

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New
Zealand).

This thesis may be consulted by you, provided you comply with the provisions of
the Act and the following conditions of use:

• Any use you make of these documents or images must be for research or
private study purposes only, and you may not make them available to any
other person.

• Authors control the copyright of their thesis. You will recognise the
author's right to be identified as the author of this thesis, and due
acknowledgement will be made to the author where appropriate.

• You will obtain the author's permission before publishing any material from
their thesis.

To request permissions please use the Feedback form on our webpage.
http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy
of their work to be used subject to the conditions specified on the Library Thesis
Consent Form and Deposit Licence.

http://researchspace.auckland.ac.nz/
http://researchspace.auckland.ac.nz/feedback
http://researchspace.auckland.ac.nz/docs/uoa-docs/thesisconsent.pdf
http://researchspace.auckland.ac.nz/docs/uoa-docs/thesisconsent.pdf
http://researchspace.auckland.ac.nz/docs/uoa-docs/depositlicence.htm

Accurate and Efficient Methods for

Differential Systems with Special
Structures

Gulshad Imran

A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy in Applied Mathematics,

The University of Auckland, 2014.

Abstract

The numerical solution of differential equations is important in many branches of

science, and accurate and stable algorithms are needed. The derivation and analysis

of these methods is quite sophisticated and uses intricate mathematical tools such

as B-series and Lie Algebras and Lie Groups. Our aim is to develop new numerical

methods, and new methods of analysis, for Hamiltonian problems and other prob-

lems for which good qualitative behaviour is essential.

The starting point in this thesis is a new class of effective order five methods based

on the algebraic structure associated with Runge–Kutta methods. This leads us

to another class of symplectic effective order methods which are designed for the

solution of differential equations with quadratic invariants.

G-symplectic general linear methods, for which parasitic growth factors are zero,

are a possible alternative to symplectic Runge–Kutta methods. They have a simi-

lar ability to preserve quadratic invariants over extended time intervals. They have

lower implementation costs and are designed to approximately preserve the quadratic

invariants of the Hamiltonian systems. In this thesis, G-symplectic general linear

methods are investigated theoretically and computationally. As for Runge–Kutta

methods, there is an interaction between order conditions and the symplectic con-

ditions, resulting in significant simplifications. To evaluate the order conditions for

the G-symplectic general linear methods and the possible extension to any order is

presented in this thesis.

Finally the construction of sixth order G-symplectic general linear method with

the additional properties of time reversal symmetry and freedom from parasitism is

presented.

iii

iv

Dedication

To my loving husband, Dr.Imran K. Khanandmy lovely daughters, Aliza and Shanzay

v

vi

Acknowledgements

All praises are for Almighty Allah, the most Merciful and most Benevolent, Whose

blessings are always upon me.

First of all, I would like to express gratitude and respect for my supervisor, Emeritus

Professor John Butcher, who taught me how to do good mathematics. He taught

me how to think about research problems, how to write precisely and concisely and

even helped me in correcting my punctuation and grammatical mistakes. His out-

standing contributions to Numerical Methods have always been a source of ideas

and inspiration for me. I must want to appreciate him for his easy availability and

prompt feedback. He was also kind enough to support me financially via Marsden

Fund and to organise many illuminating trips to top class conferences and intro-

duced me to his circle of outstanding researchers.

I would extend my special thanks to Prof Rod Gover for being my official supervisor

during my last year of research studies. I also wish to thank my co-supervisor Dr.

Robert Chan for his encouragement and always made himself available for discus-

sions whenever I wished. My special thanks go to Dr. Allison Heard for her valuable

suggestions on my initial draft.

I would also like to thank the members of the Numerical Runge–Kutta group in

Auckland especially; Dr. Robert Chan, Dr. Shixiao Wang, Dr Allison Heard, Dr.

Annie Gorgey, Dr. Angela Tsai, Dr. Yousaf Habib, Noorhelyna Razali and Saghir

Ahmad, for their insight and friendship.

I am grateful to the Department of Mathematics for providing me a wonderful

research environment and for helping me to attend national and international con-

ferences through PReSS Account and PBRF grant. I would also like to thank

administrative staff of the Mathematics Department especially Adina Nagy, Olita

Moala, Lynda Pitcaithly, Min-Ah Lee and Alexandra Dumitrescu for helping me to

sort out various administrative tasks efficiently and timely.

vii

Finally, my family has been an endless source of love, affection, support and moti-

vation for me. Dear Ami and Abu I have no words to thank you for all your love,

prayers and encouragement. Dear Abu, it is because of your wonderful lessons in

mathematics in my childhood that enabled me to come this far. I would also like to

thank my sisters for their sincere love. I am deeply indebted to my loving and caring

husband Dr. Imran Khaliq. I thank you for all your love and constant support, for

keeping me sane over the past few months, and for taking care of Shanzay when she

was just few days old. Thank you for accompanying me on this adventure.

A very special thanks go to my lovely daughters Aliza and Shanzay for their love

and patience. Each word that I have written represents time spent away from them.

viii

Contents

1 Introduction 1

1.1 Importance of Hamiltonian systems 7

1.1.1 The phase flow of a Hamiltonian system 8

1.1.2 Invariants . 10

1.2 Hamiltonian numerical methods . 10

1.3 Framework of the thesis . 12

2 Analysis of numerical methods 15

2.1 Runge–Kutta methods . 15

2.1.1 Trees and rooted trees . 17

2.1.2 Functions on trees . 18

2.1.3 Elementary differentials . 19

2.1.4 Elementary weights . 20

2.1.5 Simplifying assumptions . 22

2.1.6 The use of B-series . 22

2.2 Canonical Runge–Kutta methods . 23

2.2.1 Superfluous and non-superfluous trees and their effect on order

conditions . 24

ix

2.3 Linear multistep methods . 27

2.3.1 Consistency, stability and convergence 29

2.4 General linear methods . 30

2.4.1 Pre–consistency, consistency, stability and convergence 31

2.4.2 GLM order and its analysis using B-series 32

3 Effective order five methods 35

3.1 The Runge–Kutta group . 35

3.2 Effective order . 39

3.3 Construction of new fifth effective order method 43

3.3.1 Examples . 49

3.4 Effective order five methods with D(1) assumption 50

4 Symplectic effective order methods 57

4.1 Symplectic integrators . 58

4.2 Derivation of Symeff43 method . 62

4.2.1 Starting and finishing methods 68

4.3 Examples . 69

4.4 Efficient implementation . 71

4.4.1 Using transformations for cost reduction 74

4.4.2 Application to new method 75

5 Order conditions for G-symplectic general linear methods 77

5.1 G-symplectic general linear methods 78

5.2 Trees and rooted trees . 81

x

5.3 Structure of canonical general linear methods: General case 83

5.3.1 Parasitism-free methods . 84

5.3.2 The value of ξ̂ . 85

5.3.3 The B-series for η and ηD . 86

5.4 Order conditions for G-symplectic methods 87

5.4.1 Conditions for orders one and two 89

5.5 Construction of a three stage, two input value, fourth order method . 90

5.5.1 Example methods of type 4123 95

5.5.2 Algebraic analysis . 96

5.5.3 Starting and finishing methods 101

5.5.4 Order four verification . 106

6 Extension to six order G-symplectic general linear methods 109

6.1 The V and G structures . 110

6.2 Trees and rooted trees classes . 110

6.2.1 Enhanced stage order . 113

6.2.2 Time reversal symmetry . 113

6.3 Design requirements for sixth order methods 114

6.4 Derivation of the method . 115

7 Numerical experiments 121

7.1 Numerical methods . 122

7.1.1 Symplectic effective order five: RKEG5 122

7.1.2 Symplectic effective order four method: Symeff43 123

xi

7.1.3 G-symplectic general linear method: G4123 123

7.1.4 Comparison with the Gauss method 125

7.1.5 Comparison with the classical fifth order method 125

7.2 Test problems . 126

7.2.1 The simple pendulum problem 126

7.2.2 The Kepler problem . 126

7.2.3 The Hénon-Heiles problem . 127

7.3 Results and discussions for RKEG5 128

7.4 Results and discussions for Symeff43 129

7.5 Results and discussions for G4123 . 136

8 Conclusions and future work 143

Bibliography 147

xii

List of Figures

1.1 Symplectiness in one degree of freedom case 9

2.1 The error in energy for Hénon–Heiles problem using the Gauss method

with h = 0.01 . 27

2.2 Order of accuracy . 33

3.1 Algebraic interpretation of effective order 39

3.2 Geometric interpretation of effective order 41

3.3 Integration for effective order . 42

4.1 Intersection of the curves y = w3 − 1
2
w2 + 1

12
w and y = θ(w − 1

2
) . . . 67

5.1 The variation in the numerical Hamiltonian for the simple pendulum

problem with initial value y = [0, 1.2]T, using method M and h = 0.01 81

5.2 Trees and corresponding rooted trees including two superfluous trees . 82

7.1 Global error for the Kepler problem with e = 0.3, h = π
n

. 128

7.2 Orbit patterns for the Kepler problem with e = 0.1, 0.3, 0.5, 0.9 . . . 129

7.3 The variation in the Hamiltonian for the simple pendulum with initial

value [0, 1.2]T using Symeff43 method with h = 0.01 130

xiii

7.4 The variation in the Hamiltonian for the simple pendulum with initial

value [0, 1.76]T using Symeff43 method with h = 0.01 130

7.5 The variation in the Hamiltonian for the simple pendulum with initial

value [0, 1.76]T using the Gauss method with h = 0.01 131

7.6 The variation in the Hamiltonian for the Kepler problem with initial

value e = 0.3 using Symeff43 method with h = 0.01 131

7.7 The variation in the angular momentum for the Kepler problem with

initial value e = 0.3 using Symeff43 method with h = 0.01 132

7.8 The variation in the Hamiltonian for the Kepler problem with initial

value e = 0.5 using Symeff43 method with h = 0.01 132

7.9 The variation in the angular momentum for the Kepler problem with

initial value e = 0.5 using Symeff43 method with h = 0.01 133

7.10 The Hénon–Heiles problem solved by the Symeff43 method with h =

0.01 . 133

7.11 The Hénon–Heiles problem solved by the Gauss method with h = 0.01 134

7.12 Global error for the Kepler problem with e = 0.3 134

7.13 The Pendulum problem solved by the G4123 method with h = 0.01

and y = [0, 1.2]T . 137

7.14 The Pendulum problem solved by the G4123 method with h = 0.01

and y = [0, 1.76]T . 137

7.15 The variation in the Hamiltonian for the Kepler problem with h =

0.01 and e = 0.3 solved by the G4123 method 138

7.16 The variation in the Hamiltonian for the Kepler problem with e = 0.5,

using G4123 with h = 0.01 . 138

7.17 Variation of the angular momentum for the Kepler problem solved by

the G4123 method with h = 0.01 and e = 0.5 139

7.18 Variation of the angular momentum for the Kepler problem solved by

the G4123 method with h = 0.01 and e = 0.3 139

xiv

7.19 The Hénon–Heiles problem solved by the G4123 method with h = 0.01140

7.20 Global error for the Kepler problem with e = 0.3 140

xv

xvi

List of Tables

2.1 Functions on trees up to order three 19

2.2 Elementary weights Φ(t) and elementary differentials F (t)(y) up to

order three . 21

2.3 Order three conditions . 21

2.4 Trees and rooted trees as superfluous and non-superfluous trees . . . 25

2.5 Number of order conditions. 26

3.1 αβ product up to fifth order trees 40

3.2 Elementary weights for the composed method 41

3.3 Example of α(t\t′) . 42

3.4 Expressions for βα and Eβ for trees up to order five 44

3.5 Group elements for effective order five 48

3.6 Expressions for order condition up to order five 51

4.1 Expressions for βα and Eβ for trees up to order four 63

6.1 Trees to order six . 111

6.2 Rooted trees to order five . 112

xvii

7.1 Logrithm (base 10) of global error for the Kepler problem with e = 0.3

on [0,π). 128

7.2 Global error for the Kepler problem with e = 0.3 over π. 141

xviii

Chapter 1

Introduction

Ordinary differential equations (ODEs) are used to describe motion and change in

many fields of mathematics and sciences. To model physical systems like infectious

diseases in biology, weather modelling in geophysics, stock trends and the market

equilibrium prices changes in economics, population growth and radioactive decay,

all are studied through their mathematical models. We need to solve differential

equations to predict the development in a natural process for these models.

Usually the solution to a problem is not defined by a differential equation alone but

additional information is given in the form of an initial value. Thus an initial value

problem takes the form

y′ = f(x, y), y(x0) = y0. (1.1)

In this initial value problem(IVP), x is refereed to as the independent variable and

y as the dependent variable. Generally, we are interested in autonomous IVPs of

the form

y′ = f(y(x)), y(x0) = y0. (1.2)

In a high dimensional setting, (1.1) and (1.2) are not different because (1.1) can

be rewritten in the form of (1.2) by introducing an additional component of the

y vector which is always equals to x. Physical systems are modelled using initial

value systems. We want to deal with problems for which the solution to initial

value problem exists and is unique. We also want to focus on problems for which

the solution depends smoothly on the initial data. The existence, uniqueness and

smoothness are concerned with the continuity of the function f . We want the

function f to satisfy the Lipschitz condition [19].

1

Definition 1.0.1. The function f satisfies a Lipschitz condition (f is Lipschitz

continuous) if for some constant L,

‖f(µ)− f(ν)‖ ≤ L‖µ− ν‖.

The constant L is known as the Lipschitz constant.

Theorem 1.0.2. If f satisfies a Lipschitz condition with constant L then the initial

value problem

y′(x) = f(y(x)), y(x0) = y0,

possesses a unique solution on any interval [x0, x̂], furthermore the solution depends

continuously on y0.

We assumed that the function f(y(x)) satisfies the Lipschitz condition, and therefore

a unique solution exists to the initial value problems. In [33] a special phenomenon

for initial value problems (IVPs) was discovered by Curtiss and Hirschfelder, which

is now known as stiffness. The concept of stiffness became recognised as a significant

factor in numerical computation because of strange results arising in some physical

problems. Since then differential equations have been divided into stiff and non-stiff

problems.

Numerical methods can be characterised as one-step methods, multistep methods

and multistage methods. The famous method of Euler was the first one in the family

of one step methods. The basic idea of generating this method is very simple. In a

short period of time, x0 to x1, how much should we expect y to change? We assume

that at the beginning of the time step, f(x0, y0) is the velocity(rate of increase).

Thus the change in position will be equal to

y1 = y0 + (x1 − x0)f(x0, y0).

We keep on doing this over many steps to get the sequence of approximations y2,

y3, Thus at the nth step we have

yn = yn−1 + hf(xn−1, yn−1),

where xn = x0 + nh and h is the step size. It is first order only and therefore has

very low accuracy. This idea of Euler is the starting point for understanding all

numerical methods for differential equations.

Now, for higher order one–step methods, it is possible to get better accuracy by

2

evaluating the function f more than once in the integration interval. This gives the

idea of so called, Runge–Kutta methods. The first methods of Runge [65], Heun [51]

and Kutta [54] generalise the classical Euler method by allowing multiple function

evaluation in each time step.

Yi = yn−1 +

s∑

j=1

aijhf(Yj), i = 1, 2, · · · , s,

yn = yn−1 +
s∑

i=1

bihf(Yi),

where (ci, aij , bi) are referred to coefficients of the method. The Yi are the internal

stages and are approximations to y(xn−1 + cih). In [44] Gill pointed out the way to

a full analysis of the order conditions by comparing the numerical solution with the

exact solution for any autonomous initial value problem. Butcher [8] proposed that

the numerical solution could be presented by using Taylor series in terms of what

are known as elementary differentials. The number of order conditions for a specific

method can be reduced by using simplifying assumptions. These assumptions con-

sist of a set of conditions, which when obeyed by the method, reduce the number of

conditions to attain a certain order. This idea was presented in [8].

In 1972, Butcher [13] presented a very important paper that was on the structure

of algebraic analysis of integration methods. Later Hairer and Wanner [49] studied

the concepts developed in [13] and named it as B-series with a slight difference in

presentation. The algebraic concepts of Runge–Kutta methods were developed in

[13] and [49].

Implicit Runge–Kutta methods based on Gauss, Radau and Lobatto quadratures

were introduced by Butcher in [9]. Gauss methods have the highest possible order

for s stages and are A-stable. Whereas the Radau and Lobatto methods are of

order 2s − 1 and 2s − 2 respectively and are not A-stable. The family of A-stable

Radau IA, Radau IIA, Lobatto IIIA, Lobatto IIIB and Lobatto IIIC methods were

introduced by Ehle [40] in 1969. The Radau methods are very successful for solving

differential algebraic equations and stiff problems. All these methods use simplifying

assumptions to reduce the order conditions. But both methods are very expensive

to implement and both can suffer from order reduction. However for an s stage

implicit method the most expensive part of the calculation is solving stages and

stage derivatives, which are sN dimensional vectors. This means that the Newton

integration schemes require O(s3N3)+O(s2N2) operations at every integration step.

This cost increases rapidly as s and N increases.

3

Diagonally implicit Runge–Kutta methods were introduced in [1] for lowering the

computational cost of implicit methods. In these methods coefficient matrix A has

a lower triangular structure and therefore the non linear system of equations can be

solved sequentially. These are the least expensive methods because the total cost

reduces to O(sN3) +O(sN2), but they have low stage order.

The concept of singularly implicit Runge–Kutta methods was developed by Nørsett

in [63], and the coefficient matrix of these methods has only a single eigenvalue.

These methods also have low cost for many problems and have high stage order.

In [4] Burrage introduced error estimates for these methods. In 1979 Butcher [15]

introduced the similarity transformation and showed that the matrix A can be trans-

formed to Jorden canonical form to reduce the computational cost. In 1980, Burrage,

Butcher and Chipman in [7] developed the variable stepsize variable order code. But

the transformation increases the computational cost to O(s2N) at every integration

step and this extra cost makes these methods less competitive.

The surprising idea of effective order was introduced by Butcher [12], where a

Runge–Kutta method α is said to have effective order p if there exists another

method β such that βαβ−1 has order p. Thus by introducing the starting method,

the main method α has more freedom. Effective order was generalised to effective

order singly implicit methods by Butcher and Chartier [20].

Linear multistep methods use the idea that after the first few steps have been taken,

it becomes possible to use information computed in past steps to get more accurate

answers. A general form of a k-step linear multistep method is

yn =

k∑

i=1

αiyn−i + h

k∑

i=0

βif(yn−i).

In the special case when α1 = 1 and α2 = α3 = . . . = αk = 0, we obtain Adams–

Bashforth methods. Adams–Moulton methods are obtained if instead we assume

that β0 6= 0 to attain order k + 1. These methods were developed by Moulton

[61]. Other special types of linear multisteps methods were developed by Nyström

in [64] and Milne in [59]. Adams–Moulton methods are always more accurate than

Adams–Bashforth methods of the same order and to obtain the same accuracy as

Adams–Bashforth methods, Adams–Moulton methods require less past information.

While implementing Adams methods in a recursive way, some serious difficulties

arise. These involve finding the right stepsize, obtaining the starting values, esti-

mating the error, changing step size and order and deciding when to change order.

Using Predictor Corrector (PC) methods [60], was found to be most successful in the

implementation of Adams methods. This means that first finding n approximations

4

to y∗n ≈ y(xn) by using p-step Adams–Bashforth methods of order p, then calcu-

lating f ∗
n = f(xn, y

∗
n), and finally correcting yn using the order p Adams-Moulton

(p−1)-step method but with fn replaced by f ∗
n. These methods are often expressed

as PEC or PECE methods. For progress in numerical computation, it is required

that codes of modern differential equations adapt their behaviour automatically.

The central idea is to estimate the new error that is introduced in every time step.

This can be achieved in Predictor Corrector (PC) methods, and is known as Milne’s

device.

General linear methods were introduced in [11] as a unifying framework for studying

basic questions of consistency, stability and convergence for a wide range of tradi-

tional methods. Classical Runge–Kutta methods and linear multistep methods are

two traditional classes of numerical methods which have always been studied sepa-

rately. But general linear methods combine the flavours of these two extreme classes

of numerical methods such as hybrid, generalised multistep and modified multistep

methods were developed by Gear [43], Gragg and Stetter [45] and Butcher [10] re-

spectively.

General linear methods are both multistage and multivalue and are designed for the

numerical solution of differential equations. Formulation of general linear methods

was introduced by Burrage and Butcher [6], and this is now the standard way of

representing these methods. A general linear method has a collection of r input

approximations to step number n and at the end of the step it produces r output

approximations. During the calculation s stage values are evaluated together with

s stage derivative approximations. That is

y[n−1] =

y
[n−1]
1
...

y
[n−1]
r

 , y[n] =

y
[n]
1
...

y
[n]
r

 , Y =

Y1
...

Ys

 , F =

F1

...

Fs

These are related by the equations of the form

Y = h(A⊗ I)F + (U ⊗ I)y[n−1], Fi = f(Yi)

y[n] = h(B ⊗ I)F + (V ⊗ I)y[n−1],

where the stage value vector Y and the stage derivative vector F are each composed

of s subvectors related by Fi = f(Yi), i = 1, 2, . . . , s. The four coefficient matrices

5

(A, U, B, V) characterise a specific general linear method.

Yi = h
s∑

j=1

aijFj +
r∑

j=1

uijy
[n−1]
j , i = 1, 2, . . . , s,

y
[n]
i = h

s∑

j=1

bijFj +

r∑

j=1

vijy
[n−1]
j , i = 1, 2, . . . , r.

To define the order of a general linear method, usually we require a starting proce-

dure, which computes the possible collection of r inputs. These are the values the

method is designed to approximate. Once these are available, we calculate stages

and hence the output vectors.

From the detailed discussion above, it is well understood that methods with good

quantitative behaviour are always desirable. For instance, the coefficient matrix A

should be lower triangular to save the cost of the diagonally implicit Runge–Kutta

methods. For stiff problems it is necessary that the stage order should be equal to

overall order to get the high accuracy. However the qualitative behaviour is also

important, and this is another question which is also explored in this thesis too.

Particular physical systems have properties which needs to be preserved. Although

the traditional numerical methods do not preserve these properties, we are inter-

ested in getting numerical methods that respect qualitative and geometric features

of the numerical ODEs, together with the quantitative properties. These numerical

methods are known as canonical methods or structure preserving methods and they

are best known for long term integration. Here we summarise some of the qualitative

properties that a numerical method could preserve.

Many physical systems have invariants such as conservation of energy and conserva-

tion of momentum. Usually a differential equation and the physical laws they obey

determine suitable geometric integrators. For instance, we use Lie group methods

[52] for differential equations of the type that evolves on Lie groups. Symmetry

preserving methods [47] can be use for the differential equations of the type that

respect symmetry. In addition to conservation of energy and angular momentum,

Hamiltonian systems also possess what is known as the symplectic property. By

symplecticity we mean that the variational equations preserve quadratic invariants.

The integrators that have the symplectic property are known as symplectic integra-

tors. Below is a detailed discussion on Hamiltonian systems.

6

1.1 Importance of Hamiltonian systems

The theory of modern scientific computing is based on the numerical solution of

differential equations, for instance, Newton, Euler, Laplace, Lagrange, Maxwell,

Navier-Stokes and so on. The most prominent is the Newton’s equation of motion

and the numerical solution of these equations. On the other hand, starting from Eu-

ler to modern computer, there has been a great development in scientific literature

of numerical methods of differential equations. With this development, it is under-

stood that all physical systems whether they are quantum, relativistic or classical

can be modelled by a Hamiltonian system.

