

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

Agrobacterium-mediated gene transfer into kiwifruit

Bart-Jan Janssen

Department of Cellular and Molecular Biology University of Auckland

> Thesis submitted in fulfilment of the requirements for the degree of

> > Doctor of Philosophy

August, 1991

UNIVERSITY OF AUCKLAND LIBRARY BIOLOGY THESIS 92-2

ويو رومن المراجع المراجع

Abstract

A system has been developed to aid in the establishment of Agrobacterium-mediated transformation for new plant species. A series of binary vectors have been constructed that express a chimaeric β -D-glucuronidase (GUS) gene in plants cells but not in bacterial cells. This feature allows GUS activity from transformed plant cells to be assayed in the presence of Agrobacterium.

Preliminary experiments examined the expression of these chimaeric GUS genes in transformed petunia leaf discs. GUS expression was detectable 2 days after inoculation, peaked at 3 - 4 days and then declined; if selection was imposed expression increased again after 10 - 14 days. The amount of expression observed 4 days after inoculation correlated well with stable integration as measured by kanamycin resistance, hormone independence, and gall formation. Histochemical staining of inoculated leaf discs confirmed the transient peak of GUS expression 3 - 4 days after inoculation. Surprisingly, GUS expression was concentrated in localized zones on the circumference of the disc; within these zones essentially all the cells appeared to be expressing GUS. These results suggest that the frequency of gene transfer from *Agrobacterium* is extremely high within localized regions of the petunia leaf explants, but that the frequency of stable integration is several orders of magnitude lower.

A reliable Agrobacterium-mediated transformation system has been established for kiwifruit (Actinidia deliciosa var. deliciosa cv. Hayward) by using transient expression of GUS to monitor gene transfer frequencies. In vitro culture of kiwifruit plants and conditions for regeneration of plants from leaf discs have been established. Several factors were found to improve gene transfer frequencies in kiwifruit: (i) healthy actively growing source tissue; (ii) the use of Agrobacterium strain A281; (iii) the presence of a layer of moistened filter paper between the leaf explants and the cocultivation media; and (iv) the presence of 20 μ M acetosyringone in both the bacterial culture media and in the cocultivation media. Pre-culture of leaf explants significantly inhibited gene transfer, particularly at the cut edge of the explants.

Using the optimized transformation system, at least one transgenic plant can be regenerated from each leaf inoculated. Stable transformation frequencies have been shown to vary significantly between different binary vectors. Phenotypic, PCR, and Southern analysis has confirmed the presence of stably integrated T-DNA in several transgenic kiwifruit plants.

Table of Contents

Contents	i
Acknowledgements	vii
Abbreviations	ix
Chapter 1 Introduction	1
1.1 The introduction of foreign DNA into plants	1
1.2 Kiwifruit	3
1.3 Plant gene transfer systems	5
1.3.1 Agrobacterium-mediated gene transfer	5
1.3.2 Free-DNA delivery	7
1.3.3 Microprojectile-mediated gene transfer	7
1.3.4 Viral vectors	9
1.3.5 Summary	9
1.4 The molecular biology of Agrobacterium-mediated gene transfer	10
1.4.1 Signal perception	11
1.4.2 Binding of Agrobacterium to plant cells	13
1.4.3 Generation of the transferred DNA	14
1.4.4 Transfer of the T-DNA complex	16
1.4.5 Other virulence related loci	17
1.4.6 Integration of the T-DNA	17
1.4.7 The development of Agrobacterium-mediated gene transfer vectors	18
Cointegrate vectors	18
Binary vectors	19
Plant expressible marker genes	20
Expression of the marker gene	20
1.5 The aim of this research	21

i

Chapter 2 Materials and methods	23
2.1 Bacterial strains	23
2.2 Plant species	24
2.3 Antibiotics	24
2.4 Buffers and solutions	24
2.5 Oligonucleotides	25
2.6 Enzymes and radiochemicals	26
2.7 Bacterial growth media	26
2.7.1 E. coli growth media	26
2.7.2 Agrobacterium growth media	26
2.8 Plant growth media	26
2.8.1 Kiwifruit growth media	26
2.8.2 Petunia growth media	27
2.8.3 Tomato suspension media	27
2.9 Manipulation of DNA	27
2.9.1 Plasmid DNA extraction	27
2.9.1.1 Alkaline lysis extraction	27
2.9.1.2 CTAB extraction	28
2.9.1.3 Small scale plasmid preparation	28
2.9.1.4 Preparation of plasmid DNA from Agrobacterium	28
2.9.1.5 Purification of plasmid DNA on CsCl-Ethidium bromide gradients	28
2.9.2 Preparation of kiwifruit genomic DNA	29
2.9.2.1 Purification of genomic DNA by sucrose gradient centrifugation	29
2.9.3 Agarose gel electrophoresis	30
2.9.3.1 Isolation of DNA fragments by electroelution	30
2.9.4 Restriction endonuclease digestion of DNA	30
2.9.5 Filling uneven restriction ends with T4 DNA polymerase	31
2.9.6 Dephosphorylation of DNA	31
2.9.7 Ligation of DNA fragments	31
2.9.8 DNA Sequencing	32
2.9.9 Polymerase chain reaction (PCR)	32
2.9.10 Southern analysis	32
2.9.10.1 Transfer	32
2.9.10.2 Digoxygenin labelling of probe DNA	33
2.9.10.3 Hybridization and washing procedures	33
2.9.10.4 Detection of hybridized probe	33
2.9.10.5 Removal of probe and reuse of membranes	34
2.10 Manipulation of bacteria	34

