold water at the end of stage-2 (kg/s)} \]
\[G_C = \text{mass flow rate of cold water entering the chamber (kg/s)} \]
\[G_{C0} = \text{mass flow rate of cold water after an eruption, i.e. at initial condition (kg/s)} \]
\[G_{C1} = \text{mass flow rate of cold water during stage-1, the chamber filling (kg/s)} \]
\[G_{C2} = \text{mass flow rate of cold water at the end of stage-2 (kg/s)} \]
\[H_L = \text{liquid hold up} \]
\[H_G = \text{void fraction} \]
\[H = \text{length of the channel (m)} \]
\[H_{\text{plume}} = \text{height of eruption (m)} \]
\[h = \text{enthalpy of the fluid (kJ/kg)} \]
\[h_d = \text{enthalpy of the overflowing water (kJ/kg)} \]
\[h_f = \text{enthalpy of the liquid phase (kJ/kg)} \]
\[h_g = \text{enthalpy of the vapour phase (kJ/kg)} \]
\[h_{fg} = \text{heat of vaporization (kJ/kg)} \]
\[h_{fc} = \text{enthalpy of the cold water (kJ/kg)} \]
\[h_{fh} = \text{enthalpy of the hot water (kJ/kg)} \]
\[h_0 = \text{enthalpy of the residual water after an eruption (kJ/kg)} \]
\[K = \text{effective conductivity of the rock} \]
\[k = \text{absolute permeability of the rock} \]
\[k_{RL} = \text{relative permeability to liquid} \]
\[k_{RV} = \text{relative permeability to vapour} \]
\[L = \text{length of the chamber (m)} \]
\[L_i = \text{length of water column (m)} \]
\[L_B = \text{bubble-slug boundary, dimensionless} \]
\[L_S = \text{slug-transition boundary, dimensionless} \]
L_M = transition-mist boundary, dimensionless
L_1 = function of the pipe diameter number (N_D)
L_2 = function of the pipe diameter number (N_D)
M = mass of the fluid in the system (kg)
M_0 = mass of the residual water after an eruption (kg)
N = mass at the beginning of the chamber filling (kg)
M_c = mass of cold water flowing into the system (kg)
M_d = mass of the fluid leaving the system (kg)
M_h = mass of hot water flowing into the system (kg)
N_GV = dimensionless gas velocity number
N_LV = dimensionless liquid velocity number
N_D = dimensionless pipe diameter number
N_L = dimensionless liquid viscosity number
N_Reb = Reynold number of the bubble
N_ReL = Reynold number of the liquid
S = dimensionless slip velocity
P = pressure (Pa)
P_0 = pressure in the cold water zone (Pa)
P_a = atmospheric pressure (Pa)
P_b = pressure at the bottom of the channel (Pa)
P_0 = pressure in the chamber after an eruption, i.e. at the initial condition (Pa)
P_1 = pressure in the chamber during stage-1, the chamber filling (Pa)
P_2 = pressure in the chamber at the end of stage-2, the channel filling (Pa)
Q_m = heat input to the chamber (kW)
R_P = Inflow rate of hot water for Pohutu (kg/s)
R_f = Inflow rate of hot water for the Feathers (kg/s)
R_W = Inflow rate of hot water for Waikorohihi (kg/s)
S_L = saturation of liquid
S_V = saturation of vapour
S_LR = residual saturation of liquid
S_VR = residual saturation of vapour
S = cross section area of the channel (m^2)
s = entropy of water at cavern temperature (kJ/kg)
s_s = entropy of the steam phase at 100°C
s_w = entropy of the water phase at 100°C
t = time (seconds)
t_0 = time when the simulation started (s)
t_1 = time at the end of stage-1, i.e. end of the chamber filling (s)
\[t_2 \] = time at the end of stage-2, i.e. end of the channel filling(s)
\[t_3 \] = time at the end of stage-3, i.e. time when an eruption occurs (s)
\[t_p \] = interval between eruptions for Pohutu (s)
\[t_r \] = interval between eruptions for the Feathers (s)
\[t_W \] = interval between eruptions for Waikorohihi (s)
\[T \] = temperature (°C)
\[T_c \] = temperature of cold water (°C)
\[T_d \] = temperature of the overflowing water (°C)
\[T_h \] = temperature of hot water (°C)
\[T_s \] = saturation temperature (°C)
\[T_0 \] = temperature of the residual water after an eruption, i.e. at the initial condition (°C)
\[T_1 \] = temperature at the end of stage-1 (°C)
\[T_2 \] = temperature at the end of stage-2 (°C)
\[T_{ch1} \] = temperature of water in the chamber after an eruption (°C)
\[T_{ch2} \] = temperature of boiling water at atmospheric pressure (°C)
\[T_{eq1} \] = equilibrium temperature of the mixed hot and cold water during stage-1 (°C)
\[T_{eq2} \] = equilibrium temperature of the mixed hot and cold water at the end of stage-2 (°C)
\[T_{eq3} \] = equilibrium temperature of the mixed hot and cold water during stage-3 (°C)
\[T_p \] = cavern temperature for Pohutu (°C)
\[T_f \] = cavern temperature the Feathers (°C)
\[T_W \] = cavern temperature Waikorohihi (°C)
\[U_0 \] = nozzle velocity (m/s)
\[V \] = volume of the water (m³)
\[V_1 \] = volume of the water in the chamber at the end of stage-1 (m³)
\[V_0 \] = volume of the residual water after an eruption (m³)
\[V_t \] = volume of the chamber plus volume of the channel (m³)
\[V_{ch} \] = volume of the channel (m³)
\[V_{cb} \] = volume of the chamber (m³)
\[V_M \] = mixture velocity (m/s)
\[V_G \] = actual gas or steam velocity (m/s)
\[V_L \] = actual liquid velocity (m/s)
\[V_S \] = slip velocity (m/s)
\[V_{SG} = \text{superficial gas or steam velocity (m/s)} \]
\[V_{SL} = \text{superficial liquid velocity (m/s)} \]
\[V_{B} = \text{bubble rise velocity (m/s)} \]
\[W_{L} = \text{water level in the channel (m)} \]
\[W_{L0} = \text{water level after an eruption (m)} \]
\[X_P = \text{Inflow rate of cold water for Pohutu (kg/s)} \]
\[X_f = \text{Inflow rate of cold water for the Feathers (kg/s)} \]
\[X_w = \text{Inflow rate of cold water for Waikorohihi (kg/s)} \]
\[\chi = \text{steam quality in the mixture} \]
\[\alpha = \text{recharge parameter (m.s)} \]
\[\rho = \text{density (kg/m}^3) \]
\[\rho_0 = \text{density of the residual water after an eruption (kg/m}^3) \]
\[\rho_G = \text{density of steam (kg/m}^3) \]
\[\rho_V = \text{density of steam (kg/m}^3) \]
\[\rho_L = \text{density of liquid water (kg/m}^3) \]
\[\rho_r = \text{density of rock (kg/m}^3) \]
\[\rho_w(T) = \text{density of water at cavern temperature (kg/m}^3) \]
\[\rho_w(100^\circ\text{C}) = \text{density of water at 100}^\circ\text{C (kg/m}^3) \]
\[\mu_L = \text{viscosity of liquid water (kg/m.s)} \]
\[\mu_G = \text{viscosity of steam or gas (kg/m.s)} \]
\[\sigma = \text{liquid surface tension (dynes/cm)} \]
\[\Delta t = \text{time increment (s)} \]
\[\phi = \text{porosity} \]
\[\lambda = \text{steam fraction of the total mass flux} \]
xxxiv