A Hamiltonian system with Hamiltonian function is a special type of ordinary differ-

ential equation, which is defined in an even dimensional phase space. By definition

it is given by

dpi
dt

= −∂H
∂qi

,
dqi
dt

=
∂H

∂pi
, i = 1, · · · , n, (1.3)

where (pi, qi) =
(
(p1, p2, · · · , pn), (q1, q2, · · · , qn)

)
are usually called generalised coor-

dinates and momenta, respectively. The integer n is called the number of degree of

freedom and (pi, qi) constitute the coordinates of phase space. The Hamiltonian H

usually refers to total energy of the mechanical system and has a special separable

structure which is given by

H(p, q) = T (p) + V (q),

where T corresponds to kinetic energy and V represents the potential energy. If we

write y = (p, q), then (1.3) takes the form

dy

dt
= J−1∇H. (1.4)

In (1.4), ∇ = (∂
∂p1
, . . . ∂

∂pn
, ∂
∂q1
, . . . , ∂

∂qn
) is the gradient operator and J is the skew

symmetric matrix having zeros on the diagonal and units on the off-diagonal, that

is

J =

[
0 I

−I 0

]
. (1.5)

7

Example 1.1.1. The Harmonic oscillator

This is a simple example of a Hamiltonian system with one degree of freedom, in

which the motion of a unit mass attached to a spring is described by the differential

equations

q′ = p, p′ = −q. (1.6)

The total energy of the Hamiltonian system is given by

H =
1

2
p2 +

1

2
q2.

Example 1.1.2. The Simple pendulum

We consider a simple pendulum problem, which describes the motion in such a way

that the mass of the bob, the length of the rod and acceleration due to gravity all

are of unit length. Then the total energy H is given as,

H = kinetic energy +potential energy

=
p2

2
− cos(q),

whereas, the equations of motion are

p′ = − sin(q), q′ = p.

1.1.1 The phase flow of a Hamiltonian system

An important feature of the Hamiltonian system is the symplecticness of their phase

flow, that is the total area is preserved with one degree of freedom. Let us consider

that φ the phase flow is a transformation mapping of the phase space into itself

that is φ : (p(0), q(0)) 7−→ (p(t), q(t)) or in other words, φ((p(0), q(0))) = (p(t), q(t))

There are many ways to check the symplecticity of a Hamiltonian system, some of

which are listed below:

Preservation of area via Jacobians: Let us consider the transformation map

φ, such that φ((p(0), q(0))) = (p′(t), q′(t)). According to standard theory for trans-

forming variables into integrals, the map φ is symplectic if and only if the Jacobian

determinant is identity: for all (p, q), we have

∂p′∂q′

∂p∂q
− ∂p′∂q′

∂q∂p
= I (1.7)

8

q

p

D

φ

q

p

D

Figure 1.1: Symplectiness in one degree of freedom case

where φ and J are given as

φ =

[
∂p′

∂p
∂p′

∂q
∂q′

∂p
∂q′

∂q

]
, J =

[
0 I

−I 0

]
.

Thus,

φTJφ =

[
∂p′∂q′

∂p∂p
− ∂p′∂q′

∂p∂p
∂p′∂q′

∂p∂q
− ∂p′∂q′

∂q∂p
∂p′∂q′

∂q∂p
− ∂p′∂q′

∂p∂q
∂p′∂q′

∂q∂q
− ∂p′∂q′

∂q∂q

]
= J

Preservation of area via differential forms: We consider differentials dp′ and

dq′ of the components (p′, q′). These are actually differential 1-forms, that is

dp′ = ∂p′

∂p
dp+ ∂p′

∂q
dq,

dq′ = ∂q′

∂p
dp+ ∂q′

∂q
dq.

Now, these two dp′ and dq′ differential 1-forms will provide a differential 2-forms

dp′ ∧ dq′ with the help of exterior product ∧, that is

dp′ ∧ dq′ = ∂p′

∂p

∂q′

∂p
dp ∧ dp+ ∂p′

∂p

∂q′

∂q
dp ∧ dq + ∂p′

∂q

∂q′

∂p
dq ∧ dp+ ∂p′

∂q

∂q′

∂q
dq ∧ dq.

(1.8)

The exterior product is skew symmetric and in particular we have, dp∧dq = −dq∧dp
and dp ∧ dp = 0 = dq ∧ dq. Thus (1.8), becomes

dp′ ∧ dq′ =
(
∂p′∂q′

∂p∂q
− ∂p′∂q′

∂q∂p

)
dp ∧ dq (1.9)

Therefore by using (1.7) the conservation of area is equivalent to

dp′ ∧ dq′ = dp ∧ dq.

9

1.1.2 Invariants

We consider the possible existence of invariants I for the initial value problem

y′(x) = f(y(x)), x ∈ R y(x0) = y0 ∈ R
N , f : RN → R

N . (1.10)

Let I : RN → R is called the first integral of (1.10) if I ′(y)f(y) = 0.

In particular we are interested in problems having invariants which are quadratic in

nature, that is

I(y) = yTQy,

where Q is a real symmetric N ×N matrix.

We consider the Kepler problem, which describes the motion of a planet revolving

around the sun which is fixed at the origin. The equations of motion are given by

y′1 = − y3

(y23 + y24)
3

2

,

y′2 = − y4

(y23 + y24)
3
2

,

y′3 = y1,

y′4 = y2.

The system has two invariants namely, the Hamiltonian and angular momentum.

These are given by

H = 1
2
(y21 + y22)−

1√
y23 + y2y

,

A = y3y2 − y4y1.

1.2 Hamiltonian numerical methods

The Hamiltonian system is one of the most important systems among all dynamical

systems, and has broad applications which includes material mechanics, celestial

mechanics, partial differential equations, structural biology, superconductivity, and

semiconductivity. While doing the numerical integration of these systems, it is ab-

solutely necessary to preserve the Hamiltonian structure which includes symplectic

10

behaviour of the phase flow, conservation of energy and momentum and conserva-

tion of linear and quadratic invariants. So based on this principal we are interested

in those numerical methods which respect these properties of Hamiltonian systems.

Such methods do exist and are called symplectic or canonical methods.

Historically symplectic one–step numerical methods appeared first in the pioneering

work of de Vogelaere [76], Ruth [66], and Feng [42]. Sanz–Serna [67], Suris [73] and

Lasagni [55], discovered that some implicit Runge–Kutta methods achieve symplec-

ticity through an appropriate choice of coefficients. An interesting feature about

these methods was that the order conditions can be expressed in terms of unrooted

trees rather than rooted trees.

A Runge–Kutta method is symplectic or canonical if its coefficients satisfy the fol-

lowing relation

biaij + bjaji − bibj = 0.

We observe the coefficient matrix M = biaij + bjaji− bibj is closely connected to the

non-linear stability of a Runge–Kutta method. In [5], Burrage and Butcher discov-

ered that the coefficient matrix M is analysed to test that whether the underlying

Runge –Kutta method is algebraically stable or not.

Symplectic numerical methods are used for long term integration of Hamiltonian

systems. Moreover these methods also preserve the quadratic invariants exclusively.

Not all numerical methods are symplectic, in 1993 Tang proved that the multistep

methods are not symplectic because they require more than one initial condition

to start the integration process and hence cannot have a transformation map on

phase space. Furthermore, Butcher and Hewitt [25], discovered that the multi value

methods are not symplectic unless they pass only a single value from a present state

to a future state.

General linear methods are multivalue methods and are not practical symplectic

methods unless they reduce to Runge–Kutta methods. However, it is possible to

achieve the general solution of the symplectic behaviour by making use of the non-

linear stability matrix of a general linear method.

M̃ =

[
DA+ ATD − BTGB DU −BTGV

UTD − V TGB G− V TGV

]
. (1.11)

Just as symplectic Runge–Kutta method, the algebraic stability matrix, M = 0, so

it was quite interesting to analyse the similar behaviour for a general linear method

for which M̃ = 0. This gives rise to the notion of G-symplecticity introduced by

11

Butcher in [19] and the first G-symplectic general linear method was discovered.

This was a two-stage order four method based on Gaussian quadrature, and is given

below.

1
2
−

√
3
6

1
4

1
4
−

√
3
6

1
2
+

√
3
6

1
4
+

√
3
6

1
4

1
2

1
2

. (1.12)

G-symplectic methods, for which parasitic growth factors are zero, are a possible

alternative to symplectic Runge–Kutta methods. They have a similar ability to

preserve quadratic invariants over extended time intervals and have lower imple-

mentation costs.

1.3 Framework of the thesis

The central aim of this thesis is to develop different theoretical techniques for the

study of differential systems. In recent years much interest has developed in structure

preserving numerical methods for problems possessing quadratic invariants. The B-

series approach will be use in deriving such numerical methods in purely algebraic

way. The main benefit of using the B-series approach is the efficient derivation of

order conditions.

The thesis can be summarised as follows:

The basic introduction of numerical methods is given in Chapter 2. We demonstrate

the new fifth effective order method in Chapter 3, which breaks the Butcher barrier

by weakening the classical order conditions. These methods are based on the C(2)

simplifying assumptions. By doing this we are able to reduce the set of seventeen

order conditions reduced to only nine.

The effective order leads us to Chapter 4, where the flavours of effective order are

combine with symplecticity for the derivation of a new class of symplectic implicit

Runge–Kutta methods with effective order four. The beauty of these methods is

that these have real eigenvalues which make it possible to implement the method

efficiently. The results for this chapter are also presented in [27].

In Chapter 5, we will investigate the order conditions for G-symplectic general linear

methods. Some remarkable facts will be discussed regarding the effect of symplectic

conditions applied to order conditions not only for the Runge–Kutta methods but

12

also for general linear methods. A special case of order four methods will be dis-

cussed in detail. These methods are specially designed for the long term integration

of Hamiltonian problems where it is desirable to close conservation of energy, angu-

lar momentum and symplectic behaviour. The results presented in this chapter are

available in [28].

In Chapter 6, a sixth order general linear method will be presented with the proper-

ties such as G-symplecticity, time reversal symmetry and freedom from parasitism.

These methods will be constructed with five stages and four output values. For the

matrices B and V complex numbers will be considered such that the second and

third rows of the respective matrices will be the complex conjugates. In addition to

this the diagonal matrix V will have the eigenvalues on the unit circle. The results

derived in this chapter are presented in [29].

13

14

Chapter 2

Analysis of numerical methods

Numerical methods are widely used for approximating the exact solution of ordinary

differential equations and are classified as one–step, multistep and multivalue me-

thods. These methods are necessary for analysing the behaviour of differential sys-

tems. A brief description of traditional numerical methods is given along with recent

developments and an overview of the algebraic approach to such methods is studied

in this chapter.

2.1 Runge–Kutta methods

Rung–Kutta methods are characterised as one step methods for the solution of initial

value problems. An s-stage Runge–Kutta method is defined by

Yi = yn−1 +

s∑

j=1

aijhf(Yj), i = 1, 2, · · · , s, (2.1)

yn = yn−1 +
s∑

i=1

bihf(Yi),

where Yi are internal stages, and yn are the update values. Alternatively, Runge–

Kutta methods can be represented by using the Butcher tableau,

15

R =
c A

bT
=

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s
...

...
...

. . .
...

cs as1 as2 · · · ass

b1 b2 · · · bs

,

we always assume that

ci =

i−1∑

j=1

aij, i = 1, 2, . . . , s.

The structure of the matrix A plays a vital role in the computational cost of the

method. Runge–Kutta methods are categorised as follows

• Runge–Kutta methods are explicit when the upper triangular components of

matrix A are zero that is, aij = 0 for all i ≤ j. Explicit Runge–Kutta methods

requires less computation time and are therefore preferred for the solution of

ordinary differential equations. But these methods are not suitable for stiff

differential equations because of their bounded regions of absolute stability.

• Runge–Kutta methods are implicit when aij 6= 0 for some i ≤ j. The solution

of implicit stage equations can be achieved using a Newton iteration scheme.

There are several good reasons to use implicit Runge–Kutta methods, the

most important reason being the group structure of these methods. Implicit

Runge–Kutta methods are the only hope for the solution of stiff differential

equations.

Example 2.1.1.

The classical fourth order Runge–Kutta method is an example of explicit method.

The stages and the output vector are given below

Y1 = y0,

Y2 = y0 +
1
2
hF1,

Y3 = y0 + 0hF1 +
1
2
hF2,

Y4 = y0 + 0hF1 + 0hF2 + 1hF3,

y1 = y0 + (1
6
hF1 +

1
3
hF2 +

1
3
hF3 +

1
6
hF4).

16

Where

F1 = f(Y1),

F2 = f(Y2),

F3 = f(Y3),

F4 = f(Y4).

This method is given by the tableau

0
1
2

1
2

1
2

0 1
2

1 0 0 1
1
6

1
3

1
3

1
6

.

Example 2.1.2.

Famous implicit methods are based on Gauss–Legendre polynomials and known as

Gauss methods. These methods, introduced by Butcher in [9], have the highest

possible order for a given number of stages. The Gauss method with two stages and

order four is given below.

1
2
−

√
3
6

1
4

1
4
−

√
3
6

1
2
+

√
3
6

1
4
+

√
3
6

1
4

1
2

1
2

. (2.2)

2.1.1 Trees and rooted trees

Let V be a set of vertices and E a set of edges (where every element of E is a pair

of members of V). The pair (V,E) defines a graph. If a graph has no circuits and

is connected, then it is a tree. If one particular vertex is distinguished from the rest

(this vertex is called the root), then (V,E) is a rooted tree. A single vertex is a

rooted tree and a graph formed by joining a new root to the original roots of some

existing rooted trees is also a rooted tree. We will denote τ for the tree with only

one vertex. This can also be written as []. If ti, i = 1, 2, . . . , m are (rooted) trees

then [t1t2 · · · tm] is the tree formed by joining the roots of t1, t2, . . . , tm to a new root.

Let us consider an example of a tree

17

bb

bb b

b

b

b

b

b

b

b

t =
[
[[[ττ]] [τττ] [τ [τ]]

]

2.1.2 Functions on trees

• The number of vertices of a tree is the order of a tree, and is denoted by r(t)

r(τ) = 1,

r(φ) = 0,

r([t1t2 · · · tm]) = 1 +

m∑

i=1

r(ti).

• The symmetry of a tree is the order of automorphism group of t and is denoted

by σ(t)

σ(τ) = 1,

σ([ts11 t
s2
2 · · · tsmm]) =

m∏

i=1

σ(ti)
sisi!.

• The density of a tree γ(t) is measurement of non-thickness of a tree. This is

defined as

γ(τ) = 1,

γ(φ) = 0,

γ([t1t2 · · · tm]) = r([t1t2 · · · tm])
m∏

i=1

γ(ti).

Furthermore, α(t) is the number of ways of labelling a tree t with an ordered set

and β(t) is defined as the number of ways of labelling with an unordered set. This

was shown in [19] that is

α(t) =
r(t)!

σ(t)γ(t)
,

β(t) =
r(t)!

σ(t)
.

Tree notation with the order of the tree, r(t) the symmetry, σ(t) and the density,

γ(t), are shown together with α(t) and β(t) in Table 2.1.

18

Table 2.1: Functions on trees up to order three

r(t) t Notation σ(t) γ(t) α(t) β(t)

1 τ 1 1 1 1

2 [τ] 1 2 1 2

3 [ττ] = [τ 2] 2 3 1 3

3 [[τ]] 1 6 1 6

2.1.3 Elementary differentials

To understand the order of Runge–Kutta methods, we need to write the Taylor

expansions of the numerical solution at the end of a single time step and then

compare this with the Taylor expansion of the exact solution. For this purpose, we

need formulae for the second, third, ..., derivatives, and all of these are related to

trees.

y′(x) = f

y′′(x) = f ′f

y′′′(x) = f ′′(f , f) + f ′f ′f

y(4)(x) = f ′′′(f, f, f) + 3f ′′(f , f ′f) + f ′f ′′(f, f) + f ′f ′f ′f

The terms in the formulae for the first, second, third ,... derivatives are known

as elementary differentials F (t)(y(x)). Generally, we represent these elementary

differentials in terms of trees recursively. That is,

F (φ)(y) = y(x)

F (τ)(y) = f(y(x))

F ([t1t2 · · · tm])(y) = f (m)(y(x))(F (t1)(y(x)), . . . , F (tm)(y(x))).

The formal Taylor expansion of the exact solution at x0 + h is

y(x0 + h) = y0 +
∑

t∈T

α(t)hr(t)

r(t)!
F (t)(y0).

19

Using the known formula for α(t), we can write this as

y(x0 + h) = y0 +
∑

t∈T

hr(t)

σ(t)γ(t)
F (t)(y0). (2.3)

Our aim will now be to find a corresponding formula for the result computed by one

step of a Runge-Kutta method. By comparing these formulae term by term, we will

obtain conditions for a specific order of accuracy.

2.1.4 Elementary weights

The elementary weights are used to determine the order of a given Runge–Kutta

method. For a tree t this is denoted by Φ(t).

Let

t =

i

kj

ml

,

then

Φ(t) =

s∑

i,j,k,l,m=1

biaijaikaklakm.

Simplify by summing over l, m:

Φ(t) =

s∑

i,j,k=1

biaijaikc
2
k.

The formal Taylor expansion of the computed solution at x0 + h is

y1 = y0 +
∑

t∈T

β(t)hr(t)

r(t)!
Φ(t)F (t)(y0).

Using the known formula for β(t), we can write this as

y1 = y0 +
∑

t∈T

hr(t)

σ(t)
Φ(t)F (t)(y0) (2.4)

20

Table 2.2: Elementary weights Φ(t) and elementary differentials F (t)(y) up to order

three

r(t) t Φ(t) F (t)(y)

1
∑
bi f

2
∑
bici f ′f

3
∑
bic

2
i f ′′(f , f)

3
∑
biaijcj f ′f ′f

Table 2.3: Order three conditions

tree order conditions

b1 + b2 + b3 = 1

b2c2 + b3c3 =
1
2

b2c
2
2 + b3c

2
3 =

1
3

b3a32c2 =
1
6

To match the two Taylor series (2.3) and (2.4) up to hp terms we need to ensure

that

Φ(t) =
1

γ(t)
,

for all trees such that

r(t) ≤ p.

These are known as the order conditions. Thus for order three Runge–Kutta method,

we need to satisfy the following order conditions which are given in Table 2.3.

21

2.1.5 Simplifying assumptions

The number of order conditions on the coefficients of a Runge–Kutta method in-

creases rapidly as we seek higher order methods. For this reason Butcher [8] intro-

duced simplifying assumptions. By using these assumptions, certain collections of

order conditions can be removed from consideration.

1. E(κ,κ) :
s∑

j=1

s∑

i=1

bic
k−1
i aijc

l−1
j =

1

l(k + l)
, l = 1, 2,,κ, k = 1, 2, ..., κ.

2. B(p) :
s∑

i=1

bic
k−1
i =

1

k
, k = 1, 2, ..., p. This condition states that the method

has order p, and the order conditions related to bushy trees hold up to order

p.

3. C(κ) :
s∑

j=1

aijc
k−1
j =

cki
k
, i = 1, 2,, s, k = 1, 2, ..., κ. This condition relates

pair of trees ta and tb, of the same order but with the slight difference in

elementary weight function representation.

4. D(κ) :

s∑

i=1

bic
k−1
i aij =

bj(1− ckj)

k
, j = 1, 2,, s, k = 1, 2, ...,κ. This condi-

tion relates three trees ta, tb and tc. The order condition related to ta including

corresponding elementary weight function bic
k−1
i aij holds if there are lower or-

der trees having elementary weights bj and bjckj .

2.1.6 The use of B-series

We have noted that the Taylor expansions for the approximate solutions can be

found and compared with the expansions for the exact solutions to assess accuracy

of numerical methods. However the Taylor expansion of the numerical solution (2.4)

can be written in terms of a formal series as,

B(a, y0) = a(φ)y0 +
∑

t∈T

a(t)
F (t)

σ(t)
hr(t)(y(t)), (2.5)

where, a(φ), a(τ), a([τ]), . . . , a(t), . . ., is a sequence of real numbers. The series (2.5)

was named as B-series, by Hairer and Wanner [49], the name after John Butcher.

We will now look at the possible choices of coefficients.

22

Special characteristics of B

• B(1(t), y0) = y0, represents the identity mapping corresponding to 1(t).

• y1 = B(a(t), y0),⇐⇒ y0 = B(a−1(t), y1), is inverse mapping for a−1(t).

• B(a(t), y) + B(ϕ(t), y) = B((a + ϕ)(t), y), represents sum of two B-series.

• B(a(t),B(ϕ(t), y)) = B(aϕ(t), y), represents the composition of two B-series .

We can write E for the flow for unit stepsize h, that is E(φ) = 1 and E(φ) = 1
t!
, for

t ∈ T .

For a flow through a distance θh, we write E
(θ)(φ) = 1 and E

(θ)(φ) = θ|t|

t!
, for t ∈ T .

Furthermore, the scaled differentiation D to product hf(y0) = hF (τ)(y0), is given by

D(φ) = 0,

D(τ) = 1,

D(t) = 0, |t| > 1.

B-series for aD is defined by using the known composition rule, that is, B(aD, y0) =

B(D,B(a, y0)). Assuming that a(φ) = 1, it is found that

aD(φ) = 0,

aD(τ) = 1,

aD(t) = a(t1)a(t2) . . . a(tm), t = [t1t2 . . . tm].

t =

t1 t2 · · · tm

The details on B-series are given in Chapter 3.

2.2 Canonical Runge–Kutta methods

Consider the differential equation system

y′(x) = f(y(x)), f : RN → R
N , 〈Y, f(Y)〉 = 0.

23

If a Runge–Kutta method R conserves quadratic first integral (i.e, I(y1) = I(y0))
whenever I(y) = yTQy is a first integral of (2.2), with symmetric matrix Q, then it is

canonical or symplectic. Pioneering development in the study of symplectic Runge–

Kutta methods is due to Cooper [31], Sanz–Serna [68], Lasagni [55] and Suris [73].

Their idea is based on features of algebraic stability introduced, in connection with

stiff systems, that was introduced by Burrage and Butcher [7] and Crouzeix [32].

Theorem 2.2.1. A Runge–Kutta method is said be symplectic (canonical), if

diag(b)A + AT diag(b)− bbT = 0.

Symplectic numerical methods are an excellent choice for the long–term integration

behaviour of Hamiltonian systems because these methods respect the characteristic

properties of the underlying systems. Additionally, symplectic methods preserve

the quadratic invariants. The matrix M = diag(b)A + AT diag(b) − bbT that has

important features for the symplecticity of a Runge–Kutta method also plays an

important role in the algebraic stability of that method.

2.2.1 Superfluous and non-superfluous trees and their effect

on order conditions

Superfluous trees are those trees where any two adjacent nodes of the tree can be

taken as a root and generate identical rooted trees. These trees play an important

role in the formulation of order conditions for symplectic Runge–Kutta methods.

Order conditions corresponding to superfluous trees are automatically satisfied be-

cause of the symplectic condition.

Once the superfluous trees are identified then the rest are named as non-superfluous

trees, and these trees contribute one order condition. Table 2.4 shows the superflu-

ous and non-superfluous trees up to order four.

Theorem 2.2.2. [69] A symplectic Runge–Kutta method has order p if for each

non-superfluous tree t̃ with any vertex as a root,

φ(ρt̃) =
1

γ(ρt̃)
,

where ρt̃ represents the rooted tree of t̃ of order up to p.

24

Table 2.4: Trees and rooted trees as superfluous and non-superfluous trees

nature tree i ti

non-superfluous 1

superfluous 2

non-superfluous b b b
3

4

non-superfluous b b
b

5

7

superfluous b b b b

6

8

It is observed that the trees with an even number of vertices are superfluous. There-

fore each symplectic Runge–Kutta method has at least order two. Superfluous and

non-superfluous trees have an important impact on the order conditions of sym-

plectic Runge–Kutta methods. To investigate this, we take tree b b b b having four

vertices. We multiply ci and cj with diag(b)A+AT diag(b)−bbT = 0, and then apply

summation over i and j,

∑

i,j

biciaijcj +
∑

i,j

bjcjajici −
∑

i

bici
∑

j

bjcj = 0,

⇒
∑

i,j

biciaijcj =
1
8
. (2.6)

This is infact the order condition corresponding to rooted tree , which belongs

to the same underlying superfluous tree b b b b . Therefore, order conditions corre-

sponding to superfluous trees are automatically satisfied because of the symplectic

condition and hence are no longer needed.

For symplectic Runge–Kutta methods with order ≥ 3, we assume the symplectic

25

Table 2.5: Number of order conditions.

Order General Runge–Kutta method Symplectic Runge–Kutta method

1 1 1

2 2 1

3 4 2

4 8 3

5 17 6

condition and multiply by cj and take summation over i and j,
∑

i,j

biaijcj +
∑

i,j

bjcjaji −
∑

i

bi
∑

j

bjcj = 0,

⇒(
∑

i,j

biaijcj − 1
6
) + (

∑

j

bjc
2
j − 1

3
) = 0,

which is the sum of order conditions corresponding to rooted trees and .

