http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
Evaluation of Natural Antioxidants

Jingli Zhang

Thesis submitted for the requirement for the degree of Doctor of Philosophy

The University of Auckland
December 2004
Abstract

This thesis relates the physicochemical properties of phenolic compounds to their antioxidant activities. It focuses on the partitioning of phenolic compounds between hydrophilic and lipophilic environments and the relevance this has to their in vivo health effects.

Data in the literature was lacking so the phase partition coefficients (log P) of 53 phenolic antioxidants were measured by reversed-phase HPLC and calculated by log P prediction software. There was a very strong linear correlation between measured and calculated values (r = 0.91).

The importance of log P in determining antioxidant assay values was then tested by developing an assay system capable of measuring activities of both hydrophilic and lipophilic antioxidants. This Lipid Peroxidation Inhibition Capacity Assay (LPIC), based on using liposomes to simulate a cell membrane environment, was then used to measure the activity of antioxidants with a broad range of structures. The activities were correlated against log P, the difference of heat of formation (ΔH_f) and half-wave potential (E_{p/2}) and used to derive a predictive model to calculate the LPIC activity. There was a highly significant linear correlation between the calculated and measured values. The LPIC activities also correlated well to published LDL inhibition activities but not to measured ORAC activities.

These findings suggested that behaviours of antioxidants in the small unilamellar vesicles of the LPIC assay were similar to that in the LDL assay but not to the aqueous phase based ORAC assay. The LPIC assay may therefore be a better indicator of potential health benefits of antioxidants in the human body than the ORAC assay. The possible mechanistic reasons are that it may better reflect ability to prevent the oxidation of LDL blood stream particles that leads to cardiovascular disease and also takes into account the importance of membrane solubility which can raise the cellular concentration and thus potential to protect cells from oxidative damage.

KEYWORDS:

LPIC, LDL; Antioxidant; Phytochemical; Polyphenolic; Phenolic acid; Flavonoids; log P; Partition Coefficient; Liposome; Lipid bilayer; Lipid Membrane; ORAC; Comet assay; Flow Cytometry.
Dedication

This thesis is dedicated to my wife,

Jessie Huifang Jiang
and my son,
Matthew Yifan Zhang
with love.
Acknowledgements

There are many people to whom I am very grateful for their help and encouragement while undertaking the work described in this thesis.

This work was funded by The Horticulture and Food Research Institute of New Zealand Limited (HortResearch) under the Foundation for Research Science and Technology Programme "New Products from Plant and Microbial Based Bioactives for Plant Health, Human Health and Environmental Applications Contract C06X0220" and "Wellness Foods Programme Contract C06X0405". In addition to my PhD scholarship, HortResearch also provided funds for travel and tuition fees.

I would like to express my sincere gratitude to:

- Associate Professor Laurence D. Melton, Director of the Food Science Postgraduate Programme, Department of Chemistry, The University of Auckland, New Zealand;
- Dr. Roger A. Stanley, Food Sector, HortResearch, Mt Albert Research Center, Auckland, New Zealand.

for supervising this project, providing a great deal of technical support and careful and constructive reviewing of the report.

I would like to give my special thanks to Dorian N. Scott who made the completion of this thesis possible. I am indebted Dr. Browen Smith, Dr. Paul Kilmartin, Dr. Margot Skinner and Dr. Andrew Allen for advice and help.

To all my friends and colleagues at HortResearch and the University of Auckland I had the great fortune to work with, thank you for making the last three years memorable and all the best for the future.

