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ABSTRACT 
 
 
 

Methodologies of implementing nonlinear constitutive models of soil in FLAC are 

studied in order to reduce numerical distortion, which has been found to occur in 

nonlinear dynamic analysis when a nonlinear soil model is implemented using an 

‘apparent modulus’ approach. Analyses undertaken using several simple nonlinear soil 

models indicate that use of ‘plastic correction’ approach can eliminate or minimize the 

problem. This approach is therefore adopted in the thesis to implement in FLAC a 

bounding surface bubble soil model, i.e. the Bubble model. Satisfactory performance of 

the Bubble model has been obtained in dynamic analysis without using any of the 

additional mechanical damping given in FLAC. 

An analytical study on the Bubble model is carried out with FLAC. On the basis of the 

study, the hardening function is modified to better incorporate size ratio effects of the 

yield surface and is explored to eliminate abrupt transition in stiffness from elastic region 

to yielding. Pore water pressure is formulated with the assumption that the pore water 

pressure is generated as a response to the constant volume constraint which prevents the 

tendency for volume change when plastic volumetric strain takes place. The formulation 

is added to the Bubble model so that pore water pressure can be generated automatically 

by the model for fully saturated and undrained soil. FLAC analyses indicate that the 

Bubble model is generally in good agreement with published experimental data.  

The parameters and initial conditions associated with the Bubble model are studied with 

FLAC analyses in triaxial stress space to investigate their influence on the model and to 

investigate their effective ranges. Both large and small strain behaviors of the model are 

explored in the parametric study.  

Finally, the Bubble model is applied in the modeling of vertical vibration of rigid strip 

foundations. The influence of soil nonlinearity on vertical compliance of rigid 

foundations is investigated. Some major factors are considered, which include initial 

stress level in soil, level of excitation and mass ratio of foundation.  
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1  INTRODUCTION 
 

 

 

1.1 General background 

A study on numerical dynamic modeling with FLAC was carried out by the writer in 

2001 for the purpose of investigating the influence of nonlinear behaviors of soil on the 

dynamic response of rigid shallow foundations. A simple nonlinear constitutive 

relationship for the cyclic response of lightly overconsolidated soil was implemented in 

FLAC for the study, which was simplified from the original Pender model (Pender, 1978) 

for a particular undrained case where effective mean principal pressure during triaxial 

compression is constant. Further study on the topic was undertaken by Pender and Ni in 

2004.  

 

The previous work had indicated that a numerical distortion (instability) problem occurs 

in nonlinear dynamic analysis when a nonlinear soil model is implemented in FLAC with 

‘apparent modulus’ approach. Based on some initial study on Mohr-Coulomb model and 

the modified Cam-clay model, it was proposed that use of ‘plastic correction’ approach 

might be a solution to the problem. To verify this, further study needed to be carried out 

using more sophisticated nonlinear work-hardening soil models. This was the initial drive 

for the current study. 

 

 

1.2 Objectives  

The main objectives are: 

� To explore methodologies of implementing nonlinear constitutive models of soil in 

FLAC to minimize numerical instability in dynamic analysis; 

� To undertake a study on a bounding surface bubble soil model, i.e. the Bubble model, 

and implement the model in FLAC; and 

� To investigate influence of nonlinearity of soil on dynamic response of rigid 

foundations using the Bubble model. 
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1.3 Scope of work 

Methodologies of implementing nonlinear soil models in FLAC 

A user can implement a constitutive model with the programming language FISH 

embedded in FLAC. A user-defined model (UDM) can be used in the same way as a 

built-in model. However, some aspects with regard to implementing a constitutive model 

are not explained explicitly in FLAC manuals. Much practice with simple models is 

required to thoroughly understand FLAC’s methodologies prior to implementing a 

sophisticated constitutive model. 

 

On the other hand, numerical distortion is another issue to deal with in nonlinear dynamic 

analysis. Previous work has indicated that a special kind of numerical distortion can be 

introduced into a nonlinear dynamic analysis with FLAC (Ni, 2001). Although applying 

additional mechanical damping can minimize the problem, a better solution needs to be 

found so that results of nonlinear dynamic analysis can be more realistic.  

 

The Bubble model 

The Bubble model was first proposed by Al Tabbaa & Wood in 1989 as an extension to 

the modified Cam-clay model and was formulated within the kinematic hardening 

framework similar to the two-surface model proposed by Mróz et al. (1979). The model 

has been further developed for modeling of structured soils (Wood, 1995; Rouainia & 

Wood, 2000).  

 

Although the framework of the model has been well established and the model can 

demonstrate essential phenomena of pre-failure behaviors of natural clays, the modulus 

functions of the model remain to be further studied. 

 

Programming of the Bubble model 

The ‘plastic correction’ approach is the recommended method for implementing the 

Bubble model. The key criterion is that satisfactory dynamic analysis should be achieved 

without using any additional damping. 
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Parametric study  

The Bubble model has ten parameters. Some of them are non-standard parameters. The 

study is aimed to gain some general knowledge about the importance of each parameter, 

typical values of the non-standard parameters and qualitative inter-relationships between 

the parameters. 

 

Vertical vibration of rigid foundations 

As an application of the Bubble model, the study investigates the influence of 

nonlinearity of soil on dynamic response of rigid shallow foundations. 

 

 

1.4 Layout of the thesis 

Chapter 2 presents a literature review which covers ‘Constitutive models of soil’,  

‘Nonlinear dynamic analysis with FLAC’ and ‘Vertical vibration of rigid foundations’. 

The Bubble model and several other most relevant soil constitutive models are reviewed 

and the main differences between them are discussed. 

 

In Chapter 3, some key fundamentals are discussed with regards to the incremental 

programming in FLAC as they are important to a successful implementation of a soil 

constitutive model. 

 

In Chapter 4, strategies of implementing nonlinear constitutive models are explored in 

order to reduce numerical distortion. Two approaches, i.e. ‘apparent modulus’ approach 

and ‘plastic correction’ approach, are discussed. A hyperbolic model in FLAC, which is 

implemented with the ‘apparent modulus’ approach, is modified to demonstrate the 

phenomenon of numerical distortion in nonlinear dynamic analysis. A bilinear model is 

proposed and is implemented with the concept of the ‘plastic correction’ approach to 

show the capability of the method to cope with numerical instability in dynamic analysis.  
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Chapter 5 presents the Bubble model in detail. Modifications to the model are proposed 

and discussed. Some key aspects of the model are also discussed. The implementation of 

the Bubble model is explained and the FISH code is appended to the chapter. 

 

In Chapter 6 analyses with FLAC are carried out to test the Bubble model and the 

implementation methodologies. The work includes illustration of the main features of the 

model (e.g. non-intersection translation of the yield surface and destructuration process of 

the structure surface), demonstration of its stress-strain behaviours, comparison with the 

modified Cam-clay model and published experimental data, and verification of numerical 

stability in dynamic analysis. 

 

Chapter 7 presents a parametric study, which is carried out to investigate importance and 

the effective range of each parameter of the Bubble model. Stress-strain behaviours of the 

model with a maximum strain up to 10% are explored in the parametric study. G-γ 

behaviours over a small range of strain (less than 2%) are also analyzed and key 

parameters affecting G-γ curves are identified.  

 

Chapter 8 is on the application of the Bubble model. FLAC analyses are undertaken to 

investigate effects of nonlinearity of soil on vertical dynamic compliance of rigid 

foundations. Factors studied include initial stress level in the soil, level of excitation and 

mass ratio of foundation. 

 

Chapter 9 presents a summary of the main results of the study including conclusions and 

discussions. 

 

 

1.5 General remarks 

The study provides useful experience in implementation of soil constitutive models in 

FLAC. Particularly, it has been found that the methodology of ‘plastic correction’ 

approach should be adopted when a nonlinear soil model is implemented in order to 

eliminate or minimize numerical distortion in nonlinear dynamic analysis. In this method 
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dynamic damping can be purely hysteretic and no additional mechanical damping is 

required to obtain a satisfactory dynamic analysis. For static analysis or linear dynamic 

analysis, however, use of the method is not necessary.  

 

The Bubble model was initially chosen for the study on numerical instability in nonlinear 

dynamic analysis. Apart from that, an extensive analytical study on the Bubble model has 

also been undertaken. Especially, the plastic modulus function and parameters of the 

model have been studied. A modified plastic modulus function has been proposed, which 

has been found to better incorporate the influence of the size ratio of the yield surface on 

behaviours of the model. 

 

The Bubble model has been implemented in FLAC for 2D plane strain problems. For 2D 

plane stress or 3D problems, the FISH code of the model will need to be modified. 

Analyses have been carried out using the Bubble model to simulate laboratory triaxial 

tests and vertical vibration of rigid strip foundations. In general the results agree 

satisfactorily with published data.  
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 2  LITERATURE REVIEW 

 

 

 

This literature review covers three parts: ‘Constitutive models’, ‘Nonlinear analysis with 

FLAC’ and ‘Vertical vibration of rigid foundations’.  

 

A full description of a kinematic hardening model for structured soils (Rouainia & Wood, 

2000) is given in Chapter 5. The review in the chapter has been focused on the most 

relevant background and development of the model. Recent development of other similar 

models has also been reviewed. The main relations and differences between those models 

are discussed. Attention has also been paid to application of those models in modeling 

behaviours of natural soils and parametric studies. An overall comment regarding the 

development of 2 or 3-surface models is given at the end of the chapter with areas 

identified for further research.   

The review of ‘nonlinear analysis with FLAC’ has been focused on implementation of 

nonlinear constitutive models in FLAC and their application in dynamic modeling. The 

main problems in nonlinear modeling with FLAC are discussed in the chapter and will be 

addressed in Chapters 3 and 4. 

 

 

2.1 Constitutive models of soil 

2.1.1 Critical state soil mechanics and Cam-clay model 

One of the main distinctive features of soil is its volumetric behaviour under shear. Prior 

to the critical state soil mechanics, soil mechanics was based on theories for solid 

engineering materials, e.g. metal. Those classical theories can not account for the 

volumetric behaviour of soil appropriately. Early constitutive models (e.g. elastic and 

perfectly plastic model) over-idealized the behaviours of soil. Although they are still 

widely used for engineering purposes, they are fundamentally inappropriate and are not 

representative of natural behaviours of soil. For the first time, critical state soil mechanics 
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proposed by Roscoe, Schofield and Wroth (1958) gave an appropriate description of 

volumetric response of soil under shear.  

 

The critical state soil mechanics describes a state of soil in the ‘p, q, e’ space. The critical 

state of soil is an ultimate state of shear failure which the soil will eventually reach 

regardless of its stress history and path. At the critical state, continuous shear strain 

develops without change in stress and volume of soil, i.e. 0=== dvdpdq . The critical 

state line is shown in Figure 2.1.  The projection of the critical state line in p, q plane is 

approximated by the relationship Mpq = . It is also assumed that soil behaviours under 

the surfaces are purely elastic. (Note: q is the deviator stress defined as the difference 

between the major principal stress and minor principal stress, i.e. 31 σσq −= . p is the 

effective mean stress, i.e. 3/)( 321 σσσp ′+′+′= . e is void ratio of soil). 

 

Virgin Compression Line

p

q

e

q = M
pCritical State Line

Roscoe Surface
Hvorslev Surface

Tension failure 

Virgin Compression Line

p

q

e

q = M
pCritical State Line

Roscoe Surface
Hvorslev Surface

Tension failure 

 
 

Figure 2.1 State boundary surfaces 
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The general concept of using the theory of work-hardening plasticity to describe soil 

stress-strain relationship was first proposed by Drucker et al (1957). They suggested 

using a spherical ‘cap’ on the ‘Drucker-Prager cone’. The ‘cap’ can be expanded by 

hydrostatic loading of the soil. This ‘cap’ model was further developed by a group of 

researchers at Cambridge. With a small number of assumptions, a simple work-hardening 

model was proposed by Roscoe and Schofield (1963), i.e. the original Cam-clay model 

(See Figure 2.2). The use of simple formulations in p, e and p, q planes allows the model 

to predict more realistically many behaviours of soil under undrained and drained 

conditions. 

 

p

q

q=
M

p

Yield locus

p

q

q=
M

p

Yield locus

 

Figure 2.2 Yield locus of Original Cam-clay model 

 
The Cam-clay model was soon further developed by Burland (1965) and Roscoe and 

Burland (1968) to improve its prediction of the behaviours of normally-consolidated 

soils. One of the main problems of the original Cam-clay model is the unrealistic 

prediction of strain at small stress ratios. Large shear strain is predicted even at an 

isotropic stress state. In the modified Cam-clay model (MCC), the yield and potential 

surfaces become elliptical due to choice of a new formulation of work dissipation (See 

Figure 2.3). The yield function in effective stress and isotropic hardening rule are given 

by  
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Where 0p  denotes the size of the yield surface, pdv  is the change in specific volume, and 

κλ, are the slope of virgin compression line and swelling line respectively on the v ~ 

ln(p) plots (v is the specific volume of soil, i.e. v = 1 + e). 

 

It is assumed that any change in mean pressure is accompanied by elastic change in 

volume and this suggests a formulation of the bulk modulus: κvpK /= . 

 

p

q

q=M
p

Yield locus

p0 p

q

q=M
p
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p0  

Figure 2.3 Yield locus of modified Cam-clay model 

 
The flow rule associated with the yield surface gives the following incremental form of 

plastic strains. 
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Where  

pqη /= ; 
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 e is void ratio of soil; and 

H is plastic modulus defined by a hardening function given by  

 

κλ

ηMpe
H

−

−+
=

)()1( 443                                                                             (2.3) 

 

The Cam-clay model is a milestone in the development of non-linear constitutive laws. 

However the assumption of elasticity under the state boundary surface limits its 

application to monotonic loading because the model predicts a constant pore water 

pressure response after the first cycle of loading under cyclic loading. Cyclic 

accumulation of pore water pressure and cyclic degradation in stiffness can not be 

predicted by the model. To extend the Cam-clay model for use under cyclic loading, 

many constitutive models have been developed with different approaches. They include 

the two-surface model proposed by Mróz et al (1979), the vanishing yield surface model 

by Pender (1978) and the bounding surface model by Dafalias (1986). The following 

review of literature summarizes the main stream of two or three-surface models which are 

most relevant to the development of the Bubble model.  

 

Note: The above literature review of the Cam-clay model is based on information from 

various sources including Wood (1990), Pender (1989), Brito & Gunn (1987) and Botts 

(1998).  

 

2.1.2 Two - surface model (Mróz et al. 1979)  

The concept of two-surface models is to reduce the elastic domain by introducing an 

inner surface (yield surface) inside an outer surface (bounding surface). These models 

involve an anisotropic (i.e. kinematic) hardening rule which allows the yield surface not 

only to expand but also to translate or even rotate inside the bounding surface. Mróz 

(1967) proposed a multi-surface kinematic hardening model for metal. The concept was 

used to develop two or multi-surface models for soil by Mróz, Norris and Zienkiewicz 

(1978a, 1978b and 1979).  
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A simple version of the two-surface model is illustrated in Figure 2.4. F = 0 is called the 

consolidation surface (i.e. bounding surface), which reflects isotropic properties of the 

material and depends on the density of soil. This surface is believed to represent the 

memory of peak stresses (phenomena of dependence of soil properties on the 

consolidation history). It may expand, contract and translate. Its function is given by 

 

 

Figure 2.4 The two-surface model by Mróz 
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q
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In equation 2.4, n is the ratio of minor and major axes of the elliptical consolidation 

surface; a is the major semi-diameter of ellipse; 
m

n
ac = is the distance from the origin to 

the centre of the consolidation surface on p axis; m is the slope of the critical state line. 

The consolidation surface is always centered on the p axis. When c = a, i.e. n = m, Eq. 2.4 

is the same as the yield function of the modified Cam-clay model.  
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A smaller yield surface (inner surface) is introduced, which represents the anisotropic 

characteristics of plastic deformation. The yield function is given by 
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Where a0 is the semi-diameter of the ellipse; ),( qp αα=α is the centre of the yield surface 

in p, q space. The yield surface has the same shape as the consolidation surface and the 

ratio of size between the yield and consolidation surfaces is a0/a.  

 

The flow rule is associated with the yield surface and is given by Equation 2.6. 
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In Eq.2.6 Kp is plastic modulus defined by a general form of hardening function, which is 

given by  

 

γ

PRPPRp
δ

δ
KKKK ))((

0

0 −+=                                                                    (2.8) 

 

Where δ  is the transformed distance from the stress point P on the yield surface to its 

conjugate point R on the consolidation surface (see Figure 2.5), 

i.e. 5.0222 ])(/)[( PRPR ppnqqδ −+−= . 0δ  is the maximum distance, i.e. )(2 00 aaδ −= . 

0a  is the major semi-diameter of the yield surface. 0δ  plays a role in incorporating the 
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maximum preloading into the material memory. Kp varies continuously from its initial 

value Kp0 on the yield surface when 0δδ = to the respective value KpR on the consolidation 

surface for 0=δ , that is, when the yield surface contacts the consolidation surface. γ is a 

parameter controlling the degradation rate of plastic modulus.  
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Figure 2.5 Illustration of kinematic hardening rule 

 
 
The isotropic hardening rule is given by 

 

]
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Kinematic hardening rule postulates that the surfaces f0 and F do not intersect but engage 

each other along the common normal. This assumption can be expressed mathematically 

by associating each point P on the yield surface with a conjugate point R on the 

consolidation surface characterized by the same direction of normal (see Figure 2.5). 

Since the two surfaces have the same shape, the following scaling relationship is 

applicable for each stress state on the yield surface. 

 

δ  
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A descriptive form of the kinematic hardening rule is given by Eq.2.11. It has three terms. 

The first term denotes the change of centre of consolidation surface, the second term 

represents the size scaling and the third term denotes the translation along the line PR (i.e. 

β  line). 
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The constitutive relation is given by. 
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Where Ks is the bulk modulus formulated in the same way as in the modified Cam-clay 

model and Gs is the shear modulus. 

 

For the undrained condition the following incremental formulation of pore water pressure 

is utilized, which is identical to the equation proposed by Skempton and Sowa (1963). 
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Where aw is the incremental pore pressure coefficient, As denotes Skempton’s pressure 

coefficient. 

 

A vanishing elastic region (no yield surface) is considered by letting a0 = 0, so there is no 

need to identify the start of yielding. The plastic flow is then associated with the 

consolidation surface. Similar equations to equations 2.6 can be obtained and apply from 

the beginning of loading as there is no elastic region. However, Hashiguchi (1985) 

reported that this vanishing model is not acceptable physically and mathematically.  

Mróz, Norris and Zienkiewicz (1979) used the above two-surface model to study drained 

and undrained behaviours of kaolin and Weald clays after isotropic and anisotropic 

consolidation. The agreement between predicted and experimental stress paths were 

satisfactory, especially for lightly over-consolidated clay. Response under cyclic loading 

for a K0 consolidation was also discussed for stress-controlled loading. The behaviours of 

progressive densification after 4 cycles was demonstrated. For an undrained case, a 

steady-state was reached after 50 cycles.  

 

In summary, the kinematic hardening model proposed by Mróz et al in 1970s set up a 

general framework for other researchers to develop similar two or three-surface models. 

The model represented one branch of the efforts to extend the modified Cam-clay model 

for use in cyclic loading. The concepts used to formulate the kinematic rule and 

hardening function have been employed by many other workers to develop various 

models.  
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2.1.3 Kinematic hardening rule (Hashiguchi 1985) 

Among many others, Hashiguchi (1981, 1983, 1985) formulated a two-surface model. 

The model is formulated for a generalized stress state. A distinct-yield surface (i.e. 

bounding surface) and a sub-yield surface are shown in Figure 2.6. A general form of the 

distinct-yield surface is described by the following equation.  

 

ασσ

σ

ˆ-ˆ

0)(-)ˆ(

=

=KFf
                                                                                        (2.15) 

 

Where σ is a second-order stress tensor.  K is a scalar which describes the isotropic 

hardening/softening of surface, 0=K&  when 0=pε& . α̂ is the centre of the distinct-yield 

surface describing the translation of the surface according to a prescribed kinematic 

hardening rule. The degree of the function f is denoted by n. 

 

The sub-yield surface has the same shape as the distinct-yield surface, which encloses the 

elastic region. The current stress stays either on or within the sub-yield surface. The 

equation of the sub-yield surface is given by 
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Where γ ( 1)0 ≤≤ γ is a material constant; α is the center of the sub-yield surface. 
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Figure 2.6 Two- surface model (Hashiguchi 1985) 

 

A kinematic hardening rule was proposed by Hashiguchi (1985). It is formulated to avoid 

intersection of sub-yield surface with distinct-yield surface. The hardening rule of the 

distinct-yield surface is given as follows: 

 

σ

σ

σ

σ
εα )tr(ˆ pp

v BεA &&& += I                                                                          (2.17) 

 

In the above equation, the first term represents the contribution of isotropic hardening and 

I is the 2nd order identity tensor. The second term represents the anisotropic hardening. 

‘tr’ is trace operator. A and B are two scalar functions of K ( 0,0 ≥≥ BA ). If B = 0, the 

hardening rule becomes isotropic. 

 

Non-intersection condition of the surfaces is ensured by letting F(K)f ≤)ˆ( cσ  and 

ασσ c
ˆˆ −= c . cσ is the stress state at the intersecting point of the sub-yield surface and the 

line through the centres of the two surfaces. By satisfying the non-intersection condition 

and with a simple assumption, the kinematic hardening rule of the sub-yield surface is 

obtained as follows: 
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Where yσ is the conjugate stress on the distinct-yield surface. n denotes the stress 

gradient on the sub-yield surface at the current stress state, which is normalized with 

respect to the center of the sub-yield surface. 

 

Compared with the kinematic hardening rule (Eq. 2.11) proposed by Mróz et al (1979), 

the major change in Eq. 2.18 is the second term, which represents the translation along 

the line connecting the centers of the surfaces while in Eq.2.11 the second term is 

associated with the translation along the line connecting the current stress state and the 

center of the inner surface.  

 

A three-surface model was also proposed by Hashiguchi (1985). Another surface, i.e. 

loading surface, is introduced inside the sub-yield surface. The purpose is to smoothen 

the transition of stiffness when stress path reaches on the sub-yield surface.  

 

 
2.1.4 Recent development of two/three-surface models 

Bubble model 

The original Bubble model was proposed by Al Tabbaa & Wood (1989). It was 

formulated for triaxial stress state. The model is similar to the two-surface model 

proposed by Mróz et a (1979). The outer surface is the same as the modified Cam-clay 

surface, which is centered on the p axis and passes through the origin but does not 

intersect the q axis. The inner surface is called the ‘bubble’, which encloses the elastic 

region. The size of the Cam-clay surface is indicated by p0. The bubble has the same 

shape as the Cam-clay surface. The ratio of size between the bubble and the Cam-clay 
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surface is a constant expressed by the parameter ‘R’. The two surfaces are illustrated in 

Figure 2.7. Their functions are given by 
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Figure 2.7 The original bubble model (Al Tabbaa & Wood, 1989) 

 

The kinematic hardening rule of the bubble is given by 
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Where S is given by 
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The kinematic hardening rule is similar to the translation rule proposed by Hashiguchi 

(1985).  The translation rule of the bubble has to guarantee that the bubble and the 

bounding surface can touch at a common normal, but must never intersect. A conjugate 

point on the bounding surface can be associated with the current stress point on the 

bubble in such a way that these two points have the same direction of outward normal. 

Translation of the bubble, which occurs when plastic strains are being generated, can be 

separated into two components. One part is associated with change in size of the surfaces 

(the first term in Eq.2.21), the other part is associated with translation of the bubble along 

the vector β (the second term of Eq.2.21).  

 

The isotropic hardening rule is the same as that of the modified Cam-clay model but κλ,  

are replaced by ** ,κλ . 
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Where *λ is the slope of normal compression lines in plnvln : compression plane; *κ is the 

initial slope of the unloading lines in the plnvln : compression plane.  

 
The hardening function is given by 

 

Hhh += 0                                                                                                 (2.24) 

 

Where h0 is the plastic modulus when the bubble and the bounding surface are in contact 

corresponding to the current stress point. H is a scalar quantity to ensure a smooth fall of 
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stiffness when the bubble approaches the bounding surface. h0 and H are given by 

equations 2.25 and 2.26 respectively. 
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Where b is the component of the vector β in the direction of the normal to the bubble at 

the current stress point. It is given by 
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For M<1, bmax is given by* 

 

)1(2 0max Rpb −=                                                                                       (2.28) 

 

It should be noted that in equation 2.28 bmax only depends on the size of the surfaces. 

Modification was made by Wood (1995) so that bmax also depends on the current stress 

state. 

