Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

• Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
• Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
• You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
PROCESSES OF SEDIMENTATION ON THE
SHOREFACE AND CONTINENTAL SHELF
AND THE DEVELOPMENT OF FACIES
PAKIRI, NEW ZEALAND

Thesis submitted by
Michael John Hilton MA (Hons) (Auck)
in January 1990

for the degree of Doctor of Philosophy in
the Department of Geography at the
University of Auckland
Frontispiece A typical shore-normal echosound record across the shoreface and continental shelf, Walkway transect (08.05.89), Pakiri Bay, New Zealand.
This dissertation presents the results of research of physical and biological processes of sedimentation on the shoreface and continental shelf in Pakiri Bay, on the east coast of the Northland Peninsula, New Zealand. These environments comprise the subtidal portion of the Pakiri sand body.

Sand bodies that are contiguous with unconsolidated sediments of coastal barriers are characteristic of the embayed east coasts of the Auckland and Northland Regions, yet little is known of their geomorphology. Existing models of shoreface and shelf sedimentation afford limited assistance because they were developed in different environments. Factors that distinguish the study area from other coasts include tectonic stability, lack of modern (non-biogenic) sediment inputs, the predominance of currents related to shoaling surface waves, and a sea level stillstand for the last 6,500 years.

The model of sedimentation developed is derived from intensive field investigation of the morphology, sedimentology and ecology of the Pakiri Bay shoreface and continental shelf. Investigations of sediment transport entail interpretations of the sediments and sedimentary structures of the seabed, application of existing sediment transport models and the analysis of morphodynamic data.

The geomorphology of the Pakiri sediment body is characterized by a regular pattern of morphologic components and associated sediment types. Alongshore variation in these characteristics is generally minor compared with shore normal variation. The shoreface comprises a curvilinear concave surface, that extends offshore from the alongshore bar approximately 1500 m, to water depths of about 22 m. The inner continental shelf comprises an equally curvilinear, mostly convex, surface that slopes seaward to the relatively flat middle continental shelf. Secondary morphological variations result from the presence of large-scale bedforms on the middle continental shelf.
and landward margin of the inner shelf.

The sediments of the shoreface are fine, very well sorted quartz-feldspathic sands of 2 φ mean grain size. The inner shelf sediments grade offshore from a medium sand to very coarse sands and fine gravels (mean grain size 0.0 to 0.5 φ). In contrast the sediments of the mid shelf are very fine sands (mean grain size 2.0 to 2.5 φ), with a mud content of 5 to 10 percent.

Carbonate skeletal debris, derived mostly from molluscs, comprises a significant proportion of inner and mid shelf sediments. The concentration of carbonates in the sediments increases offshore from 0 to 5 percent on the shoreface to 30 percent at the base of the inner shelf. The carbonate fraction of the sediments is size graded on the inner shelf and mid shelf in accordance with the grain size characteristics of the non-carbonate fraction.

A model of the distribution and abundance of living macrobenthos (mostly of the phyla mollusca) is derived from benthos surveys in Pakiri Bay. Species that are diagnostic of high and low energy environments are characteristic of the shoreface and middle continental shelf respectively. The pattern of carbonate concentration in the sediments of the subtidal sediment body does not correlate with the pattern of modern biogenic production. Highest levels of modern shell production occur across the shoreface, whereas carbonate concentrations are greatest at the base of the inner shelf. Hypotheses are advanced to explain this dichotomy.

The geomorphology of the shoreface and inner continental shelf is seen as a response to modern processes of sedimentation. Sediment transport occurs primarily in response to currents related to shoaling waves. Two process regimes are recognized. During typically calm (swell wave) conditions the fine sands of the shoreface may be transported landward as a result of an onshore mass transport current. During severe storm events this process may transport bed sediments landward across the inner shelf and middle
continental shelf, forming the characteristic sediment and morphologic patterns observed. However, during such events this onshore flow is probably counteracted by return flows that are able to transport eroded foreshore and inshore sediments seaward.