Finally, I wish to thank to my family for all their invaluable love, encouragement and support.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAPH</td>
<td>2,2'-Azobis(2-amidinopropane) dihydrochloride</td>
</tr>
<tr>
<td>ABTS</td>
<td>2,2'-Azinobis(3-ethylbenzothiazoline 6-sulfonic acid)</td>
</tr>
<tr>
<td>AM1</td>
<td>Austin Model 1</td>
</tr>
<tr>
<td>AMVN</td>
<td>2,2'-Azobis(2,4-dimethyl-valeronitrile)</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>AUC</td>
<td>Area under the curve</td>
</tr>
<tr>
<td>BDE</td>
<td>Bond dissociation energy</td>
</tr>
<tr>
<td>BHA</td>
<td>Butylated hydroxyanisole</td>
</tr>
<tr>
<td>BHT</td>
<td>Butylated hydroxytoluene</td>
</tr>
<tr>
<td>BODIPY</td>
<td>Bora-4,4-difluoro-4-bora-3a, 4a-diaza-s-indacene</td>
</tr>
<tr>
<td>C\textsubscript{11}-BODIPY</td>
<td>4,4-Difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-undecanoic acid</td>
</tr>
<tr>
<td>CCD</td>
<td>Charge-coupled devices</td>
</tr>
<tr>
<td>DAPI</td>
<td>4',6-Diamidino-2-phenylindole</td>
</tr>
<tr>
<td>DFT</td>
<td>Density functional theory</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DNP</td>
<td>Dinitrophenylhydrazine</td>
</tr>
<tr>
<td>DNPH</td>
<td>2,4-Dinitrophenyl hydrazine</td>
</tr>
<tr>
<td>DOPC</td>
<td>1,2-Dioleoyl-sn-glycero-3-phosphocholine</td>
</tr>
<tr>
<td>DPPH</td>
<td>1,1-Diphenyl-2-picrylhydrazyl</td>
</tr>
<tr>
<td>DSC</td>
<td>Differential scanning calorimetry</td>
</tr>
<tr>
<td>dUTP</td>
<td>2'-Deoxyuridine-5'-triphosphate, sodium salt</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>FRAP</td>
<td>Ferric-reducing ability of plasma</td>
</tr>
<tr>
<td>FSC</td>
<td>Forward scatter</td>
</tr>
<tr>
<td>gly-CPG</td>
<td>Glyceryl-coated controlled-pore glass</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>HBAB</td>
<td>Hydrogen bond acceptor basicity</td>
</tr>
</tbody>
</table>
HBDA: Hydrogen bond donor acidity
IC\textsubscript{50}: Induction concentration (50%)
INDO: Intermediate neglect of differential overlap
IP: Ionization potential
LDL: Low-density lipoprotein
LMPA: Low melting point agarose
log k': logarithmic capacity factor
log P: Logarithmic partition coefficient
log P\textsubscript{C}: log P calculated by computer program
log P\textsubscript{M}: log P measured by reversed-phase HPLC
LPIC: Lipid peroxidation inhibition capacity
LPIC\textsubscript{Inco}: Lipid peroxidation inhibition capacity (Incorporation)
LPIC\textsubscript{Mixed}: Lipid peroxidation inhibition capacity (Mixed)
LSER: Linear solvation energy relationship
LUV: Large unilamellar vesicle
MLR: Multiple linear regression
MLV: Multilamellar vesicle
MNDO: Modified neglect of diatomic overlap
MW: Molecular weight
NBD: 7-Nitro-2,1,3-benzoxadiazol-4-yl
ORAC: Oxygen radical absorbance capacity
ODS: Octadecylsilica
PBS: Phosphate buffered saline
PC: Phosphocholine
PD: Photodiode array
PE: Phycoerythrin
PI: Propidium iodide
PM3: Parameterization method 3
PMT: Photomultiplier tube
QSAR: Quantitative structure-activity relationships
RHF: Restricted Hartree-Fock
RNS: Reactive nitrogen species
ROS: Reactive oxygen species
RP-HPLC: Reversed-phase high-performance liquid chromatography
SAR: Structure-activity relationships
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCE</td>
<td>Saturated calomel reference electrode</td>
</tr>
<tr>
<td>SSC</td>
<td>Side scatter</td>
</tr>
<tr>
<td>SUV</td>
<td>Small unilamellar vesicle</td>
</tr>
<tr>
<td>TBA</td>
<td>2-Thiobarbituric acid</td>
</tr>
<tr>
<td>TBHQ</td>
<td>t-Butylhydroquinone</td>
</tr>
<tr>
<td>TBARS</td>
<td>Thiobarbituric acid-reactive substances</td>
</tr>
<tr>
<td>TEAC</td>
<td>Trolox equivalent antioxidant capacity</td>
</tr>
<tr>
<td>TdT</td>
<td>Terminal deoxynucleotidyl transferase</td>
</tr>
<tr>
<td>TOSC</td>
<td>Total oxyradical scavenging capacity</td>
</tr>
<tr>
<td>TPTZ</td>
<td>2,4,6-Tris(2-pyridyl)-1,3,5-triazine</td>
</tr>
<tr>
<td>TRAP</td>
<td>Total (peroxyl) radical-trapping antioxidant parameter</td>
</tr>
<tr>
<td>Trolox</td>
<td>6-Hydroxy-2,5,7,8-terramethylchroman-2-carboxylic acid</td>
</tr>
<tr>
<td>TUNEL</td>
<td>Terminal deoxynucleotidyl transferase-mediated dUTP Nick End-Labeling</td>
</tr>
<tr>
<td>VLDL</td>
<td>Very low-density lipoprotein</td>
</tr>
</tbody>
</table>
Table of Contents