In fact many other functions of H can be chosen as long as they can ensure a smooth fall 

of stiffness. Choice of H may depend on the type of soil. Al Tabbaa & Wood (1989) 

reported that transition of stiffness as the effective stress path leaves the elastic region on 

reaching the edge of the bubble is too abrupt but this can be improved by altering the 

hardening function H.  

 

In summary the Bubble model is a simplified version of the two-surface model proposed 

by Mróz et a (1979). The kinematic hardening rule is based on the non-intersection rule 

                                                 
* For 1≥M ,  )R(Mpmaxb −= 12

0
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proposed by Hashiguchi (1985). A particular development of the Bubble model is the 

hardening function which has elements similar to those of the modified Cam-clay model. 

The model has been found to be quite successful in modeling some patterns of response 

observed in slow cyclic oedometer and triaxial tests of speswhite kaolin. It requires only 

two parameters in addition to the parameters of the Cam clay model. 

 

 

Modified Bubble model (Wood, 1995) 

The original Bubble model was extended by Wood (1995) for structured soil [Note: 

structured soil is defined for natural soil following Mitchell (1976) as having different 

mechanical behaviour after being remoulded due to damage to its initial structure, i.e. 

particle arrangement and bonding]. It is assumed that the initial structure of soil is 

progressively destroyed as plastic deformation occurs. The process of the destructuration 

is represented by the steady fall of the structure surface (bounding surface) towards the 

reference surface representing the intrinsic behaviours of remolded soil (Burland, 1990). 

The kinematic hardening rule proposed by Hashiguchi (1985) is utilized and the 

hardening function is similar to that proposed by Al Tabbaa & Wood (1989). The model 

is still formulated for the triaxial stress state and no anisotropy of the structure surface is 

considered. The structure and reference surfaces are centered on the p axis passing 

through the origin of coordinates.  The bubble has the same elliptical shape as reference 

and structure surfaces. Their sizes are represented by Rp0, p0 and rp0 respectively as 

shown in Figure 2.8. R is a constant (R = 0 ~1). r is between 1 and  r0 which represents 

the initial size of structure surface and is not less than 1. r = 1 indicates completion of 

destructuration when the structure surface coincides with the reference surface. r is 

determined by an exponential destructuration law (see Eq.2.29). 
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Figure 2.8 Bubble model for structured soil (Wood, 1995) 
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Where k is a parameter controlling the rate of destructuration with strain; dδε is the rate of 

destructuration strain (
dε ), which is given as follows. 

 

22 )())(1( p

q

p

pd δεAδεAδε +−=                                                               (2.30) 

 

Where ‘A’ is a parameter ranging from 0 to 1, which reflects relative contribution of 

volumetric and distortional strains to destructuration. For A = 0, destructuration is purely 

volumetric and for A = 1, destructuration is entirely distortional. 

 

The hardening function is similar to that proposed by Al Tabbaa & Wood (1989) but the 

definition of bmax is slightly different from eq.2.28 as it depends on both the size of 

surfaces and the current stress state. It is given by 
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σn •−= )1(2max
R

r
b                                                                                  (2.31) 

 

Where n  is the unit normal to the bubble at the current stress point; σ  is the normalized 

stress state with respect to the center of the bubble.  

 

The model was further generalized by Rouainia & Wood (1998) for general stress state 

with anisotropy of the structure surface and by Rouainia & Wood (2000) to incorporate 

the Lode angle θ into yield functions†. Details of the model are given in Chapter 5. 

 

Comparison of the model with experimental data has shown that the Bubble model can 

demonstrate the essential phenomena of pre-failure behaviours of natural clays (Swedish 

clay): stiffness variation with strain, volumetric change accompanying distortion, peak 

strength at small strains.  

 

In summary, the modified Bubble model is an extension to the modified Cam-clay model 

with kinematic hardening and bounding surface plasticity plus destructuration. Although 

the model has three surfaces, it is in fact a two-surface model as the reference surface is 

neither involved in the kinematic hardening rule nor the hardening function. It is used 

only as a reference to the intrinsic behaviours of remolded soil. The model can be 

regarded as a framework in the modeling of structured soil.  

 

 

3-SKH model (Stallebrass) 

An extension to the original Bubble model by Al Tabbaa & Wood (1989) was also 

proposed by Stallebrass (1990) and was further developed by Stallebrass & Taylor 

(1997). This is a three-surface model and is named ‘3-SKH’. Apart from the yield surface 

(i.e. the bubble), another kinematic yield surface (history surface) is introduced into the 

model to represent the influence of recent stress history on stiffness and shear-volumetric 

response of soil. An associated flow rule is utilized in the 3-SKH model. A simple non-
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associated flow rule was used by McDowell (2002) and McDowell et al (2003) to 

improve the 3-SKH model in predicting the coefficient of earth pressure at rest (K0) under 

one-dimensional normal compression. The Lode angle θ was incorporated into the critical 

state parameter M. 
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Figure 2.9 3-SKH model 

The main change of the 3-SKH model to the original Bubble model is the involvement of 

a history surface in the translation rule and the hardening function (see Eq. 2.32). 

Compared to Eq. 2.23, the new hardening function has one more term which is associated 

with the history surface. This is believed to be able to ensure a smooth change in stiffness 

when the surfaces are in contact.  
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It is understandable that the more surfaces are involved in the formulations of the 

kinematic hardening rule and the hardening function, the smoother the transition in 

stiffness.  To introduce a precise memory of loading history within the bounding surface, 

a set of nesting surfaces were also introduced by Mróz (1967), Mróz, Norris & 

                                                                                                                                                  
† McDowell (2003) indicated that Lode angle has little effect under triaxial conditions. 
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Zienkiewicz (1978a) and Prevost (1977). Hashiguchi (1985) also proposed a 3-surface 

model for this purpose by introducing a loading surface inside rather than outside the 

yield surface. 

 

 

S3-SKH model (Baudet and Stallebrass) 

Baudet & Stallebrass (2004) extended the 3-SKH model for structured soil. In this model 

the degree of structure is entirely interpreted as and related to sensitivity of soil. The 

bounding surface is called sensitivity surface and its size is represented by a sensitivity 

parameter, S, which has a similar physical meaning as the parameter r of the modified 

Bubble model (Wood, 1995). However, the ultimate value of S is not necessarily unity 

and a value greater than unity can be used to simulate stable elements of structure such as 

in Sibari clay (Coop & Cotecchia, 1995). The same destructuration law as Equation 2.28 

is used except for the slight difference in defining destructuration strain which is given by 
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Unlike Eq.2.30, the above equation gives a destructuration strain which comprises 

equally volumetric and distortional contributions (equivalent to A = 0.5 case in Eq.2.30). 

In this model the sensitivity surface is centered on the p axis and anisotropy is not 

included.  

 

The model was used to simulate drained probing tests and undrained triaxial tests on 

natural specimens of Bothkennar clay. The sensitivity framework by Cotecchia & 

Chandler (2000) was the basis for choosing initial and ultimate values of the sensitivity 

parameter. Both sensitivity and destructuration parameters were derived from standard 

isotropic compression tests. A good agreement between computer simulation and 

experiments on the γG − curves was obtained by using an initial sensitivity of 13.5 and 

an ultimate sensitivity of 6. However, no data was shown for the small strain range less 

than 4×10-2 %. 
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Kavvadas and Amorosi (2000) proposed a two-surface constitutive model for structured 

soils. The model has two characteristic surfaces (see Figure 2.10): an internal plastic yield 

envelop (PYE) and an external bond strength envelop (BSE). The internal plastic surface 

(PYE) has the same role as the classical yield surface. The term ‘plastic’ was added to the 

‘yield surface’ to point out the difference between plastic yielding and large-scale 

yielding , i.e. de-structuring (Jardine et al, 1991). The external surface corresponds to 

material states associated with appreciable rates of structure degradation. 

 

In this model, the destructuration law and the isotropic hardening rule are combined into 

one function (Eq.2.34), which describes the change in size of BSE. Both volumetric and 

deviatoric contributions are equally included in the function. 
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Figure 2.10 Two-surface by Kavvadas and Amorosi (2000) 

 

 

p 

q 

BSE 

  • 
K PYE 

  

M

M ′
M ′′

α

kσ

O 



 28 

The kinematic hardening rule of PYE is similar to that proposed by Al Tabbaa & Wood 

(1989) (Eq.2.21). The plastic modulus function is given by 

 

       ]1)1[(
0

−−′′+′′= −γ

δ

δ
HHH                                                               (2.35) 

 

Where H ′′  is the plastic modulus at point M ′′ where vector OM  intersect BSE; δ is the 

normalized length of MM ′′ (M is the current stress state); 0δ is the value of δ upon 

initiation of yielding. Thus 1/ 0 =δδ corresponds to initiation of yielding (i.e. )∞=H and 

0/ 0 =δδ  indicates that the material state lies on BSE (i.e. HH ′′= ). The material 

constant γ (>0) determines the rate of degradation in plastic modulus H in the 

range ),( H ′′∞ . H ′′ is formulated in such a way that when the surfaces are in contact 

0=′′H . 

 

Unlike other hardening functions, H ′′ is associated with point M ′′  rather than M ′ and 

δ is associated with vector MM ′′ rather than MM ′ (i.e. the so-called vector β ); the 

second term of the plastic modulus function is related to the first term while in other 

hardening functions these two terms are independent of each other.  

 

In this model, 0δ  is associated with the stress state upon onset of yielding. Hence it 

depends on the position of the yield surface when yielding initiates. 0δ becomes constant 

until it is reset when yielding re-initiates (in cyclic loading) while 0δ  in  the model by 

Mróz’s et al (1979) or maxb in the model by Al Tabbaa & Wood (1985) is a maximum 

quantity corresponding to the current yield surface. The formulations of δ and 0δ ensures 

an automatic fall of H from infinity upon onset of yielding to zero when surfaces are in 

contact. The magnitude of H in other models such as the modified Bubble model is 

controlled by additional material parameters. 

 



 29 

The model was calibrated against laboratory tests on the stiff overconsolidated Vallericca 

clay (isotropic and anisotropic consolidation tests, anisotropically consolidated triaxial 

shearing at both low and high pressures.). Very small yield surfaces were used. The ratio 

of PYE to BSE was between 0.005-0.05 while the ratio of size between bubble and 

structure surface was 0.048-0.145 in the paper by Rouainia & Wood (2000).  

 

Although importance of the size of PYS was mentioned by Kavvadas and Amorosi (2000) 

no comment was made on how it affects the behaviours of soil. 

 
All the kinematic hardening models discussed above are formulated in such a way that 

the yield surface can only expand (contract) and/or translate. A two-surface model, which 

allows the yield surface not only expand (contract) and translate but also rotate inside the 

bounding surface, was proposed by Gajo & Wood (2001) under the same framework of 

the modified Bubble model. Stresses are generalized with respect to size, location and the 

inclination of the bounding surface so that the bounding surface is fixed in a generalized 

stress space. In the model, the hardening function has a new form as follows: 

 

max

2

Bb

b
H =                                                                                                 (2.36) 

 

The model was calibrated against the modified Cam-clay model with the parameter B 

being varied between 10-3 and 105. Parametric study indicated that B has much more 

significant effects than bubble size R and Poisson’s ratio µ  on the response of the model. 

A value of 10-3 for the parameter B was considered to be representative of many types of 

natural clay. Both R and  µ  were assumed to be 0.2 as they were found to have minor 

role in the model. This was consistent with Smith (1992). A similar exponential 

destructuration law was used as the modified Bubble model. A value of 0.5 was used for 

parameter A and it was suggested that A may be obtained by comparing triaxial test with 

one-dimensional compression test. It was also found that parameters k andψ , which both 

control rate of destructuration, are interrelated. 

 



 30 

 

2.2 Nonlinear dynamic analysis with FLAC 

FLAC is a 2D finite difference programme and has become widely used for analysis and 

design in a variety of fields in civil and mechanical engineering. A fully dynamic analysis 

capability is offered in FLAC. However, only simple nonlinear soil models are available 

in FLAC and they are basically for quasi-static analyses. 

  

Wang (1999) implemented a bounding surface hypoplasticity model for sands into FLAC 

to model the dynamic response of an embankment under cyclic loading.  A sinusoidal 

velocity wave with an amplitude of 0.61m/s and a frequency of 1 Hz was applied as a 

horizontal input motion to the bottom and two vertical sides of the embankment. An 

analysis was conducted for five cycles of the input motion indicating satisfactory 

performance of the model. However, it is noticed that a 2% Rayleigh damping was 

applied to the model and there was no explanation of why this was necessary. 

 

Pender (1999 and 2000) implemented a hyperbolic model in FLAC to analyze the 

propagation of shear wave and the dynamic response of a rigid foundation subjected to 

vertical vibration. The soil model is for undrained lightly over-consolidated soil (Pender, 

1978). Rayleigh damping of up to 5% was used. 

 

A systematic study on nonlinear dynamic modeling with FLAC was carried out by Ni 

(2001) to investigate dynamic response of rigid footings and a soil-footing-structure 

system.  It has been shown that for a dynamic analysis in which a nonlinear soil model is 

implemented with ‘apparent modulus’ approach, a special kind of numerical distortion 

will occur. This is due to the changing of shear moduli, especially the sudden change of 

shear moduli when strain reversal takes place. Severe numerical distortion may occur in a 

nonlinear dynamic modeling even if the timestep and element size are very small. A 

typical phenomenon is a migrating stress-strain response (See Figure 2.11). The steady 

state response may be disturbed or may never be reached due to the numerical distortion. 

The higher the exciting frequency the more severe the problem is. In some cases, 

numerical distortion could result in collapsing of a numerical model.   
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         (a) Stress-strain response                          (b) Time history of vertical strain response 

 

Figure.2.11. Cyclic response of a hyperbolic model in simulating a triaxial dynamic test 

 
The specimen is 200 mm in diameter and 400 mm in height. Due to the symmetry of the 

specimen, only half of the specimen is modeled with a mesh of 32 elements. Soil 

properties of the Pender model: ρ = 1.8 t/m3, pcs = 100 kPa, M = 1.0, k = 0.05, e = 1.0, G 

= 20 MPa, K = 200 MPa. No additional damping is applied. The specimen is subjected to 

a 30-cycle sinusoidal stress loading with a frequency of 1 Hz and a stress amplitude of 50 

kPa. 

 

Since no cyclic degradation of shear modulus is considered in the above soil model, the 

dynamic response should settle down to a steady state and this steady state response 

should not change under a regular continuous excitation. 

 

It was found that the problem of migrating response only occurs in a nonlinear model and 

reducing timestep or element size will not solve this problem. The problem was then 

addressed by introducing an additional damping. 

 

Figure 2.12 shows the result of a dynamic analysis in modeling the same problem as in 

Figure 2.11. A 2% damping is applied. Compared to Figure 2.11a, Figure 2.12 gives a 

relatively stable response within 30 cycles of vibration. 



 32 

 

2 1 0 1 2 3
100

50

0

50

100

Vertical strain (%)

D
ev

ia
to

r 
st

re
ss

, q
 (

kP
a)

 

Figure 2.12 Stress-strain response with 2 % local damping. 

 
 

The use of a small amount of additional damping is appropriate in a nonlinear dynamic 

analysis and is well established to cope with the ‘shock’ wave effect of the sudden change 

in shear modulus when the direction of loading is reversed. As the majority of the 

damping is from hysteresis, it is desirable from the theoretical point of view that a 

nonlinear soil model be implemented with ‘plastic correction’ approach so that the 

numerical distortion problem may be minimized. In FLAC, plasticity models, e.g. the 

modified Cam-clay model, are implemented with an approach that involves an elastic 

trial to estimate stress increments followed by a plastic correction for the stress 

increments at each timestep. Hereinafter, this approach is termed ‘plastic correction’ 

approach compared to the ‘apparent modulus’ approach. It is also called ‘returning 

mapping’ (Simo and Hughes 1998). 

 

Further application of FLAC in modeling nonlinear dynamic response of rigid footings 

subject to vertical and rocking vibration was reported by Pender and Ni (2004). 
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2.3 Vertical vibration of rigid foundations 

There are six possible degrees of freedom of vibration for a foundation due to unbalanced 

forces. They include vibrations in vertical, lateral and longitudinal directions and rotation 

about vertical, lateral and longitudinal axes. The work of the thesis is focused on the 

vertical vibration only. 

 
The foundation design for vibrating equipment is based on displacement considerations. 

The medium on which a foundation is rested is soil or rock which exhibits significant 

nonlinear behaviours. The displacement of the foundation includes two parts: cyclic 

displacement due to elastic response of the soil-foundation system to the vibratory 

loading and permanent displacement due to compaction or lateral displacement of soil 

below the foundation.  

 

Classical solutions to displacement of vertically-vibrating foundations are based on 

elastic theory and different compliance (stiffness) functions have been proposed by 

various workers. A brief description of the historical development is given below. 

 

 

2.3.1 Classical work 

Dynamic Boussinesq Problem 

In 1904 Lamb studied the problem of vibration of a single vibrating force acting at a 

point on the surface of an elastic half-space. The study included cases in which the 

oscillating force R acts in the vertical direction. This is generally referred as the dynamic 

Boussinesq problem. 

 

Reissner’s solution 

In 1936, Reissner proposed a solution to the problem of vibration of a uniformly loaded 

flexible circular foundation rested on an elastic half-space. The solution was obtained by 

integration of Lamb’s solution for a point vibrating force. The vertical displacement at 

the center of the flexible loaded area can be given by 
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 Where 

0Q  = amplitude of the exciting force acting on the foundation 

 z = periodic displacement at the center of the loaded area 

ω = circular frequency of the applied load 

0r = radius of the loaded area 

G = shear modulus of the soil 

1f , 2f  = Reissner’s displacement (compliance) functions 

 

The following relation was obtained for a flexible circular foundation: 
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The classical work of Reissner was further extended by Quinlan (1953) and Sung (1953) 

to consider non-uniform distribution of the contact pressure. Three pressure distribution 

cases were considered, i.e. uniform, parabolic distribution and the distribution for a rigid 

foundation. Similar forms of solution can be obtained, but the displacement 

functions 1f , 2f will depend on the distribution of contact pressure. 

 

Richart and Whitman (1967) found that for a given 0a , the magnitude of the amplitude is 

highest for the case of parabolic pressure distribution and lowest for rigid bases. For a 

given type of pressure distribution and mass ratio, the magnitude of the amplitude also 

greatly depends on the assumption of Poisson’s ratio. The larger the Poisson’s ratio the 

smaller the amplitude. 

 

 

Hsieh’s analogy 

Based on Reissner’s displacement relation for flexible foundations, Hsieh (1962) 

developed an equation similar to that for damped vibrations of single-degree-of-freedom 

system. The soil is treated as a viscoelastic material (See Figure 2.13). The equation of 

motion is given by  
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Figure 2.13 A lumped parameter vibrating system 
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Figure 2.14 Vertical compliance functions for rigid circular foundations (redrawn after 

Lysmer and Richart, 1966) 
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Lysmer’s Analogy 

A simplified model was proposed by Lysmer and Richart (1966), in which kz and cz were 

frequency independent. The compliance functions were redefined in the following form: 
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Where functions of F1 and F2 are practically independent of Poisson’s ratio, shown as in 

the Figure 2.14. The mass ratio was also modified by multiplying the previous mass ratio 

with a factor of 4/)1( ν− . 

 

Luco & Westmann’s solution 

Luco & Westmann (1968) proposed a set of compliance functions for strip rigid footings 

rested on elastic half space. Slight correction was made to the functions proposed by 

Gazetas and Roesset (1979) based on results for a linearly hysteretic soil (corresponding 

to 5% hysteretic damping). 

 

The above compliance functions obtained from analytical calculations were found to be 

in good agreement with those obtained from numerical analysis using elastic soil model 

(See Figure 3.59, FLAC 4.0 Optional Features Manual). In the numerical model, a 

massless strip footing is modeled rigid by slaving structural nodes together. Viscous 

boundaries are used to model infinity. A sinusoidal vertical loading is applied to the 

footing directly with no prior stresses in the model. A 5% damping is applied to the 

model. 
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Figure 2.15 Vertical compliance functions for rigid strip foundations (redrawn after 

Gazetas and Roesset, 1979) 

 

 

2.3.2 Nonlinear numerical modeling of vertical vibration of rigid foundations 

In general behaviours of soil is nonlinear and only at low strain levels the elastic theory 

may be considered applicable to soil. Numerical methods provide an effective way to 

bridge elastic results and the realistic behaviours of soil. 

 
Borja et al (1993) investigated the nonlinear dynamic response of vertically vibrating 

rigid foundations to harmonic loads. Both circular and square foundations rested on an 

elasto-viscoplastic half-space were modeled in the context of nonlinear finite element 

method. The elasto-viscoplastic theory of Duvaut and Lions (1976) was used to model 

the soil behaviours. It was shown that plastic deformation for vertically oscillating rigid 

foundations results in an overall increase in displacement amplitudes and creation of 
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resonance frequencies where motion is amplified above those at zero-frequency level (see 

Figure 2.16). 
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Figure 2.16 Vertically oscillating circular foundation on elastoplastic half space 

(redrawn after Borja et al, 1993) 

 

Pender (2000) reported that there are two distinct aspects of shallow strip foundation 

response to loading: cyclic deformation and the accumulation of permanent settlement. It 

was noted that the dynamic compliance of a foundation on a nonlinear soil exhibits 

greater variation with cyclic loading frequency than the same foundation on an elastic 

soil. Recent applications of the Pender model in undrained lightly over-consolidated soil 

have been made by Pender (1999, 2000). The soil model was implemented in FLAC to 

analyze the propagation of the shear wave and the dynamic response of a rigid foundation 

subjected to vertical vibration. To simplify the calculation in FLAC, the nonlinear elastic 

approach was used with an equivalent tangent shear modulus introduced to incorporate 

elastic and plastic contributions. The nonlinear behaviours of soil is accounted for during 

unloading and reloading. The result is shown in Figure 2.17, which agrees well 

qualitatively with those by Borja et al (1993). However the resonance at low frequency 
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was not reported. The soil model was based on a work-hardening plasticity model by 

Pender (1978), which was implemented as a hyperbolic model in FLAC (Pender, 1999). 

 

Using the same nonlinear model, the writer (Ni, 2001) further analyzed the problem with 

FLAC and the resonance at low frequency was found for both vertical and rocking 

vibrations of a rigid strip foundation. The foundation was modeled as massless and 

different loading levels were considered. Typical results are shown in Figures 2.18 and 

2.19. A static pressure with a factor of safety of 4 was applied to the foundation prior to 

the dynamic loading. 

 

 

0

5

10

15

0 0.5 1 1.5 2 2.5 3

a0

N
o
rm

a
lis

e
d
 m

e
a
n
 d

is
p
la

c
e
m

e
n
t 

a
m

p
lit

u
d
e
 o

v
e
r 

1
0
 c

y
c
le

s
 (

m
m

)

Nonlinear

Elastic

 Soil properties:

 Shear wave velocity               150 m/sec

 Small strain shear modulus    40 MPa

 Bulk modulus                         200 MPa

 Void ratio                               1.0

 M                                           1.0

 k                                             0.05

 su                                           100 kPa

 Density                                 1800 kg/m3

 

Figure 2.17 Cyclic displacement amplitude of a rigid foundation (redrawn after Pender, 

2000) 

 



 41 

-0.5

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3

a0

C
o

m
p

lia
n

c
e

 f
u

n
c
ti
o

n

f1,v - nonlinear

f2,v - nonlinear

f1,v - elastic

f2,v - elastic

 

 

Figure 2.18 Compliance function of a rigid foundation subject to vertical vibration 

(stress amplitude =120 kPa) 
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Figure 2.19 Vertical displacements a rigid strip foundation subject to rocking vibration 
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Pender and Ni (2004) investigated a rigid footing with mass subject to vertical harmonic 

vibration. Resonance at low frequency was complicated (see Figure 2.20). The 

displacement at very low frequency of a nonlinear soil can be much larger than that of an 

elastic soil when the stress level is high. However the influence of mass ratio needs to be 

further explored on nonlinear dynamic compliance. Two general conclusions were 

reached:  

 

� The compliance function is found to be very close to that for the vibration of a 

rigid footing on an elastic layer when the cyclic loading amplitude is small.  

� Under low frequency excitation nonlinear stress-strain behaviours of soil beneath 

the foundation has a significant effect on the dynamic response.  

 

It was also noted that the static stress level prior to dynamic loading has a considerable 

influence on dynamic compliance at low frequencies (see Figure 2.21). 
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Figure 2.20 Vertical compliance function (cyclic pressure = 140 kPa) 
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Figure 2.21 Influence of static factor of safety on displacement amplitude 

2.4 Summary 

Since the modified Cam-clay model was proposed in 1960s efforts have been made by 

many workers to extend its application to cyclic loading. Among other models, two or 

three-surface models, which introduce a small kinematically hardening yield surface 

inside the Cam-clay surface, represent one approach to that purpose. Recent development 

of two or three-surface models has been focused in simulating laboratory behaviours of 

structured soils. 