It is sufficient to impose the order condition as either or , because these

are corresponds to the same tree b b b . Hence we require only one order condition.

Table 2.5 shows the number of order conditions for general and symplectic Runge–

Kutta methods up to order five.

Example 2.2.3. The two stage order four Gauss method is symplectic.

We recall that the famous two stage Gauss method is symplectic and achieves order

four behaviour.
1
2
−

√
3
6

1
4

1
4
−

√
3
6

1
2
+

√
3
6

1
4
+

√
3
6

1
4

1
2

1
2

. (2.7)

For the Hénon–Heiles problem, the close adherence of the Hamiltonian to its initial

value for the two-stage Gauss method with order four can be seen in Figure (2.1),

where a total of 100000 steps have been taken with the stepsize 0.01.

The main motivation for choosing implicit Runge–Kutta methods is to solve stiff dif-

ferential equations. However the Hamiltonian problems with which we are concerned

26

1 10 102 103 104 105
n

1 10 102 103x

5× 10−12

0

Figure 2.1: The error in energy for Hénon–Heiles problem using the Gauss method

with h = 0.01

are not necessarily stiff, and to save the implementation cost we restrict ourselves

to diagonally implicit methods. These methods respect symplectic behaviour if and

only if they have the following tableau

b1
2

0 0 · · · 0

b1
b2
2

0 · · · 0
...

...
...

. . .
...

b1 b2 b3 · · · bs
2

b1 b2 b3 · · · bs

. (2.8)

(2.8) is a composition of an implicit midpoint step of length b1h, and an implicit

midpoint step having length b2h and so on. Since the implicit midpoint rule is

symplectic, it can be proved that (2.8) is also symplectic. Therefore, these methods

are as easy to implement as the implicit midpoint rule.

2.3 Linear multistep methods

Linear multistep methods are another class of numerical methods, which uses more

past calculations to achieve the accuracy. These methods are defined by using an

expression of the form

yn = α1yn−1+· · ·+αkyn−k+h
(
β0f(xn, yn)+β1f(xn−1, yn−1)+· · ·+βkf(xn−k, yn−k)

)
.

We always assume that αk and βk are not both zero. Note that if β0 = 0 the method

is explicit. It is implicit in nature, if β0 6= 0, and for the solution of non-linear stage

27

equations, it is necessary to solve for yn. For a given linear multistep method, define

polynomials ρ and σ as follows:

ρ(w) = wk − α1w
k−1 − α2w

k−2 − · · · − αk,

σ(w) = β0w
k + β1w

k−1 + β2w
k−2 + · · ·+ βk.

The first important methods in this class were Adams–Bashforth methods [2] to-

gether with Adams–Moulton methods [61]. In Adams–Bashforth methods, we as-

sume β0 = 0, and ρ(w) = wk − wk−1 to obtain order k. For all polynomials φ of

degree up to k − 1, we have

β1φ(−1) + β2φ(−2) + · · ·+ βkφ(−k) =
∫ 0

−1

φ(x)dx.

For the two step Adams–Bashforth method, we have

β1 + β2 = 1,

−β1 − 2β2 = −1
2
,

giving the results β1 = 3
2

and β2 = −1
2
. Therefore the method takes the form

yn = yn−1 +
3
2
hf(yn−1)− 1

2
hf(yn−2).

The methods are known as Adams-Moulton methods, if β0 6= 0 to obtain order

k + 1. The Adams-Moulton methods are implicit and more accurate than Adams–

Bashforth methods.

The family of backward difference methods was introduced by Curtiss and Hirschfelder

[33] for the solution of stiff differential equations. These are defined under the fol-

lowing assumptions

1. σ(w) = β0w
k

2. α1, α2. . . . , αk and β0 chosen to give order p = k

That is, for all polynomials φ of degree up to k, we have φ(0)−α1φ(−1)−α2φ(−2)−
· · · − αkφ(−k) = β0φ

′(0).

Example 2.3.1. The backward difference method of degree k = 1 satisfies

28

1− α1 = 0,

0 + α1 = β0

giving the result α1 = β0 = 1.

Example 2.3.2. The backward difference method of degree k = 2 satisfies

1− α1 − α2 = 0,

0 + α1 + 2α2 = β0,

0 + α1 + 4α2 = 0,

giving the result α1 =
4
3
, α2 = −1

3
, β0 = 2

3
.

2.3.1 Consistency, stability and convergence

Linear multistep methods are consistent if we get ρ(1) = 0, ρ′(1) = σ(1) for the

solution of simple differential equations.

A linear multistep method is stable if all solutions to the difference equation

yn = α1yn−1 + · · ·+ αkyn−k,

are bounded as n→ ∞. We can obtain bounded solutions if all zeros of ρ lies in the

closed unit disc and all repeated zeros lie in the open unit disc. It has been proved

that a stable and consistent linear multistep method is always convergent.

A linear multistep method has order p, if the polynomials ρ and σ satisfy,

ρ(exp(z))− zσ(exp(z)) = O(zp+1).

The First Dahlquist barrier states that if a stable linear k step method has order p

then

p ≤

k + 1, k odd

k + 2, k even.

It was later proved by Dahlquist that for a linear multistep method the maximum

order consistent with A-stability is two. This is known as the Second Dahlquist

barrier. The modern theory of linear multistep methods is due to Dahlquist [35].

29

2.4 General linear methods

General linear methods are the natural generalisation of linear multistep methods

and Runge–Kutta methods, and are multistage and multivalue in nature. These

methods were introduced by Butcher [11]. General linear methods are defined by

Y = h(A⊗ I)f(Y) + (U ⊗ I)y[n−1], (2.9)

y[n] = h(B ⊗ I)f(Y) + (V ⊗ I)y[n−1],

where

Y =

Y1

Y2

...

Ys

, f(Y) =

f(Y1)

f(Y2)

...

f(Ys)

, y[n−1] =

y
[n−1]
1

y
[n−1]
2

...

y
[n−1]
r

, y[n] =

y
[n]
1

y
[n]
2

...

y
[n]
r

.

In (2.9),

1. I is the identity matrix

2. A ⊗ I represents the Kronecker product of the matrix A with the identity

matrix

3. h is the stepsize

4. f(Y) is stage derivatives

5. The vector y[n−1] having r−components are regarded as input values at the

beginning of a step

6. Yi ≈ y(xn+ cih) represents the stages and is an approximation to the solution

at ci.

General linear methods can be rewritten with a slight modification as

Y = hAf(Y) + Uy[n−1],

y[n] = hBf(Y) + V y[n−1]. (2.10)

30

The elements A, U , V and B are the representatives of a particular general linear

methods, and are written in partitioned matrix as

M =

A U

B V

 . (2.11)

This formulation of general linear method was introduced by Burrage and Butcher

in [6] .

2.4.1 Pre–consistency, consistency, stability and convergence

The pre–consistency condition is related to the trivial solution of the ordinary one-

dimensional equation y′(x) = 1, with initial condition y(0) = 0,

y[n−1] = uy(xn−1) +O(h),

y[n] = uy(xn) +O(h),

where u, the pre–consistency vector, has a certain value for a certain numerical

method. By using a general linear method to solve the differential equation y′(x) =

1, the internal stages and the output approximations are given by

Y = Uy[n−1] = Uuy(xn−1) +O(h),

y[n] = V y[n−1] = V uy(xn−1) +O(h).

Therefore the pre-consistency conditions are Uu = 1, V u = u.

The consistency condition is concerned with the solution of the differential equation

y′(x) = 1, with initial condition y(0) = 0. The numerical solution should be exact

at both the beginning and the end of the step. Thus the consistency vector v is

determined by the equations

y[n−1] = uy(xn−1) + vhy′(xn−1) +O(h2),

y[n] = uy(xn) + vhy′(xn) +O(h2).

31

Using a general linear method to solve the differential equation y′(x) = 1, the

internal stages and output vector are represented by the following set of equations

Y = A1h+ Uy[n−1] = A1h+ Uuy(xn−1) + hUvy′(xn−1) +O(h2),

y[n] = B1h+ V y[n−1] = B1h + V uy(xn−1) + hV vy′(xn−1) +O(h2).

The consistency conditions are therefore B1 + V v = u + v. If the solution of the

trivial differential equation y′(x) = 0 is bounded, then we are certain of the stability

of general linear method. Stability implies that the error in one step do not grow to

the later steps. Thus

y[n] = V y[n−1] = V ny[0].

This shows that the stability of method depends on the stability of matrix V . The

matrix V is stable if there exists a constant L such that ‖V n‖∞ ≤ L, n = 1, 2, · · · .

Definition 2.4.1. A general linear method is said to be strictly stable if all the

eigenvalues of matrix V lies inside the unit disc except one which is on the boundary.

A general linear method is convergent if, for any choice of initial value problem,

there exist a non-zero vector u ∈ Rn such that if the starting approximation y[0]

approaches to uy(x0), then y[n] = uy(x0 + nh) for all n. Stability and consistency

are necessary and sufficient conditions for the convergence of a general linear method.

This was actually generalised by Butcher [11], and based on the fundamental idea

of Dahlquist [34].

2.4.2 GLM order and its analysis using B-series

We require a starting method Sh to obtain the initial value vector y[0] from only a

single initial condition y(x0) = y0. A starting method can be thought of as a Runge–

Kutta method with multiple outputs. We consider a (s̄ + r) × (s̄ + 1), partitioned

matrix to represent a starting procedure Sh, given by

Sh =

S11 S12

S21 S22

 ,

32

Eh

Eh

Sh Sh

y(x0) y(x1)

y[0]

y[1]
Mh

O(hp+1)

Figure 2.2: Order of accuracy

where s̄ represents the number of stages and r are the number of approximations,

which needs to be computed. The pre–consistency conditions for the starting method

Sh are S22 = u, S12 = 1.

When the starting method Sh is applied to a given initial value problem then the

output can be used as the input of the main method Mh. The combined operation

of the starting method Sh and the main method Mh is denoted by MhoSh. Similarly

Eh represents the exact solution and Sh ◦ Eh represents the result of applying the

starting method to the exact solution evaluated after a time step h. The order of

accuracy of the general linear method Mh has order p relative to Sh if

Mh ◦ Sh − Sh ◦ Eh = O(hp+1).

This is illustrated in Figure 2.2.

In addition to the mapping Sh, a finishing method is required to cancel out the effect

of starting method. The mapping Sh can be written in terms of B-series as,

y[0] = B(Sh(t), y(xn−1)).

The vector η represents the B-series coefficients for the stage values. That is

Y = B(η(t), y(xn−1)).

The vector ξ represents B-series coefficients for the r components of the inputs.

That is

Y = B(ξ(t), y(xn−1)).

We can interpret the relation between one-step method in terms of B-series as:

Y = hAf(Y) + USh(y(x0)), η = A(ηD)(t) + Uξ(t),

Sh(y(x0 + h)) = hBf(Y) + V Sh(y(x0)), Eξ(t) = B(ηD)(t) + V ξ(t). (2.12)

33

In (ηD)(t), D stands for scalar post-multiplier for the vector η(t) and corresponds to

evaluating hf(Yi) for each component of Y . Also Eξ(t), E has a role of a scalar pre-

multiplier of the vector ξ(t). This corresponds to shifting a unit time-step along the

trajectory before calculating the starting operation. This gives an abstract meaning

of order to a practical method of interest. These ideas have been widely used to

find reliable and efficient methods for the solution of stiff and non–stiff differential

systems and Hamiltonian problems.

34

Chapter 3

Effective order five methods

The concept of effective order was introduced in [12] and a modern presentation

is given in [19]. The original idea was aimed at overcoming the order barrier on

five-stage methods but it has a wider relevance. Chan [30] showed how effective

order can yield more efficient explicit methods.

This chapter is organised as follows. In Section 3.1, we discuss different ways in

which Runge–Kutta methods can be thought of as equivalent. It will be shown

that equivalence classes of Runge–Kutta methods form a group. This group is

homomorphic to the group of mappings from trees to real numbers. By introducing

these groups, we can get a better understanding of the order conditions of Runge–

Kutta methods.

The concept of effective order and its relative order conditions will be discussed in

Section 3.2. From these starting points, we will derive a new fifth effective order

method with five stages in Section 3.3. These methods are derived in such a way

that they satisfy a certain simplifying assumptions C(2). A detailed discussion about

the simplifying assumptions is given in Chapter 2. These assumptions lead us to a

direct and simpler derivation of these methods. In Section 3.4, we will present fifth

effective order methods satisfying D(1) assumptions only.

3.1 The Runge–Kutta group

Runge–Kutta methods can be regarded as mappings from RN to RN , for any initial

value problem. If a Runge–Kutta method with s stages is combined with another

35

Runge–Kutta method with s̃ stages, then we can get a composed method with s+ s̃

stages. This combined method can be viewed as the product of the original methods.

Formulating the product of methods in such a manner is not a best way. Therefore,

we need to work on the equivalence classes of Runge–Kutta methods because these

equivalence classes help us in constructing the group structure of Runge–Kutta

methods rather than their semigroup pattern.

Two Runge–Kutta methods could be considered equivalent in several different ways.

For instance,

• If for any autonomous initial value problem, defined by a function f(x) satis-

fying Lipschitz condition, both methods yield same numerical results for small

step sizes.

• This implies a second way of looking at equivalence. It might be possible to

delete unrelated or repeated stages from a method to yield a reduced method.

So if two methods reduced to the same method, in this respect they regarded

as equivalent.

• This yields another way of looking at equivalence of two methods. If for any

tree t the elementary weight function Φ(t) for the first method is similar to

the elementary weight function ξ(t) of second method.

Thus, if any two Runge–Kutta methods are equivalent in one of the above mention

way, then they are also equivalent in each of the other way. By using equivalence

classes of Runge–Kutta methods R and R̃, we can construct a tableau for the com-

36

position of these methods. Consider two Runge–Kutta methods R and R̃,

c A

bT
=

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s

...
...

...
...

cs as1 as2 · · · ass

b1 b2 bs

c̃ Ã

b̃T
=

c̃1 ã11 ã12 · · · ã1s̃

c̃2 ã21 ã22 · · · ã2s̃

...
...

...
...

c̃s̃ ãs̃1 ãs̃2 · · · ãs̃s̃

b̃1 b̃2 b̃s̃

.

To see how the composed method is constructed, we have written s and s̃ for the

number of stages of these two methods. Let the initial value for the method R be y0
and y1 the value after one step of R, Then write y2 for the output value computed

by the second method R̃, using y1 for its initial value. We can see that y2 is the

result computed by the composed method.

To see how this works, look at the formulae for the stages and output values:

Yi = y0 + h
s∑

j=1

aijFj ,

y1 = y0 + h

s∑

j=1

bjFj ,

Ỹi = y1 + h

s̃∑

j=1

ãijF̃j = y0 + h

s∑

j=1

bjFj + h

s̃∑

j=1

ãijF̃j,

y2 = y1 + h

s̃∑

j=1

b̃jF̃j = y0 + h

s∑

j=1

bjFj + h

s̃∑

j=1

b̃jF̃j .

37

Hence, y2 can be computed from y0 using a single Runge–Kutta method with s+ s̃

stages given by

c1 a11 a12 · · · a1s 0 0 · · · 0

c2 a21 a22 · · · a2s 0 0 · · · 0

...
...

...
...

...
...

...

cs as1 as2 · · · ass 0 0 · · · 0

∑
bi + c̃1 b1 b2 · · · bs ã11 ã12 · · · ã1s̃

∑
bi + c̃2 b1 b2 · · · bs ã21 ã22 · · · ã2s̃

...
...

...
...

...
...

∑
bi + c̃s̃ b1 b2 · · · bs ãs̃1 ãs̃2 · · · ãs̃s̃

b1 b2 · · · bs b̃1 b̃2 · · · b̃s̃

.

Also for a Runge–Kutta method R, we write [R] for the corresponding equivalence

class containing this method.

We now calculate some of the elementary weights for this composed method RR̃.

Let Φ̂(t) be the elementary weight function for the composed method RR̃, and see

how Φ̂(t) depend on Φ(t) for the first method and Φ̃(t) for the second method. This

is illustrated in Table 3.2.

Now by using equivalence classes, under the composition operation, the semigroup

group of Runge–Kutta tableaux, can be used to form a group. Let G denote the set

of mappings from trees to real numbers. Let α and β be two members of G. Our

objective is now to define a group operation which describes the values of (αβ)(t),

for every tree t.

For a given tree t, let ̥(t) represent the set of prunings of tree t. A pruning of

a tree t is characterised by a subtree t′, which shares the same root as t. Let t\t′
represent the set of trees formed by joining the parts of tree t left over, when t′ is

removed from tree t. Finally, α(t\t′) is the product over the connected components

of individual α factors. This is illustrated in Table 3.3 for a particular tree t = t11.

The product (αβ)(t), is defined as the value of α(t) plus the sum over all subtrees

38

y(x)

Conjugate flow

Figure 3.1: Algebraic interpretation of effective order

of the form α(t\t′)β(t′). That is,

(αβ)(t) = β(φ)α(t) + β(t) +
∑

t≺t′

α(t\t′)β(t′). (3.1)

The product αβ(t) up to order five trees is given in Table 3.1. The product defined

in this way is known to be associative and forms a group.

3.2 Effective order

It is known that order five method is impossible with five stages, but there is some-

thing which might be almost as good. Butcher introduced Effective Order [12].

Definition 3.2.1. A Runge–Kutta method R with group element α is of effective

order p if there exists another Runge–Kutta method R̃ with corresponding group

element β such that βαβ−1 is of order p.

Algebraic interpretation

The idea of effective order is that instead of agreeing to within a required order of

accuracy to the exact solution, it is required that the computed results agree with

a modification of the exact solution. Therefore the main method will not keep us

exactly on the flow, but it will keep us close to the conjugate flow where every point

y(x) is mapped. This is illustrated in the Figure 3.1.

Geometric interpretation

An alternative way to explain effective order is that every input value for the effective

order method α is perturbed by the method β. So β method offers us some freedom

39

Table 3.1: αβ product up to fifth order trees

ti (αβ)(ti)

t1 α1 + β1

t2 α2 + α1β1 + β2

t3 α3 + α1β
2
1 + α2

1β1 + β3

t4 α4 + α2β1 + α1β2 + β4

t5 α5 + 3α1β3 +
3
2
α2
1β

2
1 + α3

1β1 + β5

t6 α6 + β6 +
1
2
α1β

3
1 +

1
2
α3
1β1 +

3
4
α2
1β

2
1

t7 α7 +
1
2
α2
1β

2
1 + α3β1 + α1β3 + β7

t8 α8 + α4β1 + α2β2 + α1β4 + β8

t9 α9 + 4α1β5 + 6α2
1β3 + 2α3

1β
2
1 + α4

1β1 + β9

t10 α10 + β10 + 2α1β6 + α1β5 +
1
2
α2
1β

3
1 +

3
2
α2
1β3 +

1
4
α3
1β

2
1 +

1
2
α3
1β

2
1 +

1
4
α4
1β

2
1

t11 α11 + α1β7 + α1β5 + 2α2
1β3 +

1
2
α3β

2
1 +

1
2
α3
1β

2
1 + α1α3β1 + β11

t12 α12 + β12 + α1β1β3 +
1
2
α2
1β

3
1 − 1

2
α2
1β3 +

1
2
α3
1β

2
1 − 1

2
α3β

2
1 +

1
2
α4
1β1 − α1α3β1

t13 α13 + β13 + 2α1β6 +
1
2
α2
1β

3
1 +

1
2
α3
1β

2
1 +

1
4
α4
1β1

t14 α14 + 3α1β7 +
3
2
α2
1β3 +

1
2
α3
1β

2
1 + α5β1 + β14

t15 α15 + α1β8 + α1β7 + (α2
1 + α2)β4 + α1α2β2 + α6β1 + β15

t16 α16 + α1β7 +
1
2
α2
1β3 +

1
2
α3β

2
1 + α7β1 + β16

t17 α17 + α1β8 + α2β4 + α4β2 + α8β1 + β17

40

Table 3.2: Elementary weights for the composed method

Tree Elementary weights

Φ̂(t1) =
∑
bi +

∑
b̃i

= Φ(t1) + Φ̃(t1)

Φ̂(t2) =
∑
bici +

∑
b̃i(

∑
bj + c̃i)

= Φ(t2) + Φ̃(t1)Φ(t1) + Φ̃(t2)

Φ̂(t3) =
∑
bic

2
i +

∑
b̃i(

∑
bj + c̃i)

2

= Φ(t3) + Φ̃(t1)Φ(t1)
2 + 2Φ̃(t2)Φ(t1) + Φ̃(t22)

in the order conditions that need to be satisfied by the method α to attain effective

order p. So by introducing the starting method, one can have more free parameters

to build up one order higher method. At the end of the procedure every output

value is returned back to the original flow by using β−1. This concept is shown in

the Figure 3.2.

Remark 3.2.2.

We could let β(τ) = 0 without loss of generality for finding effective order method

α. In this way we can simplify the calculations for effective order method. For the

β

α

Exact flow=E

β−1

Figure 3.2: Geometric interpretation of effective order

41

Table 3.3: Example of α(t\t′)

t′ t \ t′ α(t\t′)

1

α()

α()

α()

α()2

α()2

α()2

α()3

α()

α()α()

x0 En−2

β0 β β−1

αn−2

E E xn

β1

x0

Figure 3.3: Integration for effective order

42

starting method β0, we could let β0(τ) = 1, If we make this assumption then the

starting method not only perturbs the initial value, but also moves the integration

process one step forward. Therefore the starting method β is chosen in such way,

that β0 = Eβ. Similarly, finishing method can be designed in a similar way so that

the finishing method not only take us to the original trajectory but also integrate

over stepsize h, thus for finishing method, β1 = β−1E provided that β(τ) = 0. This

can be shown in the Figure 3.3.

3.3 Construction of new fifth effective order method

We are interested in deriving fifth effective order methods with five stages. Origi-

nally we have seventeen order conditions for these methods which are given in Table

3.1. Solution of these seventeen non-linear conditions is not easy, therefore, we as-

sume C(2) simplifying assumption up to order five trees. Doing so, we can reduce

the number of order conditions to nine.

We select the following trees of this type of explicit method up to order five.

For the nine trees the product βα and Eβ are presented in Table 3.4.

α1 = 1, (3.2)

α2 =
1

2
, (3.3)

α3 =
1

3
, (3.4)

α5 =
1

4
+ 3β3, (3.5)

α7 =
1

12
, (3.6)

α9 =
1

5
+ 6β3 + 4β5, (3.7)

α11 =
1

15
+

3

2
β3 + β5 + β7, (3.8)

α14 =
1

20
+

3

2
β3 − β5 + 3β7, (3.9)

α16 =
1

60
. (3.10)

43

Table 3.4: Expressions for βα and Eβ for trees up to order five

(βα)(ti) (Eβ)(ti)

β1 + α1 1 + β1

β2 + α2
1
2
+ β2

β3 + β1α
2
1 + β2

1α1 + α3
1
3
+ β1 + β2

1 + β3

β5 + 3β1α3 +
3
2
β2
1α

2
1 + β3

1α1 + α5
1
4
+ β1 +

3
2
β2
1 + 3β3 + β5

β7 +
1
2
β2
1α

2
1 + β3α1 + β1α3 + α7

1
12

+ 1
3
β1 +

1
2
β2
1 + β3 + β7

β9 + 4β1α5 + 6β2
1α3 + 2β3

1α
2
1 + β4

1α1 + α9
1
5
+ β1 + 2β2

1 + 6β3 + 4β5 + β9

β11 + β1α7 + β1α5 + 2β2
1α3 +

1
2
β3
1α

2
1

1
15

+ 1
3
β1 +

2
3
β2
1 + 2β3 + β5 + β7 + β11

+1
2
β3α

2
1 + β1β3α1 + α11

β14 + 3β1α7 +
3
2
β2
1α3 +

1
2
β3
1α

2
1 + β5α1 + α14

1
20

+ 1
4
β1 +

1
2
β2
1 +

3
2
β3 + 3β7 + β14

β16 + β1α7 +
1
2
β2
1α3 +

1
2
β3α

2
1 + β7α1 + α16

1
60

+ 1
12
β1 +

1
6
β2
1 +

1
2
β3 + β7 + β16

44

Eliminate β values from equations (3.5), (3.7), (3.8) and (3.9) we get

α5 − α9 + 3α11 − α14 =
1

5
. (3.11)

The six effective order conditions in terms of the coefficients of a Runge–Kutta

method are

∑
bi = 1,

∑
bici =

1
2
,

∑
bic

2
i =

1

3
,

∑
biaijc

2
j =

1

12
,

∑
biaijajkc

2
k =

1

60
,

∑
bic

3
i −

∑
bic

4
i + 3

∑
biciaijc

2
j −

∑
biaijc

3
j =

1

5
.