Abstract ... i
Dedication ... ii
Acknowledgements ... iii
Abbreviations .. iv
Table of Contents .. vii
List of Figures .. xiii
List of Tables .. xviii

CHAPTER ONE

Introduction and Review of the Literature ... 1
1.1. Introduction .. 2
1.2. Literature review .. 3
1.2.1. Structural properties of phytochemicals .. 3
1.2.2. Measurements of antioxidant activity .. 5
1.2.2.1. Evaluation of antioxidant activity in the aqueous phase 6
1.2.2.2. Evaluation of antioxidant activity in lipid phases 7
1.2.2.3. Evaluation of oxidative damage in vivo .. 8
1.3. Bioavailability of phenolic compounds .. 9
1.4. Effects of physicochemical properties on antioxidant activity 10

CHAPTER TWO

Measurement of Lipophilicity of Phytochemicals .. 12
2.1. Introduction .. 13
2.1.1. Partition coefficient expression ... 13
2.1.2. Log P determinations ... 14
2.1.2.1. Prediction software for calculation of log P .. 14
CHAPTER THREE

Evaluation of Antioxidant Activity in the Aqueous Phase Using the ORAC assay

3.1. Introduction

3.2. Materials and Methods

3.2.1. Chemicals

3.2.2. ORAC assay procedures

3.3. Results and Discussion

3.3.1. Method calibration

3.3.2. ORAC activity of phytochemicals

3.3.2.1. Hydroxybenzoic acids and their derivatives

3.3.2.2. Hydroxycinnamic acids and their derivatives

3.3.2.3. Structural features and ORAC activity of flavonoids

3.3.2.3.1 Effects of hydroxyl groups

3.3.2.3.2 Effect of 2,3-double bond and 4-keto group

3.3.2.3.3 Effect of the carbohydrate moieties
3.3.2.3.4 Effect of partition coefficient on ORAC activity .. 50
3.3.2.4 Miscellaneous antioxidants ... 51
3.3.3 What capacity is being measured by ORAC? .. 52

CHAPTER FOUR

Evaluation of Antioxidant Activity in a Simulated Cell Membrane System .. 55

4.1. Introduction .. 56
4.1.1. Liposomes and lipid bilayers as models to study oxidative protection 56
4.1.1.1. Oxidation of biomembranes ... 56
4.1.1.2. Peroxidation of LDL ... 57
4.1.1.3. Liposomes as model membranes ... 58
4.1.2. Preparation of unilamellar vesicles .. 59
4.1.2.1. Extrusion .. 60
4.1.2.2. Sonication .. 61
4.1.2.3. Encapsulation of antioxidants in liposomes ... 61
4.1.3. BODIPY dyes ... 62
4.1.4. The free radical generator .. 65
4.1.5. Aim of this chapter .. 66
4.2. Materials and Methods .. 67
4.2.1. Chemicals and apparatus ... 67
4.2.2. Standards and sample preparation ... 67
4.2.3. Lipid peroxidation inhibition capacity measurement 67
4.2.3.1. Incorporation of antioxidants into small unilamellar vesicles (LPIC_{Inco}) 67
4.2.3.2. Mixing of antioxidants with small unilamellar vesicles (LPIC_{Mixed}) 69
4.2.3.3. Results calculation .. 69
4.2.4. Differential scanning calorimetry ... 70
4.3. Results and Discussion .. 72
4.3.1. Effect of C_{11}-BODIPY on the phase transition of DOPC unilamellar vesicles 72
4.3.2. Effects of free radical concentration ... 73
4.3.3. Protective effects of antioxidants on small unilamellar vesicles 76
4.3.3.1. Linearity and calibration ... 76
4.3.3.1.1 Effect of Trolox on small unilamellar vesicles .. 76
4.3.3.1.2 Effect of α-tocopherol on small unilamellar vesicles 79
4.3.3.1.3 Comparison of Trolox and α-tocopherol ... 80
4.3.3.1.4 Effect of β-carotene on small unilamellar vesicles 81
4.3.3.2 Batch-to-batch variation ... 82
4.3.3.3 LPIC activity of phytochemicals ... 82
4.3.3.3.1 Gallic acid and their derivatives ... 83
4.3.3.3.2 Hydroxycinnamic acids and their derivatives 85
4.3.3.3.3 Flavonoids ... 87
4.3.3.3.4 Effects of free hydroxyl groups on LPIC activity of flavonoids 92
4.3.3.4 LPIC activity of vitamins and some synthetic food antioxidants 93
4.3.3.5 LPIC activity of plant extracts ... 96