 

The kinematic hardening model can be traced back to Mróz (1967). A general framework 

of two/three-surface models was established by Mróz, Norris and Zienkiewicz(1979) 

under the principles of the critical state soil mechanics. Many two/three-surface models 

have been developed under the framework mainly to improve the formulations of the 

kinematic hardening rule and hardening functions. The non-translation rule proposed by 

Hashiguchi (1985) and the hardening function by Al Tabbaa & Wood (1989) have been 

often used in various two/three-surface models. A unique hardening function proposed by 

Kavvadas and Amorosi (2000) seems to have some advantages in modeling a smooth 

transition in stiffness. Most of the two or three-surface models have been developed using 

the associated flow rule which tends to over-predict the coefficient of earth pressure at 
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rest (K0). McDowell et al (2003) introduced a simple non-associated flow rule in the 3-

SKH model (Stallebrass, 1990) to overcome the deficiency. 

 

Wood (1995) extended the Bubble model (Al Tabbaa & Wood, 1989) for structured soils 

using an exponential destructuration law. A general framework of constitutive law for 

structured soils was outlined by Rouainia &Wood (2000) which incorporates the Lode 

angle in yield functions. A similar model for structured soils, based on the 3-SKH model, 

was proposed by Baudet & Stallebrass (2004). In this model parameters of structure and 

destructuration are related to some physical characteristics and efforts have been made to 

simulate behaviours of structured soils with those parameters derived from traditional 

laboratory tests. 

 

In general, the research on determining parameters of constitutive models has lagged far 

behind the development of the models. Physical meanings of some parameters remain 

unclear or undefined not to mention the determination of these parameters in laboratory. 

More parametric study needs to be carried out to evaluate those models. By simulating 

experimental data a general knowledge about values of those non-standard parameters 

may be achieved for a particular type of soil.  

 

The modified Bubble model (Rouainia & Wood, 2000) is selected for the research. It is 

believed that this model provides more flexibility in modeling different soil beahvours 

due to the following three facts: a general critical state stress ratio ( θM ) is utilized in the 

yield equations, which takes into account the unsymmetrical behaviors of soil under 

compression and extension; the model allows the consideration of initial anisotropy of the 

structure surface; contributions to destructuration of structured soil from plastic 

volumetric strain and distortional strain are not necessarily equal and their contribution 

percentages can be varied from 0 to 100%. Areas for further work may include improving 

formulation of the hardening function, establishing qualitative relationships between non-

standard and standard parameters and determination of key parameters. Little reference 

can be found about application of the Bubble model in dynamic analysis. It is worthwhile 

to explore the dynamic performance of the model. 
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In terms of implementation of constitutive models in FLAC, numerical instability in 

dynamic analysis is to be addressed. The method of ‘plastic correction’ or ‘return 

mapping’ has been suggested to cope with the problem of numerical distortion.  

 

The influence of nonlinearity of soil on dynamic compliance of rigid foundations needs to 

be further explored especially at low frequency range. Effects of mass ratio and bedrock 

also need to be explored. 
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3 SOME KEY ASPECTS OF PROGRAMMING WITH FLAC 

 

 

 

FLAC has some basic soil constitutive models built in its source code. Any other soil 

models can be implemented into FLAC with FISH - the programming language utilised in 

FLAC. The FISH version of the modified Cam-clay model in FLAC provides an example 

for implementing nonlinear plasticity soil models in the thesis.  

 

In this chapter, some aspects of implementation of soil models are discussed. They are 

important to a successful implementation of a soil constitutive model, but they are not 

explained explicitly in FLAC manuals.  

 

 

3.1  Finite elements in FLAC 

In a FLAC model, a finite difference mesh is divided by the user into quadrilateral 

elements.  Internally, FLAC subdivides each quadrilateral element into two overlaid sets 

of triangular sub-elements shown as Figure 3.1. A user-defined model (UDM) is called 

four times per element (once for each sub-element) each time step. To get more accurate 

results, stress and strain may need to be averaged over the four sub-elements. If not 

specified, however, stress and strain of an element are only associated with the last-called 

sub-element. 

 

 

 

c 

d a 

b 
or 

 

 

Figure 3.1 Sub-elements in a quadrilateral element 
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In FLAC strain is constant in each set of sub-elements. Whether strain or stress is 

constant or not between the two sets of sub-elements of an element depends on the shape 

and boundary condition of the element. The following is an example. 

 

Figure 3.2 shows three single-element 2D models. A cyclic vertical stress loading is 

imposed on the top of each model. The amplitude of the stress is 50 kPa and the loading 

frequency is 1Hz. The soil is elastic with 5% local damping applied.  Before cyclic 

loading is applied there is zero insitu stress. ‘Models a and b’ are the same in size and 

shape but slightly different in the boundary condition. For ‘model b’ the bottom is fixed 

at both x and y directions while for ‘model a’ only y direction is fixed. ‘model c’ has the 

same boundary condition as ‘model a’ but has a different geometric shape. 

 

The linear elastic model in FLAC is utilised to demonstrate the influence of boundary 

condition and shape of an element on stress in sub-elements. Two local variables, 

‘vstress’ and ‘vstress_ave’, are added to the FISH code of the linear elastic model to 

record respectively vertical stress of the last-called sub-element (i.e ‘sub-element d’) and 

the averaged vertical stress of the four sub-elements. Results are shown in Figure 3.3 and 

the code of the line elastic soil model is given at the end of this section. 

 

 

         (a)                                 (b)                                              (c) 
 

 
Figure 3.2 Three single-element 2D axisymmetric models 
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Figure 3.3 Influence of boundary condition and shape of element on stress 
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It can be seen from Figures 3.3a and 3.3b that boundary condition can have a significant 

influence on vertical stresses in the sub-elements. Figure 3.3a corresponding to Figure 

3.2a indicates that due to symmetry of the boundary, vertical stress is uniform among the 

two sets of sub-elements. Therefore time histories of the two variables are identical. 

Figure 3.3b represents the result associated with Figure 3.2b. It shows that the averaged 

vertical stress is greater than ‘sub-element d’. Figure 3.3c shows a slight difference in 

vertical stress between the sub-elements. This means that the shape of the element has 

less influence than the boundary condition on the uniformity of stress in sub-elements in 

this case. 

 
 
;FISH version of the linear elastic soil model  

def m_elas 

  constitutive_model 

  f_prop  m_g m_k m_e1 m_e2 m_g2  

  f_prop  vstress vstress_ave 

  float $sum1 $sum2 

  

case_of  mode 

     

  case 1 ; initialization  

      m_e1 = m_k + 4.0 * m_g / 3.0 

      m_e2 = m_k - 2.0 * m_g / 3.0 

      m_g2 = 2.0 * m_g 

     

  case 2 ; running section  

      zs11  = zs11 + zde11 * m_e1 + (zde22+zde33) * m_e2 

      zs22  = zs22 + zde22 * m_e1 + (zde11+zde33) * m_e2   

      zs33  = zs33 + zde33 * m_e1 + (zde11+zde22) * m_e2   

      zs12  = zs12 + zde12 * m_g2 

      $sum1=$sum1+(zde11+zde33) * m_e2 + zde22 * m_e1 

      vstress=zs22 ;vertical stress component 

       

      if zsub > 0.0 then 

        $sum1 = $sum1 / zsub 

        vstress_ave=vstress_ave+$sum1;averaged vertical stress 

        $sum1=0.0 

      end_if 

     

  case 3;  max modulus 

      cm_max = m_k + 4.0 * m_g / 3.0 

      sm_max = m_g 

 end_case 

end 
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3.2 Local and global variables 

All variables, except property variables, are globally recognised for all the elements of a 

model. Values of global variables are not stored for each element. They are changed 

when the next element is processed. Hence, at the end of each time step, values of global 

variables are associated with the last-processed element.  

 

Values of local variables are stored for each element and are retained unchanged until the 

next time step. To ensure this, all local variables must be put after the FISH statement 

F_PROP in a FISH code. All other statements such as FLOAT and INT are only for 

global variables. However, misplacing global variables after statement F_PROP will not 

cause any problems except increasing calculation burden and using more computer 

memory. 

 

All global variables start with a dollar sign $. Although this is not compulsory, the use of 

symbol $ makes it convenient to distinguish global variables from local variables. One 

advantage is that a list of all variables with names starting with sign $ can be printed out 

using the command PRINT $fish. 

 

 

3.3 Initialisation 

In a typical UDM code, the first part following the statement ‘case 1’ is normally for 

initilisation. Initialisation is not compulsory as in a simple model but it can be 

complicated in a sophisticated model. 

 

 It should be noted that ‘initialisation’ is executed only once per element per STEP 

command prior to stepping. If multiple STEP commands appear in a data file, e.g for a 

series of FLAC runs or quasi-static cyclic loading, initialisation will be repeated when 

each STEP command is executed. This will cause errors in most cases. Hence, ‘re-

initialisation’ should be avoided in a UDM if it is not required. 
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3.4 FISH state variables 

Unlike user-defined state variables, all FISH state variables are manipulated internally by 

FLAC. Although these FISH state variables can be employed in a function or an equation 

in a UDM, they are either calculated internally by FLAC (e.g zde11, zde22, zde33 and 

zsub), or have to be calculated in a specific way (e.g zs11, zs22, zs33, zs12). All the FISH 

state variables can not be printed out directly by the command PRINT and their history in 

a run can not be recorded by the command HISTORY. The following will discuss some 

aspects in using FISH state variables since they are crucial to a successful coding of a soil 

constitutive relationship. These aspects are not explicitly discussed in the FLAC manuals. 

 
 
3.4.1 Stress variables 

In FLAC,  zs11, zs22, zs33 and zs12  are FISH state variables associated with FLAC stresses,  

i.e sxx, syy, szz and sxy. They are not calculated according to the way in which they appear in 

a UDM code. They are recognized and processed in a special way which may confuse a 

user. 

 
For example, to update stresses, the following incremental formulations are often used.  

      zs11  = zs11 + zde11 * m_e1 + (zde22+zde33) * m_e2 

      zs22  = zs22 + zde22 * m_e1 + (zde11+zde33) * m_e2      (3.1) 
      zs33  = zs33 + zde33 * m_e1 + (zde11+zde22) * m_e2   

      zs12  = zs12 + zde12 * m_g2 

 

Where zde11, zde22, zde33 and zde12 are strain rates standing for xxε& , yyε& , zzε&  and 

xyε& respectively; m_e1, m_e2 and m_g2 are coefficients being function of elastic moduli. 

 

As a UDM is called four times per element each timestep (once for each sub-element), it 

is apparent from the above equations that accumulation of stress increment is carried out 

four times for each stress component.  

 

In fact, there is no accumulation of stress increments when these equations are called 

because they contain FISH state variables zs11, zs22, zs33 and zs12 and FLAC treats them 
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differently from user-defined variables. These equations are only executed once rather 

than four times per element each timestep although the UDM code is called four times. 

Only the stress increments associated with the last-called sub-element are added to 

current stresses.  

 

FLAC can distinguish FISH state variables from user-defined variables. If the FISH state 

variables (zs11 … ) are replaced by a set of user-defined variables (s11…) in the above 

equations, four stress increments will be accumulated and added to each stress 

component.  Therefore,  ‘s11…’ are four times larger than (zs11…). To demonstrate this, 

the model for Figure 3.2a is utilized. A vertical stress of 50 kPa is applied at the top of the 

model. The following equations are added to the FISH code of the previous linear elastic 

model. 

      s11  = s11 + zde11 * m_e1 + (zde22+zde33) * m_e2 

      s22  = s22 + zde22 * m_e1 + (zde11+zde33) * m_e2          (3.2) 
      s33  = s33 + zde33 * m_e1 + (zde11+zde22) * m_e2   

      s12  = s12 + zde12 * m_g2 

 

;FISH version of the linear elastic model 

def m_elas 

  constitutive_model 

  f_prop  m_g m_k m_e1 m_e2 m_g2 st22 

  f_prop s11 s22 s33 s12 

   

 case_of  mode 

    case 1 ; initialization  

      m_e1 = m_k + 4.0 * m_g / 3.0 

      m_e2 = m_k - 2.0 * m_g / 3.0 

      m_g2 = 2.0 * m_g 

    case 2 ; running section  

      zs11  = zs11 + zde11 * m_e1 + (zde22+zde33) * m_e2 

      zs22  = zs22 + zde22 * m_e1 + (zde11+zde33) * m_e2   

      zs33  = zs33 + zde33 * m_e1 + (zde11+zde22) * m_e2   

      zs12  = zs12 + zde12 * m_g2 

      st22=zs22 

 

      s11  = s11 + zde11 * m_e1 + (zde22+zde33) * m_e2 

      s22  = s22 + zde22 * m_e1 + (zde11+zde33) * m_e2   

      s33  = s33 + zde33 * m_e1 + (zde11+zde22) * m_e2   

      s12  = s12 + zde12 * m_g2 

               

    case 3;  max modulus 

      cm_max = m_k + 4.0 * m_g / 3.0 

      sm_max = m_g 

    end_case 

end 
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Figure 3.4 Comparison between FISH state variable and user-defined variable 

(zs22 is FISH state vertical stress; s22 is un-averaged user-defined vertical  stress) 

 

It can be seen from Figure 3.4 that the steady value of zs22 is 50 kPa while s22 is 200 

kPa. This means that Eq.3.2 is executed four times each timestep while Eq.3.1 only once, 

hence, the user-defined stress variables need to be averaged, i.e to be divided by a factor 

of 4 (see Figure 3.5). 

 

 

3.4.2 Sub-element averaging 

Values of some variables, e.g. plastic strains, may need to be averaged over the four sub-

elements. ‘zsub’ is an FISH state variable indicating when averaging can be processed. 

Initially “zsub” has a value of 0 and it becomes 2 or 4 when calculation of one element 

has been completed over its four sub-elements. Therefore when the statement “if zsub>0” 

is true averaging takes place.  

 

“If zsub >0 then…end_if ”  is only used when a user-defined variable needs to be 

averaged over the four sub-elements. The previous FISH code of the linear elastic model 

is modified to get the correct values of user-defined stress variables (s11, s22, s33 and s12) by 

averaging their stress increments.  
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;FISH version of the linear elastic model 

def m_elas 

  constitutive_model 

  f_prop  m_g m_k m_e1 m_e2 m_g2  

  f_prop s11 s22 s33 s12 

  float $dzs11 $dzs22 $dzs33 $dzs12 

   

 case_of  mode 

    case 1 ; initialization  

      m_e1 = m_k + 4.0 * m_g / 3.0 

      m_e2 = m_k - 2.0 * m_g / 3.0 

      m_g2 = 2.0 * m_g 

    case 2 ; running section  

      $dzs11=$dzs11 + zde11 * m_e1 + (zde22+zde33) * m_e2 

      $dzs22=$dzs22 + zde22 * m_e1 + (zde11+zde33) * m_e2   

      $dzs33=$dzs33 + zde33 * m_e1 + (zde11+zde22) * m_e2   

      $dzs12=$dzs12 + zde12 * m_g2 

 

      zs11=zs11 + zde11 * m_e1 + (zde22+zde33) * m_e2 

      zs22=zs22 + zde22 * m_e1 + (zde11+zde33) * m_2 

      zs33=zs33 + zde33 * m_e1 + (zde11+zde22) * m_2 

      zs12=zs12 + zde12 * m_g2 

 

    if zsub>0 then 

      $dzs11=$dzs11/zsub 

      $dzs22=$dzs22/zsub 

      $dzs33=$dzs33/zsub 

      $dzs12=$dzs12/zsub 

      s11 = s11 + $dzs11 

      s22 = s22 + $dzs22 

      s33 = s33 + $dzs33 

      s12 = s12 + $dzs12 

      $dzs11=0.0 

      $dzs22=0.0 

      $dzs33=0.0 

      $dzs12=0.0 

    end_if           

    case 3;  max modulus 

      cm_max = m_k + 4.0 * m_g / 3.0 

      sm_max = m_g 

  end_case 

end 
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Figure 3.5 Comparison between FISH state variable and  user-defined variable 

(zs22 is FISH state vertical stress; s22 is averaged user-defined vertical  stress) 

 

Figure 3.5 shows a comparison between the FISH state variable ‘zs22’ and the user-

defined variable ‘s22’. Since ‘s22’ has been averaged, it gives the correct value of 50 kPa. 

As zs22 is associated with the last called sub-element while s22 is the averaged value of 

the four sub-elements, they are slightly different before the system reaches the 

equilibrium state. 

 

Another important point is that if sub-element averaging is necessary in a UDM, FISH 

state variables (zs11…) must be updated prior to the statement “if zsub>0…”. Although 

they can appear in a function or equation, they should never be updated inside “if zsub>0 

then…end_if” statements. This is different from user-defined variables. The following is 

a FISH code of the linear elastic model with FISH stress variables updated inside “if 

zsub>0 ...end_if” statements. 
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;FISH version of the linear elastic model 

def m_elas 

  constitutive_model 

  f_prop  m_g m_k m_e1 m_e2 m_g2  

   

 case_of  mode 

    case 1 ; initialization  

      m_e1 = m_k + 4.0 * m_g / 3.0 

      m_e2 = m_k - 2.0 * m_g / 3.0 

      m_g2 = 2.0 * m_g 

    case 2 ; running section  

    if zsub>0 then 

      zs11  = zs11 + zde11 * m_e1 + (zde22+zde33) * m_e2 

      zs22  = zs22 + zde22 * m_e1 + (zde11+zde33) * m_e2   

      zs33  = zs33 + zde33 * m_e1 + (zde11+zde22) * m_e2   

      zs12  = zs12 + zde12 * m_g2 

    end_if           

    case 3;  max modulus 

      cm_max = m_k + 4.0 * m_g / 3.0 

      sm_max = m_g 

  end_case 

end 

 
 
Using the same problem as for Figure 3.3a, Figure 3.6 shows that if FISH stress variables 

( zs11, zs22, zs33 and zs12 ) are updated inside “if zsub >0 … end_if” , they do not give the 

correct response. Stress amplitude of approximately 25 kPa is obtained (the thick line) 

while it should be about 50 kPa (i.e. the applied dynamic force) as inertia forces are 

negligible in this case.  

 

An important task in a UDM is to update FISH stress variables, i.e zs11, zs22, zs33 and zs12. 

No matter how simple or sophisticated  a code is, there must be a section in a UDM 

updating the FISH stress variables and this section should not be put inside “if zsub>0 

then … end_if” statements. 
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Figure 3.6 Influence of location where FISH stress variables are updated 

(Thick line: inside “if zsub>0…”; thin line: prior to sub-element averaging) 

 

3.4.3 Strain increments 

zde11, zde22, zde33 and zde12 are strain increments. They are generated by FLAC internally 

according to boundary conditions and the current stress. They can appear in a function of 

a code but should not be updated by the user in a UDM. 

 

3.4.4 Pore water pressure 

In a FLAC calculation stresses stored at each timestep are normally total stresses (e.g. sxx, 

syy and szz). When a soil constitutive law is called each time to calculate elastic moduli 

 for the next timestep, effective stresses are always used, hence the following equation 

needs to be incorporated into the incremental formulations of a UDM:  

 

uσσ −=′                                                                                               (3.3) 

 

Where u is the pore water pressure generated by a soil model itself (see Chapter 5). σ is 

the total normal stress represented by zs11, zs22 and zs33  in a FISH code. 
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For example, if the mean effective normal stress ‘p’ is needed in a soil model, the 

following equation should appear in the FISH code: 

 

p = (zs11 + zs22 + zs33 )/3 – u                                                   (3.4) 

 

However if the pore water pressure ‘u’ is generated by means of the ground water mode 

approach in FLAC (i.e using ‘gw’ configuration mode and ‘set flow off’, see FLAC4.0 

manual Theory and Background) rather than by the user-defined soil model, the effective 

stresses will be automatically calculated by FLAC and FISH state variables zs11, zs22 and 

zs33 are always effective stresses. Therefore the above equation becomes as follows while 

the FLAC stresses, sxx, syy and szz, are still stored as total stresses:  

 

p = (zs11 + zs22 + zs33 )/3                                                                          (3.5) 

 

This can be seen by the following example in which a conventional triaxial test of elastic 

soil is modeled (see the data file).  The linear elastic soil model is used with 

modifications to the previous FISH code. FLAC stress (syy ), pore water pressure (pp) and 

FISH state variable zs22 (represented by a user variable $zs22 as histories of FISH state 

variables can not be recorded directly by the command HISTORY). Pore water pressure 

is generated by Ground water mode approach in this example. 

 

;data file for a triaxial test 

config axi gw  

grid 1,1 

gen 0.0, 0.0 0.0,0.1 0.1,0.1 0.1,0.0 

fix y j 1 

fix x I 1 

set flow off 

water dens 1 bulk 2e6 tens 1e10 

call elas.fis 

model m_elas 

prop m_g 4.0e3 m_k 2.0e4 den 1.7 

his syy 

His $zs22 

his pp 

his ydisp I 1 j 2 

fix y j 2 

ini yv -1.0e-6 j=2 

step 2000 
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;FISH version of the linear elastic model 

def m_elas 

  constitutive_model 

  f_prop  m_g m_k m_e1 m_e2 m_g2  

  float $zs22 

  

  case_of  mode 

    case 1 ; initialization  

      m_e1 = m_k + 4.0 * m_g / 3.0 

      m_e2 = m_k - 2.0 * m_g / 3.0 

      m_g2 = 2.0 * m_g 

    case 2 ; running section  

      zs11  = zs11 + zde11 * m_e1 + (zde22+zde33) * m_e2 

      zs22  = zs22 + zde22 * m_e1 + (zde11+zde33) * m_e2   

      zs33  = zs33 + zde33 * m_e1 + (zde11+zde22) * m_e2   

      zs12  = zs12 + zde12 * m_g2 

      $zs22=zs22 

    case 3;  max modulus 

      cm_max = m_k + 4.0 * m_g / 3.0 

      sm_max = m_g 

  end_case 

end 
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Figure 3.7 Effective and total stresses 
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It can be seen from Figure 3.7 that FISH variable zs22 is converted to effective stress 

automatically by FLAC although Eq.3.3 is not incorporated in the FISH code. If the pore 

water pressure is generated by the soil model itself, the user has to convert the FISH 

variables zs11, zs22 and zs33 to effective stresses which are used to check yield and 

calculate elastic moduli in the FISH code of the soil constitutive model (see Chapter 5) 

 

It is also noted that even if the FISH state variable zs22 is replaced with a user defined 

stress variables (here $zs22 ), the conversion from total stress to effective stress is still 

carried out by FLAC automatically. However the user’s variable must be put after “zsub 

> 0 then” statement to avoid accumulation of stress over the four sub-element (see the 

following FISH code). Figure 3.8 shows that the user defined variable ‘$zs22’ is effective 

stress. 

 

 

;FISH version of Elastic model 

def m_elas 

  constitutive_model 

  f_prop  m_g m_k m_e1 m_e2 m_g2  

  float $zs22 

  

  case_of  mode 

     

   case 1 ; initialization  

      m_e1 = m_k + 4.0 * m_g / 3.0 

      m_e2 = m_k - 2.0 * m_g / 3.0 

      m_g2 = 2.0 * m_g 

    case 2 ; running section  

     

      zs11  = zs11 + zde11 * m_e1 + (zde22+zde33) * m_e2 

      zs22  = zs22 + zde22 * m_e1 + (zde11+zde33) * m_e2   

      zs33  = zs33 + zde33 * m_e1 + (zde11+zde22) * m_e2   

      zs12  = zs12 + zde12 * m_g2 

           

      if zsub>0 then 

       $zs22  = $zs22 + zde22 * m_e1 + (zde11+zde33) * m_e2   

      end_if 

    case 3;  max modulus 

      cm_max = m_k + 4.0 * m_g / 3.0 

      sm_max = m_g 

  end_case 

end 
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Figure 3.8 Effective stress using user defined variable 
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3.5      Summary 

FLAC divides each quadrilateral element into two overlaid sets of triangular sub-

elements. A user-defined model (UDM) is called four times per element (once for each 

sub-element) each timestep. Whether stress or strain is constant or not over the four sub-

elements depends on boundary condition and shape of the element. To get more accurate 

results, stress and strain may need to be averaged over the four sub-elements although 

this may not always provide “the correct” solution if a specific boundary condition is 

involoved. If not specified, however, stress and strain of an element are only associated 

with the last-called sub-element. 