The steps we need to carry out to derive one of the effective order five methods

satisfying the above order conditions are as follows:

• Choose c2, c3, c4, noting that c1 = 0 and c5 = 4
5
,

• b2 = 0 and b5 as a parameter,

• Choose b1, b3, b4 to satisfy
5∑

i=1

bic
k−1
i = 1

k
for k = 1, 2, 3,

•
i−1∑
j=2

aijcj =
1
2
c2i , i = 3, 4, 5,

•
i−1∑
j=1

aij = ci, i = 2, 3, 4, 5,

• b2 =
5∑

i=1

bi(1− ci)ai2 = 0,

• b5a54c4(c4 − c3) =
1
12

− c3
6
.

45

The general solution, is given by the following coefficients:

a21 = c2,

a31 = c1 −
c23
2c2

,

a32 =
c23
2c2

,

a42 = −b3(c3 − c5)a32
b4(c4 − c5)

,

a43 =
c24
2c3

− a42
c2
c3
,

a41 = c4 − a42 − a43,

a52 = −b3(c3 − c4)a32
b5(c5 − c4)

,

a53 =
c25
2c3

− a54
c4
c3

− a52
c2
c3
,

a51 = c5 − a52 − a53 − a54.

The order condition on tree t11 = can be simplified by using the following tree

combination that is

∑
biaijajkck(ck − c3) =

1

60
− c3

24
= 0,

which implies that

c3 =
2

5
.

For the order condition on tree t7 = , we can solve the following relation

∑
biaijcj(cj − c3) =

1

12
− c3

6
, i = j = 1 . . . 5,

therefore

a54 =
1

60b5c4(c4 − c3)
.

46

A possible solution to these equations gives the method represented by the tableau

0 0 0 0 0 0

3
5

3
5

0 0 0 0

2
5

4
15

2
15

0 0 0

2
3

− 2
27

−10
27

10
9

0 0

4
5

28
75

4
15

−1
5

9
25

0

19
96

0 25
96

9
32

25
96

.

A suitable starting method, which does not advance the solution forward but intro-

duces the correct perturbation so that α method faithfully produce this perturbation

to within effective order five. We need to construct this method satisfying the fol-

lowing order conditions:

∑
bi = 0, (3.12)

∑
bici = 0, (3.13)

∑
bic

2
i = − 1

180
, (3.14)

∑
bic

3
i =

1

1800
. (3.15)

The starting method is given by the tableau,

0 0 0 0 0

7
10

7
10

0 0 0

1
2

81
154

− 2
77

0 0

3
10

129
350

3
91

− 33
325

0

− 16
189

5
56

−11
36

65
216

.

47

Table 3.5: Group elements for effective order five

t E(t) α(t) β(t)

t1 1 1 0

t2
1
2

1
2

0

t3
1
3

1
3

− 1
180

t4
1
6

1
6

− 1
360

t5
1
4

7
30

1
1800

t6
1
8

7
60

1
3600

t7
1
12

1
12

1
900

t8
1
24

1
24

1
1800

48

Finally, the finishing method is chosen in such a way that it cancels out the effect

of starting method, and is given by

0 0 0 0 0

7
10

7
10

0 0 0

1
2

81
154

− 2
77

0 0

3
10

129
350

3
91

− 33
325

0

16
189

− 5
56

11
36

− 65
216

.

The starting and finishing methods are exactly the same except the opposite signs

in their weight vectors. So the effective order five methods with C(2) assumption

come with the flavour of starting and finishing method in such a way that first we

perturb the trajectory with the starting method then takes all the steps with the

main method and at the end we apply the finishing method to get back to the

originally trajectory.

3.3.1 Examples

Below are some examples of effective order five methods with five stages:

Example 3.3.1.

0 0 0 0 0 0

1
2

1
2

0 0 0 0

2
3

2
9

4
9

0 0 0

1
3

37
121

− 27
121

91
363

0 0

6
11

639
2662

− 486
1331

861
2662

42
121

0

1939
5820

0 729
1940

−1452
3395

14641
20370

.

49

Example 3.3.2.

0 0 0 0 0 0

1
4

1
4

0 0 0 0

1
4

1
8

1
8

0 0 0

1
2

0 − 3
58

16
29

0 0

1 19
39

2
39

−40
39

58
39

0

23
210

0 16
105

58
105

13
70

.

Example 3.3.3.

0 0 0 0 0 0

1
4

1
4

0 0 0 0

1
4

1
8

1
8

0 0 0

1
2

0 − 11
446

117
223

0 0

3
4

391
1336

11
1336

− 73
334

223
334

0

52
245

0 22
735

223
735

334
735

.

3.4 Effective order five methods with D(1) assump-

tion

To investigate the class of effective order five methods which obey the D(1) simplify-

ing assumption. The number of order conditions corresponding to each tree reduces

from seventeen to ten. This assumption disposes of all order conditions except those

associated with the following trees

The conditions on the α method together with type one and type two conditions are

presented in Table 3.6. We can notice that the type one conditions are independent

of any β factor. Therefore, by eliminating β from type two order conditions, we get

50

Table 3.6: Expressions for order condition up to order five

type one type two

α1 = 1 α9 =
1
5
+ 4β5 + 6β3

α2 =
1
2

α10 =
1
10

+ 2β6 + β5 +
3
2
β3

α3 =
1
3

α11 =
1
15

+ 2β6 − β5 − 3
2
β3

α5 =
1
4

α13 =
1
20

+ 2β6

α6 =
1
8

α12 =
1
30

1
4
α9 + α13 = α10, (3.16)

α10 + α11 − 2α13 =
1
15
. (3.17)

Thus the eight order conditions in terms of the coefficients of explicit Runge–Kutta

method are

∑
bi = 1,

∑
bici =

1
2
,

∑
bic

2
i =

1
3
,

∑
bic

3
i =

1
4
,

∑
biaijc

2
j =

1
8
,

∑
biciaijajkck =

1
30
,

∑
bi(

∑
aijcj − 1

2
c2i)

2 = 0,
∑

bic
2
i aijcj +

∑
biciaijc

2
j − 2

∑
bi(aijcj)

2 = 1
15
.

51

A possible solution to these equations gives the effective order five method having

five stages which is represented by the tableau.

0 0 0 0 0 0

1
3

1
3

0 0 0 0

1
3

1
6

1
6

0 0 0

2
3

0 −14
33

12
11

0 0

1 2
7

1
2

−4
7

11
14

0

11
100

0 21
50

33
100

7
50

.

Remark 3.4.1.

In Section 3.4, we investigated methods of effective order five satisfying the D(1)

simplifying assumption. While deriving these methods we observed that a subsidiary

condition of the C(2) simplifying assumption was also true, that is

∑
bi
(∑

aijcj − 1
2
c2i
)2

= 0,

therefore we come to conclusion that the class of effective order five methods which

obey the D(1) simplifying assumption gives no new generality in deriving such me-

thods.

Example 3.4.2.

We give an example of an effective order five method with five stages, together with

starting and finishing methods as β0 and β1. Let these three methods satisfy the

C(2) and D(1) assumptions up to order five. The methods derived in this example

are exactly the same as the effective order methods with starting and finishing me-

thods found in Butcher [12].

52

The conditions on the α method are

α1 = 1 (3.18)

α2 =
1

2
(3.19)

α3 =
1

3
+ 2β2 (3.20)

α5 =
1

4
+ 3β2 + 3β3 (3.21)

α9 =
1

5
+ 4β2 + 6β3 + 4β5 (3.22)

From the condition on tree t11, we have an expression of the form

((βα)− (Eβ))(t11) = 0,

α11 + β3α2 − β7 − 2β6 − 2β4 − β3 − 1
15

= 0,

or

α11 =
1

15
+

1

2
β3 + β3 + β5 + (β3 − β5),

=
1

15
+

5

2
β3.

From the equation

1

120
=

∑
bia

3
ijcj =

∑
biaija

2
ijcj =

∑
bj(1− cj)a

2
ijcj =

∑
bja

2
ijcj −

∑
bja

2
ijc

2
j

1

120
=

1

24
− 1

2
(
1

15
+

5

2
β3),

which implies that β3 = 0. So the order condition for effective order five method

(together with C(2) and D(1)) become

α1 = 1, α2 =
1

2
, α3 =

1

3
,

α5 =
1

4
, α9 =

1

5
+ 4β5, α11 =

1

15
.

An explicit method α which satisfies the above order conditions is given by

53

0 0 0 0 0 0

1
5

1
5

0 0 0 0

2
5

0 2
5

0 0 0

1
2

3
16

0 5
16

0 0

1 1
4

0 −5
4

2 0

1
6

0 0 2
3

1
6

.

For finding the starting and finishing methods, since all these methods satisfy C(2)

and D(1) conditions. We have β0 = Eβ, β1 = β−1E and β(t) = 0 for all trees of

order less than or equal to three. Therefore we have,

β0(t1) = β1(t1) = 1,

β0(t2) = β1(t2) =
1

2
,

β0(t3) = β1(t3) =
1

3
,

and

β0(t5) =
121

480
,

β1(t5) =
119

480
.

So a suitable starting method, which advances the solution one step forward is given

by the tableau

0 0 0 0 0 0

1
5

1
5

0 0 0 0

2
5

0 2
5

0 0 0

3
4

75
64

−9
4

117
64

0 0

1 −37
36

7
3

−3
4

4
9

0

19
144

0 25
48

2
9

1
8

,

54

and a finishing method method which moves the solution one step backward is given

by the tableau

0 0 0 0 0 0

1
5

1
5

0 0 0 0

2
5

0 2
5

0 0 0

3
4

161
192

−19
12

287
192

0 0

1 −27
28

19
7

−291
196

36
49

0

7
48

0 475
1008

2
7

7
72

.

55

56

Chapter 4

Symplectic effective order methods

Effective order was originally introduced to bypass the fifth order barrier, that is,

fifth order methods are impossible with just five stages. A detailed discussion con-

cerning the structure and properties of effective order methods is given in Chapter 3.

Effective order also has an application to implicit Runge–Kutta methods for the so-

lution of stiff problems; see[4][7][15]. Application to symplectic integration referred

to as processing was introduced in [58]. An important property of Hamiltonian sys-

tem is that they conserve the energy of the mechanical system. Symplecticity is the

property of Hamiltonian systems which is explained in Chapter 1.

The aim of this chapter is to derive symplectic Runge–Kutta methods with the or-

der conditions replaced by effective order conditions. For order four, which is our

main focus, the interplay between the symplectic conditions and the effective order

conditions leads to simple criteria for acceptable methods.

In addition to these conditions, we will also require the eigenvalues of A (the coeffi-

cient matrix) in the method tableau to have only real eigenvalues. The advantages

of having real eigenvalues enable in the use of transformation matrix T which was in-

troduced by Butcher in [14]. By including transformations into the stage iterations,

we can reduce the computational cost for these methods. For large Hamiltonian

problems there is a significant gain in efficiency.

The chapter is organised as follows. In Section 4.1 we will discuss symplectic Runge–

Kutta methods and properties of their composition group. From these starting

points, we will derive a new symplectic effective order method in Section 4.2. Sec-

tion 4.3 deals with some example methods. Section 4.4 will be concerned with the

efficient implementation of the new method.

57

The results derived in this chapter are presented in [27].

4.1 Symplectic integrators

We are interested in solving autonomous initial value problems

y′(x) = f(y(x)), f : RN → R
N , (4.1)

which possess first integrals of the form 〈y,Qy〉 where Q is a symmetric matrix. For

any such problem, we define a Runge–Kutta method R to be canonical or symplectic

if the quadratic first integral is conserved; that is

〈y1, Qy1〉 = 〈y0, Qy0〉.

Pioneering work in the development of canonical Runge–Kutta methods was due to

Sanz–Serna [67], Lasagni [55], Cooper [31] and Suris [73], their idea was based on

the properties of algebraic stability introduced for stiff problems by Burrage and

Butcher [5] and Crouzeix [32].

An application of a Runge–Kutta method (2.1) to solve (4.1) results in,

Yi = y0 + h

s∑

j=1

aijf(Yj).

Since, 〈Yi, Qf(Yi)〉 = 0, it follows that

〈y0, Qf(Yi)〉+ h
s∑

j=1

aij〈f(Yj), Qf(Yi)〉 = 0, i = 1, 2, . . . , s. (4.2)

The output value is y1 = y0 + h

s∑

i=1

bif(Yi), and it follows that

〈y1, Qy1〉 = 〈y0, Qy0〉+ h
s∑

i=1

bi〈y0, Qf(Yi)〉

+ h
s∑

j=1

bj〈f(Yj), Qy0〉+ h2
s∑

i,j=1

bibj〈f(Yi), Qf(Yj)〉. (4.3)

From (4.2) and (4.3), it follows that,

〈y1, Qy1〉 = 〈y0, Qy0〉,

58

provided that,

diag(b)A+ AT diag(b)− bbT = 0.

If t, u are rooted trees, then the product is defined by joining the roots and regarding

the root of t as also the root of the product. This is illustrated in the diagram

t

u

For a symplectic method R, it always holds that

Φ(tu) + Φ(ut) = Φ(t)Φ(u),

because if Φ(t) =
∑s

i=1 biχi and Φ(u) =
∑s

i=1 biψi then

Φ(tu) + Φ(ut) =

s∑

i=1

biχiaijψj +

s∑

j=1

bjψjajiχi

=
s∑

i,j=1

(biaij + bjaji)χiψj

=

s∑

i=1

biχi

s∑

j=1

bjψj

= Φ(t)Φ(u).

Remark 4.1.1. We verify that if both R and R̃ have the symplectic property then

RR̃ is also symplectic.

Let us consider two Runge–Kutta methods R and R̃, with s and s̃ stages respectively

given by

R =
c A

bT

, R̃ =
c̃ Ã

b̃T

.

We assume that these two methods R, R̃ are symplectic such that

diag(b)A + ATdiag(b)− bbT = 0,

diag(̃b)Ã + ÃTdiag(̃b)− b̃̃bT = 0.

59

The product RR̃ is defined by first carrying out the calculations in R and then

applying method R̂ to the output which is given by

RR̃ =

c A 0

(bT1n)1ñ + c̃ 1ñb
T Ã

bT b̃T

,

where for n a positive integer, 1n is the vector in Rn with every component equal

to 1.

Composition RR̃ of two Runge–Kutta methods is symplectic if,

diag(b̄)Ā+ ĀTdiag(b̄)− b̄b̄T = 0,

For this, we calculate the terms one by one,

diag(b̄)Ā =

diag(b)A 0

b̃bT diag(̃b)Ã

,

ĀTdiag(b̄) =

AT diag(b) b̃bT

0 ÃT diag(̃b)

,

b̄b̄T =

bbT b̃bT

b̃bT b̃̃bT

,

diag(b̄)Ā+ ĀTdiag(b̄)− b̄b̄T =

0 0

0 0

.

This implies the symplecticity of RR̃.

60

Remark 4.1.2. The symplectic B-series form a subgroup.

Define the group G as the set of mapping from trees to real numbers corresponding

to the elementary weight functions for equivalence classes of Runge–Kutta methods.

Let α, β be the two members of the group G, we define the product αβ of two

multiplicative mappings of trees to real numbers as

(αβ)(tu) = α(tu) +
∑

t′<t,u′<u

α(t\t′)α(u\u′)β(t′u′) (4.4)

+ α(u)
∑

t′<t

α(t\t′)β(t′).

(αβ)(ut) = α(ut) +
∑

t′<t,u′<u

α(u\u′)α(t\t′)β(u′t′) (4.5)

+ α(t)
∑

u′<u

α(u\u′)β(u′),

where t′, u′ are subtrees of t and u such that sharing the same root with t and

u respectively. Moreover t\t′ and u\u′ are the remaining parts of t and u after

chopping the subtrees t′ and u′ respectively.

By adding (4.4) and (4.5) we get

(αβ)(tu) + (αβ)(ut) = α(tu) + α(ut)+ (4.6)
∑

t′<t,u′<u

α(t\t′)α(u\u′)β(t′u′)+
∑

t′<t,u′<u

α(u\u′)α(t\t′)β(u′t′)+

α(u)
∑

t′<t

α(t\t′)β(t′)+

α(t)
∑

u′<u

α(u\u′)β(u′).

For Runge–Kutta methods α and β to be symplectic methods, it always holds that

α(tu) + α(ut) = α(t)α(u),

β(tu) + β(ut) = β(t)β(u).

Thus (4.6) takes the form

61

(αβ)(tu) + (αβ)(ut) = α(t)α(u) +
∑

t′<t,u′<u

α(t\t′)α(u\u′)β(t′)β(u′)+

α(u)
∑

t′<t

α(t\t′)β(t′) + α(t)
∑

u′<u

α(u\u′)β(u′),

or

(αβ)(tu) + (αβ)(ut) = α(t)α(u) +
∑

t′<t

α(t\t′)β(t′)
∑

u′<u

α(u\u′)β(u′)+

α(u)
∑

t′<t

α(t\t′)β(t′) + α(t)
∑

u′<u

α(u\u′)β(u′),

or

(αβ)(tu) + (αβ)(ut) = α(t)α(u) +
(
αβ(t)− α(t)

)(
(αβ(u)− α(u)

)

α(u)
(
αβ(t)− α(t)

)
+ α(t)

(
αβ(u)− α(u)

)
,

This implies that

(αβ)(tu) + (αβ)(ut) = (αβ)(t).(αβ)(u).

4.2 Derivation of Symeff43 method

We will derive a three stage symplectic Runge–Kutta method for which A has only

real eigenvalues. Instead of having full set of order four conditions we require effec-

tive order four conditions. By doing so we can reduce the number of order conditions

needing to be satisfied.

As we have discussed in Chapter 3, the effective order is built on the assumption that

a function from trees to real number is associated with each Runge–Kutta method

and is defined from the elementary weights of the method. Here α corresponds to

method ϕ, β to method φ and E the exact method to ψ.

If we denote by E the exact trajectory through a unit step size h, then the expression

α(t) = E(t) means that for tree t, the corresponding order condition is satisfied. The

Runge–Kutta method is said to have effective order p, if there exists a corresponding

Runge–Kutta method φ with element β, such that (βα)(t) = (Eβ)(t).

For this, the products βα and Eβ for the trees up to fourth order are presented in

62

i ti (βα)(ti) (Eβ)(ti)

1 α1 1

2 β2 + α2 β2 +
1
2

3 β3 + α3 β3 + 2β2 +
1
3

4 β4 + α1β2 + α4 β4 + β2 +
1
6

5 β5 + α5 β5 + 3β3 + 3β2 +
1
4

6 β6 + β2α2 + α6 β6 + β4 + β3 +
3
2
β2 +

1
8

7 β7 + β3α1 + α7 β7 + 2β4 + β2 +
1
12

8 β8 + β4α1 + β2α2 + α8 β8 + β4 +
1
2
β2 +

1
24

Table 4.1: Expressions for βα and Eβ for trees up to order four

Table 4.1. We write αi = α(ti), βi = β(ti) and without loss of generality we assume

that β1 = 0

By equating the expressions in the third and fourth columns in Table 4.1 we there-

fore find the effective order four conditions as

α1 = 1, (4.7)

α2 =
1
2
, (4.8)

α3 =
1
3
+ 2β2, (4.9)

α4 =
1
6
, (4.10)

α5 =
1
4
+ 3β3 + 3β2, (4.11)

α6 =
1
8
+ β4 + β3 + β2, (4.12)

α7 =
1
12

+ 2β4 − β3 + β2, (4.13)

α8 =
1
24
, (4.14)

Equations (4.7), (4.8), (4.10) and (4.14) involves α values and do not depend on β

values. Eliminating the β values from (4.9), (4.11), (4.12) and (4.13), we get

α3 − α5 + 2α6 − α7 =
1
4
. (4.15)

63

The conditions for a method to have effective order 4 can now be written down.

They are

α1 = 1,

α2 =
1
2
, (4.16)

α4 =
1
6
, (4.17)

α8 =
1
24
, (4.18)

α3 − α5 + 2α6 − α7 =
1
4
. (4.19)

where αi is the elementary weight for the method corresponding to tree ti, where

t1 = τ, t2 = ττ, t3 = ττ.τ, t4 = τ.ττ

t5 = (ττ.τ)τ, t6 = ττ.ττ, t7 = τ(ττ.τ), t8 = τ(τ.ττ).

Because the method is symplectic, therefore (4.16) is automatically satisfied, also

α3 + α4 = 1
2
, enabling (4.10) to be replaced by α3 = 1

3
. Furthermore, because the

rooted trees t6 and t8 belong to the same underlying superfluous tree, it follows that

α6 =
1
8

and α8 =
1
24

. Also note that t5 and t7 are related through a non-superfluous

tree so that α5+α7 =
1
3
. Taking into account these simplifications, we see that (4.18)

and (4.19) can be deleted because they are automatically satisfied. The conditions

for effective order 4 can now be written in terms of the tableau coefficients as

3∑

i=1

bi = 1,

3∑

i=1

bic
2
i =

1
3
.

Because diag(b)A + AT diag(b) = bbT, it follows that diag(b)A − 1
2
bbT is a skew-

symmetric matrix which we will write as diag(b)S diag(b). Because A1 = c, it

follows that S has the form

S = c1T − 1cT + t

0 b3 −b2,

−b3 0 b1

b2 −b1 0

.

64

The matrix A is found to be

A = (1
2
11T + S) diag(b)

=

1
2

1
2
+ c1 − c2 + tb3

1
2
+ c1 − c3 − tb2

1
2
+ c2 − c1 − tb3

1
2

1
2
+ c2 − c3 + tb1

1
2
+ c3 − c1 + tb2

1
2
+ c3 − c2 − tb1

1
2

diag(b) (4.20)

and the characteristic polynomial is found to be

w3 − 1
2
w2 + 1

12
w − θ(w − 1

2
), θ = −t2b1b2b3. (4.21)

Verification of characteristic polynomial

Let the characteristic polynomial be

w3 − ᾱw2 + β̄w − γ̄

where by (4.20)

ᾱ = a11 + a22 + a33,

β̄ =
(
a11a22 − a12a21

)
+
(
a33a22 − a32a23

)
+
(
a11a33 − a13a31

)
,

γ̄ = det(A).

We check these one by one.

ᾱ =
1

2
b1 +

1

2
b2 +

1

2
b3

=
1

2

β̄ = b1b2(c1 − c2 + tb3)
2 + b2b3(c2 − c3 + tb1)

2 + b3b1(c3 − c1 + tb2)
2

= b1b2(c
2
1 + c22 + t2b23 − 2c1c2 − 2c2tb3 + 2c1tb3)+

b2b3(c
2
2 + c23 + t2b21 − 2c2c3 − 2c3tb1 + 2c2tb1)+

b3b1(c
2
3 + c21 + t2b22 − 2c3c1 − 2c1tb2 + 2c3tb2)

65

β̄ = t2(b1b2b3)(b1 + b2 + b3) + t(2c2b1b2b3 + 2c1b1b2b3 − 2c3b1b2b3

−2c2b1b2b3 − 2c1b1b2b3 + 2c3b1b2b3)+

b1b2(c
2
1 + c22 − 2c1c2) + b2b3(c

2
2 + c23 − 2c2c3) + b3b1(c

2
3 + c21 − 2c3c1)

which becomes

β̄ = t2(b1b2b3) + b1c
2
1(b2 + b3) + b2c

2
2(b1 + b3) + b3c

2
3(b2 + b1)+

−2b1b2c1c2 − 2b2b3c2c3 − 2b1b3c1c3

β̄ = t2(b1b2b3) + b1c
2
1(1− b1) + b2c

2
2(1− b2) + b3c

2
3(1− b3)+

−2b1b2c1c2 − 2b2b3c2c3 − 2b1b3c1c3

β̄ = t2(b1b2b3) +

3∑

i=1

bic
2
i −

(3∑

i

bici
)2

β̄ = t2(b1b2b3) +
1
12
.