Key words: Sedimentation, shoreface, continental shelf, wave dominated, carbonate sedimentation, sediment body, facies.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>xx</td>
</tr>
</tbody>
</table>

1 SHALLOW MARINE SEDIMENTATION

1.0 Introduction and rationale 1
1.1 Research objectives and thesis organization 4
1.2 Characteristics of the Pakiri coast 6
 1.2.1 Geology 8
 1.2.2 Sedimentology 12
 1.2.3 Fluvial sediment inputs 13
 1.2.4 The marine environment 14
 1.2.5 Summary 21
1.3 Variations in shelf sedimentation, New Zealand 21
1.4 Research methodology 24

2 INTERPRETATIONS OF SHALLOW MARINE SEDIMENTATION

2.0 Concepts of shoreface and shelf sedimentation 27
2.1 The origin of facies in marine environments 28
2.2 Classification of shoreface and shelf profiles and sediments 31
2.3 Concepts of onshore-offshore sediment transport 33
2.4 Onshore-offshore sediment transport by storm waves 34
2.5 Onshore-offshore sediment transport by shoaling waves 37
2.6 Investigations and interpretations of sediment texture on the shoreface and continental shelf 40
SEDIMENT PATTERNS OF THE PAKIRI SHOREFACE AND CONTINENTAL SHELF

3.0 Introduction 45
3.1 Sampling strategy 45
3.1.1 Sample analysis and interpretation 47
3.2 Grain size characteristics of beach, shoreface and continental shelf sediments 49
3.2.1 Variation in mean grain size, sorting and fines 49
3.2.2 Intrastation variations - Williams transect 56
3.2.3 Sediment types and morphological associations 58
3.2.4 Interpretation of raw grain size data 63
3.2.5 Alongshore variation in grain size characteristics 66
3.3 Variations in sediment composition 73
3.3.1 Distribution of carbonate material 73
3.3.2 Variations in mineralogy 81
3.4 Implications for sediment transport 82
3.5 Conclusions 85

CARBONATE SEDIMENTATION IN PAKIRI BAY

4.0 Introduction 89
4.1 General concepts of carbonate sedimentation 90
4.2 Carbonate sedimentation on the east coast of Northland 91
4.3 Investigations of living Pakiri Bay macrobenthos 93
4.3.1 Sampling design 93
4.3.2 Sampling technique and treatment of samples 94
4.3.3 Cape Rodney to Okakari Point (rocky coast) benthos 96
4.3.4 Comparison of Pakiri Bay and rocky coast phyla 97
4.3.5 Species composition, abundance and distribution 98
4.4 Modern shell production
4.5 Comparison of the patterns of modern shell production and carbonate concentration in the sediments of Pakiri Bay
4.6 Environmental interpretation of Pakiri Bay macrobenthos
4.7 Summary and conclusions

5 MORPHOLOGY AND MORPHODYNAMICS OF THE PAKIRI SHOREFACE AND CONTINENTAL SHELF

5.0 Introduction
5.1 Survey techniques
 5.1.1 Onshore and echosound survey techniques
 5.1.2 Side-scan sonar technique
 5.1.3 Sub-bottom sonar technique
5.2 Morphologic components of the study area
 5.2.1 Shoreface
 5.2.2 Inner continental shelf
 5.2.3 Hummocks
 5.2.4 Middle continental shelf
5.3 Alongshore variations in subtidal and coastal geomorphology
5.4 Coastal, shoreface and inner shelf stability
 5.4.1 Coastal dunes
 5.4.2 Beach and inshore morphodynamics
 5.4.3 Historical fluctuations in shoreline position
 5.4.4 Evidence of shoreface and inner shelf morphodynamics
5.5 Investigation of sub-strata
5.6 Conclusions