CHAPTER FIVE

Physicochemical Properties and Antioxidant Activities...................................... 99

5.1. Introduction .. 100
5.1.1. Bond dissociation energy ... 100
5.1.2. Redox potentials ... 104
5.1.3. Lipophilicity (log P) ... 105
5.2. Mathematic Methods ... 106
5.2.1. Determination of lipophilicity .. 106
5.2.2. Quantum chemical calculation ... 106
5.2.3. Redox potential .. 106
5.2.4. Statistical analysis .. 106
5.3. Results and Discussion .. 109
5.3.1. Bond dissociation energy ... 109
5.3.2. Half-wave potential .. 112
5.3.3. Predictive model for LPIC_{Ino} activity ... 115
5.3.3.1. Two-parameter model for LPIC_{Ino} .. 116
5.3.3.2. Three-parameter model for LPIC_{Ino} .. 117
5.3.4. Predictive model for LPIC_{Mixed} activity .. 118
5.3.4.1. Two-parameter model for LPIC_{Mixed} .. 118
5.3.4.2. Three-parameter model for LPIC_{Mixed} .. 119
CHAPTER SIX

General Discussion and Conclusions ... 122

6.1. General Discussion .. 123
6.1.1. Effects of log P on antioxidant activity .. 123
6.1.2. Comparison of different assays ... 125
6.1.2.1. Comparison of LPIC_{Mixed} and LPIC_{Inco} values 126
6.1.2.2. Comparison of LPIC and ORAC values ... 128
6.1.2.2.1 Comparison of LPIC_{Mixed} and ORAC values 129
6.1.2.2.2 Comparison of LPIC_{Inco} and ORAC values 130
6.1.2.3. Correlation between ORAC and LPIC
with LDL oxidation .. 131
6.1.3. Effect of physiochemical properties on
the antioxidant efficacy .. 135
6.1.4. Structural features in defining LPIC activity 136
6.2. Conclusions .. 139

APPENDIX A

Evaluation of Antioxidant Activity of Plant Extracts 140

A.1. Introduction ... 141
A.2. Materials and Methods ... 142
A.2.1. Chemicals and assay procedures ... 142
A.2.2. Measurements of powder extracts ... 142
A.2.3. Preparation of extracts from plant materials 142
A.2.3.1. Extract from onions ... 142
A.2.3.2. Sub critical water extracts ... 143
A.3. Results and Discussion .. 144
A.3.1. ORAC activity of onion extracts ... 144
A.3.2. ORAC activity of commercial extracts .. 145
A.3.3. ORAC activity of Riesling grape pomace extracts 147
APPENDIX B