 

All local variables (e.g. property variables) must be defined under statement F_PROP in 

a UDM code. Re-initialization should be avoided when multiple STEP commands occur 

in a data file. 

 

FISH state variables are manipulated internally by FLAC. They are not treated according 

to the logic with which they appear in a code. They are not averaged over sub-elements 

and are only associated with the last-called sub-element. They should not be updated 

within ‘if zsub>0 then… …end_if’ statements. 

 
If pore water pressure is generated by a user’s soil model, stresses must be converted into 

effective stresses by the user before the yield function is called. If the pore water pressure 

is generated by FLAC as in ‘gw’ model, stresses are automatically converted to effective 

stresses. 
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4 PLASTIC CORRECTION APPROACH 

 

 

 

Previous study (Ni, 2001) has indicated that numerical distortion (instability) occurs in 

nonlinear dynamic analysis if a nonlinear constitutive law of soil is implemented using 

‘apparent modulus’ approach. ‘Plastic correction’ approach is expected to be able to 

reduce the numerical distortion. 

 

The above two implementation approaches are discussed in this chapter. The hyperbolic 

model in FLAC, which is implemented with ‘apparent modulus’ approach, has been 

modified for cyclic loading to demonstrate the phenomenon of numerical distortion in 

nonlinear dynamic modelling while a bilinear model has been implemented with the 

concept of ‘plastic correction’ approach. The bilinear model has been found to perform 

satisfactorily in dynamic analysis without using any additional damping to cope with the 

numerical distortion problem.  

 

 

4.1 ‘Apparent modulus’ approach 

For a linear elastic model, there is no failure criterion. Only a set of constant 

deformational properties are required to perform a mechanical calculation. Either bulk 

modulus (K) and shear modulus (G) or Young’s modulus (E) and Poisson’s ratio ( µ ) can 

be used. A general form of stress-strain relationship is given as follows. 

 

εσ && ⋅= eD                            (4.1) 

 

Where De is a 4 by 4 matrix of elastic deformational constants, i.e. K and G or E and 

µ (Note: FLAC prefers the use of K and G although any pair of the above four elastic 

parameters can be used for describing the deformational characteristics of an isotropic 

elastic material).σ& and ε&  are stress and strain rate tensors respectively, each of which is 



 64 

expressed by a 4 by 1 matrix. For the plane strain problem, the above equation can be 

expressed in the following form: 
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Where GKe
3

4
1 += , GKe

3

2
2 −=  and Ge 23 =  

Similarly, a nonlinear model may be expressed as follows: 

 

εσ && ⋅= ep
D               (4.2) 

 

Where Dep is the matrix containing variable elements which depend on the current stress 

and strain. Equation 4.2 may be expressed in a similar form to Eq.(4.1a), except that the 

elements of the matrix are not constants.  

 

In the ‘apparent modulus’ approach, at each timestep in an incremental calculation, Dep 

needs to be computed according to a specific soil model. This may involve a series of 

complicated incremental computation as in a bounding surface model (See Eq.5.32 in 

Chapter 5) or a simple closed-form solution as in a hyperbolic model (e.g. Duncan and 

Chang, 1970, also see Eq. 4.6 in this chapter). The equivalent modulus (usually tangent 

modulus) is formulated in such a way that it varies from the small strain modulus (i.e. the 

elastic modulus) to a very small value close to zero. The ‘apparent modulus’ approach is 

conceptually illustrated in Figure 4.1, where Gapp is the apparent shear modulus, Ge is the 

small strain shear modulus, q is the deviator stress and γ  is the engineering shear strain. 

 

At time t in a nonlinear incremental calculation, the equivalent modulus is calculated and 

is used to update the stress at time tt ∆+ using Hooke’s law, which is expressed herein as 

equations 4.1 and 4.2. At the first timestep of the entire calculation and the second 
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timestep after a strain reversal takes place (Note: it is the second timestep not the first 

timestep because there is a one-step delay in the calculation of modulus), the equivalent 

modulus is taken to be the small strain modulus (i.e. elastic modulus). At any other 

timesteps, the equivalent modulus is smaller than the small strain modulus and it 

decreases as plastic deformation increases. Therefore, a sudden change in the equivalent 

modulus occurs each time when a strain reversal takes place (See Figure 4.2). This is 

considered to be the cause of the numerical distortion in a nonlinear dynamic analysis. 

However, this is still an assumption (see Section 4.3.1 and Section 4.4). This assumption 

justifies the use of plastic correction approach to solve the distortion problem because this 

approach utilises elastic modulus which is constant or changes slightly. 

 

 

 

Figure 4.1 Illustration of ‘apparent modulus’ approach 

q 

γ  

Gapp = Ge 

Gapp =0 

Gapp=0 

Gapp = Ge 

Gapp = Ge 

Gapp 

time t 

time tt ∆+  

γ∆  
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Figure 4.2 Sudden change in apparent modulus 

 

 

It should be pointed out that in Eq. 4.2, ε& is the total strain increment (or rate) rather than 

the elastic part of the strain increment as in ‘plastic correction’ approach. This is because 

that the nonlinear behaviour is taken into account by using the equivalent modulus which 

contains contributions form both elastic and plastic behaviours.  

 

 

4.2 ‘Plastic correction’ approach 

4.2.1 Explicit and implicit integration 

There are two ways to carry out the plastic correction, i.e. explicit and implicit (Dunne 

and Petrinic, 2005). The explicit integration method is normally employed in a finite 

difference program such as FLAC while the implicit method is often used in a finite 

element program. There is a good explanation in FLAC manual (Cundall, 2000) about the 

advantages and disadvantages between these two integration methods.  

 

Gapp 

Ge 

0 
t 
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Figure 4.3 Conceptual illustration in general stress space of plastic correction 

 

The incremental form of Hooke’s law same as Eq.4.2 is used in both explicit and implicit 

integration methods except that the total strain increment ( ε&  ) in Eq.4.2 needs to be 

replaced with the elastic part ( eε& ) of the total strain increment and the equivalent elasto-

plastic stiffness matrix ep
D needs to be replaced with the elastic stiffness matrix e

D  (see 

Eq.4.3). The main difference between explicit and implicit methods is the way in which 

the plastic strain increment is obtained. 

 

e
εσ && ⋅= e

D                                                                                                     (4.3) 

 

In the explicit method (shown as Figure 4.3a), a very small timestep is required to ensure 

that stress after the plastic correction stays on the hardening surface. The use of a large 

timestep may result in the stress drifting from the surface after many timesteps. Therefore 

the solution of the explicit method is conditionally stable. After the stress increment is 

obtained through the above equation, it is added directly to the stress at time t   to get the 

new stress at the end of time tt ∆+ . Whether the new stress remains on the hardening 

tσ    tσ  

tt ∆+σ  

tt ∆+σ  

(a) Explicit integration (b) Implicit integration 

Hardening surface 
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surface or not depends on how small the timestep is. An error is inevitable after many 

timesteps of calculation and satisfactory results can only be achieved by using very small 

timesteps.  

 

In the implicit method (shown as Figure 4.3b), plastic strain increment is obtained 

through an iteration process (using Newton’s method to solve the yield function), which 

ensures that the stress at tt ∆+ satisfies the yield condition, i.e. falls onto the hardening 

surface. Therefore, the solution of the implicit integration is unconditionally stable and a 

large timestep may be used in a calculation. 

 

4.2.2 Procedures of plastic correction  

In ‘plastic correction’ approach, De rather than Dep is computed each timestep and only 

the elastic part of a strain rate contributes to change in the stress rate.  However 

components of De may not be necessarily constant. 

 

The incremental algorithm used in FLAC involves computation of the elastic modulus at 

time t, which is used to obtain a trial stress at time tt ∆+  with the Hooke’s law 

corresponding to the total strain increment ( ε& ). If no yielding occurs, the trial stress is 

taken to be the real stress. Otherwise, the real stress is obtained by replacing the total 

strain increment with the elastic part ( e
ε& ) of the total strain increment in the Hookes’ law 

while the modulus remains to be the elastic modulus computed at time t. As the elastic 

modulus is much less variable than the equivalent modulus, there is no abrupt change in 

the modulus during the incremental calculation. Therefore, the numerical distortion 

encountered in the ‘apparent modulus’ approach is expected to be reduced or eliminated. 

 

Figure 4.4 shows the flow chart utilised to programme the ‘plastic correction’ approach in 

FLAC. The ‘plastic correction’ approach is illustrated in Figures 4.5 (a) and (b).  

Given a total strain rate ( ε& ), a trial stress rate ( trial
σ& ) is first obtained from an elastic trial 

using the following relation. 
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εσ trial
&& ⋅= eD                               (4.4) 

This trial stress rate ( trialσ&  ) is then used to check plastic yielding and the plastic part ( p
ε& ) 

of the strain rate ( ε& ) is calculated if yielding occurs. The actual stress rate ( σ& ) is 

obtained through a correction of the strain rate in Eq.4.4 so that only the elastic part of the 

strain rate contributes to the change in the stress rate, i.e. 

 

eee DD εεεσ p
&&&& ⋅=⋅= )-(       (4.5) 

 

Get stress increment 
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Yes 

 

 

Figure 4.4 Flow chart of ‘plastic correction’ approach 

( eD is the matrix of elastic moduli) 
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(b) Yielding 

Figure 4.5 Conceptual illustration of ‘plastic correction’ approach 
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4.3 Implementation of two nonlinear models 

4.3.1 A hyperbolic model 

The hyperbolic soil model developed by Duncan and Chang (1970) is implemented in 

FLAC with ‘apparent modulus’ approach. In the model, the apparent tangent Young’s 

modulus, Et, is defined by the following relation. 

 

ift ESLRE .).1( 2−=  and n

aai PσKPE )/( 3=                                          (4.6) 

 

Where  

fσσσσSL )/()( 3131 −−=  is stress level; 

)sin1/()sin2cos2()( 331 φφσφcσσ f −+=−  is the deviatoric stress at failure as 

determined by the Mohr-Coulomb criterion; 

Ei is the initial Young’s modulus; 

K, n are model parameters; Pa is atmospheric pressure; 

ultff σσσσR )/()( 3131 −−=  is a model parameter used to describe the curvature of the 

hyperbolic function; ultσσ )( 31 −  is the theoretical asymptote of the hyperbolic function. 

 

The model was developed for use in static loading condition. Hereinafter the model is 

extended for cyclic loading purely for the purpose to explore the problem of numerical 

distortion. It is assumed that the stress-strain relation in unloading follows the same 

relation as Eq.4.6 but the stress level (SL) is modified as follows: 

 

fσσσσσσSL )/(])()[( 3103131 −−−−=                                                     (4.7) 

 

where 

031 )( σσ −  is the deviator stress, i.e.  q0 at the last turning point. 

The above modification has been incorporated in the FISH code of the hyperbolic model 

appended to this section, in which Rf is assumed to be 1.0 and for convenience the initial 
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Yong’s modulus Ei and strength fσσ )( 31 −  are given as inputs. Figure 4.6 shows the 

flow chart used in coding of the model. 

Update q0 
old

qq =0  

Yes 

Apply strain rate, ε&  

Calculate current stress and deviator stress 

 σσσσσσσσσσσσ &+= oldnew
  qqq

oldnew
&+=  

Check strain reversal No 

Update shear modulus, G 
 

newqq =old

 
 

Figure 4.6 Flow chart of a hyperbolic model modified for cyclic loading 

 

Figure 4.7 shows the response of an axisymmetrical single-zone model simulating a 

conventional triaxial specimen subject to a 100-cycle vertical sinusoidal loading. The 

frequency is 1Hz and axial strain amplitude is 1%. Ei =112.5 MPa, fσσ )( 31 − = 400 kPa, 

bulk modulus = 200 MPa, 3σ =100 kPa, ρ = 18 kN/m3. 1% Rayleigh damping is applied. 

The response is stable within 100 cycles. 

 

Numerical distortion occurs if there is no additional damping applied to the model (See 

discussions in Section 4.4). Figure 4.8 shows that an unstable response occurs within 12 

cycles. This is due to the sudden change in modulus at turning points. A non-physical 

vibration is caused when strain reversal takes place. Hence extra unbalanced forces are 

introduced into the grid nodes. These unbalanced forces are accumulated cyclically and 

may lead to collapsing of the model. 
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Figure 4.7 Dynamic response of the hyperbolic model 

(100-cycle vertical sinusoidal loading, frequency =1 Hz  

with 1% Rayleigh damping, timestep = 1×10
-4

 second) 
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Figure 4.8 Dynamic response of the hyperbolic model without additional damping 

(12- cycle vertical sinusoidal loading, frequency =1 Hz, timestep=1.0×10
-5

 second) 
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Figure 4.9 Static response of the hyperbolic model 

(20 cycles, maximum strain = 1%, strain increment = 0.001% per step) 
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Figure 4.10 Dynamic response with a timestep of 1.0×10
-6 

second 

(15- cycle vertical sinusoidal loading, frequency =1 Hz, no damping) 
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It has been found that the model works well in a static analysis (see Figure 4.9) and a 

satisfactory performance of the model can be obtained using an appropriate strain 

increment. In a dynamic analysis, however, reducing timestep (similar to reducing the 

strain increment in static analysis) does not help solve the problem of numerical 

distortion. In Figure 4.10, the timestep is 10 times smaller than that in Figure 4.8. The 

performance of the model is stable within the first 12 cycles, but it gets worse and worse 

afterwards. Therefore it is essential to apply an additional damping, as in Figure 4.7, to 

obtain a satisfactory performance of a nonlinear soil model if it is implemented with the 

‘apparent modulus’ approach. 

 

;FISH code of the Duncan elastic-hyperbolic model 

;based on FLAC’s hyp.fis and modified for cyclic loading 

;update young's modulus each timestep while bulk modulus is constant 

set echo off 

def hyper_bn 

  constitutive_model 

;--- model variables --- 

  f_prop y_mod b_mod yield y_initial  

  ;soil property variables, yield=2*Su 

  ;y_initial=initial Young's modulus 

  f_prop h_e1  h_e2  h_g2  y_squared 

  f_prop q0 q sign_old q_old G0 

  float $dq $sign $shear $q_ult  

  float $dzs11 $dzs22 $dzs33 $dzs12 

  float $ds1 $ds2 $ds3 $dif $sum1 $sum2 

  f_prop stepCommand 

  case_of  mode 

;--- initialization --- 

    case 1 

     if StepCommand=0 then 

      if y_mod = 0.0 then 

         y_mod = y_initial 

      end_if 

      $shear    = 3.0 * y_mod * b_mod / (9.0*b_mod-y_mod) 

      h_e1      = b_mod + 1.333333  * $shear 

      h_e2      = b_mod - 0.6666667 * $shear 

      h_g2      = 2.0 * $shear 

      yield_1 =2.0*yield 

      G0=$shear 

      StepCommand=1.0 

    Endif 

;--- running section --- 

    case 2 

      zvisc = 0.0 

      ;calculate stress increments 

      $dzs11    = (zde22+zde33) * h_e2 + zde11 * h_e1 

      $dzs22    = (zde11+zde33) * h_e2 + zde22 * h_e1 
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      $dzs33    = (zde11+zde22) * h_e2 + zde33 * h_e1 

      $dzs12    = zde12 * h_g2  

      ;calculate deviator stress increment 

      $ds1      = $dzs11 - $dzs22 

      $ds2      = $dzs22 - $dzs33 

      $ds3      = $dzs33 - $dzs11 

      $dq       = $ds1*$ds1 + $ds2*$ds2 + $ds3*$ds3   

      $dq       = 0.7071*sqrt($dq + 6.0*$dzs12*$dzs12) 

      ;Calculate stresses 

      zs11      = zs11 + $dzs11 

      zs22      = zs22 + $dzs22 

      zs33      = zs33 + $dzs33 

      zs12      = zs12 + $dzs12 

      ;accumulate deviator stress increment among sub-zones 

      $sum1    = $sum1 + $dq 

      ;accumulate strain increment among sub-zones 

      $sum2=$sum2+zde22 

 

      ;Average user's variables over sub-zones 

        

      if zsub > 0.0 then 

        $dq=$sum1/zsub 

        $sum1=0.0 

        $sign=sgn($sum2/zsub) 

        $sum2=0.0 

        q=q+$dq*$sign ;current deviator stress 

        ;check strain reversal 

        if $sign*sign_old<0.0 then 

          q0=q_old 

           yield=yield_1 

        end_if 

        ;update Young's modulus 

        $dif   = max(0.0,yield-abs(q-q0)) 

        y_mod  = y_initial * $dif^2/ yield^2 

        ;convet Young's modulus to shear modulus 

        $shear = 3.0 * y_mod * b_mod / (9.0*b_mod-y_mod) 

        ;calculate the three modulus variables for next step 

        h_e1   = b_mod + 1.333333  * $shear 

        h_e2   = b_mod - 0.6666667 * $shear 

        h_g2   = 2.0 * $shear 

        ;store variables 

        q_old=q 

        sign_old=$sign 

     end_if 

    case 3 

;--- max modulus --- 

      $shear = 3.0 * y_mod * b_mod / (9.0*b_mod-y_mod) 

      cm_max = b_mod + 1.333333 * $shear 

    sm_max=G0 

    cm_max=b_mod + 1.333333 * G0 

  end_case 

end 

;opt hyper_bn 

set echo on 
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4.3.2 A bilinear model 

It has been found in previous study (Ni, 2001) that an unstable response will occur in a 

dynamic analysis if a bilinear model is implemented with the ‘apparent modulus’ 

approach. The larger the difference between yield and elastic modulus of soil, the more 

severe the problem. 

 

Herein the bilinear model is implemented using the concept of ‘plastic correction’ 

approach. A constant modulus is used and when yielding occurs a stress correction is 

carried out instead of using a yield modulus.  

 

The bilinear model is formulated in a triaxial stress space. It is assumed that the same 

stress-strain relation applies to both compression and extension and there is no tension 

failure. The yield function is defined as follows:  

 

aB
q

q
Aqf ε⋅+⋅−=                              (4.8) 

 

Where aε is the axial strain; q is the deviator stress; A and B are two constants with the 

same unit as q, which determines two yield lines as shown in Figure 4.11. 

 

An elastic trial calculation is carried out each timestep to get a trial stress and if yielding 

occurs, i.e. f >0, the trial stress point is corrected back onto the yield lines. As there is no 

formulation in calculating plastic strain in this case, the plastic correction is performed 

with a correction ratio defined as follows: 
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Figure 4.11 A bilinear model using ‘plastic correction’ approach 
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Figure 4.12 Flow chart of implementation of a bilinear model 
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ratio
trial ⋅= σσ                                                                                          (4.10) 

Figure 4.12 shows the flow chart for implementation of the bilinear model and the FISH 

code is also given at the end of this section. The bilinear model has been found to 

perform well in dynamic analysis without any additional damping. Figure 4.13 shows that 

a 16-zone model (simulating a triaxial specimen 0.4 m in height and 0.2 m in diameter) 

undergoes a dynamic loading for 1000 cycles without any sign of numerical distortion. 

No additional damping is applied. A high frequency of 20 Hz is chosen to test the 

performance of the bilinear model as numerical distortion is frequency dependent and the 

higher the frequency, the more severe the distortion.  

 

The bilinear model is identical to the Mohr-Coulomb model when B = 0. A comparison 

in dynamic analysis between these two models is shown in Figure 4.14. There is virtually 

no difference in the dynamic response. 
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Figure 4.13 Dynamic response of a multi-zone bilinear model 

(triaxial specimen 0.2 m by 0.4 m, 16 elements, sinusoidal loading, 1000 cycles, 20 Hz; 

G=40 MPa, K = 200 MPa, A=260 kPa, B = 800 kPa.) 
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Figure 4.14 Comparison of the bilinear model with Mohr-Coulomb model 

(triaxial specimen 0.2 m by 0.4 m, 16 elements, sinusoidal loading, 200 cycles, 20 Hz; 

G=40 MPa, K = 200 MPa; left – Bilinear model, A=200 kPa, B = 0 kP; right – Mohr-

Coulomb model, qu=200 kPa) 
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;FISH version of the bilinear model 

;imlemented with ‘Plastic correction approach’ 

;this version is for triaxial stress condition 

set echo off 

def m_bilinear 

  constitutive_model 

 f_prop b_g b_k A B  

 f_prop b_e1 b_e2 b_sh2  

 f_prop strain  

 float $ratio $zde22 $q $q_max  

  

 case_of  mode 

; --- initialization --- 

    case 1  

      b_e1    = b_k + 4.0 * b_g / 3.0 

      b_e2    = b_k - 2.0 * b_g / 3.0 

      b_sh2   = 2.0 * b_g 

 

; --- running section --- 

    case 2 

     zvisc = 0.0 

; --- get new stresses from old 

      zs11= zs11 + (zde22 + zde33) * b_e2 + zde11 * b_e1 

      zs22= zs22 + (zde11 + zde33) * b_e2 + zde22 * b_e1 

      zs33= zs33 + (zde11 + zde22) * b_e2 + zde33 * b_e1 

      zs12 =zs12 + zde12 * b_sh2 

      $zde22=$zde22+zde22 

      $q=(zs22-zs11) 

      strain=strain+zde22 

      $q_max=sgn($q)*A+ B*strain 

      if abs($q)>abs($q_max) then 

       $ratio=abs($q_max/$q) 

       zs11=zs11*$ratio 

       zs22=zs22*$ratio 

       zs33=zs33*$ratio 

       zs12=zs12*$ratio 

     end_if 

 

; --- max modulus --- 

    case 3 

      cm_max = b_k + 4.0 * b_g / 3.0 

      sm_max = b_g 

  end_case 

end 

opt m_bilinear 

set echo on 
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4.4 Discussion on numerical distortion  

The numerical distortion (instability) encountered in ‘apparent modulus’ approach is 

considered to have nothing to do with the effects of timestep or zone size. As shown in 

Section 4.3.1, reducing timestep does not help to solve the problem. Previous study has 

also indicated that reducing zone size does not help either. 

 

The problem may be partly due to the formulation of a soil model. For example, in a 

nonlinear model, an equivalent apparent tangent shear modulus may be formulated as 

follows: 

 

pe

pe

app
GG

GG
G

+
=                                                                                          (4.11) 

 

Where Gapp is the apparent tangent shear modulus, G
e is the small strain shear 

modulus and Gp is the plastic shear modulus.  

 

G
p may be formulated in such a way that it varies from infinity (∞) to zero so that 

Gapp has a range of value between the small shear modulus and zero. Therefore, 

around the strain reversal points, G
p may well exceed the precision limits of a 

computer, which can cause computational error. One can solve the problem by 

specifying values of shear modulus when Gp exceed the precision limits (i.e. using 

‘if … then’ statements in a FLAC program to avoid execution of the above 

equation). However, this will normally result in non-smooth transition in calculated 

stiffness. 

 

The above computational error may also be introduced into a nonlinear model 

implemented using ‘plastic correction’ approach as a large plastic modulus is also 

required at the onset of yielding in order to obtain a smooth transition from elastic 

region to elasto-plastic region. 
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However there may be other reasons causing the problem, which can be more 

dominating than the precision limits of numbers. From analyses using the Duncan 

and Chang model (Section 4.3.1), it has been found that even though values of 

variables do not exceed the precision limits, severe distortion still occurs. It is 

suspected that the sudden change in apparent modulus appears to be one of the 

main reasons. Due to the repetitive sudden change in stiffness, some non-physical 

vibrations may be generated in the system. 

 

In ‘apparent modulus’ approach, both of the above two factors contribute to the 

problem. It is expected that the distortion problem can be reduced in ‘plastic 

correction’ approach (as shown in Section 4.3.2) because there is no sudden change 

in modulus. However, computational errors may still be generated if the value of a 

variable exceeds the precision limits of a computer during the calculation. 
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4.5 Summary 

Two approaches for implementing nonlinear soil models in FLAC, i.e. ‘apparent 

modulus’ and ‘plastic correction’, have been discussed.  

 

The hyperbolic model provided in FLAC has been modified for cyclic loading to explore 

the problem of numerical distortion. It has been found that numerical distortion occurs in 

dynamic analysis if a nonlinear model is implemented with ‘apparent modulus’ approach.  

 

This kind of numerical distortion is considered to be associated with strain reversals. 

Computational errors are introduced into the calculation around the turning points. The 

reasons for the errors may include: computed values of some variables exceed the 

precision limits of a computer; non-physical vibration is caused by the sudden change in 

stiffness of the model. 

 

No matter what reason it is, it has been found that the problem has nothing to do with the 

size of timestep. Hence, reducing timestep does not help to reduce the problem. However, 

it can be minimised by applying an additional damping, which damps out to some extent 

the extra unbalanced forces caused by the errors. The numerical distortion does not occur 

in a static situation because a large default damping ratio (80%) is applied in FLAC. In a 

dynamic analysis, the numerical distortion becomes more severe as the errors can 

accumulate cyclically. An additional damping (say 5%) may not be sufficient to eliminate 

the problem. On the other hand, this additional damping may well affect the results of the 

analysis. Therefore, for dynamic analysis, ‘plastic correction’ approach has to be used to 

obtain a satisfactory result. 