6 THE NATURE AND HYDRAULIC SIGNIFICANCE OF BEDFORMS ON THE SHOREFACE AND CONTINENTAL SHELF, PAKIRI BAY

6.0 Introduction
6.1 Hydraulic interpretation of bedforms
 6.1.1 Method
6.2 Problems associated with the interpretation of bedforms
6.3 Survey techniques
 6.3.1 Remote controlled photographic system
6.4 Results
 6.4.1 Results of photographic and side-scan bedform surveys
 a. Middle continental shelf
 b. Inner continental shelf
 c. Shoreface
6.5 Discussion
6.6 Application of existing hydraulic models
 6.6.1 Results
6.7 Conclusions

7 HYDRAULIC CONDITIONS AND A MODEL OF SEDIMENTATION AND FACIES DEVELOPMENT IN PAKIRI BAY

7.0 Introduction
7.1 Tidal and long period (non storm) currents in Pakiri Bay
 7.1.1 Aanderaa current meter deployment
 7.1.2 Sediment transport in Pakiri Bay due to tidal and residual currents
7.2 Wave induced currents
 7.2.1 Wave transformations in the Hauraki Gulf and study area
 7.2.2 Bed disturbance by oscillatory currents
 7.2.3 Sediment transport by wave-induced currents
 7.2.4 Infragravity and internal waves
7.3 A model of shoreface and continental shelf sedimentation
7.4 Discussion
 a. Sediment characteristics
 b. Morphology
 c. Bedform configurations
7.5 Conclusions

8 SUMMARY AND CONCLUSIONS

8.0 Introduction
8.1 Morphological characteristics of the Pakiri sediment body
8.2 Non carbonate sediment patterns
8.3 Patterns of carbonate sedimentation
8.4 The hydraulic regime in Pakiri Bay
8.5 An interpretation of sedimentation in Pakiri Bay
8.6 Comparison with other models of shoreface and continental shelf sedimentation
8.7 Implications for the management of human activities
8.8 Future research