Evaluation of Oxidative Damage and Effects of Health Supplements 148

B.1. Introduction ... 149
B.1.1. Evaluation of DNA damage by comet assay... 151
B.1.2. Evaluation of DNA damage by flow cytometric method 154
B.1.2.1. The cell cycle ... 155
B.1.2.2. DNA histogram ... 156
B.1.3. Aim of this research .. 157
B.2. Materials and Methods ... 159
B.2.1. Supplements .. 159
B.2.2. Subjects ... 159
B.2.3. Blood sampling .. 159
B.2.4. Total antioxidant capacity .. 160
B.2.5. Comet assay .. 160
B.2.5.1. Sample preparations ... 160
B.2.5.2. Assay procedures ... 160
B.2.5.3. Computer programs for comet image processing .. 161
B.2.5.3.1 Image conversion ... 161
B.2.5.3.2 Modified scripting program ... 161
B.2.5.3.3 Standalone program .. 162
B.2.6. Flow cytometric analysis ... 164
B.2.6.1. Assay procedures .. 164
B.2.6.2. Data analysis .. 164
B.2.7. Statistical analysis ... 166
B.3. Results and Discussion ... 167
B.3.1. Comet assay .. 167
B.3.1.1. Method validations ... 167
B.3.1.2. Effects of Enzogenol® supplementation on human subjects 168
B.3.2. Flow cytometric analysis .. 171
B.3.2.1. Effects of Enzogenol® supplementation on human subjects 171
B.3.3. Comparison of DNA damage measurement results by different methods 174

List of References .. 177
List of Figures

Figure 1-1.	Basic ring structure of flavonoids.	3
Figure 1-2.	The basic ring structure of the subclasses of flavonoids.	4
Figure 2-1.	Calibration curve for determining log P from log capacity factor (log k').	21
Figure 2-2.	Plot of calculated versus measured log P values of phenolic acids and related compounds.	23
Figure 2-3.	Plot of calculated versus measured log P values of flavonoids.	25
Figure 2-4.	Plot of calculated versus measured log P values of flavonoids without glycosylation.	26
Figure 2-5.	Plot of calculated versus measured log P values of vitamins and synthetic antioxidants.	28
Figure 2-6.	Plot of calculated versus measured log P of all compounds tested.	29
Figure 2-7.	Plot of calculated versus measured log P excluding compounds with polar functional groups.	29
Figure 3-1.	Free radical generated from AAPH.	33
Figure 3-2.	Fluorescence spectra of β-phycoerythrin.	36
Figure 3-3.	Fluorescence emission intensity of β-phycoerythrin at different temperatures.	36
Figure 3-4.	β-Phycoerythrin quenching curves with different Trolox concentrations.	37
Figure 3-5.	Correlation between ΔAUC and the concentration of Trolox.	38
Figure 3-6.	Plot of ORAC and log P values of tested hydroxybenzoic acids and their structurally related compounds.	40
Figure 3-7.	Relationship between the ORAC values and the number of hydroxyl groups present in the molecule of hydroxybenzoic acids.	41
Figure 3-8.	Relationship between the ORAC values and the number of hydroxyl groups present in the molecule of hydroxycinnamic acids.	43
Figure 3-9. Plot of ORAC and log P values of tested hydroxycinnamic acids and their structurally related compounds ... 44
Figure 3-10. Chemical structure of ortho-semiquinone radical 47
Figure 3-11. Relationship between the ORAC values and the number of hydroxyl groups present in the molecule of flavonoids 49
Figure 3-12. Simplified view of quercetin oxidation and its possible consequences ... 50
Figure 3-13. Scatterplot of ORAC and log P values of tested flavonoids 50
Figure 3-14. Relationship among ORAC and log P values of tested flavonoids with 4-keto group in their C-ring ... 51

Figure 4-1. C_{11}-BODIPY ... 62
Figure 4-2. Fluorescence spectra of DOPC unilamellar vesicles incorporated with C_{11}-BODIPY .. 64
Figure 4-3. 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) 64
Figure 4-4. Thermal decomposition of AMVN to generate free radicals 65
Figure 4-5. Thermal decomposition of AAPH to generate free radicals 66
Figure 4-6. Liposofast apparatus .. 68
Figure 4-7. Calculation of ΔAUC .. 70
Figure 4-8. DSC thermogram of DOPC unilamellar vesicles 72
Figure 4-9. DSC thermogram of DOPC- C_{11}-BODIPY unilamellar vesicles 73
Figure 4-10. Time course of changes in C_{11}-BODIPY fluorescence in Tris-HCl buffer on incubation at 37°C alone or in the presence of varying amounts of added AAPH .. 74
Figure 4-11. C_{11}-BODIPY lost its red fluorescence after oxidation by AAPH free radicals ... 74
Figure 4-12. Relationship between ΔAUC and the amount of AAPH added 75
Figure 4-13. Chemical structure of Trolox and its radical and radical product 76
Figure 4-14. Time course of changes in C_{11}-BODIPY fluorescence in Tris-HCl buffer on incubation at 37°C in the presence of varying amounts of incorporated Trolox .. 77
Figure 4-15. Time course of changes in C_{11}-BODIPY fluorescence in Tris-HCl buffer on incubation at 37°C in the presence of varying amounts of mixed Trolox .. 78
Figure 4-16. Time course of changes in C_{11}-BODIPY fluorescence in Tris-HCl buffer on incubation at 37°C in the presence of varying amounts of incorporated α-tocopherol............................... 79