 

A bilinear model has been implemented in FLAC using the principle of ‘plastic 

correction’ approach. Satisfactory dynamic performance has been obtained from the 

bilinear model without using any additional damping. This has formed the basis for the 

work of implementing a more advanced plasticity model, i.e. the Bubble model in 

Chapter 5.  
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5 THE BUBBLE MODEL AND ITS IMPLEMENTATION IN FLAC 

 

 

 

The Bubble model was first proposed by Tabbaa & Wood (1989). It was extended by 

Wood (1995) for structured soils, i.e. most natural soils, which have different stress-strain 

behaviours after being remoulded. More general formulations were given by Rouania & 

Wood (1998, 2000) in general stress space and Lode’s angle was introduced into the yield 

functions. Further work was undertaken by Gajo & Wood (2001) to include rotational 

hardening in the model. 

 

A full description of the model proposed by Rouania & Wood (2000) is presented in 

Section 5.1. For consistency, it is still called ‘Bubble model’. An alternative form to the 

plastic modulus function of the model is proposed and discussed in Section 5.2, which 

has been found to better incorporate the influence of bubble’s size on response of the 

model. The elastic bulk modulus function has also been extended for over-consolidated 

soils. The modified model has been implemented in FLAC with the ‘Plastic correction’ 

approach as described in Chapter 4. Main aspects of the implementation are discussed in 

Section 5.4. A complete FISH code of the model is attached to the chapter with detailed 

notations. 

 

5.1   Description of the model (Rouania & Wood, 2000) 

The Bubble model is an extension to the modified Cam-clay model and is formulated 

within the kinematic hardening framework similar to the two-surface model proposed by 

Mróz et al. (1979). The non-intersection translation rule proposed by Hashiguchi (1985) 

is utilised in the model. The model can be used for both structured and non-structured 

soils. It can also be reduced to the modified Cam-clay model. 
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Basic elasto-plastic assumption 

The Bubble model, like other elasto-plastic models, has been developed on the basic 

assumption that strain rate consists of two parts, i.e. elastic and plastic strain rates. 

pe
εεε &&& +=                                          (5.1) 

 

The constitutive relation presented in this section is formulated in general stress space. 

All the tensor quantities are denoted by bold characters. The superimposed dot stands for 

time differentiation. Further details of all the tensor quantities and tensor products are 

given in Appendix B attached to this chapter. 

 

The elastic constitutive relation is given by the following equation. 

 

ee
εσ && ⋅= D                                          (5.2) 

 

Where D
e is a matrix of isotropic elastic properties presented by the bulk and shear 

moduli, K and G. The bulk modulus, K, is defined as follows: 

 

∗
=
κ

p
K                                                            (5.3) 

 

Where p is the mean effective principal stress, ∗κ  is the slope of the swelling line in a 

logarithmic specific volume-logarithmic mean stress compression plane (i.e. 

plnvln ~ plane) rather than in a specific volume-logarithmic mean stress compression 

plane (Butterfield, 1979). 

 

 
Yield surfaces 

The Bubble model has three surfaces, i.e. reference surface, bubble and structure surface. 

The three surfaces have the same elliptical shape and their size and location change when 

plastic strain occurs. The analytical equations are expressed in ‘p, s’ space. p is mean 

principal stress and s is deviatoric stress tensor. 
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][
3

1
σtrp =          Iσs p−=                                                                      (5.4) 

 

Where σ is the stress tensor, I is the second-rank identity tensor and tr[.] is the trace 

operator of [.]. 

 

The reference surface is utilised to model intrinsic behaviour of reconstituted soils. It 

passes through the stress origin and is always centered on the p axis in the p, q space. Its 

size changes when plastic volumetric strain occurs according to an isotropic hardening 

rule (See Eq.5.19). The analytical equation is defined as follows: 
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f ss :                                                 (5.5) 

 

Where pc is a scalar variable defining the size of the reference surface (See Figure 5.1); 

θM is a dimensionless scaling function of Lode’s angle θ, which affects the shape of the 

surfaces in deviatoric space. It is given by 
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2
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=                                                                      (5.6) 

Where m is the ratio between radii of the sections through the surface for axisymmetrical 

extension and compression in deviatoric plane. It should be between 0.7 and 1.0 to ensure 

convexity. M is the critical state stress ratio for axisymmetrical compression. Lode’s 

angle θ is related to the second and third deviatoric invariants, i.e. J2 and J3: 
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Figure 5.1 Three surfaces of the Bubble model 

 
The bubble is the boundary of elastic behaviour. When stress path engages the bubble 

plastic deformation occurs and the size of the bubble changes according to the isotropic 

hardening rule, and, at the same time, it translates inside the structure surface according 

to a kinematic hardening rule. Its analytical equation, i.e. the yield function, is defined as 

follows: 

 

0)()()()(
2

3 22 =−−+−−= cααα2

θ

b Rppp
M

f ssss :            (5.8) 

 

In the above equation,{ } αs =
T

ααp , denotes the location of the centre of the bubble. R is 

a constant parameter representing the ratio of size between the bubble and reference 

surface. 

 

The structure surface acts as a bounding surface. It collapses towards the reference 

surface as plastic strain develops. Both volumetric and shear strain contribute to the 

destructuration. After completion of the destructuration, the size of structure surface is 
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only controlled by the isotropic hardening rule. The analytical equation of the structure 

surface is given by 

 

[ ] [ ] 0)()()1()1(
2

3 22
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F ηsηs :          (5.9) 

 

Where 0ηηηη  is a dimensionless deviatoric tensor controlling the structure surface, 

{ } αη ˆ)1(, 0 =−
T

cc prrp  denotes the centre of the structure surface. The scalar variable r, 

which represents the process of the progressive destructuration of a structured soil, is the 

ratio of the sizes between the structure surface and the reference surface and it is assumed 

to be a monotonically decreasing function of the plastic strain. 
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Where *λ  is the slope of the normal compression line expressed in a logarithmic specific 

volume-logarithmic mean stress compression plane (i.e. plnvln ~ plane); r0 is the initial 

size of the structure surface and k is a parameter controlling the rate of destructuration 

with strain. The incremental form of equation (5.10) is given as follows: 
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In this equation 
dε& is an assumed destructuration strain rate having the following form: 
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Where 2/1ppp
q )]:(

3

2
[ εε &&& =ε  is the equivalent plastic shear strain rate, ][ pp

v trε ε&& =  is the 

plastic volumetric strain rate. ‘A’ is a scaling parameter ranging between 0 and 1. For A = 
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0 the destructuration is entirely volumetric, while for A = 1 the destructuration is entirely 

distortional. 

 

 

Flow rule 

The flow rule is associated with the bubble. When the yield function 0=bf (i.e. in 

numerical analysis, 0≥bf ) is satisfied, plastic strain occurs, which is given by 
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Where σ& is the stress rate and n denotes a unit vector representing the normalised stress 

gradient on the bubble at the current stress state and 1:
2/1

== nnn . The computation 

of n  involves the derivatives of Lode’s angle with respect to stress (see Appendix 5.3). H 

is the scalar plastic modulus expressed as follows: 
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Where n  is the stress gradient on the bubble at the current stress state. [ ] 2/1: nnn = . B, 

ψ are two material parameters controlling the rate of decay of stiffness with strain. Hc is 

the plastic modulus associated with the conjugate stress state cσ on the structure surface. 

It is given by 
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Where the quantity T is given by 
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In Eq.5.14, b is a normalised distance between current stress point σ on the bubble and 

the conjugate stress point 
cσ on the structure surface, and bmax is obtained when the 

bubble is touching the structure surface at a point diametrically opposite to the conjugate 

stress point (see Figure 5.10 in Section 5.3). b and bmax are expressed as follows: 

 

)(: σσn c −=b                                                                                          (5.17) 
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Where ασσ −=  is the normalised stress with respect to the centre of the bubble. 
 

 

Isotropic hardening rule 

In line with the Cam-clay model, a volumetric hardening rule is adopted in the Bubble 

model, i.e. all the three surfaces change in size only when plastic volumetric strain 

occurs. It is given by 
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Kinematic hardening rule 

When plastic strain occurs the bubble translates inside the structure surface according to 

the kinematic hardening rule given by 
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Where ασ ˆˆ −=σ  is the normalised stress with respect to the centre of the structure 

surface. Discussions about the kinematic hardening rule are given in the next section. 

 

 

5.2      Modifications of the Bubble model 

5.2.1 Plastic modulus function 

In the hardening modulus function, i.e. ψ
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 , the second 

term is an interpolation function which affects the behaviour of the model significantly. 

The interpolation function is not unique. Any other form can be adopted as long as a 

steady fall of stiffness with strain towards Cam-clay value can be achieved as the bubble 

approaches the structure surface. This will not change the fundamental framework of the 

constitutive model in Section 5.1.  

 

It has been found that for a given set of parameters, in order to obtain a realistic response 

of the model, the value of parameter B has to be varied in a large range if the bubble size 

parameter R changes.   

 

Figure 5.2 shows the initial state of a non-structured soil in triaxial stress space. To show 

the influence of bubble size on the response of the model, three bubble sizes (R = 0.1, 0.2 

and 0.3) are considered while other parameters are the same, which are given as follows: 

 

3.0* =λ   02.0* =κ  µ= 0.25 M =1.0  m =1.0  B=4  0.1=ψ   

00 =η  r0 =1.0 A = 0.5  k = 8  0c3 pσ =′ = 100 kPa   
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Figure 5.2 Initial state of a non-structured soil 
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Figure 5.3 Stress-strain behaviour with variable bubble size (B = 4)  

 

Figure 5.3 shows the undrained stress-strain curves of the model corresponding to the 

three bubble sizes. As 0c3 pσ =′ =100 kPa and M = 1, a realistic response of the model 

should correspond to an ultimate deviator stress of about 100 kPa. Therefore the curve for 

R = 0.1 represents the realistic response. It is expected that the ultimate stress for the 
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other two bubble sizes should be similar as the initial conditions are the same. To achieve 

similar results for different bubble sizes, the value of parameter B has to be varied. It has 

been found that B has to be varied from 0.5 to 50 if bubble size R changes from 0.05 to 

0.3 in order to get consistent realistic results (see Figures 5.4 and 5.5). 
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Figure 5.4 Response of the bubble model to different combinations of B and R 
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Figure 5.5 Relationship between B and R 
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Although it is not difficult to find a value of B to suit a particular bubble size, it is more 

desirable that B should be less sensitive to the bubble size. To better incorporate the 

influence of bubble size into the interpolation function, a temporary parameter, C, is 

introduced into the function (Note: The bubble size R is also hidden in b, bmax, Hc and n). 

C is a function of bubble size R. The hardening function is now given by 
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Using the same parameters and varying ψ between 0.5 and 1.5, a relationship of 

parameters C and R is found by trial and error to achieve realistic responses of the model. 

Results are shown in Figure 5.6. It can be seen that the relation of C and R in the original 

interpolation function is opposite to the best fit curve. This explains why B has to be 

varied in a large range.  

 

The best fit relation of C and R, i.e. C = 580.0 R
1.8, suggests a new form of the hardening 

modulus function as follows: 
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                                                              (5.21) 
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Figure.5.6 Relationship of C and R 
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Figure 5.7 Response of the model with new hardening function and constant B  

(R = 0.001 ~1.0, B = 2000) 

 
Figure 5.7 presents responses of the model using the new hardening modulus function for 

the same problem. The bubble size is varied between 0.001 and 1.0 while all other 

parameters are the same for each bubble size. All the responses are similar and realistic 

using a constant value of B. 



 97 

5.2.2 Elastic bulk modulus 

In the Bubble model elastic bulk modulus is defined as Eq.5.3, i.e. 
∗

=
κ

p
K .  It is obvious 

that if the confining pressure is zero the bulk modulus would be zero. This is true for 

normally consolidated soil but not for over-consolidated soil. For natural soil, use of the 

equation tends to result in over estimation of deformation. Therefore, for over-

consolidated soil the bulk modulus is modified as follows. 

 

 0K
κ

p
K +=

∗
                                                                                            (5.22) 

 

Where 0K  is the bulk modulus when the confining pressure is zero. 

 

 

5.3 Discussions 

Comparison of parameters between Bubble model and the modified Cam-clay model 

When R = 1.0, r0  = 1.0 and 00 =η , the Bubble model is reduced to the modified Cam-

clay model. Parameters k and A have no influence as no initial structure of soil is 

involved. Parameter m is ranged between 0.7 and 1.0 and has no influence in 

axisymmetrical compression. Therefore parameters of the Bubble model are reduced 

to ** ,κλ , M, pc, B, ψ , µ .  

 

Parameters of the modified Cam-clay model include: κλ, , M, 
cmp , µ . A reference point 

( 00 p,vλ ) on the normal consolidation line must be specified to use the model. 

 

cmp  and cp  represent the size of yield surface. In the Bubble model cp  corresponds to 

the centre of the yield surface while 
cmp  in the modified Cam-clay model is associated 

with the intersection point of the yield surface and the p axis, i.e ccm pp 2= (see Figure 

5.8). 
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Figure 5.8 Yield surface  

 

Butterfield (1979) suggested using a logarithmic specific volume-logarithmic mean stress 

compression plane rather than a specific volume-logarithmic mean stress compression 

plane. Typical values for the two parameters ** ,κλ from Butterfiled are given in Table 1. 

 

Table 5.1 Typical values of parameters *λ and *κ  

(Butterfield, 1979) 

Soil *λ  *κ  

Mexico City Clay 0.498 0.025 

London Clay 0.083 0.037 

Newfoundland peat 0.214 0.117 

Newfoundland silt 0.103 0.016 

Chicago Clay 0.154 0.045 

Boston blue Clay 0.122 0.024 

Drammen Clay, plastic 0.140 0.016 

Drammen Clay, lean 0.104 0.018 
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Stallebrass and Taylor (1997) used *λ = 0.073 and *κ = 0.005 in the 3-SKH model for 

Speswhite kaolin while Morrison (1994) used λ = 0.18 and κ = 0.035 in the modified 

Cam-clay model for the same soil.  

 

Rouainia and Wood (2000) used *λ = 0.252 and *κ = 0.0297 in the Bubble model for 

NorrkÖping clay. 

 

In fact, ** ,κλ vary with mean principal stress. For small strain problems ** ,κλ can be 

related to κλ,  by 

 

0v

λ
λ* ≈  and 

0v

κ
κ* ≈                                                                                  (5.23) 

 

Where 0v  is the initial specific volume corresponding to the initial mean effective 

principal stress p0. Further explanation about the above relationships is given as follows. 

 

In the logarithmic specific volume-logarithmic mean stress compression plane shown as 

Figure 5.9, the compression line is defined by 
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Differentiation of Eq.5.24 gives 

 

p

dp
λ

v

dv ∗−=                                                                                               (5.25) 

 

On the other hand, in the specific volume-logarithmic mean stress compression plane, the 

compression line is defined by 
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Differentiation of Eq.5.26 gives 

 

p

dp
λdv −=                                                                                                 (5.27) 

 

Substitution of Eq.5.25 gives  

 

v

λ
λ* =                                                                                                        (5.28) 

 

Similarly, the following relationship can be obtained 

 

v

κ
κ* =                                                                                                        (5.29) 

 

For small strain problems, 0vv ≈ , hence 
0v

λ
λ* ≈  and 

0v

κ
κ* ≈  

The above relationships will be used in Section 6.3 when the Bubble model is 

compared with the modified Cam-clay model. 
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Figure 5.9 Normal consolidation line and swelling line  

 

 

Stress gradient and normalized stress gradient 

The hardening modulus, ψ
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, involves the magnitude of 

stress gradient n  at the current stress state on the bubble. In all other formulations of the 

model, normalised stress gradient n  has to be used, which is the stress gradient 

normalised with respect to its magnitude, i.e. [ ] 12/1
== n:nn . 

 

 

Distance of current stress state to structure surface 

The hardening modulus depends on the location of current stress state, which is  

measured as a normalised distance between the current and conjugate stress points with 

respect to the direction of stress gradient, i.e. )(: σσn c −=b . bmax is obtained when the 

bubble is touching the structure surface at a point diametrically opposite to the conjugate 

stress point, i.e. σn :)1(2max −=
R

r
b .  
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Figure 5.10 Normalised distance of bubble to structure surface 

 

Non-intersection translation rule 

In the Bubble model, the non-intersection translation rule proposed by Hashiguchi (1985) 

is employed to describe the kinematic hardening of the bubble, i.e,  

 

{ }
)(

):

)/()]/()/[(ˆˆ:
))(ˆ(ˆ

c

σσ
σ(σn

σσσn
αααα −

−

++
++−+= c

cc

c

c rrpprr-

p

p

r

r &&&&&&&&  

 

The bubble translates along the line connecting the current and conjugate stress points 

and eventually comes into contact with the structure surface as shown in Figure 5.11. 

However this hardening process is significantly influenced by hardening modulus. As the 

interpolation function of the hardening modulus is arbitrarily defined and is not 

interrelated to the translation rule, the bubble may never reach the structure surface if an 

inappropriate value of parameter B is selected, i.e. the critical state of soil can be reached 

before the bounding surface is engaged by the current stress state (See Figures 6.15 and 

6.17 in Section 6.1). 
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Figure 5.11 Kinematic hardening of bubble 

 

 

Volumetric hardening 

Although the Bubble model is formulated in kinematic hardening framework, volumetric 

hardening has a major influence on the response of the model. When r0 = 1 translation of 

the centre of the structure surface is given by 

 

T

c ]0,p[ˆ && =α                                                                                            (5.30) 

 

While translation of the centre of the bubble is given by 
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−
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cc

c

c pp-

p

p &&&
&&                                    (5.31) 
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As pc is only controlled by plastic volumetric strain hence hardening of the yield surface 

is purely volumetric when r0 = 1. 

 

 

Reference surface 

The Bubble model is actually a two-surface model. The reference surface represents the 

intrinsic behaviour of a remoulded soil. It is not directly involved in the hardening rule or 

hardening function. However the use of a reference surface makes it possible to illustrate 

the destructuration process of a structured soil. 

 

 

Incremental stress-strain relation 

The incremental stress-strain relation is given by 

 

 
nDn

DnnD
D

::

):():(
e

ee
eep

H +

⊗
−=D                                                               (5.32) 

 

Where the symbol ⊗  denotes a tensor product in the sense that klijijkl baba =⊗ )( . This 

relation is only necessary when the ‘apparent modulus’ approach is utilised. In the thesis, 

Eq.5.32 is not involved in the formulations of the Bubble model as the ‘plastic correction’ 

approach is adopted. 

 

Determination of parameters 

Parameters *λ , *κ  , M and m have clear physical meanings and can be readily obtained 

from conventional laboratory tests. *λ and *κ  represent the compressibility of soil and can 

be obtained from oedometer tests. M represents the slope of the critical state line in p, q 

space can be obtained from triaxial tests. m can be expressed as the ratio of deviator 

stresses between triaxial extension and triaxial compression tests. 



 105 

The parameter R reflects the size elastic region. It is believed that R depends on several 

factors including overconsolidation ratio, initial effective confining stress and initial 

density of soil. However, no reference has been found as to how to determine the value of 

R experimentally. For this reason, the influence of R has been investigated in the 

parametric study in Section 7.2 to assess its effective ranges. For a particular type of soil, 

R can be obtained by comparison between numerical analyses and triaxial compression 

tests. 

r0  represents the sensitivity of a structured soil and can be related to the sensitivity index. 

As the sensitivity index can be easily obtained from triaxial tests, the relationship 

between r0 and the sensitivity index can be established for a particular type of soil by 

matching numerical modelling results with triaxial testing data. A preliminary study is 

given in Section 7.6 (see Figure 7.36). 

0cp is the initial value of cp and is related to the preconsolidation pressure. It is believed 

that it is adequate for a numerical modelling to assume: 0cp = preconsolidation pressure/(2 

r0). More discussion on determination of 0cp  is given in Section 7.6. 

Parameters 0η , B, A,ψ and k can not be related directly to physical characteristics of soil. 

However, for a specific soil, these parameters can be quantified by fitting numerical 

modelling results with experimental curves (e.g. triaxial stress-strain curves). A 

preliminary study on these parameters is also carried out in Chapter 7. 

 

 

5.4     Pore water pressure 

Water and soil particles are assumed to be incompressible, hence, under undrained 

condition when the soil is fully saturated, the following equation is assumed to be 

applicable: 

0=+ e

v

p

v εε &&                                                                                                 (5.33) 
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Where e

v

p

v εε && ,  are plastic and elastic volumetric strain rate respectively due to relative 

movement between soil particles.  

 

If plastic deformation takes place, i.e. 0≠p

vε& , to maintain the constant volume of soil, 

pore water pressure is generated to compensate the plastic volumetric change (Schofield 

and Wroth, 1968), i.e. p

v

e

v εε && −= . The pore water pressure is given by 

 

p

v

e

v εKεKu && −==                                                                                         (5.34) 

 

Where K is the drained bulk modulus of the soil. 

 

If the current stress is inside the bubble, there is no plastic deformation, i.e. 0== e

v

p

v εε && . 

Therefore zero pore water pressure will be generated. 

 

 

5.5    Implementation  

The Bubble model is implemented in FLAC using the computer language FISH 

embedded in FLAC. Some key aspects in implementing a constitutive model with FISH 

are discussed in the Chapter 3. The ‘plastic correction’ approach described in the Chapter 

4 is utilised for the implementation of the Bubble model. A general flow chart of the 

programme for the Bubble model is shown in Figure 5.12. The complete programme with 

detailed notations is appended to this chapter. 
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(K & G) 

Check yield     
    fb ≥0 ? 
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Compute stress increment by elastic trial 

Compute plastic 
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Update centres of bubble and structure surface 
(kinematic hardening) 

Update current elastic moduli 
(K & G) 

 

 

Figure 5.12 Flow chart for implementation of the Bubble model 
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Appendix 5.1 Notation  

 

 
A A scaling factor ranged between 0 and 1 controlling the ratio of contribution to  

destructuration between equivalent plastic shear strain and plastic volumetric  

strain 

B A material parameter controlling the magnitude of plastic modulus 

b A normalised distance between current stress point (σ )on the bubble and the  

conjugate stress point ( cσ ) on the structure surface (i.e. normalised with respect to  

n )  

bmax The maximum value of b and  it is obtained when the bubble is touching the  

 structure surface at a point diametrically opposite to the conjugate stress point 

D
e        Matrix of isotropic elastic properties 

H  Plastic modulus at the current stress state 

Hc  Plastic modulus at the conjugate stress state 
cσ on the structure corresponding to  

the current stress state  

I  Second-rank identity tensor (bold characters denote tensors) 

J2 Second deviatoric stress invariant 

J3 Third deviatoric stress invariant  

K Bulk modulus 

K0  Bulk modulus when the effective confining pressure is zero 

k A scalar controlling the rate of destructuration with strain 

m Ratio between radii of sections through the structure surface for axisymmetrical  

extension and compression in deviatoric plane  

M Critical state stress ratio for axisymmetrical compression (i.e. q/p) 

θM  A dimensionless scaling function of Lode angle θ, m and M 

n  A unit vector representing the normalised stress gradient on the bubble at the  

current stress state(σ ) 

n̂   A unit vector representing the normalised stress gradient on the structure surface  

at the conjugate stress state (
cσ ) 
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p Current mean effective stress 

p0 Initial mean effective stress 

cp  Distance from the origin of the p, q coordinate system to the centre of the  

 reference surface on the p axis 

0cp  Initial value of cp  

αp  A scalar variable defining the distance from the origin of the p, q coordinate  

system to the projection of the bubble centre on the p axis 

r A scalar defining the relative size of the structure surface with respect to the  

reference surface (i.e. ratio of the major or minor radii between the structure  

surface and the reference surface) 

r&  Rate of r (the superimposed dot denotes rate or increment) 

r0  Initial value of r (≥1) 

R A scalar defining the relative size of the bubble with respect to the reference  

s  Deviatoric stress tensor 

αs  A tensor defining the location of the bubble centre in deviatoric stress space 

ε&  Total strain rate tensor  

e
ε&  Elastic strain rate tensor 

p
ε&  Plastic strain rate tensor 

dε&  An assumed destructuration strain rate 

p
vε&  Plastic volumetric strain rate 

p
qε&  Equivalent plastic shear strain rate 

σ&  Current stress rate tensor 

σ  Current stress tensor 

σ  Current stress tensor normalised with respect to the bubble centre 

σ̂   Current stress tensor normalised with respect to the centre of the structure surface 

cσ  Conjugate stress tensor on the structure surface at a point where the normal of the  

structure surface is the same as that of the bubble at the current stress point if it  

engages the bubble 

θ  Lode’s angle 
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α  A tensor defining the location of the bubble centre in normal stress space 

α&  Rate of α controlled by the kinematic hardening rule 

0η  A dimensionless tensor denoting the initial anisotropy of the structure surface 

α̂  A tensor defining the centre of the structure surface in normal stress space 

α&̂  Rate of α̂  

surface (i.e. ratio of the major or minor radii between the bubble and the reference  

surface) 

∗κ   The slope of the swelling line in a logarithmic specific volume-logarithmic mean  

stress compression plane (i.e. plnvln ~ plane) 

*λ  The slope of the compression line in a logarithmic specific volume-logarithmic  

mean stress compression plane  

ψ  A material parameter controlling the rate of decay of plastic modulus 

µ  Poisson’s ratio 

0v  Initial specific volume corresponding to the initial mean effective stress  

0λv  Specific volume on the normal consolidation line corresponding to the initial  

mean effective stress 

 v  Specific volume on the normal consolidation line corresponding to the current  

mean effective stress 
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Appendix 5.2 Expanded equations 

 
 

The following equations are given in the order they appear in Section 5.1. 