Finally,

det(A) = b1b2b3 det(Ã)

where Ã is the matrix in (4.20). We can simplify the matrix Ã by subtracting the

first column from each of the other columns and then the first row from each of the

other rows. Thus the matrix Ã takes the form

Ã =

1
2

c1 − c2 + tb3 c1 − c3 − tb2

c2 − c1 − tb3 0 t(b1 + b2 + b3)

c3 − c1 + tb2 −t(b1 + b2 + b3) 0

and the determinant of det(Ã) is 1
2
t2. Therefore det(A) becomes

det(A) =
1

2
t2(b1b2b3).

Now consider the possible choice of θ to ensure that there are three real eigenvalues

of A. We get a guide to this from Figure 4.1, where θ = θ0 is chosen so that the

cubic curve is tangential to the straight line shown in the figure. The critical value

is

θ0 =
1
6
22/3 + 5

24
21/3 + 1

4
≈ 0.7770503941. (4.22)

66

0 1
2

θ(w − 1
2
)

w3 − 1
2
w2 + 1

12
w

Figure 4.1: Intersection of the curves y = w3 − 1
2
w2 + 1

12
w and y = θ(w − 1

2
)

For any θ > θ0, there will be three distinct zeros of the polynomial (4.21) and we will

aim to choose convenient values of θ to obtain a suitable method. Such convenient

values can be found by choosing one of the zeros of (4.21) and then evaluating θ to

ensure that the cubic equation is satisfied.

We wish to choose the parameters of the method so that all elements of the tableau

are rational. This will mean that t, b1, b2, b3 are rational. One way of achieving this

is by defining

c1 = c2 = 0, c3 =
2

3
, b1 =

1

4 + 4k
, b2 =

k

4 + 4k
, b3 =

3

4
. (4.23)

and then choosing k so that t has a rational value. It is found that this is possible

only if −16θk/3 is a perfect square. Write this quantity as u2 and we find that

t = 2u− 32θ

3u
, b1 =

−4θ

−16θ + 3u2
, b2 =

3u2/4

−16θ + 3u2

We construct a single method using (4.23). For θ = 19
8
, a suitable choice of u is 19

9
.

This gives the Runge–Kutta method

0 27
140

76
105

−11
12

0 171
70

− 19
280

−19
8

2
3

6
7

− 95
168

3
8

27
70

− 19
140

3
4

. (4.24)

67

To verify the effective order of the method, compute the elementary weights:

α1 = 1, α2 =
1

2
, α3 =

1

3
, α4 =

1

6
, α5 =

2

9
, α6 =

1

8
, α7 =

1

9
, α8 =

1

24
,

and we see that (4.7), (4.8), (4.10), (4.14) and (4.15), are satisfied. Furthermore,

values of the βi to satisfy (4.9), (4.11), (4.12), and (4.13) are given by

β1 = β2 = 0, β3 = − 1

108
, β4 =

1

108
.

4.2.1 Starting and finishing methods

To obtain a starting method to enable the method (4.24) to exhibit effective order

four behaviour, we need to construct a Runge–Kutta method satisfying the order

conditions

∑
bi = 0, (4.25)

∑
bici = 0, (4.26)

∑
bic

2
i = − 1

108
, (4.27)

∑
biaijcj =

1

108
. (4.28)

It is possible to construct a method satisfying these conditions with s = 3 and at the

same time to find a corresponding finishing method. Preliminary experiments have

demonstrated the importance of both these methods being symplectic and this has

been imposed as a requirement. To build such a starting method with diagonally

implicit structure, it is only necessary to choose a tableau of the form

1
2
b1

1
2
b1

b1 +
1
2
b2 b1

1
2
b2

b1 + b2 +
1
2
b3 b1 b2

1
2
b3

b1 b2 b3

where b2 = −b1 − b3, to satisfy (4.25) and (4.26) and

b1(
1
2
b1)

2 − (b1 + b3)(
1
2
b1 − 1

2
b3)

2 + b3(
1
2
b3)

2 = − 1
108
,

68

to satisfy (4.27) and (4.28). This simplifies to b1b3(b1 + b3) = − 1
27

. Let b1 + b3 = t

so that b1, b3 are the roots of the equation

x2 − tx− 1

27t
= 0.

The following solutions are possible:

t =
1

3
, x =

1±
√
5

6
,

t =
2

3
, x =

2±
√
6

6
.

Using the t = 1
3

case, we obtain the starting method given by using ± = + and

∓ = − in the following tableau

±1+
√
5

12
±1+

√
5

12

√
5
6

±1+
√
5

6
∓1

6

∓1+
√
5

12
±1+

√
5

6
∓1

3
±1−

√
5

12

±1+
√
5

6
∓1

3
±1−

√
5

6

.

To obtain a suitable finishing method, use the signs ± = − and ∓ = + in this

tableau. The proposed finishing method exactly undoes the work of the starting

method.

4.3 Examples

Example 4.3.1.

0 127
827

16989
13232

−23
16

0 107315
14886

− 189
6616

−517
72

3
4

4445
4962

−3997
6616

3
8

254
827

− 189
3308

3
4

.

69

The characteristic polynomial is given by

P (w) = w3 − 1

2
w2 − 883

72
w +

889

144
.

Three distinct real eigenvalues are

σ =

{
7

2
,
−18 + 17

√
2

12
,
−18− 17

√
2

12

}
.

Example 4.3.2.

0 541
3950

117999
537200

− 97
272

0 1123657
402900

− 189
15800

−1133
408

3
4

162841
402900

− 30219
268600

3
8

541
1975

− 189
7900

3
4

.

The characteristic polynomial is given by

P (w) = w3 − 1

2
w2 − 10205

13872
w +

3787

9248
.

We get the three distinct real eigenvalues as

σ =

{
21

34
,
−12 + 43

√
15

204
,
−12 − 43

√
15

204

}
.

Example 4.3.3.

0 17461
131318

11756409
57254648

−295
872

0 2378589803
644114790

− 4185
525272

−144593
39240

3
4

16570489
42940986

− 5394713
57254648

3
8

17461
65659

− 4185
262636

3
4

.

The characteristic polynomial is given by

P (w) = w3 − 1

2
w2 − 1986949

2138580
w +

541291

1069290
.

Three distinct real eigenvalues are

σ =

{
62

109
,
−225 + 2761

√
5

6540
,
−225− 2761

√
5

6540

}
.

70

Example 4.3.4.

0 5149
37682

3487965
15977168

−301
848

0 101924455
35948628

− 1755
150728

−10775
3816

3
4

4824613
11982876

− 886405
7988584

3
8

5149
18841

− 1755
75364

3
4

.

The characteristic polynomial is given by

P (w) = w3 − 1

2
w2 − 300977

404496
w +

334685

808992
.

Three distinct real eigenvalues are

σ =

{
65

106
,
−36 + 127

√
17

636
,
−36 − 127

√
17

636

}
.

4.4 Efficient implementation

We will follow the standard approach to the implementation of implicit Runge–

Kutta methods, which is to use a modified form of Newton iterations. In carrying

out this approach the Jacobian matrix has a key role.

J =

∂f1
∂y1

∂f1
∂y2

· · · ∂f1
∂yN

∂f2
∂y1

∂f2
∂y2

· · · ∂f2
∂yN

...
...

...

∂fN
∂y1

∂fN
∂y2

· · · ∂fN
∂yN

. (4.29)

Because the evaluation of the Jacobian matrix J is typically an expensive part of

the overall calculation, it is normally evaluated much less than once per step. It is

important to avoid unnecessary re-evaluations and at the same time avoid repeated

LU factorizations of I − hλJ .

Furthermore, there is much less need to re-evaluate the Jacobian because it changes

71

very slowly and the Newton iteration schemes are dependent on J and will maintain

their rapid convergence even if we use a past value of J . Although it may be efficient

to use the same factorization over many steps, in the experimental implementation

adopted in this chapter, a single evaluation and factorization is carried out in each

time step.

In each step of the method, it is required to calculate

yn+1 = yn + h

s∑

i=1

biFi,

where the Fi are found from the simultaneous equations

Yi = yn + h

s∑

j=1

aijFj , (4.30)

Fi = f(Yi), (4.31)

for i = 1, 2, . . . , s.

To express (4.30) and (4.31) in a compact form, write

Y =

Y1

Y2

...

Ys

, F =

F1

F2

...

Fs

and the system (4.30) becomes

Y − 1⊗ yn − h(A⊗ Im)F = 0. (4.32)

We will look at the process of taking a single Newton step making use of the matrix

M = Is ⊗ IN − h(A⊗ J), (4.33)

which we assume has been computed in advance. For the single step we are consid-

ering, existing approximations Y and F are updated to Y −ρ and F −ϕ respectively

72

where

ρ =

ρ1

ρ2

...

ρs

, ϕ =

ϕ1

ϕ2

...

ϕs

.

At the end of an iteration we need the updated values to satisfy the linear system

corresponding to (4.32), that is

ρ− h(A⊗ IN)ϕ = Y − 1⊗ yn − h(A⊗ IN)F. (4.34)

To approximately satisfy the nonlinear conditions given by (4.31) we need to relate

ρi and ϕi by

ϕi − Jρi = Fi − f(Yi), i = 1, 2, . . . , s. (4.35)

Denote by f̂ the mapping from RsN to RsN so that the N dimensional subvectors

in f̂(Y) are equal to f(Yi), i = 1, 2 . . . , s. We can then write (4.35) in the compact

form

ϕ− (Is ⊗ J)ρ = F − f̂(Y). (4.36)

Combining (4.35) with (4.34) we obtain the linear system

Is ⊗ IN −h(A⊗ IN)

−Is ⊗ J Is ⊗ IN

ρ

ϕ

 =

Y − 1⊗ yn − h(A⊗ IN)F

F − f̂(Y)

 . (4.37)

Eliminate ϕ to obtain

Mρ = G, (4.38)

where

G = Y − 1⊗ yn − h(A⊗ IN)f̂(Y).

In assessing the computational cost of this scheme, we note that not only is M

computed only occasionally, but the LU factorization of M is computed at the same

time. In general it is not possible to estimate for how many steps the same value

of M should be used before this phase of the computation has to be repeated. It

is also not possible to predict how many iterations need to be performed to achieve

convergence but a reliable predictor should be used to minimize the overall iteration

cost.

73

Lacking this knowledge about how the iteration scheme will perform, in the general

case, leaves us with two questions:

(a) what is the cost of the occasional Jacobian evaluation and the LU factorization

of M? and

(b) what is the cost of a single iteration in a single step?

For (a) there is the cost of the actual Jacobian evaluation plus a constant times

s3N3 for the factorization.

For (b) there is the cost of evaluating f times s plus a constant times s2N2 for the

back substitutions.

We can lower the cost of (a) and (b) by using the transformation.

4.4.1 Using transformations for cost reduction

It was shown in [21] that how transformations can be used to lower implementation

costs for large problems. Although this was originally in the context of stiff problems,

it is equally relevant for Hamiltonian problems where a Newton scheme is required

to achieve accurate results most efficiently.

Suppose that A has only real distinct eigenvalues and let T be a transformation

matrix such that

T−1AT = Λ = diag(λ1, λ2, . . . , λs).

Define a transformed version of the update vector,

ρ = (T−1 ⊗ IN)ρ,

and rewrite (4.38) in transformed form

Mρ = G.

where

G = (T−1 ⊗ IN)G,

M = (T−1 ⊗ IN)M(T ⊗ IN)

= diag(IN − hλ1J, IN − hλ2J, . . . , IN − hλsJ).

The algorithm for carrying out the Newton iterations can now be modified taking

the transformations into account.

74

In phase (a) of the computation, carried out as preparation for what is often a

large number of steps, instead of calculating the LU factors of the sN dimensional

matrix M , s separate LU factorizations of the N dimensional matrices I − hλJ ,

i = 1, 2, . . . , s. This results in a considerable saving by a factor of approximately s2.

In phase (b), the actual Newton updates in each iteration of each step, the solution

of (4.38) is replaced by

1. calculation of G from G,

2. solution of the linear systems

(I − hλJ)ρi = Gi, i = 1, 2, . . . , s,

3. calculation of ρ from ρ.

Although there are additional transformation costs introduced, equal to s2N , in each

of steps 1 and 3, this is, for large N , insignificant compared with the cost of 2 which

is now sN2 compared with s2N2 in the untransformed version of the algorithm.

4.4.2 Application to new method

For the symplectic effective order four method (4.24), the eigenvalues are given by

λ1 =
3

2
,

λ2 =
−6 + 5

√
6

12
,

λ3 =
−6− 5

√
6

12

As we can notice, all three eigenvalues are real. Now the transformation matrix for

the method (4.24) is given by

T =

−101
9

39+35
√
6

87
39−35

√
6

87

−19 1227−70
√
6

551
1227+70

√
6

551

1 1 1

.

This transformation matrix enables us to implement the method very effectively for

large Hamiltonian problems.

75

76

Chapter 5

Order conditions for G-symplectic

general linear methods

General linear methods for the solution of ordinary differential equations are both

multivalue and multistage. The order conditions for general linear methods can

be stated and analysed using a B-series approach and we will make use of this

formulation. However, imposing the G-symplectic structure can modify the nature

of the order conditions considerably.

In [69] it was discovered that for Runge–Kutta methods, rooted trees belonging to

the same tree have equivalent order conditions and if the trees are superfluous they

are automatically satisfied and can be ignored. For G-symplectic methods there

is a similar close relationship between order conditions related to trees which are

identical except for the placement of the root. If the method is G-symplectic the

order conditions are interrelated and can be reduced to a smaller set.

This chapter is organised as follows:

In Section 5.1 a brief introduction to G-symplectic general linear methods is given.

This is followed, Section 5.2 by a discussion of trees and rooted trees. Because of

the order conditions for the non-principal components, there will be a relationship

between the coefficients in the non-principal rows of B and the non-principal starting

values. This relationship is examined in Section 5.3 which is followed by the core

results for this chapter in Section 5.4. In Section 5.5 the special case of order 4

method with V = diag(1,−1) will be considered in details. Although there are only

two order conditions, there are additional constraints on a possible starting method,

represented by ξ.

77

The results derived in this chapter are presented in [28].

5.1 G-symplectic general linear methods

General linear methods are multistage and multivalue and are designed to give

numerical solutions to the initial value problem

y′(x) = f(y(x)), y(x0) = y0, f : RN → R
N , y0 ∈ R

N . (5.1)

At the start of step number n, r vectors y[n−1]
i , i = 1, 2, . . . , r are used as input

and at the end of the step the output is y[n]i , i = 1, 2, . . . , r. Like a Runge–Kutta

method, there are s stage values Ys, i = 1, 2, . . . , s, to be computed as well as the

corresponding stage derivatives Fi = f(Yl), i = 1, 2, . . . , s. These are interrelated by

the equations

Yi = h

s∑

j=1

aijFj +

r∑

j=1

uijy
[n−1]
j , i = 1, 2, . . . , s

y
[n]
i = h

s∑

j=1

bijFj +
r∑

j=1

vijy
[n−1]
j , i = 1, 2, . . . , r,

(5.2)

where the coefficients aij , uij, bij, vij comprise the (s+r)× (s+r) partitioned matrix

A U

B V

 .

If we write

y[n−1] =

y
[n−1]
1

y
[n−1]
2

...

y
[n−1]
r

, y[n] =

y
[n]
1

y
[n]
2

...

y
[n]
r

, Y =

Y1

Y2

...

Ys

, F =

F1

F2

...

Fs

,

then (5.2) can be written in a compact form

Y = h(A⊗ IN)F + (U ⊗ IN)y
[n−1],

y[n] = h(B ⊗ IN)F + (V ⊗ IN)y
[n−1].

78

General linear methods for r > 1 cannot preserve quadratic invariants was inves-

tigated in [25]. For r = 1 general linear methods reduce to classical Runge–Kutta

methods and the methods preserve quadratic invariants if the symplectic conditions

holds. We seek a similar criteria for general linear methods. We will introduce

the G-norm property which is similar to that of nonlinear stability of general linear

methods [5]. For this we assume a symmetric matrix G = gij and define the inner

product 〈, 〉

〈y, z〉G =
r∑

i,j=1

gij〈yi, zj〉,

where

y =

y1

...

yr

, z =

z1

...

zr

.

Then the G-norm defined by the inner product 〈, 〉G will be ‖y‖2G = 〈y, y〉G.

We also introduce a diagonal matrix D with diagonal elements di and write as

〈y, z〉D =

r∑

i=1

di〈yi, zj〉.

According to the B-series criterion for order presented in [19], a general linear

method (A,U,B, V) has order p if there exists ξ ∈ Gr and η ∈ Gs
1 such that

η = AηD+ Uξ, (5.3)

Eξ = BηD+ V ξ, (5.4)

where (5.4) has to hold only for trees of order p or less.

Theorem 5.1.1. [18] If a method is G-symplectic, then there exists a symmetric

matrix G and a diagonal matrix D such that

G = V ∗GV, (5.5)

DU = B∗GV, (5.6)

DA+ ATD = B∗GB. (5.7)

79

From (5.5) it follows that the eigenvalues of V all lie on the unit circle and we will

assume that they are distinct. By recursively evaluating the order conditions (5.3)

and (5.4) tree by tree it is possible to obtain the order conditions up to any required

order. However, just as for Runge–Kutta methods, the canonical conditions have

an influence on the results. Also the results need to be understood relative to the

starting method. In other words, the value of ξ(t) needs to be taken into account for

|t| ≤ p. It is found that a generalization of the results in [69] apply in the multi-value

case and this will be one of the principal conclusions of the chapter.

Example 5.1.2.

We will consider the G-symplectic general linear method M , which was introduced

in [19].

M =

3+
√
3

6
0 1 −3+2

√
3

3

−
√
3
3

3+
√
3

6
1 3+2

√
3

3

1
2

1
2

1 0

1
2

−1
2

0 −1

. (5.8)

The method M satisfies the G-symplectic conditions with

G =

1 0

0 3+2
√
3

3

 , D =

1
2

0

0 1
2

 .

The starting method is

3+
√
3

6
0 1

0 −3+
√
3

6
1

0 0 1
√
3−1
8

−
√
3−1
8

0

.

For the approximate conservation of Hamiltonian the general linear method M is

applied to simple pendulum which is based on the Hamiltonian

H =
p2

2
− cos(q).

80

1 10 102 103 104 105 106
n

0 1 10 102 103 104x

0

Figure 5.1: The variation in the numerical Hamiltonian for the simple pendulum

problem with initial value y = [0, 1.2]T, using method M and h = 0.01

The initial values are chosen as p = 0, q = 1.2 with h = 0.01 for the 1000000 steps.

Figure 5.1 shows that the Hamiltonian is approximately conserved, this is because

the method is G-symplectic. Thus the G-symplecticity is an important property for

the general linear methods.

5.2 Trees and rooted trees

The significance of trees, as distinct from rooted trees, for canonical Runge–Kutta

was analyzed by Sanz-Serna and Abia [69].

If t1, t2 are arbitrary rooted trees with positive order we can construct an unsym-

metrical product t1t2 by attaching the roots and designating the root of t1 as the

root of t1t2. This will mean that, although t1t2 and t2t1 are not in general the same

rooted tree, they are equivalent in the sense that they have the same underlying tree

even though the roots may be different. Following the definitions in [67] we state

Definition 5.2.1. Two rooted trees are equivalent if they have the same underlying

tree.

We will regard the underlying tree as an equivalence class for the corresponding

rooted trees.

Definition 5.2.2. A tree is superfluous if it contains a rooted tree of the form tt.

A rooted tree is superfluous if it belongs to a superfluous tree. A tree (respectively

rooted tree) is non-superfluous if it is not superfluous.

A list of trees and the corresponding rooted trees, showing in particular which of

these are superfluous is given in Figure 5.2.

81

t1

t2 t1t1 superfluous

b b b t3 t2t1

t4 t1t2

b b
b

t5 t3t1

t7 t1t3

b b b b
t6 t4t1 = t2t2

superfluous

t8 t1t4

t9 t5t1

t14 t1t5

t10 t6t1

t11 t7t1 = t2t3

t15 t1t6

t16 t1t7

t12 t8t1 = t2t4

t13 t4t2

t17 t1t8

Figure 5.2: Trees and corresponding rooted trees including two superfluous trees

82

5.3 Structure of canonical general linear methods:

General case

By assuming that the eigenvalues of V are distinct, the methods fall into a diagonal

case in which V is a diagonal, though possible complex, matrix. The analysis of

order is much more convenient and simpler under this assumption but, there is no

loss of generality because a simpler transformation makes all elements of the defining

matrices real. We will assume that a method has the form

A U

B V

 =

a11 0 · · · 0 1 u12 · · · u1r

a21 a22 · · · 0 1 u22 · · · u2r

...
...

...
...

...
...

as1 as2 · · · ass 1 us2 · · · usr

b11 b12 · · · b1s 1 0 · · · 0

b21 b22 · · · b2s 0 z2 · · · 0

...
...

...
...

...
...

br1 br2 · · · brs 0 0 · · · zr

,

where V is a diagonal matrix such that

V = diag(z1, z2, . . . , zr),

with z1 = 1.

If r is odd then the remaining z values occur in conjugate pairs and if r is even, one

of the z values is −1 and the remainder occur in conjugate pairs.

It follows from (5.5) that G = diag(g1, g2, . . . , gr), with gi = gj if zi = zj. Without

loss of generality, assume that g1 = 1. By consistency combined with (5.6), it follows

that

Ue1 = 1, D = diag(b), where eT

1B = bT.

83

This enables us to write

B =

bT

B̂

 , U =

[
1 Û

]
, DÛ = B̂∗ĜV̂

We will denote the principal component of ξ by ζ and the remainder of this vector

by ξ̂. Hence (5.4) takes the form

Eζ = bTηD+ ζ, (5.9)

Eξ̂ = B̂ηD+ V̂ ξ̂. (5.10)

The conditions associated with (5.10) do not impose conditions on the coefficients of

the method and should be thought of as conditions on ξ̂. We can assume that they

are always satisfied. Hence, the difficulty of constructing a method of specific order

is to choose the coefficients of the method along with ζ so that (5.9) is satisfied.

The procedure we will adopt to derive the order conditions is to construct the vectors

η and ηD recursively using the unsymmetrical product to express formulae for high

order rooted trees in terms of lower order. From ηD(t), we will then construct

the order condition related to each t. We will also use the canonical conditions to

interrelate conditions for t1t2 and t2t1 as is done in [67].

5.3.1 Parasitism-free methods

Parasitic solutions are the unwanted solutions which occur with the numerical so-

lution of the particular problems. In [24] it was demonstrated that the effect of

parasitism can be disastrous to long term integrations of practical problems and

that when growth rates are forced to equal zero, this unacceptable behaviour is en-

tirely eliminated. In the case of methods in which V = diag(1, z2, z3, . . . , zr), as in

this chapter, this means that the diagonal elements of BU are, apart from the (1, 1)

element, equal to zero. That is

βTu = 0.

Accordingly this requirement will be built into the design of the method derived in

this chapter.

84

5.3.2 The value of ξ̂

As noted in Section 5.3, the order conditions (5.9), (5.10) apply in the diagonal case.

In particular (5.10) are conditions on the non-principal starting method coefficients

ξ̂. Consider a particular row of B̂ denoted by βT with the corresponding diagonal

element of V̂ denoted by z and the corresponding component of ξ̂ denoted by ξ.

Then these quantities satisfy the equation

Eξ = βT(ηD) + zξ. (5.11)

Because ξ(t0) = 0, the operation E is linear acting on a vector made up from ξ(t1),

ξ(t2), . . . , with as many terms as there are rooted trees to consider. In the case

of order four, this vector and the corresponding vector of βT(ηD) values for these

rooted trees are, shown below, together with the matrix Ẽ representing the linear

operator that has been referred to.