REFERENCES

APPENDICES
A Sampling technique
B Offshore navigation and station location
C Laboratory techniques
D Location and reduced levels of Pakiri-Mangawhai datums
E Summary of sediment analyses
F Method of benthos sampling
G Systematics and relative abundance of living bivalves and gastropods dredged from Pakiri Bay
H Species composition and abundance: Initial surveys, Rocky coast and Pakiri Bay
I Offshore echosound survey technique and sources of error
Specifications of the Klein side-scan sonar system and ORE sub-bottom profiler as deployed at Pakiri 307
Historical shoreline fluctuations, Pakiri Bay 308
Operating parameters of the remote-controlled photographic system 314
Characteristics of ripples derived from photographic images and side scan sonar 315
Aanderaa current meter deployment, Pakiri Bay 322
Wave transformations in Pakiri Bay due to shoaling and refraction 326
Management of the New Zealand coastal sand mining industry: Some implications of a geomorphic study of the Pakiri coastal sand body. 341
<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Sea state observations, Goat island, 16-23 July 1978</td>
<td>18</td>
</tr>
<tr>
<td>3.1</td>
<td>Association between morphologic components and sediment types</td>
<td>66</td>
</tr>
<tr>
<td>4.1</td>
<td>Species associations, densities and environmental circumstances</td>
<td>104</td>
</tr>
<tr>
<td>4.2</td>
<td>Species composition of (lower) inner shelf, carbonate rich sediments, Pakiri Bay</td>
<td>112</td>
</tr>
<tr>
<td>5.1</td>
<td>Pakiri offshore surveys</td>
<td>121</td>
</tr>
<tr>
<td>5.2</td>
<td>Pakiri beach surveys (1978 to 1988)</td>
<td>122</td>
</tr>
<tr>
<td>5.3</td>
<td>Location and dimensions of hummocks</td>
<td>133</td>
</tr>
<tr>
<td>6.1</td>
<td>Ripple characteristics and derived flow conditions for representative continental shelf ripples</td>
<td>173</td>
</tr>
<tr>
<td>6.2</td>
<td>Reported occurrences on the inner shelf of coarse bedded, shore normal orientated rippled depressions</td>
<td>192</td>
</tr>
<tr>
<td>6.3</td>
<td>Computation of wave heights (H) required to generate U_m (derived from inner shelf megaripples) at various combinations of depth (h) and wave period (T) using Airy wave theory</td>
<td>195</td>
</tr>
<tr>
<td>6.4</td>
<td>Computation of wave heights (H) required to generate U_m (derived from middle shelf megaripples) at various combinations of depth (h) and wave period (T) using Airy wave theory</td>
<td>196</td>
</tr>
<tr>
<td>7.1</td>
<td>Aanderaa current meter summary statistics of the edited raw data set</td>
<td>205</td>
</tr>
<tr>
<td>7.2</td>
<td>Critical threshold velocities under unidirectional currents</td>
<td>210</td>
</tr>
<tr>
<td>7.3</td>
<td>Calculation of mass transport velocities under calm, storm and severe storm waves</td>
<td>217</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Location of the study area in (a) the Outer Hauraki Gulf and (b) relative to the major morphologic components of the continental shelf</td>
<td>7</td>
</tr>
<tr>
<td>1.2</td>
<td>Characteristic morphologic components of the (a) coast and (b) coast, shoreface and continental shelf, Pakiri Bay</td>
<td>9</td>
</tr>
<tr>
<td>1.3</td>
<td>Geology and bathymetry of the Pakiri-Mangawhai coast and shore normal dune, shoreface and inner shelf sections</td>
<td>10</td>
</tr>
<tr>
<td>1.4</td>
<td>Areal extent of the Pakiri dune field, and drainage pattern of the Poutawa and Pakiri stream catchments</td>
<td>11</td>
</tr>
<tr>
<td>1.5</td>
<td>(a) Location of wave rider buoy measurements, frequency of (b) wave directions, (c) significant wave heights, (d) wave periods and (e) percentage occurrence of height-period combinations</td>
<td>15</td>
</tr>
<tr>
<td>1.6</td>
<td>(a) Southwest Pacific synoptic meteorological situation, 10-28 September 1985, showing blocking pattern, (b) wind speed, daily wind run and direction, and (c) wave surge</td>
<td>17</td>
</tr>
<tr>
<td>1.7</td>
<td>Percentage of the total time that waves having significant heights greater than given values persisted for given times, or longer, Hicks Bay, East Cape</td>
<td>19</td>
</tr>
<tr>
<td>1.8</td>
<td>Sums of the monthly means of wave surge, 1968-1987, Leigh Marine Laboratory</td>
<td>20</td>
</tr>
<tr>
<td>2.1</td>
<td>Interrelationships of environmental factors and their control of coast sedimentary facies</td>
<td>30</td>
</tr>
<tr>
<td>2.2</td>
<td>Interpretations of present-day shelf profiles and sediment covers</td>
<td>32</td>
</tr>
<tr>
<td>2.3</td>
<td>Potential directions of sediment transport in response to onshore, offshore and alongshore coastal and shelf currents</td>
<td>35</td>
</tr>
</tbody>
</table>
2.4 Representative shoreface and continental shelf profile showing normal arrangement of inner nearshore, outer nearshore, inner shelf and mid shelf sediment types, New South Wales shelf

3.1 Location of samples obtained during initial survey of Pakiri Bay sediments

3.2 Location of Pakiri Bay beach and transect samples

3.3 Variation in (a) mean grain size and sorting, (b) size grades and (c) percent mud across (d) Walkway profile

3.4 Representative grain size frequency distributions, Williams transect (samples Z 1-59)

3.5 Variation in (a) mean grain size, (b) sediment grades and (c) percent mud across (d) Okakari, Matheson and Brown transects

3.6 Variation in (a) mean grain size, (b) size grades and (c) percent mud across (d) Williams, Couldrey, Walkway and Gravel transects