(1) Equation 5.1  

pe εεε &&& +=  

 

Where, 
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Plastic strain increment  
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Note: in all the codes provided in the thesis, the subscripts x, y and z correspond to 1, 2 

and 3 respectively, which are consistent with FLAC. Hence, the following equations are 

expressed using subscripts 1, 2 and 3. 
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The equation may be rewritten as follows: 
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(2) Equation 5.2 

e
εσ && ⋅= e

D  

The equation can be rewritten as follows: 
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(3) Equation 5.4 
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The equation, Iσs p−= , can be rewritten as follows: 

 

















−

−

−

=

















=

pσ

pσσ

σpσ

s

ss

ss

33

2212

1211

33

2221

1211

00

0

0

00

0

0

s  or 

122112

3333

2222

1111

σss

pσs

pσs

pσs

==

−=

−=

−=

 



 113 

 
(4) Equation 5.5 
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(5) Equation 5.7 
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(6) Equation 5.8 
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Hence, 
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(7) Equation 5.9 
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Where, s is the deviatoric stress tensor as shown in Eq.5.4, and 
 























=

000

0
3

3

0 0
η

0
η

0

0

0
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in deviatoric stress space. 0η  is shown as in Figure 5.1 and is defined in p-q plane.   

 
The reference (Rouania & Wood, 2000) does not give a description of the contents in the 

tensor coefficient 0ηηηη . The above expression has been obtained from information in Figure 

5.1 and the following assumption made by the writer: the anisotropy of the structure 

surface in deviatoric stress space is only caused by the shear stress components. In other 

words, all the normal stresses of the centre of the structure surface are taken to be the 

same. This assumption is only made to approximate the anisotropy and the actual centre 

of the structure surface is not affected.   

 

The stress and deviatoric tensors at the centre are given by the following expressions: 
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From the above deviatoric stress, the deviatoric stress measure is obtained: 
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From p-q plane given in Figure 5.1, the deviatoric stress measure is obtained as follows: 
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By comparing the above two expressions of the deviatoric stress measure, we get 
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(7) Equation 5.12 
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vε&  is the plastic volumetric strain increment given as follows, 
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(8) Equation 5.13 
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Where σ& is the stress increment same as in Eq.5.2 except it is expressed in second rank 

tensor,  
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n  denotes a unit vector representing the normalised stress gradient on the bubble at the 

current stress. It is given by 
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332211 n ,n ,n  and 12n  are derived and given in Appendix C. 

 
 
 
(9) Equations 5.15 and 5.16 
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Where the quantity T is given by 
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αp  is a scalar quantity given in Eq.8. Deviatoric stress tensor s is given in Eq.4. 
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)()( αα ssss −− :  is also the same as in Eq.5.8. All other terms in Eq.5.15 are 

scalar quantities except the following tensor inner product: 
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(10) Equation 5.17 
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The subscript ‘cj’ stands for conjugate. 
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(10) Equation 5.18 
 

σn :)1(2max −=
R

r
b                                                                                    

 

Where ασσ −=  is the normalised stress with respect to the centre of bubble. αααα  is the 

stress tensor of the bubble center and is given by, 
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(10) Equation 5.20 
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Where r  and cp are two scalar quantities (all the dots denote increment i.e. rate). α̂  is 

the stress tensor at the centre of the structure surface. Its general expression is given as 

follows (Note: an assumption is made in Eq. 5.9 for approximation to account for 

anisotropy of the structure surface): 
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The subscript ‘sc’ stands for structure surface center. 

 

ασ ˆˆ −=σ  is the normalised stress with respect to the centre of the structure surface, 
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)c σ(σn −: is given by Eq.5.17. 

For clarity three scalar quantities, they are given by, 
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Each tensor term in the above function has been given previously, therefore, for clarity 

3c is not expanded. As the result of 3c  is a scalar quantity, Eq.5.20  becomes as follows, 
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Each element of the above stress tensor α& can be obtained as follows: 

)()( 31 1111cj11sc11bc11sc11bc σσccσσσσ −+−+∆=∆  

)()( 31 2222cj22sc22bc22sc22bc σσccσσσσ −+−+∆=∆

)()( 31 3333cj33sc33bc33sc33bc σσccσσσσ −+−+∆=∆  

)()( 31 1212cj12sc12bc12sc12bc σσccσσσσ −+−+∆=∆  

21bc12bc σσ ∆=∆  
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Appendix 5.3 Derivation of stress gradient 
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The yield function of the bubble is given by 
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Appendix 5.4  FISH code of the Bubble model 

; Implemented for axisymmetric or 2D plane strain problems 

 

set echo off 

def bubble 

  constitutive_model 

; 

;- Model variables 

f_prop b_kmax b_poss  

; b_poss is Poisson's ratio, µ , assumed to be constant 

; b_kmax is the maximum bulk modulus, K, chosen to ensure numerical   

; stability. 

 

f_prop b_lambda b_kappa b_M b_mm b_bod0 

; mMκλ ,,, **
, K0 

;   K0 is initial bulk modulus corresponding to zero confining pressure 

 

f_prop r_bub AA BB k psigh nambda0 r_str0 pc0  

; 000 ,,,,,,, cprηψkBAR  

 

f_prop r_str pc s_mod b_mod b_g0 e1 e2 e3 

f_prop s_zs11c s_zs22c s_zs33c s_zs12c 

; center of structure surface in general stress space, α̂  
f_prop b_zs11c b_zs22c b_zs33c b_zs12c 

; center of bubble in general stress space, α  
f_prop s_ds11c s_ds22c s_ds33c s_ds12c 

; center of structure surface in deviator stress space, α̂s  

f_prop b_ds11c b_ds22c b_ds33c b_ds12c 

; center of bubble in terms of deviator stress, αs  

f_prop b_p b_q s_p s_q 

; center of bubble and structure surface in p,q space, αp , αq  

; and α̂p , α̂q  

 

float $dzs11 $dzs22 $dzs33 $dzs12  

; stress rate, σ&  
float $zs11 $zs22 $zs33 $zs12  

; Stress from elastic trial, 
trial
σ   

float $s_dzs11c $s_dzs22c $s_dzs33c $s_dzs12c 

; translation rate of structure surface center, α&̂  
float $b_dzs11c $b_dzs22c $b_dzs33c $b_dzs12c 

; translation rate of bubble center, α&  
float $ds11 $ds22 $ds33 $ds12  

; deviator stress, s  

float $J2 $J3 $J_2 

; the 2nd and 3rd deviatoric invariants 

; $J_2 is the 2nd deviatoric invariant w.r.t bubble centre 

float $p $q  

; current stress in p, q space 

float $fb $M $Hc $H 
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; fb, θM , Hc, H 

float $s $s_dp $ds 

float $b $bmax $dgamma $dpc $dr_str  

;$dpc is rate of pc, cp&  

;$dr_str is rate of structure surface size, r& 
float $b_zs11 $b_zs22 $b_zs33 $b_zs12 

;stress w.r.t bubble centre, σ  

float $s_zs11 $s_zs22 $s_zs33 $s_zs12 

;stress w.r.t center of structure surface, σ̂  
float $zs11cj $zs22cj $zs33cj $zs12cj  

;conjugate stresses on the structure surface, cσ  

float $s_zs11cj $s_zs22cj $s_zs33cj $s_zs12cj 

;conjugate stress w.r.t center of structure surface, cσ̂  

float $b_ds11 $b_ds22 $b_ds33 $b_ds12 

; deviator stress w.r.t center of bubble, s  
float $s_ds11 $s_ds22 $s_ds33 $s_ds12 

; deviator stress w.r.t centre of structure surface, ŝ  
float $s_dzs11 $s_dzs22 $s_dzs33 $s_dzs12 

; stress rate w.r.t center of structure surface, σ&̂  
float $pzde11 $pzde22 $pzde33 $pzde12 

; plastic strain rate, 
p
ε&  

float $pv_zde $pq_zde  

; $pv_zde is plastic volumetric strain 
p
vε&  

; $pq_zde is equivalent plastic shear strain rate 
p
qε&  

float $dq_trial $dq $ds1 $ds2 $ds3 $q_zde 

; $q_zde is equivalent total shear strain rate 
q
ε&  

f_prop pv volumetric_strain vertical_strain q_strain qt_strain 

; pv is the accumulated plasic volumeric strain 
p
vε&∑  

; q_strain is the accumulated equivalent plastic shear strain 
p

q
ε&∑  

; qt_strain is accumulated equivalent total shear strain 
q
ε&∑  

float $n11 $n22 $n33 $n12 $n  

; $n11 $n22 $n33 $n12 are components of stress gradient on the bubble 

; $n is the inner product of the stress gradient tensor, $n=($n11)2+ 

; ($n22)2+($n33)2+2($n12)2. 

float $sp $T $theta 

; $sp is inner product of deviator stress w.r.t bubble centre,  

; $sp= )() αα( sss-ss:s −= :  

; $theta is Lode angle, θ. 

float $c1 $c2 $c3 $c4 $c5 $c6 $c7 $c8 $c9 $c10 $c11 $c12 $c13 

float $M11 $M22 $M33 $M12 $J11 $J22 $J33 $J12 

float $sum_fb $sum_pzde11 $sum_pzde22 $sum_pzde33 $sum_pzde12 

float $sum_zde11 $sum_zde22 $sum_zde33 $sum_zde12 

float $zde11 $zde22 $zde33 $zde12  

float $sum_P $sum_pvStrain $sum_pqStrain  

f_prop stepCommand bulk_max shear_max  

f_prop app_g ; apparent shear modulus 

;the following are for undrained 
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float $dpwp $dv $sum_pwp $app_g 

f_prop pwp 

 

case_of  mode 

;- Initialization --- 

case 1 

if stepCommand=0 then  

 ; this "if" statement is necessary due to the multiple  

 ; "step" commands 

 pc=-pc0  

 ; centre of reference surface is always on p axis 

 ; pco given by user is positive if it is compressive 

 ; pc must be compressive in the bubble model 

 ; according to FLAC's sign convention, compressive pressure  

 ; is negative 

 r_str=r_str0 

 nambda0=nambda0/1.732 

 ;η0 is defined in p, q space (see Figure 2 on page 156),  

 ;i.e. at the centre of the structure surface, q=(r0-1)pcη0 
 ; but from page 155, the centre of the structure surface in deviator  

 ; stress space,
c0 pr 0ˆ )1( ηs −=

･

, 

















=

000

00

00

0 0

0

η

η

η  

 ; hence if nambda0 ( 0η ) is specified from the definition in Figure 2, 

 ; it should be divided by a factor of 1.732 for being consistent with  

  ; elements of tensor 0η , i.e 























=

000

0
3

3

0 0
η

0
η

0

0

0

ηηηη (see explanation in Appendix B) 

 
 ; initial stress in p, q space  

 $p=(zs11+zs22+zs33)/3.0 

 if $p=0 then;for analysis starting from zero insitu stress 

    $p=-0.001 

 end_if 

 $q=zs22-zs11;only for triaxial stress condition 
 

 ;====initial center of structure surface and bubble==== 

 

 ;<structure surface> 

 ; center of structure surface, =α̂ { }T
η

cc
prrp 0)1(, −  

 $s=nambda0*(r_str-1)*pc 

 s_p=r_str*pc ; 
･̂

p  

 ; center of structure surface in deviator stress space     
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 ; 

















=

000

00s

0s0

$

$

α
s ˆ  

 s_ds11c=0.0 

 s_ds22c=0.0 

 s_ds33c=0.0 

 s_ds12c=$s 

 ; centre of structure surface,

















=

s_p00

0s_ps

0ss_p

$

$

α
σ ˆ  

 s_zs11c=s_p 

 s_zs22c=s_p 

 s_zs33c=s_p 

 s_zs12c=$s 

 s_q=s_zs12c*1.732 

  

 ;<bubble> 

 ; center of bubble, α  
 ; initial bubble centre is assumed to be at the initial stress point 

 ; check if bubble model is reduced to MCC model 

 if r_bub>0.95 then 

 ; Bubble model is reduced to Cam-clay model and reset bubble’s  

 ; centre, i.e. coincide with the centre of reference surface  

 ; Bubble model becomes MCC model when R=1.0 for non-structured soil.   

 ; In data file, less than 1.0 (e.g. 0.998)should be used rather than   

 ; 1.0 for R, otherwise 0=maxb  → eq.26 unexecutable  

   b_zs11c=pc 

   b_zs22c=pc 

   b_zs33c=pc 

   b_zs12c=0 

 end_if 

 ; center of bubble in p axis, αp  

 b_p=(b_zs11c+b_zs22c+b_zs33c)/3.0 

 ; check if bubble interescts structure surface 

 ; the following two “if” statements are only valid for isotropic  

 ; initial stress condition,i.e both structure surface and bubble are   

 ; initially centered on p axis. In the case of anisotrpic condition,      
 ; checking must be conducted manually to enure a non-intersection  

 ; initial condition. 
 

 if abs(b_p)<abs(r_bub*pc) then 

   ;initial bubble centre is at the far left side 

   ; reset it to the ‘minimum’ point i.e (Rpc,0) in p,q space 

   b_zs11c=r_bub*pc 

   b_zs22c=b_zs11c 

   b_zs33c=b_zs11c 

   $p=(zs11+zs22+zs33)/3.0 

 end_if 

 if abs(b_p)>abs(2*r_str0*pc-r_bub*pc) then 

   ;initial bubble centre is at the far right side 

   ; reset it to the ‘maximum’ point i.e (2r0pc-Rpc,0) in p,q space 
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   b_zs11c=2*r_str0*pc-r_bub*pc 

   b_zs22c=b_zs11c 

   b_zs33c=b_zs11c 

   $p=(zs11+zs22+zs33)/3.0 

 end_if 

 

 

pc

Structure surface, 
diameter=2r0pc

p

q

‘minumum’ point, (Rpc, 0) ‘maximum’ point, (2r0pc-Rpc, 0)

pc

Structure surface, 
diameter=2r0pc

p

q

‘minumum’ point, (Rpc, 0) ‘maximum’ point, (2r0pc-Rpc, 0)

pc

Structure surface, 
diameter=2r0pc

p

q

‘minumum’ point, (Rpc, 0) ‘maximum’ point, (2r0pc-Rpc, 0)

Structure surface, 
diameter=2r0pc

p

q

‘minumum’ point, (Rpc, 0) ‘maximum’ point, (2r0pc-Rpc, 0)
    

 ; 

 

 

 

 ; center of bubble in deviator stress space, αs   

 b_ds11c=b_zs11c-b_p 

 b_ds22c=b_zs22c-b_p 

 b_ds33c=b_zs33c-b_p 

 b_ds12c=b_zs12c 

 b_q=b_zs22c-b_zs11c;only for triaxial stress condition 

 

 ; initial shear modulus, maximum value chosen for controlling 

 ; numerical stability 

 b_g0=3.0*b_kmax*(1.0-2.0*b_poss)/(2.0*(1.0+b_poss)) 

 ;initial buck modulus calculated from the initial stress 

 b_mod=abs($p)/b_kappa+b_mod0 

 ;initial shear modulus  

 s_mod=3.0*b_mod*(1.0-2.0*b_poss)/(2.0*(1.0+b_poss)) 

 stepCommand=1.0 

end_if ; "if stepCommand =0 then" 

 

;--- Running section --- 

case 2 

zvisc = 1.0  ;set to 1.0 for stiffness proportional damping 

;<elastic coefficients> 

e1      = b_mod + 4.0  * s_mod/3.0 

e2      = b_mod - 2.0 * s_mod/3.0 

e3      = 2.0 * s_mod 

 

;========= apply strain rate ======= 

;<stress rate (σ& )from elatic trial> 
$dzs11=e1*zde11+e2*zde22+e2*zde33 
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$dzs22=e2*zde11+e1*zde22+e2*zde33 

$dzs33=e2*zde11+e2*zde22+e1*zde33 

$dzs12=e3*zde12 

; calculating apparent shear modulus s_m 

if apparent=1 then  

  $ds1       = $dzs11 - $dzs22 

  $ds2       = $dzs22 - $dzs33 

  $ds3       = $dzs33 - $dzs11 

  $dq_trial  = $ds1*$ds1 + $ds2*$ds2 + $ds3*$ds3   

  $dq_trial  = 0.7071*sqrt($dq_trial + 6.0*$dzs12*$dzs12) 

end_if 

;<trial stresses, 
trial
σ > 

$zs11=zs11+$dzs11+pwp 

$zs22=zs22+$dzs22+pwp 

$zs33=zs33+$dzs33+pwp 

$zs12=zs12+$dzs12 

$p=($zs11+$zs22+$zs33)/3.0;mean effective stress 

; deviator stress, s  
$ds11=$zs11-$p 

$ds22=$zs22-$p 

$ds33=$zs33-$p 

$ds12=$zs12 

; deviator stress w.r.t bubble center, ααααsss -=  

$b_ds11=$ds11-b_ds11c 

$b_ds22=$ds22-b_ds22c 

$b_ds33=$ds33-b_ds33c 

$b_ds12=$ds12-b_ds12c 

; invariants J2, J3 

; ss,s 3 det:
2

1
2 == JJ  

$J2=($ds11*$ds11+$ds22*$ds22+$ds33*$ds33+2*$ds12*$ds12)/2.0 

  

$J3=$ds11*$ds22*$ds33-$ds33*$ds12*$ds12 

$J_2=($b_ds11^2+$b_ds22^2+$b_ds33^2+2*$b_ds12^2)/2.0 

; Lode's angle 

if $J2=0.0 then 

    $M=2*b_mm/(1+b_mm)*b_M 

  else 

    $c1=-2.59807*$J3/($J2)^1.5 ;
2/3

2

3

2

33
)3sin(

J

J
θ

−
=   

    if abs($c1)=1.0 then 

        if $c1=1.0 then 

         $M=b_M 

        end_if 

        if $c1=-1.0 then 

          $M=b_m*b_mm 

        end_if 

      else 

        $c1=sgn($c1)*min(abs($c1),0.99999) 

        $theta=atan($c1/sqrt(1-$c1^2))/3.0 

        ; FLAC has no asin function  

                $M=2*b_mm*b_M/((1+b_mm)-(1-b_mm)*sin(3*$theta)) 
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                ; 
θmm

mM
M θ

3sin)1()1(

2

−−+
=  

    end_if 

end_if 

; Inner product of deviator stress w.r.t bubble centre 

; )() αα sss-(ss:s −= :  

$sp=2*$J_2 

;<Bubble yield function> 

; 
22

2
)()

2

3
cα

θ

b Rpp-(p
M

f −+= s:s  

$fb=$sp*3.0/$M^2/2.0+($p-b_p)^2-r_bub^2*pc^2 

 

$sum_zde11=$sum_zde11+zde11 

$sum_zde22=$sum_zde22+zde22 

$sum_zde33=$sum_zde33+zde33 

$sum_zde12=$sum_zde12+zde12 

 

if $fb >0.0 then  

 ;yield (plastic deformation) takes place 

 ;use trial stress 
trial
σ to calculate plastic strain rate 

 ;<computation of normalised stress gradient on bubble> 

 ; 

ij

b
ij

f

σ
n

∂

∂
=   

 $c1=-12*1.732*b_mm*(1-b_mm)*b_M 

 $c2=2*(1+b_mm) 

 $c3=3*1.732*(1-b_mm) 

 $c4=sqrt($J2) 

 $c5=1/($c2+$c3*$J3/$J2/$c4) 

 $c5=$c1*$c5^2 

 $c6=$ds12^2 

 $c7=$ds11*$ds22+$ds11*$ds33+$ds22*$ds33 

    

 $M11=(3*$ds22*$ds33-$c7+$c6)/3.0 

 $M11=1/$c4^3*$M11 

 $M11=$M11-3.0/2.0/$c4^5*$J3*$ds11 

 $M11=$c5*$M11 

 

 $M22=(3*$ds11*$ds33-$c7+$c6)/3.0 

 $M22=1/$c4^3*$M22 

 $M22=$M22-3.0/2.0/$c4^5*$J3*$ds22 

 $M22=$c5*$M22 

 

 $M33=(3*$ds22*$ds11-$c7-2*$c6)/3.0 

 $M33=1/$c4^3*$M33 

 $M33=$M33-3.0/2.0/$c4^5*$J3*$ds33 

 $M33=$c5*$M33 

 

 $M12=-2/$c4^3*$ds12*$ds33 

 $M12=$M12-3/$c4^5*$J3*$ds12 

 $M12=$c5*$M12 

 

 $J11=$b_ds11 
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 $J22=$b_ds22 

 $J33=$b_ds33 

 $J12=2*$b_ds12 

 

 $n11=-6/$M^3*$J_2*$M11 

 $n11=$n11+3.0/$M^2*$J11+2.0/3.0*($p-b_p) 

  

 $n22=-6/$M^3*$J_2*$M22 

 $n22=$n22+3.0/$M^2*$J22+2.0/3.0*($p-b_p) 

 

 $n33=-6/$M^3*$J_2*$M33 

 $n33=$n33+3.0/$M^2*$J33+2.0/3.0*($p-b_p) 

 

 $n12=-6/$M^3*$J_2*$M12 

 $n12=$n12+3.0/$M^2*$J12 

 

 

 

Stress point from 
elastic trial

Bubble from 
elastic trial

Current stress point
Current bubble

New bubble 
after correction

New stress point after 
correction Stress point from 

elastic trial

Bubble from 
elastic trial

Stress point from 
elastic trial

Bubble from 
elastic trial

Stress point from 
elastic trial

Bubble from 
elastic trial

Current stress point
Current bubble

Current stress pointCurrent stress point
Current bubble

New bubble 
after correction

New stress point after 
correction

New bubble 
after correction

New stress point after 
correction

 
 

 

 

; normalise stress gradient, n   

$n=sqrt($n11^2+$n22^2+$n33^2+2*$n12^2); 
5.0)( nnn :=  

$n11=$n11/$n; 
n

n
n

ij
=ij  

$n22=$n22/$n 

$n33=$n33/$n 

$n12=$n12/$n 

$n=$n*$n ; 
2

n  

        

;<stress w.r.t the bubble center σ > 

$b_zs11=$zs11-b_zs11c 
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$b_zs22=$zs22-b_zs22c 

$b_zs33=$zs33-b_zs33c 

$b_zs12=$zs12-b_zs12c 

 

;<stresses w.r.t structure surface centre σ̂ > 
$s_zs11=$zs11-s_zs11c 

$s_zs22=$zs22-s_zs22c 

$s_zs33=$zs33-s_zs33c 

$s_zs12=$zs12-s_zs12c 

 

;<conjugate stress w.r.t structure surface centre cσ̂ > 

;
Rr

σσ
=cˆ

 

$s_zs11cj=r_str/r_bub*$b_zs11 

$s_zs22cj=r_str/r_bub*$b_zs22 

$s_zs33cj=r_str/r_bub*$b_zs33 

$s_zs12cj=r_str/r_bub*$b_zs12 

 

; conjugate stress point on structure surface 

; ασσ ˆˆ cc +=  

$zs11cj=$s_zs11cj+s_zs11c 

$zs22cj=$s_zs22cj+s_zs22c 

$zs33cj=$s_zs33cj+s_zs33c 

$zs12cj=$s_zs12cj+s_zs12c 

; <plastic variables at current point> 

; )( σσn −= cb :  

$b=$n11*($zs11cj-$zs11) 

$b=$b+$n22*($zs22cj-$zs22) 

$b=$b+$n33*($zs33cj-$zs33) 