ξ =

ξ(t1)

ξ(t2)

ξ(t3)

ξ(t4)

ξ(t5)

ξ(t6)

ξ(t7)

ξ(t8)

, βT(ηD) =

βT1

βTη(t1)

βTη(t1)
2

βTη(t2)

βTη(t1)
3

βTη(t1)η(t2)

βTη(t3)

βTη(t4)

, Ẽ =

1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 2 1 0 0 0 0 0

1
2

1 0 1 0 0 0 0

1 3 3 0 1 0 0 0

1
2

3
2

1 1 0 1 0 0

1
3

1 0 2 0 0 1 0

1
6

1
2

0 1 0 0 0 1

At least in the case of order four, (5.11) can be rewritten in the form

(Ẽ − zI)ξ = βT(ηD). (5.12)

In the important case r = 2, z = −1, which is known to be sufficient for the

construction of methods up to order four, (5.11) can be written ξ = (I+Ẽ)−1βT(ηD)

85

and, for convenience, we write

(I + Ẽ)−1 =

1
2

0 0 0 0 0 0 0

−1
4

1
2

0 0 0 0 0 0

0 −1
2

1
2

0 0 0 0 0

0 −1
4

0 1
2

0 0 0 0

1
8

0 −3
4

0 1
2

0 0 0

1
16

0 −1
4

−1
4

0 1
2

0 0

1
24

0 0 −1
2

0 0 1
2

0

1
48

0 0 −1
4

0 0 0 1
2

.

5.3.3 The B-series for η and ηD

The generating function η for the internal stages and their stages derivatives ηD

plays an important role in the construction of a particular general linear method.

For compactness, we will write (ηD)(ti) = (ηD)i and η(ti) = ηi, i = 1, 2, . . . , 8.

First evaluate η1 from (ηD)1 = 1:

η1 = A(ηD)1 + Uξ1 = A1 + Uξ1.

This will be denoted by c. Values of (ηD)i are listed as follows up to order 4:

(ηD)1 = 1,

(ηD)2 = c,

(ηD)3 = c2,

(ηD)4 = Ac+ Uξ2,

(ηD)5 = c3,

(ηD)6 = cAc+ cUξ2,

(ηD)7 = Ac2 + Uξ3,

(ηD)8 = A2c+ AUξ2 + Uξ4.

86

Now the corresponding ηi are

η2 = A(ηD)2 + Uξ2 = Ac+ Uξ2,

η3 = A(ηD)3 + Uξ3 = Ac2 + Uξ3,

η4 = A(ηD)4 + Uξ4 = A2c + AUξ2 + Uξ4,

η5 = A(ηD)5 + Uξ5 = Ac3 + Uξ5,

η6 = A(ηD)6 + Uξ6 = cA2c + AcUξ2 + Uξ6,

η7 = A(ηD)7 + Uξ7 = A2c2 + AUξ3 + Uξ7,

η8 = A(ηD)8 + Uξ8 = A3c + A2Uξ2 + AUξ4 + Uξ8.

5.4 Order conditions for G-symplectic methods

The algorithm for describing order questions for any G-symplectic general linear

method will come in three parts:

• The order conditions for the output vector bT can be written in terms of the

input vector ζ ′s for all trees up to order ≤ p, that is

bT(ηD)(t) = (Eζ)(t)− ζ(t), |t| ≤ p

• Conditions on ζ to ensure the starting method allows order p to be achieved

• Relations between pairs of equivalent trees t1t2 and t2t1 as a consequences of

the canonical conditions:

bT(ηD)(t1t2) + bT(ηD)(t2t1) = (B(ηD)(t1))
∗GB(ηD)(t2)

or, equivalently,

(Eζ)(t1t2) + (Eζ)(t2t1)− (Eξ)(t1)
∗G(Eξ)(t2) =

ζ(t1t2) + ζ(t2t1)− ξ(t1)
∗Gξ(t2)

Theorem 5.4.1. If for rooted trees t1 and t2,

Eζ(t1t2) +Eζ(t2t1)−
(
Eξ(t1)

)∗
GEξ(t2) = ζ(t1t2) + ζ(t2t1)−

(
ξ(t1)

)∗
Gξ(t2) (5.13)

then

bT(ηD)(t1t2)− (Eζ(t1t2)− ζ(t1t2)) + bT(ηD)(t2t1)− (Eζ(t2t1)− ζ(t2t1)) = 0.

87

Proof. We first find a convenient expression for rewriting bTηD(t1t2):

bT(ηD)(t1t2) = bT(ηD)(t1)η(t2)

= bT(ηD)(t1)
(
A(ηD)(t2) + Uξ(t2)

)

=
(
(ηD)(t1)

)∗(
DA(ηD)(t2)

)
+
(
(ηD)(t1)

)∗
DUξ(t2)

=
(
(ηD)(t1)

)∗(
DA(ηD)(t2)

)
+
(
(ηD)(t1)

)∗
B∗GV ξ(t2)

=
(
(ηD)(t1)

)∗(
DA(ηD)(t2)

)
+
(
B(ηD)(t1)

)∗
GV ξ(t2)

=
(
(ηD)(t1)

)∗(
DA(ηD)(t2)

)
+
(
Eξ(t1)− V ξ(t1)

)∗
GV ξ(t2)

We can write a similar expression with t1 and t2 interchanged, that is

bT(ηD)(t2t1) =
(
(ηD)(t2)

)∗
DA(ηD)(t1) +

(
Eξ(t2)− V ξ(t2)

)∗
GV ξ(t1)

By adding expressions bT(ηD)(t1t2) and bT(ηD)(t2t1) and using (5.7), we get

bT(ηD)(t1t2) + bT(ηD)(t2t1) =
(
Bξ(t1)

)∗
GBξ(t2)+(

Eξ(t1)− V ξ(t1)
)∗
GV ξ(t2)) + V ξ(t1)

∗G
(
Eξ(t2)− V ξ(t2)

)
.

Substitute Bξ(ti) = Eξ(ti)− V ξ(ti), i = 1, 2 and expand to obtain

bT(ηD)(t1t2) + bT(ηD)(t2t1) = Eξ(t1)
∗GEξ(t2)− ξ(t1)

∗Gξ(t2).

Use (5.13) and the result follows.

Remark 5.4.2. Theorem 5.4.1 is a natural generalization of Theorem 3.1 in [69].

In [28] the following theorem is proved.

Theorem 5.4.3.

Eζ(t1t2) + Eζ(t2t1)−
(
Eξ(t1)

)∗
GEξ(t2) = ζ(t1t2) + ζ(t2t1)−

(
ξ(t1)

)∗
Gξ(t2)

holds whenever |t1t2| ≤ p if and only if

ζ(t1t2) + ζ(t2t1) = ξ(t1)
∗Gξ(t2), |t1t2| < p.

Theorem 5.4.4. Consider a G-symplectic general linear method with order at least

one. Then the order conditions for a family of equivalent rooted trees of order p are

all satisfied if

1 one of them is satisfied;

88

2 all lower order conditions are satisfied; and

3 for any pair of rooted trees t1 and t2 such that |t1|+ |t2| < p it holds that

ζ(t1t2) + ζ(t2t1) = ξ(t1)
∗Gξ(t2).

Furthermore, the order conditions for a family of superfluous rooted trees are all

satisfied if 2 and 3 hold.

We can find all fourth order methods for r = 2 by using the following result:

Corollary 5.4.5 (Order 4 Theorem). A canonical general linear method with V =

diag(1,−1), G = diag(1, g) has order four iff the coefficients of the method satisfy

the conditions

bT1 = 1,

bTc2 = 1
3
+ gξ21

and the starting method (assuming ζ1 = 0) satisfy

ζ2 =
1
2
gξ21,

ζ3 =
1
3
(bTc3 − 1

4
)− ζ2,

ζ4 = gξ1ξ2 − ζ3.

5.4.1 Conditions for orders one and two

The process of deriving order conditions consists of recursively evaluating η(t) from

(5.3), and ξ̂(t) from (5.10). At the same time (5.9) will impose an order condition on

the coefficients of the method, related also to ζ(t′) for various t′ such that |t′| < |t|.

To start this process, write ξ(t0) = e1 from consistency and ηD(t0) = 0. This gives

η(t0) = 1 from (5.3) and the value of ξ̂(t0) = 0. Because ηD(t1) = η(t0) = 1, we

can find η(t1) = A1 + Uξ(t1). Expand Uξ(t1) = ζ(t1)1 + Û ξ̂(t1). The value of

ξ(t1) can be found from (5.11) but a value is needed for ζ(t1). It turns out that

this quantity is arbitrary and, for, simplicity, we will set it to zero. We now have

a value for η(t1) and we will denote this by c, as in a common notation used for

Runge–Kutta methods. Now use the fact that ηD(t2) = η(t1) to obtain the order

two condition

bTc = 1
2
. (5.14)

89

We will use the canonical conditions to deduce that (5.14) automatically holds. First

we note that, because ξ(t0) = e1, it follows that

Eξ(t1)− ξ(t1) = e1. (5.15)

Now, using (5.5), (5.6) and (5.7) as necessary we calculate

2bTc = 1TD(A1 + Uξ(t1)) + (A1 + Uξ(t1))
∗D1

= 1T(DA+ ATD)1 + 1TDUξ(t1) + ξ(t1)
∗U∗D1

= 1TB∗GB1 + 1TB∗GV ξ(t1) + ξ(t1)
∗V ∗GB1

= (Eξ(t1)− V ξ(t1))
∗G(Eξ(t1)− V ξ(t1))+

(Eξ(t1)− V ξ(t1))
∗GV ξ(t1) + ξ(t1)

∗V ∗G(Eξ(t1)− V ξ(t1)).

After some simplification, and making used of (5.15), this is found to equal

(Eξ(t1)− ξ(t1))
∗G(Eξ(t1)− ξ(t1)) = eT

1Ge1 = 1.

5.5 Construction of a three stage, two input value,

fourth order method

We construct a three stage G-symplectic general linear method with two input val-

ues. This method is assumed to be parasitism-free. For cheap implementation cost,

we choose our matrix A to be lower triangular. The structure of the method would

be

A U

B V

 =

a11 0 0 u01 u1

a21 a22 0 u02 u2

a31 a32 a33 u03 u3

b1 b2 b3 v11 v12

β1 β2 β3 v21 v22

,

with

G =

g11 g12

g21 g22

 , D =

d1 0 0

0 d2 0

0 0 d3

.

90

We recall η for the internal stages and ξ for the output vectors such that ξ =

ζ

ξ

with ζ(φ) = 1 and ξ(φ) = 0. To obtain the basic consistency condition, we solve the

(5.3) for the empty tree, keeping the fact that ηD(φ) = 0, that is

Eζ(φ) = v11ζ(φ) + v12ξ(φ), (5.16)

Eξ(φ) = v21ζ(φ) + v22ξ(φ). (5.17)

Thus by comparing the above equations we get v11 = 1 and v21 = 0, therefore the

V matrix takes the form

V =

1 v12

0 v22

 .

We want that the V has the diagonal form such that the eigenvalues of V lies on

the unit circle. Thus V takes the form

V =

1 0

0 −1

 .

Now by solving the (5.4) for the empty tree, we get

η1(φ) = Uξ(φ),

η2(φ) = Uξ(φ),

η3(φ) = Uξ(φ),

this leads us to

u01 = 1,

u02 = 1,

u03 = 1.

91

Thus the GLM takes the form

A U

B V

 =

a11 0 0 1 u1

a21 a22 0 1 u2

a31 a32 a33 1 u3

b1 b2 b3 1 0

β1 β2 β3 0 −1

,

From the condition G = V TGV , we can write

g11 g12

g21 g22

 =

1 0

0 −1

g11 g12

g21 g22

1 0

0 −1

 ,

g11 = g11,

g12 = −g12,
g21 = −g21,
g22 = g22.

By comparing both sides of the equations we get

G =

1 0

0 g

 ,

we consider the case when

G =

1 0

0 −1

 .

Now consider the G-symplectic condition,

BTGV = DU,

which becomes

b1 β1

b2 β2

b3 β3

=

d1 d1u1

d2 d2u2

d3 d3u3

.

92

By comparing both sides of the above expression, we get from the respective columns

the expressions like

bi = di,

similarly by comparing the second columns in respective matrices we get

βi = diui.

ui =
βi
bi
.

For simplification we call xi =
βi

bi
, so above expression becomes

ui = xi

Thus the structure of general linear method becomes

A U

B V

 =

a11 0 0 1 x1

a21 a22 0 1 x2

a31 a32 a33 1 x3

b1 b2 b3 1 0

b1x1 b2x2 b3x3 0 −1

,

Now look at the DA + ATAD = BTGB condition. This gives properties of the

coefficient matrices because the method is symplectic and are quite different in

nature from the order conditions.

DA+ ATD =

2b1a11 b2a21 b3a31

b2a21 2b2a22 b3a32

b3a31 b3a32 2b3a33

,

BTGB =

b21(1− x21) b1b2(1− x1x2) b1b3(1− x1x3)

b1b2(1− x1x2) b22(1− x22) b2b3(1− x2x3)

b1b3(1− x1x3) b2b3(1− x2x3) b23(1− x23)

.

93

Comparing coefficients of DA+ ATD = BTGB on both sides, we get

a11 =
1
2
b1(1− x21),

a21 = b1(1− x1x2),

a22 =
1
2
b2(1− x22),

a31 = b1(1− x1x3),

a32 = b2(1− x2x3),

a33 =
1
2
b3(1− x23).

Therefore the coefficient matrix A takes the form

A =

1
2
b1(1− x21) 0 0

b1(1− x1x2)
1
2
b2(1− x22) 0

b1(1− x1x3) b2(1− x2x3)
1
2
b3(1− x23)

For simplicity we choose x1 = 1 and b1 = 1. The methods satisfies the order

conditions. The first order condition becomes

b2 = −b3.

We are constructing parasitism-free method and therefore we have

b1x
2
1 + b2x

2
2 + b3x

2
3 = 0,

b2(x
2
3 − x22) = 1.

Appropriate choices of the parameters are x2 = 5
3

and x3 = 1
3
, leading to the

following general linear method.

A U

B V

 =

0 0 0 1 1

−2
3

1
3

0 1 5
3

2
3

−1
6

1
6

1 1
3

1 −3
8

3
8

1 0

1 −5
8

1
8

0 −1

, (5.18)

94

with

G =

1 0

0 −1

 , D =

1 0 0

0 −3
8

0

0 0 3
8

, c =

1
4

1
12

3
4

.

The stages and the outputs are defined by

Y1 = 0hF1 +0hF2 + 0hF3 +1y
[n−1]
1 + 1y

[n−1]
2

Y2 = −2
3
hF1 +1

3
hF2 + 0hF3 +1y

[n−1]
1 + 5

3
y
[n−1]
2

Y3 =
2
3
hF1 −1

6
hF2 +

1
6
hF3 +1y

[n−1]
1 + 1

3
y
[n−1]
2

y
[n]
1 = 1hF1 −3

8
hF2 +

3
8
hF3 +1y

[n−1]
1 + 0y

[n−1]
2

y
[n]
2 = 1hF1 −5

8
hF2 +

1
8
hF3 +0y

[n−1]
1 −1y

[n−1]
2

The method does not suffer from parasitism and is G-symplectic.

5.5.1 Example methods of type 4123

We have constructed three methods, each of type 4123. This notation means

• 4 is the order

• 1 is the stage -order

• 2 is the number of inputs

• 3 is the number of stages

In each of these methods, A is lower triangular, and each c′s value lies in the interval

[0, 1].

Example 5.5.1.

95

A U

B V

 =

0 0 0 1 1

19
30

− 1
12

0 1 −5
6

133
330

−31
66

7
12

1 −1
6

19
55

− 6
11

6
5

1 0

19
55

5
11

−1
5

0 −1

,

with

G =

1 0

0 −1

 , D =

19
55

0 0

0 − 6
11

0

0 0 6
5

, c =

3
10

3
10

7
15

.

Example 5.5.2.

A U

B V

 =

0 0 0 1 1

− 7
15

3
8

0 1 6
5

1 −15
28

1
8

1 4
7

7
3

−75
44

49
132

1 0

7
3

−45
22

7
33

0 −1

,

with

G =

1 0

0 −1

 , D =

7
3

0 0

0 −75
44

0

0 0 49
132

c =

1
4

5
24

41
56

.

The above method are G-symplectic methods and does not suffer from parasitic

solution.

5.5.2 Algebraic analysis

The above method (5.18) is G-symplectic and of order four. We apply the algebraic

analysis of order to the general linear method which we call as method Mh. To

96

start the procedure the method Mh requires two inputs, whereas we are given just

one initial condition with the initial value problem (5.1). We obtain the rest of the

initial conditions using the starting procedure say Sh. In addition to this we also

introduce a finishing method Fh such that Fh ◦ Sh = id. A method Mh is said to

have order p if

Mh ◦ Sh − Sh ◦ Eh = O(hp+1),

where E is the flow of the method.

For the algebraic analysis, we assume that ξ = [ζ, ξ] is the generating function for

the input approximations and let η be the generating function for the internal stages.

η = AηD+ ζ1 + ξu (5.19)

Eζ = bTηD+ ζ (5.20)

Eξ = βTηD− ξ (5.21)

From the analysis of the method (5.18), we get the values for the generating function

up to four order trees such that

φ

ζ 1 0 − 1
32

5
864

− 19
1728

ζ5 ζ6 ζ7 ζ8

ξ 0 1
4

1
48

− 47
576

− 23
1152

1
6912

− 61
4608

− 23
2304

− 5
1536

The values [ζ5, ζ6, ζ7, ζ8] can be found from the starting method.

Now the details for the generating functions η for the internal stages, ηD their stages

derivatives and output values ξ̄ = [ζ̄ , ξ̄] are given below:

Case 1: For the empty tree φ

η1 η1D η2 η2D η3 η3D ζ̄ ξ̄

φ 1 0 1 0 1 0 1 0

.

97

Case 2: For the tree with one vertex ,

η1D() = η1(φ)

= 1,

η1() = 1ζ() + u12ξ()

=
1

4
,

η2D() = η2(φ)

= 1,

η2() = a21η1D() + a22η2D() + 1ζ() + u22ξ()

=
1

12

η3D() = η3(φ)

= 1,

η3() = a31η1D() + a32η2D() + a33η3D() + 1ζ() + u32ξ()

=
3

4

ζ̄() = b1η1D() + b2η2D() + b3η3D() + ζ()

= 1

ξ̄() = β1η1D() + β2η2D() + β3η3D()− ξ()

=
1

4
.

Case 3: For the tree ,

η1D() = η1()

=
1

4

η1() = 1ζ() + u12ξ()

= − 1

96

η2D() = η2()

=
1

12

η2() = a21η1D() + a22η2D() + 1ζ() + u22ξ()

= −13

96

98

η3D() = η3()

=
3

4

η3() = a31η1D() + a32η2D() + a33η3D() + 1ζ() + u32ξ()

=
73

288

ζ̄() = b1η1D() + b2η2D() + b3η3D() + ζ()

=
15

32

ξ̄() = β1η1D() + β2η2D() + β3η3D()− ξ()

=
13

48

Case 4: For the tree

η1D() = η21()

=
1

16

η1() = 1ζ() + u12ξ()

= − 131

1728

η2D() = η22()

=
1

144

η2() = a21η1D() + a22η2D() + 1ζ() + u22ξ()

= − 293

1728

η3D() = η23()

=
9

16

η3() = a31η1D() + a32η2D() + a33η3D() + 1ζ() + u32ξ()

=
65

576

ζ̄() = b1η1D() + b2η2D() + b3η3D() + ζ()

=
239

864

ξ̄() = β1η1D() + β2η2D() + β3η3D()− ξ()

=
121

576

99

Case5: For the tree

η1D() = η1()

= − 1

96

η1() = 1ζ() + u12ξ2()

= − 107

3456

η2D() = η2()

= −13

96

η2() = a21η1D() + a22η2D() + 1ζ() + u22ξ()

= − 95

1152

η3D() = η3()

=
73

288

η3() = a31η1D() + a32η2D() + a33η3D() + 1ζ() + u32ξ()

=
139

3456

ζ̄() = b1η1D() + b2η2D() + b3η3D() + ζ()

=
215

1728

ξ̄() = β1η1D() + β2η2D() + β3η3D()− ξ()

=
145

1152
The general linear method (5.18) will be of order four if

Eζ(t) = ζ̄(t),

Eξ(t) = ξ̄(t)

where,

φ

Eζ 1 1 15
32

239
864

215
1728

ζ̄ 1 1 15
32

239
864

215
1728

Eξ 0 1
4

13
48

121
576

145
1152

ξ̄ 0 1
4

13
48

121
576

145
1152

100

This proves the order four behaviour.

5.5.3 Starting and finishing methods

In order to construct an explicit four stage two outputs method which satisfies

Φ(ti) = ξi, i = 1, 2, . . . , 8,

φ̃(ti) = ζi, i = 1, 2, 3, 4.

In the case of the first input we get a starting method y0 + h
∑4

i=1 b̃if(Yi) and for

the second input h
∑8

i=1 bif(Yi) . We can find a method to satisfy

∑

i

b̃i = ζ1, (5.22)

∑

i

b̃ici = ζ2,

∑

i

b̃ic
2
i = ζ3,

∑

ij

b̃iaijcj = ζ4,

and

∑

i

bi = ξ1,

∑

i

bici = ξ2,

∑

i

bic
2
i = ξ3,

∑

ij

biaijcj = ξ4,

∑

i

bic
3
i = ξ5,

∑

ij

biciaijcj = ξ6,

∑

ij

biaijc
2
j = ξ7,

b4a43a32c2 = ξ8

101

The structure of the starting method is such that

0 0 0 0 1

a21 0 0 0 1

a31 a32 0 0 1

a41 a42 a43 0 1

b̃1 b̃2 b̃3 b̃4 1

b1 b2 b3 b4 0

.

We can solve for the bi by linear equations and then the aij by linear equations as

long as the ξ8 product comes out right. This depends on choosing suitable c2 and

c4.

We choose c = [0 1
3

2
3

− 2119
3532

]. The starting method will have one input and

two outputs, where the b values can be found by solving the following equations

simultaneously

∑

i

bi = ξ1,

∑

i

bici = ξ2,

∑

i

bic
2
i = ξ3,

∑

i

bic
3
i = ξ5.

Therefore

b1

b2

b3

b4

=

14813
33904

2093
79112

− 19665
214736

− 137004612013
1124937000044

,

102

and the structure of the starting method becomes

0 0 0 0 1

1
3

0 0 0 1

1
69

15
23

0 0 1

− 8389502714541
17536590337664

− 6431381589347
26304885506496

6468387750253
52609771012992

0 1

b̃1 b̃2 b̃3 b̃4 1

14813
33904

2093
79112

− 19665
214736

− 137004612013
1124937000044

0

.

The values for [̃b1, b̃2, b̃3 ,̃ b4] can be found by solving the set of equations (5.22) with

the same A and c values. That is

b̃1

b̃2

b̃3

b̃4

=

− 76717
813696

16555
172608

− 261211
5153664

15050336767
306801000012

.

Thus we get the starting method as

0 0 0 0 1

1
3

0 0 0 1

1
69

15
23

0 0 1

− 8389502714541
17536590337664

− 6431381589347
26304885506496

6468387750253
52609771012992

0 1

− 76717
813696

16555
172608

− 261211
5153664

15050336767
306801000012

1

14813
33904

2093
79112

− 19665
214736

− 137004612013
1124937000044

0

. (5.23)

We can get the values of remaining ζ ′s from the starting method such that

103

ζ5 = − 134629

6103296
,

ζ6 = − 89833

12206592
,

ζ7 = − 14189

6103296
,

ζ8 =
5335

4068864
.

Next we need to find a suitable finishing method Fh, that is applied to first output

y
[n]
1 of the starting method. The finishing method Fh, is fourth order Runge–Kutta

method based on the following structure

0 0 0 0 1

ǎ21 0 0 0 1

ǎ31 ǎ32 0 0 1

ǎ41 ǎ42 ǎ43 0 1

b̌1 b̌2 b̌3 b̌4 1

.

where the finishing method Fh is defined by Fh(ti) = ζ−1(ti) such that (Fhζ)(ti) = 0

for all trees up to order four. That is

Fh(t1) = −ζ(t1),
Fh(t2) = −ζ(t2),
Fh(t3) = −ζ(t3),
Fh(t4) = −ζ(t4),
Fh(t5) = −ζ(t5),
Fh(t6) = ζ2(t2)− ζ(t6),

Fh(t7) = −ζ(t7),
Fh(t8) = ζ2(t2)− ζ(t8).