2.10.1 Bacterial transformation	34
2.10.1.1 Preparation of competent cells	34
2.10.1.2 Transformation	35
2.10.2 Screening of bacteria for expression of laca	35
2.10.3 Tri-parental mating	35
2.11 Plant Growth conditions	35
2.11.1 Surface sterilization of plant material	36
2.11.2 Establishment of in vitro stocks of kiwifruit	36
2.11.3 Maintenance of in vitro stocks of kiwifruit	36
2.11.4 Petunia growth conditions	36
2.11.5 Tomato suspension cultures	37
2.12 Transformation of petunia	37
2.13 Agrobacterium-mediated transformation of kiwifruit	38
2.14 Microprojectile-mediated gene transfer into kiwifruit	39
2.15 GUS assays	40
2.15.1 Fluorescent GUS assay	40
2.15.2 Histochemical GUS assay	40
2.16 Software	41
Chapter 3 Construction and preliminary characterization	
of GUS expression vectors	43
3.1 Introduction	43
3.2 Construction of GUS expression vectors	43
3.2.1 pKIWI100 and pKIWI101	44
3.2.2 pKIWI113 and pKIWI114	47
3.3 Binary vector construction	47
3.3.1 pKIWI103 and pKIWI104	47
3.3.2 pKIWI105 and pKIWI106	47
3.3.3 pKIWI109	48
3.3.4 pKIWI110 and pKIWI111	49
3.4 Transfer of binary vectors to Agrobacterium strains	50
3.5 Expression of the reporter gene construct in bacteria	52
3.6 Expression of the reporter gene construct in petunia	53
3.7 Correlation of histochemical and fluorescent GUS assays	
2.9 Inhibition of CITS activity by seacharia acid 1 A lactone	55
3.8 Inhibition of GUS activity by saccharic acid 1-4 lactone	55 55
3.8 Inhibition of GUS activity by saccharic activity3.9 Transfer of the GUS gene is required for expression of GUS activity	55 55 56
	55 55

iii

Chapter 4 Gene transfer in petunia	61
4.1 Introduction	61
4.2 Early detection of GUS expression	61
4.3 Time course of GUS expression after gene transfer	62
4.4 Localization of GUS expression	64
4.5 Relationship of early GUS expression to stable integration	68
4.6 Optimization of gene transfer by monitoring early GUS expression	70
4.6.1 Concentration of Agrobacterium	70
4.6.2 Growth state of Agrobacterium	71
4.6.3 Duration of the co-cultivation period	72
4.6.4 Pre-culture of explants	73
4.7 Discussion	74
4.7.1 Transient expression of GUS after Agrobacterium-mediated gene transfer	75
4.7.2 Local regions of "enhanced gene transfer"	75
4.7.3 Correlation of transformation assays	76
4.7.4 Optimization of gene transfer in petunia	77
4.7.5 Summary	78
Chapter 5 Transformation of kiwifruit	81
5.1 Introduction	81
5.2 In vitro culture of kiwifruit	82
5.2.1 Establishment and maintenance of in vitro stocks of kiwifruit	82
Supplemental media	83
Media support	84
Contamination during in vitro culture	86
5.3 Regeneration of plants from tissue explants	87
Hormones	87
Leaf colour, size, and positional origin of explant	90
Agar vs Phytagel [™] vs Gelrite [™]	91
5.4 Microprojectile-mediated gene transfer into kiwifruit	91
5.5 Production of galls by Agrobacterium	93
5.6 Agrobacterium-mediated gene transfer into kiwifruit	95
5.6.1 Tissue type	95
Roots, stems, and leaves	96
Seedlings, cotyledons, and hypocotyls	96
5.6.2 Comparison of Agrobacterium strains	97
5.6.3 Comparison of Actinidia species	99
5.6.4 Optimization of gene transfer	100
5.6.4.1 Plant factors	100