$b=$b+2*$n12*($zs12cj-$zs12) 

     

; σn :)1(2 −=
R

r
bmax  

$bmax=$n11*$b_zs11 

$bmax=$bmax+$n22*$b_zs22 

$bmax=$bmax+$n33*$b_zs33 

$bmax=$bmax+2*$n12*$b_zs12 

$bmax=2.0*(r_str/r_bub-1)*$bmax 

$c11=abs($b/$bmax) 

     

;

2/1

4
2 )(:)(

2

3
))(1()

1
()(












−−+−−

−
−−= αα

θ

αα
M

A
ppA

r

r
kppT ssss  

$c1=3.0/(2.0*$M^2) 

$c2=$c1/$M^2 

$c3=$p-b_p 

$T=sqrt(((1-AA)*$c3^2+AA*$c2*$sp)) 

$T=$c3-k*(r_str-1)/r_str*$T 

 

      



 136 

 ; 

)](:)(
2

3
))[((

:))((
2

3
:)(

2

3
)(

4
2*

0
202

αα

θ

α
*

αα

θ

cα

θ

αc

c

M
ppκλ

r
pp

M
Rp

M
ppTrp

H

ssss

ssss

−−+−−

−−−











+−+−

=

ηηηη
ηηηη

 

 $c4=nambda0/r_str 

 $c5=2*$b_ds12*nambda0 

 $c6=$c5/r_str 

 $Hc=$T*($c3+$c1*$c5+r_bub*pc) 

 $Hc=$Hc-$c3*$c1*$c6 

 $Hc=r_str*pc*$Hc 

 $Hc=$Hc/(b_lambda-b_kappa) 

 $Hc=abs($Hc)/($c3^2+$c2*$sp) 

  

 ;original 
ψ

* b

b

Rκλ

Bp
HH )(

)(

1

max
*

3
c

2c
−

+=
n

   

 ;$H=$Hc+BB*(abs(pc))^3*$c11^psigh/r_bub/(b_lambda-b_kappa)/$n 

      

      

 ;modified equation, 
ψ

* b

b

κλ

RBp
HH )(

)(

1

max
*

23
c

2c
−

+=
n

 

 $H=$Hc+BB*(abs(pc))^3*r_bub^2.0*$c11^psigh/(b_lambda-b_kappa)/$n    

      

 ;calculate plastic multiplier, )(
1

σn && :
H

γ =  

 $dgamma=($n11*$dzs11+$n22*$dzs22+$n33*$dzs33+2*$n12*$dzs12)/$H 

    

 ;plastic strain rate, nε
p γ&& =  

 $pzde11=$dgamma*$n11 

 $pzde22=$dgamma*$n22 

 $pzde33=$dgamma*$n33 

 $pzde12=$dgamma*$n12 

 ;plastic volumetric strain rate 

 $dv=$pzde11+$pzde22+$pzde33 

 ;pwp rate 

 if Dranage=0 then 

    $dpwp=-b_mod*$dv;undrained 

    $sum_pwp=$sum_pwp+$dpwp 

   else 

    $dpwp=0;drained 

 end_if 

 ; corrected stress rate, )( pe
εεDσ &&& −⋅=  

 $zde11=zde11-$pzde11 

 $zde22=zde22-$pzde22 

 $zde33=zde33-$pzde33 

 $zde12=zde12-$pzde12 

 

 $dzs11=e1*$zde11+e2*$zde22+e2*$zde33 

 $dzs22=e2*$zde11+e1*$zde22+e2*$zde33 

 $dzs33=e2*$zde11+e2*$zde22+e1*$zde33 
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 $dzs12=e3*$zde12    

 ; calculate apparent shear modulus, app_g 

 if apparent = 1 then  

  $ds1 = $dzs11 - $dzs22 

  $ds2 = $dzs22 - $dzs33 

  $ds3 = $dzs33 - $dzs11 

  $dq  = $ds1*$ds1 + $ds2*$ds2 + $ds3*$ds3   

  $dq  = 0.7071*sqrt($dq + 6.0*$dzs12*$dzs12) 

  app_g=s_mod*$dq/$dq_trial;apparent tangent shear modulus 

 end_if 

 $sum_pzde11=$sum_pzde11+$pzde11 

 $sum_pzde22=$sum_pzde22+$pzde22 

 $sum_pzde33=$sum_pzde33+$pzde33 

 $sum_pzde12=$sum_pzde12+$pzde12 

 zvisc=0.0 

end_if; if $fb>0.0 

;update stress, σσσ &+=  

zs11=zs11+$dzs11 

zs22=zs22+$dzs22 

zs33=zs33+$dzs33 

zs12=zs12+$dzs12 

 

if zsub>0.0 then 

 if $p>=0 then 

   ;$p=-0.01 

   nerr=168 

   error=1 

 end_if 

 pwp=pwp+$sum_pwp/zsub 

 $sum_pwp=0 

 $p=(zs11+zs22+zs33)/3.0+pwp  

 $q=zs22-zs11;only for triaxial stress condition 

 ; total strain rate ε&  
 $zde11=$sum_zde11/zsub 

 $sum_zde11=0.0 

 $zde22=$sum_zde22/zsub 

 $sum_zde22=0.0 

 $zde33=$sum_zde33/zsub 

 $sum_zde33=0.0 

 $zde12=$sum_zde12/zsub 

 $sum_zde12=0.0 

 vertical_strain=vertical_strain+$zde22*100 

 volumetric_strain=volumetric_strain+($zde11+$zde22+$zde33)*100 

 $q_zde=$zde11^2+$zde22^2+$zde33^2+2*$zde12^2 

 $q_zde=sqrt(2.0/3.0*$q_zde);toal equivalent shear strain rate qε&  

 qt_strain=qt_strain+$q_zde*100 ;total equivalent shear strain qε  

 

 if $fb>0.0 then  

  ; update str surface & bubble centers and size 

  ; plastic strain rate 
p
ε&  

  $pzde11=$sum_pzde11/zsub 

  $sum_pzde11=0.0 

  $pzde22=$sum_pzde22/zsub 

  $sum_pzde22=0.0 
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  $pzde33=$sum_pzde33/zsub 

  $sum_pzde33=0.0 

  $pzde12=$sum_pzde12/zsub 

  $sum_pzde12=0.0 

         

  ;---- isotropic and kinematic hardening --- 

  $pv_zde=$pzde11+$pzde22+$pzde33 ; plastic volumetric strain rate 
p

vε&  

  pv=$pv_zde*100+pv ;plastic volumetric strain 
p

vε  

  ; equivalent plastic shear stain  

 

  $pq_zde=$pzde11^2+$pzde22^2+$pzde33^2+$pzde12^2 

  $pq_zde=sqrt(2.0/3.0*$pq_zde) ; 
2/1)]:(3/2[ ppp

q εε &&& =ε  

  q_strain=q_strain+$pq_zde*100 ; 
p

qε  

  $dpc=$pv_zde/(b_lambda-b_kappa)*abs(pc) ; 
)(

p

v

c ** κλ
p

−
=

ε&
&  

  ;
2/12p

q
2p

vd ])())(1[( εAεAε &&& +−=  

  $pq_zde=sqrt((1-AA)*$pv_zde*$pv_zde+AA*$pq_zde*$pq_zde) 

  ; destruction strain rate, d*
)1(

)(
εr

κλ

k
r

*
&& −

−
−=  

  $dr_str=-k/(b_lambda-b_kappa)*(r_str-1)*$pq_zde 

  ; kinematic hardening (update centers of bubble and str surface) 

  ; translation rate of str surface centre 

  ; change of str surface centre in deviator space,    

  ; ])1[( 0ˆ ηs cα prdd −=  

  $ds=nambda0*((r_str-1)*$dpc+pc*$dr_str) 

  ; change of str surface centre in p axis, )(ˆ cα rpddp =  

  $s_dp=r_str*$dpc+pc*$dr_str  

  pc=pc+$dpc ;isotropic hardening 

  r_str=r_str+$dr_str ;update size of str surface 

  ; change of str surface centre in general stress space,α&̂  
  $s_dzs11c=$s_dp 

  $s_dzs22c=$s_dp 

  $s_dzs33c=$s_dp 

  $s_dzs12c=$ds 

  ; stress rate w.r.t str surface centre α-σσ &&& ˆˆ =   

  $s_dzs11=$dzs11-$s_dzs11c 

  $s_dzs22=$dzs22-$s_dzs22c 

  $s_dzs33=$dzs33-$s_dzs33c 

  $s_dzs12=$dzs12-$s_dzs12c 

 

  ; use corrected stress to calculate new bubble centre 

  ; recalculate deviator stresses s  
  $ds11=zs11+pwp-$p 

  $ds22=zs22+pwp-$p 

  $ds33=zs33+pwp-$p 

  $ds12=zs12 

  ; recalculate deviator stress w.r.t bubble centre αsss −=  



 139 

  $b_ds11=$ds11-b_ds11c 

  $b_ds22=$ds22-b_ds22c 

  $b_ds33=$ds33-b_ds33c 

  $b_ds12=$ds12-b_ds12c 

  ; recalculate stress w.r.t bubble centre σ  

  $b_zs11=zs11+pwp-b_zs11c 

  $b_zs22=zs22+pwp-b_zs22c 

  $b_zs33=zs33+pwp-b_zs33c 

  $b_zs12=zs12-b_zs12c 

  ; recalculate stress w.r.t str surface centre σ̂  
  $s_zs11=zs11+pwp-s_zs11c 

  $s_zs22=zs22+pwp-s_zs22c 

  $s_zs33=zs33+pwp-s_zs33c 

  $s_zs12=zs12-s_zs12c 

  ; recalculate conjugate stress w.r. str surface centre cσ̂  

  $s_zs11cj=r_str/r_bub*$b_zs11 

  $s_zs22cj=r_str/r_bub*$b_zs22 

  $s_zs33cj=r_str/r_bub*$b_zs33 

  $s_zs12cj=r_str/r_bub*$b_zs12 

  ; recalculate conjugate stress on str surface cσ  

  $zs11cj=$s_zs11cj+s_zs11c 

  $zs22cj=$s_zs22cj+s_zs22c 

  $zs33cj=$s_zs33cj+s_zs33c 

  $zs12cj=$s_zs12cj+s_zs12c 

  ; translation rate of bubble centre α&  
  $c7=$dr_str/r_str 

  $c8=$dpc/pc+$c7 

  $b_dzs11c=($dzs11-$s_dzs11c)-$s_zs11*$c8+$b_zs11*$c7 

  $b_dzs22c=($dzs22-$s_dzs22c)-$s_zs22*$c8+$b_zs22*$c7 

  $b_dzs33c=($dzs33-$s_dzs33c)-$s_zs33*$c8+$b_zs33*$c7 

  $b_dzs12c=($dzs12-$s_dzs12c)-$s_zs12*$c8+$b_zs12*$c7 

  

  $c9=$n11*$b_dzs11c+$n22*$b_dzs22c+$n33*$b_dzs33c 

  $c9=$c9+2.0*$n12*$b_dzs12c 

  $c10=$n11*($zs11cj-zs11-pwp)+$n22*($zs22cj-zs22-pwp) 

  $c10=$c10+$n33*($zs33cj-zs33-pwp)+2*$n12*($zs12cj-zs12) 

 

  $b_dzs11c=$c9/$c10*($zs11cj-zs11-pwp) 

  $b_dzs22c=$c9/$c10*($zs22cj-zs22-pwp) 

  $b_dzs33c=$c9/$c10*($zs33cj-zs33-pwp) 

  $b_dzs12c=$c9/$c10*($zs12cj-zs12) 

 

  $b_dzs11c=$s_dzs11c+(b_zs11c-s_zs11c)*$c8+$b_dzs11c 

  $b_dzs22c=$s_dzs22c+(b_zs22c-s_zs22c)*$c8+$b_dzs22c 

  $b_dzs33c=$s_dzs33c+(b_zs33c-s_zs33c)*$c8+$b_dzs33c 

  $b_dzs12c=$s_dzs12c+(b_zs12c-s_zs12c)*$c8+$b_dzs12c 

  ; new bubble centre ααα &+=  

  b_zs11c=b_zs11c+$b_dzs11c 

  b_zs22c=b_zs22c+$b_dzs22c 

  b_zs33c=b_zs33c+$b_dzs33c 

  b_zs12c=b_zs12c+$b_dzs12c 

  ; new bubble centre on p axis αp  

  b_p=(b_zs11c+b_zs22c+b_zs33c)/3.0 
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  ; new bubble centre in deviator stress space, αs  

  b_ds11c=b_zs11c-b_p 

  b_ds22c=b_zs22c-b_p 

  b_ds33c=b_zs33c-b_p 

  b_ds12c=b_zs12c 

  b_q=b_zs22c-b_zs11c 

  ; new center of structure surface ααα &̂ˆˆ +=  

  s_zs11c=s_zs11c+$s_dzs11c 

  s_zs22c=s_zs22c+$s_dzs22c 

  s_zs33c=s_zs33c+$s_dzs33c 

  s_zs12c=s_zs12c+$s_dzs12c 

 

  ; new center of str surface on p axis 

  s_p=r_str*pc ; or s_p=(s_zs11c+s_zs22c+s_zs33c)/3.0 

  s_q=s_zs12c*1.732 

  ; new center of str surface in deviator stress space αs ˆ  

  s_ds11c=s_zs11c-s_p 

  s_ds22c=s_zs22c-s_p 

  s_ds33c=s_zs33c-s_p 

  s_ds12c=s_zs12c 

 end_if ;if $fb>0 

 ; calculate elastic moduli 

 b_mod=abs($p)/b_kappa+b_mod0 

 s_mod=3.0*b_mod*(1.0-2.0*b_poss)/(2.0*(1.0+b_poss)) 

end_if ;zsub>0.0 

case 3 

; calculate apparent shear modulus 

if apparent =1 then 

  if $fb>0 then 

     $app_g=s_mod*$dq/$dq_trial 

    else 

     $app_g=s_mod 

  end_if 

end_if 

;- Max modulus --- 

bulk_max=b_kmax 

shear_max=b_g0 

sm_max    = shear_max 

cm_max    = bulk_max + 1.333333 * shear_max 

end_case 

end 

;opt bubble 

set echo on 
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 6 VERIFICATION OF THE BUBBLE MODEL  

 

 

 

The Bubble model described in Chapter 5 is implemented in FLAC using the 

methodologies explained in Chapters 3 and 4.  This chapter presents some typical results 

of numerical modelling with FLAC to verify the implementation.  The non-intersection 

condition and destructuration process are verified.  Typical responses of the model are 

demonstrated. The model is also verified against the modified Cam-clay model and 

published experimental data. 

 

Dynamic analyses are carried out to verify the plastic correction approach in coping with 

numerical distortion (instability) in dynamic analysis. 

 

6.1 Modelling of non-structured soil 

6.1.1 Example 1 

To demonstrate basic features of the Bubble model, non-structured soil is considered 

herein (i.e. r0 =1.0). A set of parameters are chosen to simulate behaviours of normally 

consolidated to overconsolidated stiff clay. Figure 6.1 shows initial surfaces of the model 

for three cases, which are assumed to be associated with three remoulded triaxial 

specimens. The three specimens are compacted to have a same initial void ratio, i.e. they 

have a same initial structure (bounding) surface corresponding to a same pre-

consolidation pressure of 400 kPa. The specimens then undergo triaxial compression 

under different effective confining pressures (i.e. 50 kPa, 200 kPa and 350 kPa). 

Therefore, the three specimens correspond to an overconsolidation ratio of 4, 2 and 1.14 

respectively. 

 

It is assumed that the initial bubble size is the same for the three specimens as they have 

the same preconsoildation pressure. A single zone axisymmetrical FLAC model is utilised 
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to simulate the conventional triaxial test. The following parameters are used for the 

Bubble model: 

 

3.0* =λ  02.0* =κ   µ = 0.25 M = 1 m = 1 B = 600 5.0=ψ R = 0.1  

 

As non-structured soil is considered, the parameters A and k are not required. Elastic bulk 

modulus is determined by Equation 5.3. Apart from the above parameters initial 

conditions are specified as follows: 00 =η  pc0 = 200 kPa  

 

An isotropic confining stress 3σ ′  is applied, i.e. 50 kPa, 200 kPa and 350 kPa for Case 1, 

Case 2 and Case 3 respectively. Hereinafter, the initial centre of the bubble is always 

assumed to be at the initial stress point. 
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Figure 6.1 Initial stress conditions of three cases (same structure surface) 
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6.1.1.1 Drained behaviour 

The non-intersection translation rule proposed by Hashiguchi (1985) is employed in the 

Bubble model to ensure a smooth transition of the bubble without intersecting the 

structure surface. A typical stress-strain behaviour of the model for Case 2 is shown in 

Figure 6.2. To verify the non-intersection condition, locations and sizes of the bubble and 

structure surface at 5%, 10% and 20% vertical strain are illustrated respectively in 

Figures 6.3, 6.4 and 6.5. Stress path and trace of the bubble centre are also shown in the 

figures. Figure 6.3 shows that the bubble is very close to the structure surface at 5% strain 

but they are not in contact. They are in contact from a strain between 5% and 10%. 

Figures 6.4 and 6.5 shows the bubble and structure surface are in touch while their sizes 

are only slightly larger than at 5% strain. The bubble is contained inside the structure 

surface during the whole loading process. This verifies that the non-intersection condition 

is satisfied.  
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Figure 6.2 Drained stress-strain behaviour for Case 2 

 



 144 

 

Figure 6.3 Location of surfaces at 5% vertical strain 
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Figure 6.4 Location of surfaces at 10% vertical strain 
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Figure 6.5 Location of surfaces at 20% vertical strain 
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Figure 6.6 Drained stress-strain behaviour (same initial structure surface) 

 



 146 

-10

-8

-6

-4

-2

0

2

0 5 10 15 20 25

Vertical strain (%)
V

o
lu

m
e

tr
ic

 s
tr

a
in

 (
%

)
          50 kPa

         200 kPa

          350 kPa

 

Figure 6.7 Volumetric strain (same initial structure surface) 
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Figure 6.8 Drained stress path (same initial structure surface) 

 

Figure 6.6 shows drained stress-strain curves for the three cases. It can be seen that higher 

confining pressure corresponds to larger small strain stiffness but the deviator stress is 

similar at 20% strain regardless of the confining pressure.  
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Figure 6.7 shows the volumetric strain behaviour of the model. A dilative behaviour can 

be seen for Case 1, which starts from a vertical strain of approximately 3%. At a higher 

confining pressure, e.g. for Case 2 (200 kPa) and Case 3 (350 kPa), the model shows 

contractive behaviour. Therefore the model qualitatively agrees with normally observed 

laboratory behaviours of soil.  Figure 6.8 shows stress paths of the three cases. The 

gradient of the stress path is the same for the three cases as expected, i.e. 3/ =p∆q∆ . 

However, at the vertical strain of 20%, the stress paths have not reached the critical state 

line (CSL). This suggests that the soil parameters need to be further optimised in order to 

obtain better quantitative agreement with experimental results.  The set of selected 

parameters appear to be more satisfactory to Case 2. For the other two cases, some 

parameters (e.g. B and ψ ) need to be adjusted individually in order to achieve better 

results. 

 

6.1.1.2 Undrained behaviour 

Undrained stress-strain curves for the above three cases are presented in Figure 6.9. The 

ultimate stress is virtually the same, which is smaller than the drained strength and is 

reached at smaller strains compared to the drained cases. This is due to the undrained 

condition under which the isotropic hardening is insignificant so that the size of the 

structure surface (pc) changes in much smaller scales than under the drained condition. 

This can be seen form Figure 6.10. 
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Figure 6.9 Undrained stress-strain behaviour (same initial structure surface) 
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Figure 6.10 Isotropic hardening of the structure surface 
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Figure 6.11 Undrained effective stress path (same initial structure surface) 
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(a) Comparison between the three cases 
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(b) Enlarged at small strain range for 50 kPa confining pressure 

 

Figure 6.12 Pore water pressure (same initial structure surface) 

 

Figure 6.11 shows effective stress paths under the undrained condition and Figure 6.12a 

shows pore water pressure response for the three cases up to 10% strain. For Case 1, 

negative pore water pressure is generated from about 1% strain and this corresponds to its 

effective stress path curving towards the right hand side to meet the critical state line 

(CSL). Prior to 1% strain, pore water pressure is positive but is too small to be shown in 

the figure. An enlargement of the pore water pressure at small strains is shown in Figure 

6.12b. 

 

6.1.2 Example 2 

Figure 6.13 shows initial surfaces for another set of three different cases. Each case is 

assumed to be associated with a different initial structure surface. The actual bubble size 

varies for each case accordingly. Only the undrained condition is considered herein. 
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Figure 6.13 Initial stress states of three cases (variable initial structure surface) 
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Figure 6.14 Undrained stress-strain behaviour (variable initial structure surface) 
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Cases 2 and 3 correspond to normally-consolidated stiff clay while Case 1 represents 

over-consolidated clay in a firm state. The bubble is initially in contact with structure 

surface for each case. All other parameters are the same as those given in previous 

example in Section 6.1.1. Results are shown in Figures 6.14 to 6.16. 

 

As expected, the ultimate stress linearly increases with initial size of structure surface as 

shown in Figure 6.14. Effective stress paths are shown in Figure 6.15. It can be seen that 

all the three curves tend to approach the theoretical critical state line (CSL) regardless of 

initial stress state but stay slightly short of the CSL at 10% vertical strain. Figure 6.15 

shows pore water response, which also suggests that the critical state has not been 

reached at 10% strain as pore water pressure is not stable. In fact when the bubble is close 

to the structure surface, plastic modulus falls quickly so a large strain is needed for the 

stress path to reach the critical state line. On the other hand, it is possible that in a 

numerical modelling a steady flow occurs while the stress path may never reach the 

theoretical CSL. The stress path is mainly affected by the parameter B. Figure 6.17 shows 

the influence of B on stress path. It can be seen from Figure 6.17a that stress paths at 10% 

strain are closer to the CSL for B = 1000 than for B = 600. When B is increased to 2000, 

the CSL is reached at 20% strain (see Figure 6.17b) 
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Figure 6.15 Effective stress path (variable initial structure surface) 
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Figure 6.16 Pore water pressure (variable structure surface) 
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(a) Maximum strain = 10% 
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(b) Maximum strain = 20 %, B = 2000 

 
 

Figure 6.17 Influence of ‘B’ on effective stress path  
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6.2 Modelling of structured soil 

6.2.1 Example 1 

In this section the purpose is to verify the capability of the Bubble model in modelling 

general behaviours of structured soil. The parameters selected herein are typically for 

very stiff over-consolidated cohesive soil, whihc are given as follows:  

 

Standard parameters                    3.0* =λ  02.0* =κ  M =1.0 µ = 0.25 m =1.0 

Destructuration parameters          A = 0.5 k = 8 

Bubble size                                     R = 0.2 

Hardening modulus parameters    B=600 5.0=ψ  

Initial conditions                           00 =η   r0 = 2   pc0 = 200 kPa 3σ ′ = 350 kPa  

 

Where r0 = 2 means initial size of the structure surface is twice that of the reference 

surface as shown in Figure 6.18. 
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Figure 6.18 Initial stress conditions of structured soil 
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Figure 6.19 Undrained stress-strain behaviour of structured soil 

 

Undrained stress-strain behaviour of the structured soil is shown in Figure 6.19.  

Compared to the previous non-structured soil, it can be seen that a peak stress of 300 kPa 

is reached at a vertical strain of about 3% due to the initial structure of soil (i.e. r0 = 2). 

However, the residual stress is similar in magnitude to the ultimate stress for the non-

structured soil shown in Figure 6.9 as the reference surface has the same size for the two 

cases. 

 

In this case isotropic hardening is insignificant due to the undrained condition, hence 

there is little change in pc, i.e pc ≈  pc0 = 200 kPa. This means the reference surface and 

the bubble are almost constant in size.  

 

The structure surface always decreases in size upon occurrence of plastic deformation 

and collapses towards the reference surface no matter the plastic deformation is 

contractive or dilative. When the initial structure is totally removed, i.e. r is reduced from 

r0 to 1.0 the two surfaces are in contact. Under undrained condition the destructuration is 

mainly controlled by distortional plastic strain. The destructuration process is expressed 
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by reduction of the size ratio r. Figure 6.20 shows that r is initially 2.0 and decreases to 

1.0 when the vertical strain is about 30%. The rate of destructuration is controlled by the 

parameter k which is 8 in this example. Influence of k on destructuration will be 

discussed in Chapter 7. 