Figure 4-17. Chemical structure of α-tocopherol.. 80

Figure 4-18. Time course of changes in C_{11}-BODIPY fluorescence in Tris-HCl buffer on incubation at 37°C in the presence of varying amounts of incorporated β-carotene. .. 81

Figure 4-19. Chemical structure of β-carotene... 82

Figure 4-20. Chemical structures of gallic acid esters and their LPIC_{Lico} values. ... 83

Figure 4-21. Relationship between log P and LPIC_{Lico} values of gallic acid and its derivatives. ... 84

Figure 4-22. Relationship between log P and LPIC_{Lico} values of hydroxycinnamic acids... 85

Figure 4-23. Chemical structures and substitutions of dihydroxycinnamic acids... 86

Figure 4-24. Relationship between log P and LPIC_{Mixed} values of hydroxycinnamic acids... 87

Figure 4-25. Chemical structures of flavonols and information on their substitution patterns... 88

Figure 4-26. Chemical structures of catechin and quercetin and information on their substitution patterns... 90

Figure 4-27. Chemical structures of apigenin and kaempferol................................. 90

Figure 4-28. Chemical structures of flavones and information on their substitution patterns... 91

Figure 4-29. Chemical structures of phloretin and phloridzin... 92

Figure 4-30. Relationship between LPIC_{Lico} values and the number of hydroxyl groups of flavonoids... 93

Figure 4-31. Chemical structures of the L-ascorbic acid and 6-O-palmitoyl-L-ascorbic acid... 94

Figure 4-32. Fluorescent decay curves of C_{11}-BODIPY in the presence of L-ascorbic acid, α-tocopherol, and the mixture of L-ascorbic acid and α-tocopherol... 94

Figure 4-33. Chemical structures of BHT, BHA, and TBHQ... 95

Figure 4-34. Chemical structure of the serum antioxidant, uric acid... 96
Figure 4-35. LPIC\textsubscript{lnco} and LPIC\textsubscript{Mixed} values of extracts from apple pomace at different extraction temperatures. ... 96
Figure 4-36. LPIC\textsubscript{lnco} and LPIC\textsubscript{Mixed} values of commercial health supplements. ... 97

Figure 5-1. Correlation between LPIC\textsubscript{lnco} and ΔH_f ... 110
Figure 5-2. Correlation between LPIC\textsubscript{Mixed} and ΔH_f ... 111
Figure 5-3. Correlation between ORAC and ΔH_f ... 111
Figure 5-4. Correlation between LPIC\textsubscript{lnco} and $E_{p/2}$... 113
Figure 5-5. Correlation between LPIC\textsubscript{Mixed} and $E_{p/2}$... 114
Figure 5-6. Correlation between ORAC and $E_{p/2}$... 114
Figure 5-7. Correlation between LPIC\textsubscript{lnco} and log P within the predictive dataset ... 116
Figure 5-8. Correlation between LPIC\textsubscript{Mixed} and log P within the predictive dataset ... 118

Figure 6-1. Correlation between ORAC and log P values of all compounds tested ... 123
Figure 6-2. Correlation between LPIC\textsubscript{lnco} and log P values of all compounds tested ... 124
Figure 6-3. Correlation between LPIC\textsubscript{Mixed} and log P values of all compounds tested ... 124
Figure 6-4. Correlation between LPIC\textsubscript{lnco} and LPIC\textsubscript{Mixed} values ... 126
Figure 6-5. Correlation between LPIC\textsubscript{Mixed} and ORAC values of tested antioxidants ... 129
Figure 6-6. Correlation between LPIC\textsubscript{lnco} and ORAC values of tested antioxidants ... 130
Figure 6-7. Schematic drawing of an LDL particle (right) and a unilamellar vesicle with incorporated α-tocopherol (left). ... 131
Figure 6-8. Correlation between log P and $1/IC_{50}$ values of antioxidants ... 133
Figure 6-9. Correlation between LPIC\textsubscript{lnco} and $1/IC_{50}$ values of antioxidants ... 133
Figure 6-10. Correlation between LPIC\textsubscript{Mixed} and $1/IC_{50}$ values of antioxidants ... 134
Figure 6-11. Correlation between ORAC and $1/IC_{50}$ values of antioxidants ... 134
Figure 6-12. Chemical structure of the flavonol quercetin showing features important in defining the LPIC antioxidant potential of phenolic compounds ... 137