3.7 Variation in (a) mean grain size, (b) sediment grades and (c) percent mud across (d) Williams transect

3.8 Scatterplots of mean grain size against standard deviation (phi units), for shoreface, inner shelf and mid shelf sediments

3.9 Scatterplot of mean grain size against standard deviation (phi units), Okakari transect

3.10 Scatterplots of mean grain size versus standard deviation, Williams transect, for (a) multiple samples (depth increments) and (b) means of station means and standard deviations

3.11 Photographs of sediment samples obtained from Walkway transect, illustrating the nature of the transition across the textural boundaries that delineate the shoreface, inner shelf and middle continental shelf

3.12 Photographs of sediment samples obtained from across the inner continental shelf, Walkway transect
3.13 Interpretation of (a) morphologic components and (b) sediment types across a representative coastal and offshore transect
3.14 Variation in the percent weight of sediment present in 0.0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 phi fractions, Williams transect
3.15 Isolines of mean grain size, Pakiri Bay
3.16 Isolines of standard deviation, Pakiri Bay
3.17 Isolines of fines concentration, Pakiri Bay
3.18 Variation in (a) mean grain size, (b) size grades and (c) percent mud across (d) Okakari transect
3.19 Variation in the proportion of carbonate material in the sediments across Walkway, Gravel, Couldrey, Brown, Williams and Matheson transects
3.20 Mean carbonate concentrations across Williams transect, derived from multiple sampling at each station
3.21 Isolines of carbonate concentration, Pakiri Bay
3.22 Photographs of bed sediments across Goat Island Bay transect, showing the predominance of carbonate sediment in samples from the inner shelf adjacent to Cape Rodney to Okakari Point rocky coast
3.23 Variation in mean grain size for carbonate-digested and untreated samples and percent carbonate material across Walkway transect
3.24 Variation in mean grain size for carbonate-digested and non-digested sediments, and percent carbonate material across Okakari transect
3.25 Variation in the proportion of heavy minerals in the 1, 2 and 3 phi fractions of samples obtained across Walkway and Gravel (2 phi) transects
3.26 Sediment types of the Pakiri Bay sediment body and adjoining middle continental shelf
4.1 Location of initial benthos surveys (Te Arai, Couldrey, Goat Island and Cape Rodney transects) and subsequent Pakiri Bay transect surveys (Williams, Walkway and Matheson)
4.2 (a) Summary of distribution and abundance of the most commonly captured macrobenthos, (b) variation in sediment size grades and (c) sample locations and variation in percent mud, across Williams transect, June 1986 and March 1987

4.3 (a) Summary of distribution and abundance of the most commonly captured macrobenthos, (b) variation in sediment size grades and (c) sample locations and variation in percent mud, across Matheson transect, 9 March 1987

4.4 (a) Summary of distribution and abundance of the most commonly captured macrobenthos, (b) variation in sediment size grade and (c) sample locations and variation in percent mud, across Walkway transect, June 1986 and March 1987, and May 1989

4.5 (a) Interpretation of the relative abundance and distribution of the most commonly captured macrobenthos, showing the distribution of recognized associations, of species and (b) morphological and sedimentological variations across a representative shore normal profile

4.6 (a) Variation in the percentage of the total shell weight at each station contributed by the most commonly captured species and (b) estimates of the total (live) shell weight at each station across (c), Williams transect

4.7 Variation in (a) estimated (live) shell weight and, (b) carbonate content of the sediments, across (c) Williams transect (12.03.87)

4.8 (a) Offshore variation in (live) shell weight (March 1987, average of three transects) and (b) percent carbonate concentration in sediments

5.1 Area of seabed covered by (a) side-scan and sub-bottom sonar transect surveys (15 March 1987) H.M.S. Tui, and (b) sub-bottom transect surveys (April 1986)
5.2 Comparison of 1986 shore normal profiles, Te Arai Point to Cape Rodney, showing seafloor slope angles at 500 m intervals