104

We can find method Fh to satisfy

∑
b̌i − Fh(t1) = 0,

∑
b̌iči − Fh(t2) = 0,

∑
b̌ič

2
i − Fh(t3) = 0,

∑
b̌iǎij čj − Fh(t4) = 0,

∑
b̌ič

3
i − Fh(t5) = 0,

∑
b̌ičiǎij čj − Fh(t6) = 0,

∑
b̌iǎij č

2
j − Fh(t7) = 0,

b̌4ǎ43ǎ32č2 − Fh(t8) = 0.

We choose č = [0 1
3

2
3

175797913
1126404248

], where the b̌ values can be found by solving the

following equations simultaneously

∑
b̌i = Fh(t1),

∑
b̌iči = Fh(t2),

∑
b̌ič

2
i = Fh(t3),

∑
b̌ič

3
i = Fh(t5).

Thus

b̌1

b̌2

b̌3

b̌4

=

−39483516397
33753199296

−21949176959
14376252216

72556835
310477632

1258158182698422366360446
510856001853430663190721

.

By solving the following equations we can get the values for ǎ32, ǎ42, ǎ43. That is

∑
b̌iǎij čj = Fh(t4),

∑
b̌ičiǎij čj = Fh(t6),

∑
b̌iǎij č

2
j = Fh(t7).

Thus the finishing method Fh takes the form

105

0 0 0 0 1

1
3

0 0 0 1

73657
147246

8169
49082

0 0 1

ǎ41 ǎ42 ǎ43 0 1

−39483516397
33753199296

−21949176959
14376252216

72556835
310477632

1258158182698422366360446
510856001853430663190721

1

, (5.24)

with

ǎ41

ǎ42

ǎ43

=

475837122063856242814508098059
3049841390168322097173931516928

2274743067622435465896394035751
910377654965244146006418557803008

− 4178972380495013968454494687
1706424845295677874426276584448

.

5.5.4 Order four verification

To verify that the method (5.18) has order four, we will use the Order 4 Theorem.

We have

ξ1 =
1
4
, c =

1
4

1
12

3
4

, ξ2 =

1
48
.

Now we check the necessary condition bTc2 = 1
3
+ gξ21 . That is

bTc2 − 1
3
− gξ21 = 13

48
− 1

3
+ 1

16
= 0.

Also from the Order 4 Theorem we have

ζ2 − 1
2
gξ21 = − 1

32
+ 1

32
= 0,

ζ3 − 1
3
(bTc3 − 1

4
)− ζ2 =

5
864

− 5
864

= 0,

ζ4 − gξ1ξ2 − ζ3 = − 19
1728

+ 19
1728

= 0.

106

Thus the method (5.18) has order four behaviour together with the starting Sh (5.23)

and finishing Fh (5.24) methods.

107

108

Chapter 6

Extension to six order G-symplectic

general linear methods

G-symplectic general linear methods are especially suitable for the long term inte-

gration of Hamiltonian problems where it is necessary to closely conserve energy,

angular momentum and symplectic behaviour. The expression canonical will be

used interchangeably with G-symplectic when referring to general linear methods.

In Chapter 2 and Chapter 5 we have discussed this in detail.

This chapter deals with 6th order method which is G-symplectic and symmetric.

In Section 6.1 we will discuss the possible layout for the matrices V and G for the

method. This is followed by the Section 6.2, which defines the classes of trees and

rooted trees, stage order and time reversal symmetry. In Section 6.3 we will present

the design requirements for new method and in Section 6.4, the construction will be

presented.

The results derived in this chapter are presented in [29].

109

6.1 The V and G structures

It is known that if the method is G-symplectic, there exists a symmetric matrix G

and a diagonal matrix D such that

G = V ∗GV, (6.1)

DU = B∗GV, (6.2)

DA+ ATD = B∗GB. (6.3)

We will consider the case r = 4, therefore

V = diag(1, ζ,−ζ̂,−1). |ζ | = 1. Im ζ 6= 0. (6.4)

We will use the value ζ = i in the construction of a practical method. It follows

from (6.1) that G is diagonal and, without loss of generality, because we can rescale

the method coefficients if necessary, we can assume

G = diag(1,±1
2
,±1

2
,±1). (6.5)

Note that the factors 1
2

are inserted because this will later simplify notation when

we convert to a real formulation of the method. For the method derived in this

chapter, particular choices for the ± signs are made as G = diag(1,−1
2
,−1

2
, 1) but it

is possible that, for some methods, with a similar design, G = diag(1,−1
2
,−1

2
,−1).

It will be convenient to denote the first row of B by bT and it will then follow from

(6.4), (6.5) and the first column of (6.2) that D = diag(b). The abscissae vector for

the method is equal to η(t1), which for the methods considered in this chapter, is

equal to c = A1. The usual quadrature conditions for a Runge–Kutta method are

bT1 = 1, bTck−1 = 1
k
, k = 2, 3, . . . , p and, for the methods considered here, these

conditions will also hold but with the general linear methods interpretation.

6.2 Trees and rooted trees classes

There are 37 rooted trees of order up to six but these break into equivalence classes

based on the underlying unrooted trees. We will summarize this graph-theoretic

starting point to this discussion by showing in Table 6.1 a list of all trees up to

order six with an index number attached to some of the vertices. The indexed

110

Table 6.1: Trees to order six

Order 1

Order 2

Order 3

Order 4

Order 5 Order 6

1

2

b b b

4 3

b b

b

7 5

b b b b

8 6

b b b

b

b

b

14 9

b b b

b

16 11 10 15

b b b b b

17 12 13

b

b

b

b b b b

b

b b

b

b b b b

b

b b b b b

b b b b b b

I

II

III

IV

V

VI

VII

VIII

IX

X

XI

XII

XIII

XIV

rooted trees, those of order not exceeding five, will be referred to as t1, t2, . . . , t17.

However, the trees of order six will not be allocated a serial number here. Possible

sites for the placement of the root for the order six trees are shown with large circles.

This will provide for 20 distinct rooted trees of order six. The non-rooted trees will

be numbered using Roman numbering I, II, III, IV,

To clarify the entries in Table 6.1, Table 6.2 is also presented. This show the rooted

trees to order five with a reference to the (non-rooted) trees to which they are

related.

In the case of canonical methods, the order conditions have been analyzed in [28].

We will use these conditions but simplified by using enhanced stage order.

The main aim, of deriving a method which is G-symplectic, was shown in [28] to

simplify the order conditions, and hence simplify the construction of the method. If

appropriate assumptions are made concerning the starting method then, as in [69]

for Runge–Kutta methods, all rooted trees with the same underlying tree structure

become equivalent and satisfying the order condition for one of these rooted trees

applies to all members of its equivalent class, assuming that lower order conditions

are satisfied. As for Runge–Kutta methods the superfluous trees can be disregarded

because each of the trees in such a class are automatically satisfied. In Table 6.1

this applies to trees II, V, XI and XIV.

111

Table 6.2: Rooted trees to order five

order trees number

1 I

2 II

3 III

3 III

4 IV

4 V

4 VI

4 V

5 VI

5 VII

5 VII

5 VIII

5 VIII

5 VI

5 VII

5 VII

5 VIII

112

6.2.1 Enhanced stage order

To reduce the number of order conditions that remain to be satisfied it will be an

advantage to require that a condition similar to the C(2) condition for Runge–Kutta

methods is satisfied. For the derivation of the method in this chapter, this will be

coupled with further requirements on the B matrix (6.8), (6.9). In this case, the

C(2) condition is given by (6.6) and (6.7).

A1 = c, (6.6)

Ac = 1
2
c2, (6.7)

B1 = e1, (6.8)

Bc = 1
2
e1. (6.9)

To appreciate the effect of these assumptions, we see that, under appropriate choices

of the starting method, all rooted trees which contain a single terminal vertex at-

tached to any non-terminal vertex can be eliminated from consideration. Extending

this to the non-rooted trees in Table 6.1, we see that trees numbers V, VII, VIII,

X, XII, XIII, XIV can be discarded. The same applies to tree III because the order

conditions associated with rooted tree numbers 3 and 4 are related in two ways

(bTc2 − 1
3
) + (bTAc− 1

6
) = 0, (6.10)

(bTAc− 1
6
) = 1

2
(bTc2 − 1

3
). (6.11)

Equation (6.10) is a consequence of the G-symplectic condition and (6.11) follows

from the C(2) condition. These two equations together imply that each of the two

order conditions related to tree III are satisfied.

6.2.2 Time reversal symmetry

Time-reversal symmetry is as an important attribute of numerical schemes for the

long-term integration of mechanical problems. Furthermore the symmetric general

linear methods performs well over long time intervals. We can define a general

linear method to be symmetric in a similar fashion to a Runge–Kutta method. A

general linear method is symmetric if it is equal to its adjoint general linear method,

where the adjoint general linear method takes the stepsize with opposite sign. But

the symmetry in general linear method is not as simple as for Runge–Kutta method

because the output approximations contain the matrix V , which is multiplied by the

113

input approximations and it could be possible that the inverse matrix V −1 is not

equal to V . For this reason we introduce an involution matrix L and permutation

matrix P such that L2 = P and LV −1L = V .

In particular, because of time reversal symmetry trees with even order can be ignored

because the corresponding conditions will be automatically satisfied. Thus referring

to Table 6.1, we see that trees IV, IX and XI can be discarded.

6.3 Design requirements for sixth order methods

After abandoning some unpromising lines of investigation it seemed to be appro-

priate to impose some assumptions about the structure of a possible sixth order

method.

Structure of the method

We will assume the method has the following form

A U

B V

 =

0 0 0 0 0 1 1
2
iw1 −1

2
iw1 −γ1

a21 a22 0 0 0 1 1
2
iw2 −1

2
iw2 −γ2

a31 a32 a33 0 0 1 1
2
iw3 −1

2
iw3 −γ3

a41 a42 a43 a44 0 1 1
2
iw4 −1

2
iw4 −γ4

a51 a52 a53 a54 0 1 1
2
iw5 −1

2
iw5 −γ5

b1 b2 b3 b2 b1 1 0 0 0

b1w1 b2w2 b3w3 b2w4 b1w5 0 i 0 0

b1w1 b2w2 b3w3 b2w4 b1w5 0 0 −i 0

b1γ1 b2γ2 b3γ3 b2γ4 b1γ5 0 0 0 −1

, (6.12)

114

where wi = αi + iβi, i = 1, 2, . . . , 5.

Symmetry conditions are

α3 = 0

α4 = −α2,

α5 = −α1,

β4 = β2,

β5 = β1,

γ4 = γ2,

γ5 = γ1.

The values in A are found from

aij =

bj(1− αiαj − βiβj + γiγj), j < i,

1
2
bj(1− αiαj − βiβj + γiγj), j = i,

0, j > i.

in accordance with (6.3).

6.4 Derivation of the method

Choose the abscissae vector as c = [0, c2,
1
2
, 1−c2, 1] and the vector b = [b1, b2, b3, b2, b1]

such that the following order conditions are satisfied

bT1 = 1,

bTc2 = 1
3
,

bTc4 = 1
5
.

The choice of c2 must yield a negative coefficient amongst b1, b2, b3 to ensure that

the parasitism growth factors can be eliminated.

Define the 5× 5 symmetric matrix W with elements

wij = αiαj + βiβj − γiγj, i, j = 1, 2, . . . , 5. (6.13)

The method defined by the matrix (6.12) will have the required properties if the

115

following conditions on W are satisfied:

w11 = 1, (6.14)

b1(1− w12) =
1
2
c2, (6.15)

b2(1− w22) =
1
2
c2, (6.16)

wij = w6−j,6−i, (6.17)

(i, j) = (4, 3), (4, 4), (5, 3), (5, 4), (5, 5),

2b1 + b2(2− c2) + b3w33 = 0, (6.18)
i−1∑

j=1

bj(1− wij) +
1
2
bi(1− wii) = ci, i = 3, 4, 5 (6.19)

i−1∑

j=2

bjcj(1− wij) +
1
2
bici(1− wii) =

1
2
c2i , i = 3, 4, 5 (6.20)

Equations (6.14), (6.15) and (6.16), together with (6.19) and (6.20), imply that the

C(2) condition is satisfied. Equation (6.17) can be written as

5∑

i=1

bi(α
2
i + β2

i)−
5∑

i=1

biγ
2
i = 0, (6.21)

which is implied by the parasitism-free requirement. The condition that the two

sums in (6.21) are separately equal to zero will be imposed when W is decomposed

into components arising from the α, β and γ terms. But the immediate aim is to

evaluate W itself. First evaluate w11, w21, w22, w33, w32, w31 from (6.14), (6.15),

(6.16), (6.18), (6.20), (6.19) respectively. The values of wij, i = 4, 5, j = 3, 4, 5, are

then found from (6.17) and finally the first two elements of the last two rows of the

symmetric matrix W are found from (6.20), (6.19).

We will now show that the rank of W cannot exceed 3. This follows because bTW =

bT diag(c)W = 0, which can be verified by detailed calculations. A consequence of

116

this is
5∑

i=1

biαi = 0

5∑

i=1

biβi = 0

5∑

i=1

biγi = 0

5∑

i=1

biciαi = 0

5∑

i=1

biciβi = 0

5∑

i=1

biciγi = 0,

which in turn implies (6.8) and (6.9).

A special case

We will choose c = [0, 1
3
, 1
2
, 2
3
, 1]T leading to bT = [11

120
, 27
40
,− 8

15
, 27
40
, 11
120

] and

W =

1 − 9
11

−14
11

− 83
297

− 39
121

− 9
11

41
81

22
27

209
729

− 83
297

−14
11

22
27

13
8

22
27

−14
11

− 83
297

209
729

22
27

41
81

− 9
11

− 39
121

− 83
297

−14
11

− 9
11

1

,

A =

0 0 0 0 0

1
6

1
6

0 0 0

5
24

1
8

1
6

0 0

19
162

13
27

− 8
81

1
6

0

4
33

19
22

−40
33

27
22

0

117

To recover the vectors α, β, γ from

W = ααT + ββT − γγT,

form the two symmetric matrices Ŵ = T̂ TWT̂ , W̃ = T̃ TWT̃ , where

T̂ =

1
2

0

0 1
2

0 0

0 −1
2

−1
2

0

T̃ =

1
2

0 0

0 1
2

0

0 0 1

0 1
2

0

1
2

0 0

It is found that

Ŵ = α̂α̂T, W̃ = β̃β̃T − γ̃γ̃T,

α̂ =

α1

α2

 , β̃ =

β1

β2

β3

, γ̃ =

γ1

γ2

γ3

,

leading to

Ŵ =

80
729

− 80
297

− 80
297

80
121

so that

α =

4
√
5

27

−4
√
5

11

0

4
√
5

11

−4
√
5

27

and W̃ =

41
121

−163
297

−14
11

−163
297

289
729

22
27

−14
11

22
27

13
8

.

118

Choose γ̃ by the conditions that W̃+γ̃γ̃T has rank 1 and that b1γ̃21+b2γ̃
2
2+

1
2
b3γ̃

2
3 = 0.

This gives

β =
(
65274

√
330−347009

1265902

)−1/2

65274
√
330−347009

1265902

−70518
√
330+318613

3107214

−18285
√
330+162856

460328

−70518
√
330+318613

3107214

65274
√
330−347009

1265902

, (6.22)

γ =
(
5934

√
330−70541

115082

)−1/2

5934
√
330−70541

115082

−23506
√
330−462231

1035738

−18285
√
330−423016

460328

−23506
√
330−462231

1035738

5934
√
330−70541

115082

. (6.23)

119

120

Chapter 7

Numerical experiments

Comparing numerical methods is not an easy task. This is because of the different

designs that are used when implementing these numerical methods. This chapter

presents numerical simulations for the numerical methods constructed in Chapter 3,

Chapter 4 and Chapter 5. The experiments are performed on Hamiltonian problems

and problems with quadratic invariants. The main aim is to study the numerical

behaviour of these methods.

We have used constant step size for implementation purposes and the Newton mod-

ified iteration scheme is used for the implicit stage evaluations. The experiments

presented here are of preliminary nature and intend to illustrate the behaviour of

various methods.

This chapter is designed as follows:

In Section 7.1 we have presented different numerical methods constructed in Chap-

ters 3, 4 and 5. Section 7.2 is about the numerical problems which are used for the

testing of these numerical methods. Section 7.3 deals with the numerical results and

discussions for Chapter 3. Section 7.4 deals with the numerical results and discus-

sions for Chapter 4 and finally in Section 7.5, numerical results and comments are

given for Chapter 5.

121

7.1 Numerical methods

7.1.1 Symplectic effective order five: RKEG5

The main method is

0 0 0 0 0 0

3
5

3
5

0 0 0 0

2
5

4
15

2
15

0 0 0

2
3

− 2
27

−10
27

10
9

0 0

4
5

28
75

4
15

−1
5

9
25

0

19
96

0 25
96

9
32

25
96

,

starting method is

0 0 0 0 0

7
10

7
10

0 0 0

1
2

81
154

− 2
77

0 0

3
10

129
350

3
91

− 33
325

0

− 16
189

5
56

−11
36

65
216

,

the finishing method is

0 0 0 0 0

7
10

7
10

0 0 0

1
2

81
154

− 2
77

0 0

3
10

129
350

3
91

− 33
325

0

16
189

− 5
56

11
36

− 65
216

.

122

7.1.2 Symplectic effective order four method: Symeff43

The main method which is symplectic and has effective order four is given by the

following tableau

0 27
140

76
105

−11
12

0 171
70

− 19
280

−19
8

2
3

6
7

− 95
168

3
8

27
70

− 19
140

3
4

.

The starting and finishing methods are

±1+
√
5

12
±1+

√
5

12

√
5
6

±1+
√
5

6
∓1

6

∓1+
√
5

12
±1+

√
5

6
∓1

3
±1−

√
5

12

±1+
√
5

6
∓1

3
±1−

√
5

6

,

where the starting method is obtained by using ± = + and ∓ = − and the finishing

method is taken as by using ± = − and ∓ = + in the above tableau.

7.1.3 G-symplectic general linear method: G4123

The G-symplectic general linear method with three stages and two outputs is given

by

A U

B V

 =

0 0 0 1 1

−2
3

1
3

0 1 5
3

2
3

−1
6

1
6

1 1
3

1 −3
8

3
8

1 0

1 −5
8

1
8

0 −1

,

123

with,

G =

1 0

0 −1

 , D =

1 0 0

0 −3
8

0

0 0 3
8

, c =

1
4

1
12

3
4

.

The starting method is

0 0 0 0 1

1
3

0 0 0 1

1
69

15
23

0 0 1

− 8389502714541
17536590337664

− 6431381589347
26304885506496

6468387750253
52609771012992

0 1

− 76717
813696

16555
172608

− 261211
5153664

15050336767
306801000012

1

14813
33904

2093
79112

− 19665
214736

− 137004612013
1124937000044

0

.

The finishing method is

0 0 0 0 1

1
3

0 0 0 1

73657
147246

8169
49082

0 0 1

ǎ41 ǎ42 ǎ43 0 1

−39483516397
33753199296

−21949176959
14376252216

72556835
310477632

1258158182698422366360446
510856001853430663190721

1

,

124

with

ǎ41

ǎ42

ǎ43

=

475837122063856242814508098059
3049841390168322097173931516928

2274743067622435465896394035751
910377654965244146006418557803008

− 4178972380495013968454494687
1706424845295677874426276584448

.

7.1.4 Comparison with the Gauss method

We will compare the performance of our new methods, Symeff43 and G4123, with

that of the classical Gauss method with order p = 4. This Gauss method is known

to be symplectic. The classical Gauss method has the Runge–Kutta tableau:

1
2
−

√
3
6

1
4

1
4
−

√
3
6

1
2
+

√
3
6

1
4
+

√
3
6

1
4

1
2

1
2

. (7.1)

7.1.5 Comparison with the classical fifth order method

To study the performance of the new method RKEG5, we will use a classical fifth

order method with six stages. We will use the Kepler problem as a test problem

with a constant step size h. The classical fifth order method is given as

0 0 0 0 0 0 0

1
4

1
4

0 0 0 0 0

1
4

1
8

1
8

0 0 0 0

1
2

0 0 1
2

0 0 0

3
4

3
16

−3
8

3
8

9
16

0 0

1 −3
7

8
7

6
7

−12
7

8
7

0

7
90

0 16
45

2
15

16
45

7
90
.

125

7.2 Test problems

7.2.1 The simple pendulum problem

The equations of motion are defined as

y′1 = − sin(y2), y′2 = y1.

This is based on the Hamiltonian

H =
y21
2

− cos(y2).

We will carry out experiments with this problem using initial values y2 = 1.2 ≈
0.382π, y1 = 0, as a low amplitude case, and as a y2 = 1.76 ≈ 0.560π, y1 = 0 as a

high amplitude case.

7.2.2 The Kepler problem

The Kepler problem describes the motion of two bodies under mutual gravitational

attraction, with equation of motion

y′1 = y3,

y′2 = y4,

y′3 =
−y1

(y21 + y22)
3/2
,

y′4 =
−y2

(y21 + y22)
3/2
.

To obtain an elliptic orbit with eccentricity e ∈ [0, 1), we use initial values

(y1, y2, y3, y4) = (1− e, 0, 0,
√

1+e
1−e

).

The Hamiltonian for this problem is

H = 1
2
(y23 + y24)−

1√
y21 + y22

,

and this should preserved to within narrow bounds.

The second conserved quantity is angular momentum, which is given by

A = y1y4 − y2y3,

126

A series of experiments has been performed using this problem with step size

h = 0.01 and e = 0.3 and e = 0.5 respectively.

7.2.3 The Hénon-Heiles problem

Hénon–Heiles approximated the Hamiltonian, and hence the total energy is given

by

H = 1
2
(y23 + y24) +

1
2
(y21 + y22) + y21y2 − 1

3
y32.

y′1 = y3,

y′2 = y4,

y′3 = −y1 − 2y1y2,

y′4 = −y2 − y21 + y22.

We choose

(y1, y2, y3, y4) = (0, 0,
√
0.3185, 0).

127

b

b

b

b

b

b

b

b

b

b

10−8

10−9

10−10

10−11

10−12

10−13

10−14

10−1.510−210−2.5

h

RKEG5

RK5

slo
pe

=5

Figure 7.1: Global error for the Kepler problem with e = 0.3, h = π
n

7.3 Results and discussions for RKEG5

h n RK5 RKEG5

π
100

100 −7.9876 −8.4555

π
200

200 −9.4868 −9.9794

π
400

400 −10.9888 −11.2999

π
800

800 −12.5028 −12.7194

π
1600

1600 −13.9121 −14.2500

Table 7.1: Logrithm (base 10) of global error for the Kepler problem with e = 0.3

on [0,π).

In order to analyse the outcomes due to effective order, we will compare RKEG5

with RK5. In Figure 7.1, we have compared these methods with stepsize h = π
n

and

for n = 100 : 1600 number of steps for the Kepler problem. It is clearly shown that

128

−1.5 −1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

q1

q2

e=0.1

−1.5 −1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

q1

q2

e=0.5

−1.5 −1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

q1

q2

e=0.3

−2 −1.5 −1 −0.5 0 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

q1

q2

e=0.9

Figure 7.2: Orbit patterns for the Kepler problem with e = 0.1, 0.3, 0.5, 0.9

for RKEG5

method RKEG5 performs better than RK5. Moreover the new method have less

computational cost compared to RK5. The numerical results for these methods are

given in Table 7.1.

The second experiment is to check the orbit pattern by the method RKEG5. We

shall consider different eccentricities e = 0.1, 0.3, 0.5, 0.9 against the same number

of steps n = [10 20 40 80 160 320].

7.4 Results and discussions for Symeff43

In Figures 7.3 and 7.4 we present results for the simple pendulum problem with

initial values y = [0, 1.2]T and y = [0, 1.76]T respectively. In each case h = 0.01.