xvi
Figure A-1. Photograph of high temperature extractor .. 143
Figure A-2. ORAC activities of onion extracts .. 144
Figure A-3. ORAC activities of commercial extracts ... 146
Figure A-4. ORAC activities of high temperature Riesling grape pomace extracts .. 147

Figure B-1. Typical image of comet showing damaged DNA 152
Figure B-2. Basic optics of flow cytometry ... 154
Figure B-3. The four successive phases of a typical mammalian cell cycle 155
Figure B-4. Typical distribution of DNA histogram .. 157
Figure B-5. Sample comet image analyzed by the comet macro combined with Scion image program .. 162
Figure B-6. Sample comet image analyzed by the standalone comet analysis program .. 163
Figure B-7. Scatterplot of propidium iodide stained blood leukocytes analyzed by flow cytometer .. 165
Figure B-8. DNA histogram of propidium iodide stained blood leukocytes analyzed by flow cytometer .. 165
Figure B-9. Typical comets of fresh (left) and H2O2 treated nuclei (right) 167
Figure B-10. Tail moments of fresh blood sample and fresh blood sample with hydrogen peroxide treatment .. 167
Figure B-11. Distribution of tail moments over 100 comets counted 168
Figure B-12. Effects of Enzogenol supplementation on DNA damage in older subjects .. 169
Figure B-13. Effects of Enzogenol® supplementation on DNA damage in individual subjects by comet assay .. 170
Figure B-14. Effects of Enzogenol® supplementation on DNA damage in older subjects .. 172
Figure B-15. Effects of Enzogenol® supplementation on DNA damage in individual subjects by flow cytometric method .. 173
List of Tables

Table 2-1.	Reference compounds used to calculate log P values.	20
Table 2-2.	log P_M and log P_C values of phenolic acids and related compounds.	22
Table 2-3.	log P_M and log P_C values of flavonoids with a 4-keto group.	24
Table 2-4.	log P_M and log P_C values of anthocyanins and chalcones.	25
Table 2-5.	log P_M and log P_C values of vitamins and synthetic antioxidants.	27
Table 3-1.	Chemical structures and ORAC values of hydroxybenzoic acids and their derivatives.	39
Table 3-2.	Chemical structures and ORAC values of hydroxycinnamic acids and their derivatives.	42
Table 3-3.	Structural information and ORAC values of flavonoids with 4-keto group but without 2,3-double bond in C-ring.	45
Table 3-4.	Structural information and ORAC values of flavonoids with 2,3-double bond and 4-keto group in C-ring.	45
Table 3-5.	Structural information and ORAC values of anthocyanidins and chalcones.	46
Table 3-6.	Structural information and ORAC values of flavonoids without 2,3-double bond and 4-keto group in C-ring.	46
Table 3-7.	Structural information and ORAC values of miscellaneous antioxidants.	52
Table 4-1.	$LPIC_{Inco}$ and $LPIC_{Mixed}$ values of flavonols.	89
Table 4-2.	$LPIC_{Inco}$ and $LPIC_{Mixed}$ values of flavanones.	91
Table 4-3.	$LPIC_{Inco}$ and $LPIC_{Mixed}$ values of vitamins and synthetic antioxidants.	94
Table 5-1.	The $ΔH_f$ of tested compounds calculated by the PM3 method.	109
Table 5-2.	$ΔH_f$ of gallic acid and its derivatives.	112
Table 5-3.	Half-wave potential of tested compounds.	112
Table 5-4.	Data used to establish the predictive model.	115
Table 6-1. IC₅₀ values of antioxidants. ... 132
Table B-1. Tail moments of comet assay testing of 24 human subjects. 169
Table B-2. % Cells with degraded DNA in the total cells counted. 172