5.3 Superimposition of 1987 Pakiri Bay shoreface and continental shelf profiles

5.4 Reproduction of the inner continental shelf segment of a shore normal echosound profile, Walkway profile, showing sequence of contributory convexities

5.5 Segments of the Pakiri Bay transect profiles showing the transition zone between the shoreface and the inner continental shelf, and the location of minor convexities

5.6 Segments of the Pakiri Bay transect profiles, showing the transition zone between the inner and middle continental shelf, and location and geometry of the hummocks

5.7 Interpretation of side-scan sonar record, showing the transition from mid shelf to inner continental shelf sediment types (station 1728-1734)

5.8 Interpretation of side-scan sonar record of the area of contact between the inner shelf and mid shelf sediment types, showing the presence of large-scale bedforms (hummocks)

5.9 Interpretation of side-scan sonar record showing large scale bedforms (mounds) on the middle continental shelf

5.10 Photograph of Pakiri Bay in moderate wave conditions illustrating the continuity of the alongshore trough and bar system

5.11 Excursion distance analysis of a time series of beach surveys (1978-1988), Brown transect

5.12 Comparison of 1978 and 1988 beach surveys, Pakiri and Mangawhai Bay transects

5.13 Comparison of 1964 RNZN fair chart and 1987 echosound surveys, Pakiri Bay transects
5.14 Superimposed plots of (a) 1978 and (b) 1987 shoreface profiles, showing presence of convex bulge 250 to 750 m offshore on 1978 profiles, and characteristic concave geometry of the shoreface (1987 profiles)

5.15 Excursion distance analysis of a 10 year time series of foreshore, inshore and shoreface echosound surveys, Brown transect, Pakiri Bay

5.16 Comparison of 1978 (Auckland Regional Water Board) and 1987 inshore and shoreface echosound surveys, Brown transect

5.17 (a) Comparison of five echosound profiles, Walkway transect (1964-1989), and (b) superimposition of 1986-1989 profiles

5.18 Interpretations of sub-bottom sonar records (08.04.86), Pakiri Bay transects

5.19 Reproduction of a segment of ORE sub-bottom record, Walkway transect (08.04.86), showing the presence of a strong reflector beneath the juncture of the inner shelf and mid shelf

5.20 Sub-bottom sonar record, Couldrey transect, showing the presence of a strong reflector below the seaward margin of the alongshore bar

6.1 (a) Morphodynamically important parameters of waves, wave motion and wave-formed ripples, and (b) schematic representation of the chief morphological features of transverse bedforms

6.2 Velocity thresholds for grain movement and sheet flow of quartz sand in water

6.3 (a) Plot of ratio of ripple spacing to grain size against ratio of orbital diameter to grain size and (b) classification of ripples

6.4 Location of transect photo stations and side-scan sonar survey, Pakiri Bay.

6.5 Remotely triggered underwater photographic system
6.6 Normal (a) and wide-angle (b) lens images of the middle continental shelf seabed (type N configuration), Brown transect and Williams transect, respectively

6.7 Side-scan sonar record of rippled bands of relatively coarse sediment on the middle shelf

6.8 Wide-angle lens view of rippled bed (configuration Ri), inner shelf, Williams transect

6.9 Location and orientation of ripples (λ>0.50 m) observed during photographic survey

6.10 Sections of side-scan sonar record showing (a) large ripples and megaripples and (b) alongshore pattern of rippled (coarse) and unrippled (fine) sediments

6.11 Alongshore side-scan sonar record (a) and seabed profile (b) showing pattern of alongshore convexities and associated fine and coarse sediments

6.12 Wide angle view of lattice-type (Lat) bed lower inner shelf bed configuration, Gravel transect

6.13 Example of minor irregular topography (Mit), shoreface bed configuration, Williams transect

6.14 Interpretation of photographic and side-scan bedform data, showing alongshore continuity of the major bed configurations identified