For Symeff43 method although the value H is not conserved using a symplectic

integrator, we expect H to lie within a narrow band and this is observed in these

results. For comparison, the high amplitude case is repeated but using the fourth

129

n
1 10 102 103 104 105 106

x
1 10 102 103 104

0
10−10

Figure 7.3: The variation in the Hamiltonian for the simple pendulum with initial

value [0, 1.2]T using Symeff43 method with h = 0.01

n
1 10 102 103 104 105 106

x
1 10 102 103 104

0

10−10

2× 10−10

Figure 7.4: The variation in the Hamiltonian for the simple pendulum with initial

value [0, 1.76]T using Symeff43 method with h = 0.01

order Gauss method. The Gauss results, shown in Figure 7.5, show significantly

narrower bands for the H values.

The second test problem is taken as the Kepler problem, two experiments has been

performed using this problem with step size h = 0.01 and e = 0.3 and e = 0.5

respectively.

For this problem, the Symeff43 method preserves angular momentum exactly and

this should be observed in simulations as shown in Figures 7.7 and 7.9. The devia-

tions from the initial value are similar to what would be formed through the growth

of round-off errors in the individual steps.

For the Hénon-Heiles problem The deviation from the initial value of H is shown in

Figure 7.10 for the Symeff43 method.

130

n
1 10 102 103 104 105 106

x
1 10 102 103 104

00

10−11

2× 10−11

Figure 7.5: The variation in the Hamiltonian for the simple pendulum with initial

value [0, 1.76]T using the Gauss method with h = 0.01

n
1 10 102 103 104 105 106

x
1 10 102 103 104

0
10−09

5× 10−09

Figure 7.6: The variation in the Hamiltonian for the Kepler problem with initial

value e = 0.3 using Symeff43 method with h = 0.01

131

n
1 10 102 103 104 105 106

x
1 10 102 103 104

0

−4× 10−14

Figure 7.7: The variation in the angular momentum for the Kepler problem with

initial value e = 0.3 using Symeff43 method with h = 0.01

n
1 10 102 103 104 105 106

x
1 10 102 103 104

0

2× 10−8

Figure 7.8: The variation in the Hamiltonian for the Kepler problem with initial

value e = 0.5 using Symeff43 method with h = 0.01

132

n
1 10 102 103 104 105 106

x
1 10 102 103 104

0

−4× 10−14

Figure 7.9: The variation in the angular momentum for the Kepler problem with

initial value e = 0.5 using Symeff43 method with h = 0.01

n
1 10 102 103 104 105 106

x
1 10 102 103 104

0

4× 10−12

Figure 7.10: The Hénon–Heiles problem solved by the Symeff43 method with h =

0.01

133

n
1 10 102 103 104 105 106

x
1 10 102 103 104

0

4× 10−12

Figure 7.11: The Hénon–Heiles problem solved by the Gauss method with h = 0.01

b

b

b

b

b

b

b

b

b

b

10−5

10−6

10−7

10−8

10−9

10−10

10−11

10−1.510−210−2.5

h

Gau
ss

Sy
m

eff
43

slo
pe

=4

Figure 7.12: Global error for the Kepler problem with e = 0.3

Our comparisons start with a numerical experiment based on Figure 7.11 but with

the Gauss method used instead of the Symeff43 . This case is presented because it is

typical of many similar calculations. We observe that the ability of the new method

to adhere to almost constant Hamiltonian values is inferior to the Gauss method.

A second comparison, based on the Kepler problem, aims to compare accuracy of

the two methods, and, at the same time to verify the order behaviour. The results

displayed in Figure 7.12 confirm that the two methods both show the same fourth

order behaviour, with the Gauss method achieving greater accuracy for this problem.

134

Finally, we remark that, Symeff43 has definite advantages, our experiments have all

been carried out with small problems, but if N were very large, the implementation

costs would become of overwhelming significance. There are three components of

the cost in a Newton type of stage evaluation. These are

(a) the occasional cost of evaluating a current value of the Jacobian matrix

(b) factorization of matrices of the form Is⊗ IN −hA⊗J in preparation for Newton

iterations and

(c) the actual substitutions to evaluate the Newton updates in each iteration.

We will assume that the frequency, and therefore the cost of (a) is similar for the

two methods. As far as (b) is concerned, we have little choice for the Gauss method,

in which s = 2, than to do a full factorization of a 2N × 2N matrix with a cost

equal to a small factor times 8N3 for the new method for which s = 3, if we use

transformations as we recommend, this is reduced to 3N3, or only N3 if parallelism

is available. For (c) the Gauss method would incur a cost of 4N2 in each iteration

and only 3N2 for the new method, when implemented sequentially; reduced further

to N2 in a parallel computer.

135

7.5 Results and discussions for G4123

To illustrate the behaviour of G4123 method, first we consider the simple pendulum

problem. The results are shown in Figures 7.13 and 7.14 respectively for the ampli-

tudes 1.2 and 1.76 for G4123 method.

For G4123 method we can observe that the Hamiltonian is approximately conserved.

This is typical behaviour of parasitism-free G-symplectic general linear methods. For

comparison, again the high amplitude case is repeated by using the Gauss method.

It is clearly observed that the performance of the G4123 method is comparable with

the Gauss method.

Next we consider the Kepler problem and test the efficiency of this method for

e = 0.3 and e = 0.5 respectively.

Again for this problem, the G4123 method performs very well. This method has the

ability to closely conserve the Hamiltonian and angular momentum and is compara-

ble to what we obtained using the implicit Runge–Kutta method based on Gaussian

quadrature. This can be seen in Figures 7.15–7.18.

Lastly we take the Hénon-Heiles problem and observed in Figure 7.19 that the

Hamiltonian varies from its initial values for G4123 method.

Thus the G4123 is much more efficient because the Gauss method is fully implicit

while the A matrix of the G4123 general linear method is lower triangular with only

two non-zero diagonal elements.

136

1 10 102 103 104 105 106
n

0 1 10 102 103 104x

0

−10−12

Figure 7.13: The Pendulum problem solved by the G4123 method with h = 0.01

and y = [0, 1.2]T

1 10 102 103 104 105 106
n

0 1 10 102 103 104x

0

−10−12

Figure 7.14: The Pendulum problem solved by the G4123 method with h = 0.01

and y = [0, 1.76]T

137

n
1 10 102 103 104 105 106

x
0 1 10 102 103 104

0

−10−9

Figure 7.15: The variation in the Hamiltonian for the Kepler problem with h = 0.01

and e = 0.3 solved by the G4123 method

1 10 102 103 104 105 106
n

0 1 10 102 103 104x

0

−10−10

Figure 7.16: The variation in the Hamiltonian for the Kepler problem with e = 0.5,

using G4123 with h = 0.01

138

n
1 10 102 103 104 105 106

x
0 1 10 102 103 104

0

−10−09

Figure 7.17: Variation of the angular momentum for the Kepler problem solved by

the G4123 method with h = 0.01 and e = 0.5

n
1 10 102 103 104 105 106

x
1 10 102 103 104

0

−10−9

Figure 7.18: Variation of the angular momentum for the Kepler problem solved by

the G4123 method with h = 0.01 and e = 0.3

139

n
1 10 102 103 104 105 106

x
0 1 10 102 103 104

0

10−11

Figure 7.19: The Hénon–Heiles problem solved by the G4123 method with h = 0.01

b

b

b

b

b

b

b

b

b

b

10−5

10−6

10−7

10−8

10−9

10−10

10−11

10−1.510−210−2.5

h

Gau
ss

G41
23

slo
pe

=4

Figure 7.20: Global error for the Kepler problem with e = 0.3

140

We aim to compare the accuracy of the two methods, and at the same time want

to verify the order four behaviour. The results given in Figure 7.20 confirms that

the two methods G4123 and Gauss both have the same order behaviour with the

Gauss method slightly greater accuracy for the Kepler problem. Also the numerical

results are given for both methods in Table 7.2.

h Gauss G4123

π
100

−6.3136 −5.3711

π
200

−7.5176 −6.5750

π
400

−8.7216 −7.7791

π
800

−9.9259 −8.9832

π
1600

−11.1303 −10.1873

Table 7.2: Global error for the Kepler problem with e = 0.3 over π.

141

142

Chapter 8

Conclusions and future work

The main aim of this thesis was to build different theoretical approaches to accurate

and efficient numerical methods for studying differential equation systems. More-

over these numerical techniques were for the long term integration of conservative

systems. These are the questions which were explored in this thesis with an empha-

sis on canonical Runge–Kutta methods and more generally on G-symplectic general

linear methods with high order.

The thesis provides an understanding of many different ideas. In Chapter 1 a review

of traditional methods for the numerical solution of ordinary differential equations

was given. Also an introduction to Hamiltonian systems and their underlying prop-

erties for conservative problems was provided. In Chapter 2 this was extended to a

detailed study of numerical methods such as Runge–Kutta methods, linear multi-

step methods and general linear methods.

In Chapter 3 we have provided an introduction to effective order being an impor-

tant concept with many applications. We have derived a fifth effective order explicit

Runge–Kutta method satisfying the C(2) assumption. With this assumption we

have reduced to a smaller set of order conditions for the construction of such me-

thods. It was also observed that the D(1) assumption gives no new generality to

the construction of fifth effective order methods.

In Chapter 4 we have constructed a three stage symplectic Runge–Kutta method

with effective order four. The new method not only have effective order four but are

also symplectic. Thus, it shared the advantages of effective order methods and sym-

plectic methods. Moreover, the coefficient matrix of the new method has only real

eigenvalues and this made it possible to implement the method efficiently. Numerical

143

experiments proved that in terms of the global error behaviour the new method was

comparable to the Gauss method. Experiments with some model problems proved

that the method was able to preserve quadratic invariants over extended time inter-

vals and to closely adhere to energy invariance for Hamiltonians problems. It was

argued that for large N the cost of the Gauss method scales up more rapidly than

this new method.

In Chapter 5 we have investigated the order conditions for G-symplectic general

linear methods using a B-series approach. It was observed that the G-symplectic

structure considerably modified the nature of order conditions, and also discovered

that for G-symplectic methods rooted trees belonging to same tree had equivalent

order conditions and if the tree were superfluous, they were automatically satisfied

and were ignored in a similar way as for Runge–Kutta methods. Another observa-

tion was that the evaluation of the order conditions for G–symplectic general linear

methods tree by tree it was possible to obtain order conditions up to any required

order.

Moreover, a special case of order four methods with V = diag(1,−1) was considered

in detail. It was found that although there were only two order conditions for such

methods, there were additional constraints on a possible starting method. But this

was not a serious handicap because in a constant step size implementation, a compli-

cated starting method does not represent a computational overhead. Furthermore,

the numerical test proved that these methods provide qualitatively correct numeri-

cal results over extended time.

In Chapter 6 a sixth order G-symplectic general linear method was constructed with

no parasitism. This had five stages, two of these were explicit and the remaining

three were diagonally implicit. This method had four output values. Complex num-

ber were chosen for matrices B and V such that the second and third rows of matrices

B and V were complex conjugates of each other. Moreover, for V to have eigenvalues

on the unit circle, we took V = diag(1, ζ,−ζ̂,−1), |ζ | = 1, Im ζ 6= 0 and we used

value ζ = i in the construction of a practical method. Also G = diag(1,−1
2
,−1

2
, 1)

where the factors 1
2

were inserted because to simplify notation when we converted

to a real formulation of the method. We also used C(2) conditions to reduce the

number of order conditions.

There are several open questions we would like to explore. The construction of

a sixth order G-symplectic general linear method was a complicated task and, al-

though a 6245 methods has been constructed. It is not yet known whether or not 6th

order methods with s = 4, might do exist, but without the property of symmetry. It

144

is also not yet known how well these methods will perform with practical problems.

It is very interesting to investigate eighth order general linear methods with the

desired features of G-symplecticity and time reversal symmetry, which are free from

parasitism. These methods are highly desirable for long term integration of Hamil-

tonian systems.

We would like to investigate methods for problems in which y′ = f(y) and also

y′′ = g(y) are given have the potential to be more efficient for stiff problems. It

would be interesting to know if second derivative methods have any useful role in

long term integration for mechanical problems.

145

146

Bibliography

[1] R. Alexander, Diagonally implicit Runge–Kutta methods for stiff ODEs, SIAM

J. Numer. Anal., 14 (1977), pp 1006–1021.

[2] F. Bashforth and J. C. Adams, An attempt to test the theories of capillary

action by comparing the theoretical and measured forms of drops of fluid, with

an explanation of the method of integration employed in constructing the tables

which give the theoretical forms of such drops, Cambridge University, 1883.

[3] G. Benettin and A. Giorgilli, On the Hamiltonian interpolation of near to iden-

tity symplectic mappings with application to symplectic integration algorithms,

J. Statis. Phys., 74 (1994), pp 1117–1143.

[4] K. Burrage, A special family of Runge–Kutta methods for solving stiff differ-

ential equations, BIT Numer. Math., 18 (1978), pp 22–41.

[5] K. Burrage and J. C. Butcher, Stability criteria for Implicit Runge–Kutta

Methods, SIAM J. Numer. Anal., 16 (1979), pp 46–57.

[6] K. Burrage and J. C. Butcher, Non-linear stability of general class of differential

equation methods, BIT Numer. Math., 20 (1980), pp 185–203.

[7] K. Burrage, J. C. Butcher and F. H. Chipman, An implementation of singly-

implicit Runge–Kutta methods, BIT Numer. Math., 20 (1980), pp 326–340.

[8] J. C. Butcher, Coefficients for the study of Runge–Kutta integration processes,

J. Austral. Math. Soc., 3 (1963), pp 185–201.

[9] J. C. Butcher, Implicit Runge–Kutta processes, Math. Comp., 18 (1964), pp

50–64.

[10] J. C. Butcher, A modified multistep method for numerical integration of

ordi nary differential equations, J Assoc. Comput. Mach., 12 (1965), pp 124–

135.

147

[11] J. C. Butcher, On the convergence of numerical solution to ordinary differential

equations. Math. Comp., 20 (1966), pp 1–10.

[12] J. C. Butcher, The effective order of Runge–Kutta methods, Lecture Notes in

Math., 109 (1969), pp 133–139.

[13] J. C. Butcher, An algebraic theory of integration methods, Math. Comp, 26

(1972), pp 79–106.

[14] J. C. Butcher, On the implementation of implicit Runge–Kutta methods, BIT

Numer. Math., 16 (1976), pp 237–240.

[15] J. C. Butcher, A transformed implicit Runge–Kutta method, J. ACM., 26

(1979), pp 731–738.

[16] J. C. Butcher, Diagonally–implicit multi–stage integration methods, Appl.

Numer. Math., 11 (1993), pp 347–363.

[17] J. C. Butcher, Order and effective order, Appl. Numer. Math., 28 (1998), pp

179–191.

[18] J. C. Butcher, General linear methods, Acta Numer., 15 (2006), pp 157–256.

[19] J. C. Butcher, Numerical Methods for Ordinary Differential Equations, Wiley,

second edition, 2008.

[20] J. C. Butcher and P. Chartier, A generalization of singly-implicit Runge–Kutta

methods, Appl. Numer. Math., 24 (1997), pp 343–350.

[21] J. C. Butcher and P. Chartier, The effective order of singly-implicit Runge–

Kutta methods, Numer. Algorithms, 20 (1999), pp 269–284.

[22] J. C. Butcher and D. J. L. Chen, Effective order Diagonally Extended Singly-

implicit Runge–Kutta methods for stiff differential equations, unpublished work.

[23] J. C. Butcher and M. T. Diamantakis, DESIRE: diagonally extended singly

implicit Runge–Kutta effective order methods, Numer. Algorithms., 17 (1998),

pp 121–145.

[24] J. C. Butcher,Y. Habib, A. T. Hill and T. J. T. Norton, The Control of

Parasitism in G-Symplectic Methods, SIAM J. Numer. Anal., in press.

[25] J. C. Butcher and L. L. Hewitt, The existence of symplectic general linear

methods, Numer. Algorithms., 51 (2009), pp 77–84.

148

[26] J. C. Butcher, A. T. Hill and T. J. T. Norton, Symmetric general linear

methods, in preparation.

[27] J. C. Butcher and G. Imran, Symplectic effective order methods, Numer.

Algorithms., (2014), pp 1–19.

[28] J. C. Butcher and G. Imran, Order conditions for G-symplectic methods, Sub-

mitted.

[29] J. C. Butcher and G. Imran, A G-symplectic method with order 6, in prepara-

tion.

[30] T. M. H. Chan, Algebraic structures for the analysis of numerical methods,

PhD. Thesis, University of Auckland, NZ, 1998.

[31] G. J. Cooper, Stability of Runge–Kutta methods for trajectory problems, IMA

J. Numer. Anal., 7 (1987), pp 1–13.

[32] M. Crouzeix, Sur la B-stabilité des méthodes de Runge–Kutta, Numer. Math.,

32 (1979), pp 75–82.

[33] C. F. Curtiss and J. O. Hirschfelder, Integration of stiff equations, Proc. Nat.

Acad. Sci., 38 (1952), pp 235–243.

[34] G. Dahlquist, Convergence and stability in the numerical integration of ordinary

differential equations, Math. Scand., 4 (1956), pp 33–53.

[35] G. Dahlquist, Stability and error bounds in the numerical integration of

ordinary differential equations, Trans. Royal Inst. Techn. Stockholm, Sweden.,

130, 1959.

[36] G. Dahlquist, A special stability property for linear multistep methods, BIT

Numer. Math., 3 (1963), pp 27–43.

[37] G. Dahlquist, Error analysis of a class of methods for stiff nonlinear initial

value problems, Numerical Analysis, Dundee, Lecture Notes in Mathematics,

506 (1976), pp 60–74.

[38] G. Dahlquist, G-stability is equivalent to A-stability, BIT Numer. Math., 18

(1978), pp 384–401.

[39] G. Dahlquist, On one-leg multistep methods, SIAM J. Numer. Anal., 20 (1983)

pp 1130–1138.

149

[40] B. L. Ehle, On Padé approximations to the exponential function and A-stable

methods for the numerical solution of initial value problems, Report 2010

(1969), University of Waterloo, Ontario, Canada.

[41] T. Eirola and J. M. Sanz-Serna, Conservation of integrals and symplectic struc-

ture in the integration of differential equations by multistep methods, Numer.

Math., 61 (1992), pp 281–290.

[42] K. Feng, On difference schemes and symplectic geometry, Proc. 5th Intern.

Symposium on Differential geometry & differential equations, Beijing(1985), pp

42–58.

[43] C. W. Gear, Hybrid methods for initial value problems in ordinary differential

equations, SIAM J Numer. Anal., 2 (1965), pp 69–86.

[44] S. Gill, A process for the step by step integration of differential equations in an

automatic digital computing machine, Proc. Cambridge Philos. Soc., 47 (1951),

pp 515–534.

[45] W. B. Gragg, and H. J. Stetter, Generalized multistep predictor-corrector

methods, J. Assoc. Comput. Mach., 11 (1964), pp 188–209.

[46] Y. Habib, Long-term behaviour of G-symplectic methods, PhD. Thesis, Uni-

versity of Auckland, NZ, 2010.

[47] E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration.

Structure-Preserving Algorithms for Ordinary Differential Equations, Springer,

second edition, 2005.

[48] E. Hairer, Conjugate–symplecticity of linear multistep methods, J. Comput.

Math., 26 (2008), pp 657–659.

[49] E. Hairer and G. Wanner, On the Butcher group and general multivalue me-

thods, Computing (Arch. Elektron. Rechnen), 13 (1974), pp 1–15.

[50] E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration.

Structure-Preserving Algorithms for Ordinary Differential Equations, Springer,

first edition, 2003.

[51] K. Heun, Neue Methoden zur approximativen Integration Differentialglei-

chungen einer unabhäneigen Veränderlichen, Z. Math. Phys., 45 (1900), pp

23–38.

150

[52] A. Iserles, H. Z. Munthe-Kaas S.P. Nørsett, and A. Zanna, Lie-group methods,

Acta Numer., 9 (2000), pp 215–365.

[53] U. Kirchgraber, Multistep methods are essentially one-step methods, Numer.

Math., 48 (1986), pp 85–90.

[54] W. Kutta, Beitrag zur näherungsweisen Integration totaler Differentialglei-

chungen, Z. Math. Phys., 46 (1901), pp 435–453.

[55] F. M. Lasagni, Canonical Runge–Kutta methods, ZAMP., 39 (1988), pp 952–

953.

[56] W. Liniger, A criterion for A-Stability of Linear Multistep Integration Formu-

lae, Computing (Arch. Elektron. Rechnen)., 3 (1968), pp 280–285.

[57] W. Liniger, G. Dahlquist and O. Nevanlinna, Stability of two-step methods for

variable integration steps, SIAM J. Numer. Anal., 20 (1983), pp 1071–1085.

[58] M. Lopez-Marcos, J. M. Sanz-Serna, and R. D. Skeel, Cheap Enhancement of

Symplectic Integrators, D. F. Griffiths and G. A. Watson editors, Numerical

Analysis., (1996), pp 107–122.

[59] W. E. Milne, Numerical integration of ordinary differential equations, Amer.

Math. Monthly., 33 (1926), pp 455–460.

[60] W. E. Milne, A note on the numerical integration of differential equations, J.

Research Nat. Bur. Standards., 43 (1949), pp 537–542.

[61] F. R. Moulton, New methods in Exterior Ballistics, University of Chicago,

1926.

[62] H. Z. Munthe-Kaas K. Engø, A. Marthinsen, Diffman User’s Guide Version

2.0, Department of Informatics, University of Bergen, Norway, 2000.

[63] S.P. Nørsett, Runge–Kutta methods with a multiple real eigenvalue only, BIT

Numer. Math., 16 (1976), pp 388–393.

[64] E. J. Nyström, Über die numerische Integration von Differentialgleichungen,

Acta Soc. Sci. Fennicae., 50 (1925), pp 1–54.

[65] C. Runge, Über die numerische Auflösung von Differentialgleichungen , Math

Ann. 48 (1895), pp 167–178.

151

[66] R. D. Ruth, A canonical integration technique, IEEE Trans. Nuclear Science.,

30 (1983), pp 2669–2671.

[67] J. M. Sanz-Serna. Runge–Kutta schemes for Hamiltonian systems. BIT Numer.

Math., 28 (1988), pp 877–883.

[68] J. M. Sanz-Serna, Symplectic integrators for Hamiltonian problems, Acta

Numer., 1 (1992), pp 243–286.

[69] J. M. Sanz-Serna and L. Abia, Order conditions for canonical Runge-Kutta

schemes. SIAM J Numer. Anal., 28 (1991), pp 1081–1096.

[70] J. M. Sanz-Serna and M. P. Calvo, Numerical Hamiltonian Problems, Chapman

and Hall, first edition, 1994.

[71] H. J. Stetter, Local estimation of the global discretization error, SIAM J

Numer. Anal., 8 (1971), pp 512–523.

[72] D. Stoffer, General linear methods: connection to one step methods and invari-

ant curves, Numer. Math., 64 (1993), pp 395–408.

[73] Y. B. Suris, Preservation of symplectic structure in the numerical solution

of Hamiltonian systems, Numerical Solution of Differential Equations (S. S.

Filippov, ed.) Akad. Nauk SSSR, (In Russian)., (1988), pp 148–160.

[74] Y. B. Suris, Canonical transformations generated by methods of Runge–Kutta

type for the numerical integration of the system x′′ = ∂u
∂x

, Zh. Vychisl. Mat.

Fiz. (In Russian)., 29 (1989), pp 202–211.

[75] Y. F. Tang, The symplecticity of multistep methods, Computers Math. Applic.,

25 (1993), pp 83–90.

[76] R. de. Vogelaere, Methods of integration which preserve the contact transfor-

mation property of the Hamiltonian equations, Report No. 4, Dept. Math, Univ

of Notre Dame, Notre Dame, Ind. 1956.

[77] Hans Van de Vyver, An embedded exponentially fitted Runge-Kutta-Nyström

method for the numerical solution of orbital problems, New Astronomy., 11

(2006), pp 577–587.

[78] D. S. Watanabe and Q. M. Sheikh, One-leg Formulas for Stiff Ordinary Differ-

ential Equations, SIAM J. Sci. and Stat. Comput., 5 (1984), pp 489–496.

152

[79] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press,

first edition, 1965.

153