iv

5.6.4	4.2 Bacterial factors	101
	Acetosyringone	102
	Opines	104
5.6.		105
	Filter paper	106
	Exogenously applied hormones	107
	Gelling agent	108
	Moisture content	109
	Blotting and rinsing	110
	Pre-culture of the kiwifruit leaf explants	111
5.6.5	Localization of gene transfer in kiwifruit	112
5.6.6		113
5.7 Stab	le transformation of kiwifruit	115
5.7.1	Stable integration and selection of transformants	115
	Yield	116
	Timing of kanamycin selection	118
5.7.2	Comparison of binary vectors pGA643, pLAN421, pBI101.2,	
	and pKIWI110	118
5.8 Ana	lysis of putative transgenic plants	122
5.8.1	Phenotypic analysis	122
5.8.2	PCR analysis	123
5.8.3	Southern analysis	125
5.8.4	Structure of the integrated T-DNA for twelve transgenic kiwifruit	129
5.9 Con	clusions and discussion	132
5.9.1	In vitro culture of kiwifruit	132
5.9.2	Regeneration of kiwifruit leaf explants	133
5.9.3	The use of transient expression to develop kiwifruit transformation	134
5.9.4	The use of virulent Agrobacterium strains	135
5.9.5	Production of transgenic plants	136
5.9.6	Analysis of transgenic plants	136
Chapter 6	6 Concluding discussion	139
6.1 The	Vectors	139
6.2 Agr	obacterium-mediated gene transfer in petunia	1+0
6.2.1	Localization of gene transfer	140
6.2.2	Transient expression from the T-DNA	142
6.2.3	Further experiments	144
6.3 Agr	obacterium-mediated transformation of kiwifruit	145
6.4 Apr	obacterium-mediated transformation in general	147

۷

6.5 Future di	rections for gene transfer in kiwifruit	149
References		151
Appendix 1	Kiwifruit transformation experiments: conditions and results	Ι
Appendix 2	The complete nucleotide sequence of pKIWI101	XVII
Appendix 3	Publication	XXI

a,

Acknowledgements

This thesis is the culmination of four and a half years of work and would not have been possible without the support of a number of people.

Foremost my supervisor, Associate Professor Richard C Gardner, who gave me the project, and found me money from the NZ Kiwifruit Authority (Jack Hardy Scholarship). He pushed me to complete it, and then suffered through the process of reading and rewriting this thesis.

Thanks also to Professor Dick Bellamy (Director, School of Biological Sciences, University of Auckland, Auckland, New Zealand (see section 42.42.42)), my co-supervisor, who kindly read this thesis, suggested changes, and corrected my poor grammar. The remaining mistakes are of course still my own

Thanks to Tony Conner and Julie Tynan at DSIR, Lincoln for the use of their GUN.

Much of the credit for the ideas in this work and for my ability to face another day at work goes to the PMB'ies. In particular, the lab mother, Jeannette Keeling who was always willing to listen to moans and grumbles and offer a smile and encouragement. Special thanks to Ross and Simon for their ideas and discussions. Thanks to Lynn for pikelets. And of course thanks to the rest of the group Kim, Keith, Susan, Robin, Jacqui, Tom, Andreas, Ellen, and the rest for many happy hours of talking, drinking, eating, and even working.

Thanks to Sally and Kim my proof-readers, who (hopefully) found all the mistakes.

And of course thanks to Sally for her love and support during these past ten years.

viii

Abbreviations

2,4-D	2,4-Dichlorophyenoxyacetic acid
35S	35S promoter region of Cauliflower mosaic virus
2ip	6-(γ,γ-Dimethylallylamino)-purine
6BA	6-Benzylaminopurine
A _{x nm}	Absorbance at x nanometres
AS	acetosyringone
bp	base pairs
CaMV	Cauliflower mosaic virus
CTAB	cetyl-trimethylammonium bromide
°C	degrees celcius
cv.	cultivar
dATP	2'-deoxyadenosine triphosphate
dCTP ·	2'-deoxycytadine triphosphate
dGTP	2'-deoxyguanosine triphosphate
DNA	Deoxyribonucleic acid
dNTP	deoxynucleotides
ds	double-stranded
DSIR	department of Scientific and Industrial Research
DTT	Dithiothreitol
EDTA	ethylenediamine tetraacetic acid
EtBr	Ethidium bromide
GUS	β-D-glucuronidase
h	hours
IAA	Indole-3-acteic acid
kbp	kilobase pairs
kin	Kinetin
min	minutes

MU	4-methylumbelliferone
MUG	4-methylumbelliferyl-β-D-glucuronide
NAA	α-naphthalene acetic acid
ocs	octopine synthase polyadenylation region
PEG	polyethylene glycol
rATP	adenosine triphosphate
Ri	Root inducing
RNA'se	Ribonuclease
rpm	revolutions per minute
r.t.	room temperature
S	seconds
SDS	Sodium dodecylsulfate
SS	single-stranded
T-DNA	transferred DNA
Ti	Tumour-inducing
Tris	Tris(hydroxymethyl)-aminomethane
TTP	thymadine 5'-triphosphate
UTP	uracil triphosphate
UV	ultraviolet
var.	variety
x g	times the force of gravity (with respect to centrifugation)
X-gluc	5-bromo-4-chloro-3-indolyl-β-D-glucuronic acid
YN	Yeast nutrient

х