6.15 Combinations of wave height and water depth that will generate sheetflow of 0.250 mm quartz sand ($U_m = 100$ cm s$^{-1}$) under waves of different period

7.1 (a) Location of intended (site 1) and unintended (site 2) current meter deployments, Pakiri Bay, and (b) equivalent location of deployments on Brown profile

7.2 Aanderaa current meter deployment (site 1) - speed frequency distribution and the percentage of time each class is exceeded

7.3 Time series of the (a) onshore-offshore velocity components and (b) alongshore velocity component of the Aanderaa current meter record, (c) simultaneous water level recording and (d) wave surge
7.4 Current directions and speeds, site 1 and site 2, Pakiri Bay

7.5 Summary of marine observations, Aanderaa site 1, Pakiri Bay, showing time series of the (a) alongshore velocity component from low-passed and sub-tidal data, (b) onshore-offshore velocity components and (c) speed values for the low-passed data with directional stick plot

7.6 Variation in maximum orbital velocity and grain size thresholds across a typical offshore profile, Pakiri Bay, under (a) modal and (b) storm waves

7.7 Maximum grain size capable of being disturbed by 1.5 to 5.0 m waves across a representative offshore profile, Pakiri Bay

7.8 Model of sediment transport across the shoreface and continental shelf under (a) calm and (b) storm wave conditions
ACKNOWLEDGEMENTS

I am grateful for the help and assistance of a number of people and organizations who have contributed to the completion of this thesis.

The research has been funded by the National Water and Soil Conservation Authority and subsequently supervised by the Department of Scientific and Industrial Research.

I thank Professor Roger McLean for initiating this project and for his counsel in the preparation of the thesis. I am grateful to my supervisor, Dr Kevin Parnell, for his continued interest in my work, and his guidance towards its completion.

Dr Bill Ballantine, of the Leigh Marine Laboratory, has been a source of ongoing encouragement and enthusiasm. I appreciate very much his contribution to my understanding of the marine environment. I appreciate also my discussions with Dr Peter Hoskings of the Department of Geography, and Professor Sandy Harris of the Leigh Marine Laboratory, University of Auckland.

I am grateful also to the Scientist in Charge (for much of my stay at the Leigh Laboratory) Dr Bob Creese, for extending to me the use of the facilities of the Laboratory.

I am indebted to Mr Jo Evans and Mr Marty Kampman, Senior Technical Officers of the Leigh Marine Laboratory, for their expert technical assistance, as well as for their patience and companionship. I am thankful also for the effort expended in the field on my behalf by Mr Nick Osborne, Technician, Department of Geography, University of Auckland.

The Defence Scientific establishment of the Royal New Zealand Navy kindly cooperated in undertaking a side-scan sonar survey in Pakiri Bay. I am grateful for the assistance of Mr Ian Rumble and Mr
George Crooke in particular.

The assistance of the staff of the New Zealand Forest Service (Mangawhai State Forest) in gaining access to the coastal datums is gratefully acknowledged. In this respect I am also thankful to the landowners of the Pakiri coast whose cooperation was much appreciated, and in particular Mr Keith Collier, Mr John Matheson, Mr and Mrs Greenwood and Mr Bud Russel.

The Auckland Regional Water Board provided beach and offshore survey data. The patient assistance of Mr Ian Smith, Chief Surveyor, Auckland Regional Council, is gratefully acknowledged.

Professor Alec Kibblewhite provided an ORE sub-bottom profiler and sea level recorder for the purpose of this investigation. Thanks also to Mr Percy Pearce, Senior Technical Officer, Department of Physics, University of Auckland, for his assistance with the interpretation of the records.

Ms Sarah Manning has been of incalculable value in the production stages of this thesis. My sincere thanks. Thanks also to Ms Brigette O’Rourke for help with editing. Finally, thanks to my family, colleagues and remaining friends for their interminable patience and support.