 

The destructuration process is illustrated more directly in Figures 6.21 to 6.23. The 

reference surface and the bubble virtually do not change in size. The bubble is brought 

upwards after being engaged by the current stress then pushed downwards again due to 

destructuration which results in collapsing of the structure surface. Destructuration is 

completed at about 30% strain, at which the structure surface coincides with the reference 

surface as shown in Figure 6.23. It can be seen that the bubble is always contained under 

the structure surface. This again verifies the non-intersection condition of the model. 
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Figure 6.20 Destructuration of structured soil 
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Figure 6.21 Surfaces at 5% strain 
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Figure 6.22 Surfaces at 10% strain 
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Figure 6.23 Surfaces at 30% strain 
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Figure 6.24 Initial stress conditions of structured soil with anisotropy 
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The soil described in Figure 6.18 has an isotropic initial structure surface, i.e. 00 =η . 

Figure 6.24 shows the initial stress state of the structured soil which has an anisotropic 

structure surface ( 5.00 =η ). In p, q pace, the centre of the structure surface is at (400, 

100). All other parameters are the same as those for Figure 6.18. 

 

Figure 6.25 indicates that the anisotropy results in a smaller peak stress but no difference 

in residual stress. Figure 6.26 shows the surfaces when the vertical strain is 30%. 

Comparison of Figure 6.26 with Figure 6.23 indicates that the anisotropy affects the 

stress path and translation path of the bubble but does not affect the final sizes and 

locations of the surfaces as they are only controlled by the intrinsic behaviour of soil. 
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Figure 6.25 Influence of anisotropy on stress-strain behaviour  
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Figure 6.26 Surfaces after destructuration at 30% strain ( 5.00 =η ) 

 

6.2.2 Example 2 

Figure 6.27 shows three different initial stress conditions of the same structured soil as 

showed in Figure 6.18. Each case corresponds to a different location of the initial bubble 

but the structure and reference surfaces remain the same as before. The centre of bubble 

is at current stress point for each case. '
3σ  is 100 kPa, 350 kPa and 600 kPa for Case 1, 

Case 2 and Case 3 respectively. The three cases correspond to cohesive soil which is in a 

very stiff state. The over-consolidation ratio is approximately 8 for case 1, 2.3 for Case 2 

and 1.3 fro case 3. All other parameters are the same as those for the previous structured 

soil. 
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Figure 6.27 Initial stress conditions for three cases of a structured soil 

 

 

The results are presented in Figures 6.28 to 6.30. It can be seen that small strain response 

including peak stress varies between the three cases due to variable initial stress states 

while there is no significant difference in residual stress. However, Figure 6.29 shows 

that the effective stress path for case 1 deviates from the CSL unlike the other two cases. 

This indicates that one single set of parameters can not satisfy all the three cases. 

Although their structure and reference surfaces are the same, some parameters may need 

to be adjusted individually to suit the different initial location of the bubble.  

 

Figure 6.30(a) show pore water pressure for the three cases. Figure 30(b) shows the pore 

water pressure at small strain range for Case 1 only. 
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Figure 6.28 Undrained stress-strain behaviour of structured soil 
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Figure 6.29 Effective stress path of structured soil 
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(a) Large strain for the three cases 
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(b) Small strain for Case 1 

Figure 6.30 Pore water pressure response of the structured soil 

 

100 kPa 
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6.3 Comparison  with the modified Cam-clay model 

The bubble model can be reduced to the modified Cam-clay model when R = 1, r0 =1 and 

0=0η . A FISH version of the modified Cam-clay model is available in FLAC. The 

Bubble model is compared with the modified Cam-clay model. Correlations between 

parameters of the two soil models have been discussed in Section 5.3.  Two compatible 

sets of parameters and initial conditions for stiff cohesive soil are given as follows: 

 

The Bubble model        The Modified Cam-clay model 

3.0* =λ  02.0* =κ  M = 1 m = 1 µ = 0.25        426.0=λ  0284.0=κ  M = 1 µ = 0.25 

B = 400  5.0=ψ                          p1=50 kPa   v1  = 2.0 (reference point) 

pc0 = 200 kPa '
3σ = 200 kPa       pc0 = 400 kPa  '

3σ = 200 kPa 

 

Figure 6.31 shows a good agreement in stress-strain behaviour between the two models. 

A value of 0.998 is used for parameter R instead of 1.0 to avoid execution of a quantity 

being divided by zero in computing hardening modulus (see Equations 5.14 and 5.18 in 

Chapter 5). 
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Figure 6.31 Comparison with modified Cam-clay model (Drained) 
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6.4 Comparison with experiment 

Experimental data used herein for comparison was published by Lee and Seed (1967). 

The soil used in their experiment was fine uniform sand which was dredged from 

Sacramento River about 30 miles upstream from San Francisco Bay. The specific gravity 

and limiting void ratio were Gs = 2.68, emin = 0.61 and emax = 1.03. Tests were performed 

on samples prepared to four initial densities. The loose sample had an initial void ratio of 

0.87, a relative density of 38% and a frictional angle of 34˚. Three drained triaxial test 

results of the loose sample are used here for comparison. The confining pressure is 100 

kPa, 450 kPa and 2000 kPa respectively. 

 

It is appropriate to assume that the sand was non-structured as it was reconstituted, i.e. r0 

= 1. The parameter R can be assumed to be the same for the three tests. Key parameters to 

be selected are initial size of the structure surface (pc0) and hardening modulus 

parameters (B and ψ ). Parameter ψ controls curvature of a stress-strain curve. For a 

qualitative comparison, it is reasonable to assume ψ to be the same for the three tests and 

only to vary parameter B for each test. It was reported that the sand was relatively 

incompressible at low pressures and at high pressures there was considerable volume 

change due to crushing of grains (See Figure 6.32). To simulate the three tests, 

parameters of the Bubble model are given as follows and initial stress conditions of the 

three samples are shown in Figure 6.33. 

3.0* =λ 02.0* =κ  M = 1 m = 1 µ = 0.3 

R = 0.15 00 =η  1=ψ   

 

σ3    (kPa) B pc0 (kPa) 

100 600 300 

450 1800 900 

2000 25000 1200 

 

                      Note: For non-structured soils A and k are not used. 
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Figure 6.32 Pressure-void ratio curve for loose sands. 

(redrawn after Lee and Seed, 1967) 
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Figure 6.33 Initial stress conditions of three tests 
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A general agreement in stress-strain-volume behaviour between the modeling and test 

results can be seen from Figures 6.34 (a) and (b), where solid curves present results of the 

modeling. The difference is generally smaller at high confining pressures than at low 

confining pressures. However variation in small-strain behaviour is not insignificant, 

especially for low confining pressures. The Bubble model with the selected parameters 

predicts smaller moduli and less dilative behaviour than the experiment. Therefore, for 

further research, more comparisons with laboratory testing results are required to identify 

the capabilities and limitations of the Bubble model. Stress-strain behaviour at small 

strain of the model will be studied in Chapter 7.  
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(a) Stress-strain behaviour of loose sand 
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(b) Volumetric behaviour of loose sand 

 

Figure 6.34 Comparison of Bubble model with published experiment data 
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6.5 Dynamic behaviour of the Bubble model 

The main purpose to employ the ‘plastic correction’ approach in implementing the 

Bubble model in FLAC is to minimise numerical distortion (non-physical instability) 

without applying any additional damping. To verify whether or not this has been 

achieved, dynamic performance of the Bubble model is investigated under both drained 

and undrained conditions. For drained condition, a steady state response should be 

reached after an initial vibration and should stay reasonably stable. For undrained 

condition, whether or not a steady state response can be reached and can stay stable 

depends on generation of pore water pressure. If cyclic change in pore water pressure is 

small, the steady state response should also stay stable (i.e. non-liquefiable).   

 

 

6.5.1 A single-zone FLAC triaxial model 

A single zone axisymmetrical model is utilised to represent a dynamic triaxial test (see 

Figure 6.35). The zone is a 0.1 m by 0.1 m square. The only reason to use a square zone 

is to avoid another type of numerical distortion which may occur in dynamic analysis if 

non-squared zones are used. The zone size is chosen to be much smaller than 10% of the 

shear wave wavelength of soil so that no size effects will be introduced into the 

modelling. 

 

 

 

Figure 6.35 A single zone triaxial model 
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Non-structured loose sand is considered for the analysis herein with the parameters given 

as follows: 

3.0* =λ  02.0* =κ  M = 1 m = 1 µ = 0.25 R = 0.2 B = 400 0.1=ψ  pc0 = 100 kPa 

Two initial stress conditions are considered. 3σ ′  is 50 kPa for Case1and 150 kPa for Case 

2.  The single zone model is subjected to a strain-controlled sinusoidal loading with a 

magnitude of maximum vertical strain of 2.5% and a frequency of 1Hz. 

 

q (kPa)

p (kPa)
pc0=10050 150

100

Case1 
bubble

Case 2 
bubble

Structure & reference 
surfaces

0

q (kPa)

p (kPa)
pc0=10050 150

100

Case1 
bubble

Case 2 
bubble

Structure & reference 
surfaces

0

 

 

Figure 6.36 Initial stress conditions  

 

For both drained and undrained conditions steady state responses are reached and they 

stay stable within 200 cycles (see Figures 6.37 to 6.45). For clarity only Figure 6.43 

shows the response up to 200 cycles while all other figures only show responses up to 40 

cycles. 

 

Figures 6.37 and 6.38 show the drained stress-volume-strain response for Case 1 ( 3σ ′ = 50 

kPa). Dilative behaviour is obtained, which results in a cyclic increase in volume before a 

constant magnitude and amplitude of volume are reached. The amplitude of deviator 

stress and stiffness of soil decrease cyclically due to dilation before the steady state is 

reached. 
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Figure 6.37 Drained dynamic stress-strain behaviour of Case 1 soil 
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Figure 6.38 Dynamic volumetric response of Case 1 soil 
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Figure 6.39 Undrained dynamic stress-strain response of Case 1 soil 
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Figure 6.40 Dynamic pore water pressure of Case 1 soil 
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Figure 6.41 Drained dynamic stress-strain behaviour of Case 2 soil 
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Figure 6.42 Dynamic volumetric response of Case 2 soil (40 cycles) 
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Figure 6.43 Dynamic volumetric response of Case 2 soil (200 cycles) 

 

Figure 6.40 shows that negative pore water pressure is generated, which reach its 

maximum magnitude in only a few cycles and decreases gently with approximately a 

constant amplitude. This corresponds to a stable stress-strain response and the cyclic 

change in stiffness is insignificant (see Figure 6.39) 

 

Drained stress-strain-volume responses of Case 2 soil ( 3σ ′ = 150 kPa) are shown in 

Figures 6.41 and 42. It can be seen that there is a cyclic densification in volume and 

hence a cyclic increase in stiffness of soil before the steady state is reached. The steady 

state response stays stable for the whole duration of vibration (See Figure 6.43).  
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Figure 6.44 Undrained dynamic stress-strain response of Case 2 soil 
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Figure 6.44a Cyclic response of undrained deviator stress of Case 2 soil 
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Figure 6.45 Dynamic pore water pressure of Case 2 soil 

 

Undrained responses are similar to those of Case 1 soil except that the pore water 

pressure is positive (see Figure 6.45). However, the model predicts a stiffness increase in 

the first three cycles (see Figures 6.44 and 6.44a). This is inconsistent with cyclic 

behaviours of soils normally observed in laboratory, i.e. the stiffness should decreases 

with the development of a positive pore water pressure. The causes of this disparity 

remain to be investigated in the future research. 

 

6.5.2 A multizone FLAC triaxial model 

A multizone numerical model is utilized to represent a triaxial specimen which is 0.2 m 

in diameter and 0.4 m in height. The model consists of 16 square zones. The size of each 

zone is 0.05 m.  

 

The same parameters as those for the single-zone model are used except the initial 

confining pressure is increased to 300 kPa (see Figure 6.46). This is to avoid generation 

of tensile mean stresses during vibration as the Bubble model does not allow tensile mean 

stress. Accordingly the initial centre of the structure surface is increased to 200 kPa. The 
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amplitude of strain is reduced to 1% for the same purpose. The frequency is increased to 

10 Hz to further investigate dynamic performance of the model as the higher the 

frequency is, the more severe the numerical distortion could be. 
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Figure 6.46 Initial stress state of the multizone FLAC model 

 

Undrained dynamic responses of the multizone model are shown in Figures 6.47, 6.47a 

and 6.48. Results are similar to those of the single-zone model for Case 2 soil. A stable 

stress-strain response is obtained without using any additional damping.  
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Figure 6.47 Undrained dynamic stress-strain response of a multizone triaxial model  
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Figure 6.47a  Cyclic response of undrained deviator stress of a multizone triaxal model  
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Figure 6.48 Dynamic pore water pressure (40 cycles) 
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6.6 Summary 

The Bubble model has been implemented in FLAC with the ‘plastic correction’ approach. 

In this chapter fundamental features of the Bubble model have been demonstrated with 

the FLAC programme. The Bubble model has been found to be able to simulate essential 

behaviours of both remoulded and structured soils. The non-intersection condition 

between the bubble and the structure surface has been verified. Destructuration process 

for structured soil has also been illustrated. 

 

The Bubble model has been further verified by its comparison with the modified Cam-

clay model and published experimental data (Lee and Seed 1967). Good agreement has 

been obtained.  

 

Dynamic performance of the Bubble model has been investigated for both single-zone 

and multi-zone FLAC models. It has been found that a stable response can be obtained 

without using any additional damping. This verifies that numerical distortion problem in 

nonlinear dynamic analysis can be eliminated or minimised by means of the 

implementation methodologies used in this thesis. 

 

The data file for the triaxial model is attached to Chapter 7. 
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7 PARAMETRIC STUDY OF THE BUBBLE MODEL 
 

 

 

The bubble model requires ten soil parameters and some initial conditions. Five of the 

parameters are similar to those of the Cam-clay model, i.e. mMκλ ,,, ** and µ  and they 

can be obtained directly from laboratory tests while the other five are non-standard 

parameters, i.e. AkψBR ,,,, . Initial conditions include 30000 ,,, σpηr c . The non-standard 

parameters and most of the initial conditions can not be obtained directly from laboratory 

tests. For a specific type of soil, determinations of these parameters and the initial 

conditions rely on curve-fitting between numerical modelling and experimental results 

(Also see discussions in Section 5.3). 

 

The objective of this chapter is to investigate influence of the above parameters and 

initial conditions on behaviour of the bubble model and importance of each parameter. 

Particularly qualitative study is carried out to investigate influence of bubble size R and 

plastic modulus parameter B. Results obtained from this chapter provide a general 

guidance in choosing parameters for application of the bubble model in Chapter 8.  

 

The parametric a study is carried out by using a set of selected parameters and varying 

one parameter while assuming other parameters unchanged although, in reality, some of 

the parameters are inter-related. This may result in unrealistic behaviours of the model. 

However, the assumption is considered to be necessary and appropriate for the purpose of 

parametric study.  

 

 

7.1 Typical values of parameters 

Typical values of parameters are given as below, which are utilised as reference 

parameters for parametric study. 

 



 182 

Table 7.1 Typical soil parameters for parametric study 

*λ  *κ  M m µ R B ψ  k A K0 

(MPa) 
0.3 0.02 1.0 1.0 0.25 0.2 600 0.5 4 0.5 0 

Note: all parameters are dimensionless except K0 which is elastic bulk modulus associated with zero confining pressure 
(see Eq.5.22) 
 

 

Initial conditions are specified as follows: 
0.10 =r , 00 =η   

pc0 = 200 kPa, 3σ ′ = 200 kPa  
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Figure 7.1 Initial locations of surfaces associated with reference parameters 

 
 

The above parameters are chosen to represent non-structured soil (r0 = 1.0 and 00 =η , i.e 

structure surface coincides with reference surface as shown in Figure 7.1). The initial 

conditions correspond approximately to cohesive soil with an undrained shear strength of 

100 kPa. An initial elastic bulk modulus of 10 MPa is calculated form Eq.5.22 and this 

corresponds to a shear modulus of 6 MPa and a Young’s modulus of 15 MPa. 
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Plastic modulus parameters ( B and ψ ) control degradation of stiffness when plastic 

deformation occurs and affect performance of the model significantly. Little past 

experience can be based upon for determination of the two parameters. Preliminary study 

indicates that a value of 600 for B and 0.5 for ψ  are suitable in this case.  

 

In order to model nonlinear behaviours of soil at very small strain, a very small bubble 

size is required, i.e. parameter R should be close to zero. However, this will require a very 

small timestep in analysis (e.g. less than 10-8 m displacement or 10-5 % strain per step for 

a single element model) while a timestep of 10-6 m displacement per step is found to be 

suitable for most cases. Therefore use of a very small bubble will cause significant 

computational burden. A value of 0.2 for parameter R is considered to be appropriate for 

the parametric study. The value is similar to those used by Rouainia & Wood (2000) and 

Gajo & Wood (2001). They suggested that R has a minor role in affecting overall 

behaviours of the model compared to parameter B.  

 

Parameters A and k do not affect behaviours of non-structured soils. For structured soils, 

A can be varied in a range between 0 and 1. Herein A is given a value of 0.5, which 

means that volumetric and distortional strains are equally taken into account in 

destructuration law. This is a special case of the bubble model, which is equivalent to S3-

SKH model (Baudet and Stallebrass, 2004). k is an arbitrary parameter that controls the 

rate of destructuration. A value of 4.16 was used for Norrköping clay by Rouainia & 

Wood (2000) and 0.5 for Bothkennar clay by Baudet and Stallebrass (2004).  Herein k is 

taken to be 4 as a reference value. 

 

Standard parameters *λ , *κ , M , m and µ are selected in normal ranges for clay. It needs to 

be pointed out that Poisson’s ratio, µ, is taken to be 0.25 for both undrained analyses (i.e. 

same as the drained analyses) because effective stresses are utilized in the bubble model. 

Gajo & Wood (2001) found that Poisson’s ratio has a less important role than other 

parameters. m is a ratio between radii of sections through structure surface for 

axisymmetrical extension and compression in deviatoric plane, which should be between 
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0.7 and 1.0 to ensure convexity. Herein m is taken to be 1.0 by assuming behaviour of 

soil in extension is identical to that in compression. 

 

 

 
 

Figure 7.2 Single-element triaxial model 

 

An axisymmetric numerical model comprising a single square element is utilized to 

model the conventional triaxial test. A square element is considered to be better than a 

non-square one in reducing numerical errors. Although the single-element model does not 

match the shape of a real triaxial specimen, it is considered to be suitable for the 

qualitative study herein.  

 

 

7.2  Size of bubble  

Introduction of a smaller yield surface into the bubble model is to reduce elastic range of 

soil. The size of elastic range (i.e. bubble) is represented by parameter R in the bubble 

model. Figure 7.3 shows stress-strain curves for a range of values of R. To show the 

elastic range clearly, B is given a smaller value of 300 rather than the reference value of 

600 as the larger the value of B, the smoother the transition of stiffness  when the bubble 

is engaged(see Section 7.3). 
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Figure 7.3 Elastic range vs bubble size (B = 300, drained) 

 

The curve for R =1.0 is equivalent to the result of the modified Cam-clay, indicating an 

apparent elastic range up to a vertical strain of 1% in this case while the curve for R = 

0.005 shows a nonlinear behaviour from the beginning of loading.  

 

For most natural soils elastic range is very small. Hence a small value of R should be 

used so that a smooth transition in modulus can be obtained. However this increases 

computational time significantly as a much smaller timestep must be used to avoid errors 

during elastic trial. Otherwise, stress may drift from the bubble. When larger values of R 

have to be used one has to find a suitable value of B to get a smooth transition in stiffness 

(See Section 7.7). 

 

Although R affects small strain behaviour, it has little effect on ultimate stress of soil and 

the stress-strain behaviour at large strains as long as a suitable value of B is selected. This 

can be seen from Figures 7.4 and 7.5. 
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Figure 7.4 Stress-strain behaviour (B =500, drained) 
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Figure 7.5 Stress-strain behaviour (B=600, drained) 
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Figure 7.6 Influence of R on volumetric behaviour (B=600, ψ=0.5, drained) 
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Figure 7.7 Volumetric strain vs mean pressure (B = 600) 
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It can also be seen from Figure 7.6 that R has only minor influence on volumetric strain. 

Figure 7.7 shows that R has little influence on relationship between volumetric strain and 

mean pressure. An oedometer test is simulated by allowing only vertical deformation for 

the single element model. An initial all-round pressure of 200 kPa is applied to the model 

so that the model has an initial stiffness prior to loading (Note: bulk modulus is given by 

0K
κ

p
K +

′
=

∗
and K0 is zero herein). The mean effective pressure for the plot is the total 

mean effective pressure acting on the model less the initial all-round pressure. 

 

The results so far suggest that R has little effect on the overall stress-strain response of 

the bubble model when R is less than 0.2. The following analyses are carried out to check 

if this is still true when other parameters are changed. To ensure realistic results, B is 

varied accordingly as B is found to be inter-related to these parameters (see Section 7.3). 

Figures 7.8 to 7.11 show similar results even when parameters •• κλµψ ,,,  are varied 

significantly. 
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Figure 7.8 Stress-strain behaviour (ψ =1.0, B=1500, drained) 
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Figure 7.9 Stress-strain behaviour ( 35.0=µ , B =250, drained) 

 

 

0

50

100

150

200

250

0 2 4 6 8 10 12

Vertical strain (%)

D
e
v
ia

to
r 

s
tr

e
s
s
 (

k
P

a
)

R=1.0

  0.5

0.005

0.2

 0.1

    

 

 

Figure 7.10 Stress-strain behaviour ( 2.0=∗λ , B = 350, drained) 
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Figure 7.11 Stress-strain behaviour ( 04.0=∗κ , B = 280, drained) 
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Figure 7.12 Undrained stress-strain behaviour 
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Figure 7.13 Pore water pressure 

 

Figure 7.12 shows that the undrained stress-strain behaviour is also insensitive to the 

parameter R although pore water pressure may increase sharply at high strain levels when 

R is greater than 0.2 (see Figure 7.13). It is also noticed that the same pore water pressure 

is generated by the model at a particular strain level regardless of the value of R. 

 

It can be concluded from the above study that if one is not particularly interested in small 

strain behaviour of the model, e.g G – γ relationship (see Section 7.7 ), R can be selected 

within a range of 0.1 to 0.2.  Unless specified, R is 0.2 in the following analyses. 

 

 

7.3 Plastic modulus parameters ‘B and ψ ’ 

B and ψ are two plastic modulus parameters, which significantly affect stress-strain 

behaviour of the bubble model after yielding takes place. B controls magnitude of 

stiffness and ψ controls rate of degradation in stiffness.  
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Figure 7.14 Influence of ‘B’ on stress-strain behaviour (ψ =0.5, R = 0.2) 

 

0

50

100

150

200

250

0 2 4 6 8 10 12

Vertical strain (%)

D
e
v
ia

to
r 

s
tr

e
s
s
 (

k
P

a
)

B=1000
          600

   400

   200

 

 

Figure 7.15 Influence of parameter B (ψ= 0.5,R=0.01) 
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Figure 7.14 shows that post-yielding stiffness of soil increases with B and the larger the 

value of B, the smoother the transition in stiffness. However the relationship is less 

sensitive to B when B is greater than a certain value (e.g. 600 in this case). At this value 

of B a realistic response is obtained with the ultimate deviator stress being approximately 

180 kPa ( )2000 kPaMpMpq cult =≈′= . 

 

B only affects the stiffness when plastic deformation occurs. In Figure 7.14 an elastic 

range up to a maximum vertical strain of about 0.25% can be clearly seen when B is 200. 

Figure 7.15 shows that B starts to affect stiffness from a much lower level of strain as the 

elastic range is 20 times smaller, i.e. R = 0.01. 
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Figure 7.16 Influence of parameterψ  (B=600) 

 

Figure 7.16 shows that stiffness and strength of soil decreases as ψ  increases and the 

realistic response corresponds to a value of 0.5. Therefore if ψ is increased, B must also 

be increased to get realistic results.  

 

For non-structured soil initial size of bounding surface (pc0) is considered to be the main 

factor affecting the parameter B. Relationships between pc0 and B are explored with a 
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criterion that ultimate deviator stress approximately equals Mpc0 . The calculated 

relationships are shown in Figures 7.17 to 7.19 for different values of ψ . 
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Figure 7.17 Relationship between B and pc0 (ψ= 0.5) 
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Figure 7.18 Relationship between B and pc0 (ψ= 1.0) 
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Figure 7.19 Relationship between B and pc0 (ψ= 1.5) 

 

The above relationships have been obtained with the parameters •λµ, , •κ  given in 

Section 7.1 and are expected to vary as these parameters change. However, these 

relationships can be used as the first trial for selecting values of parameters B and ψ  in an 

analysis. 

 

 

7.4      Standard parameters  

Poisson’s ratio ‘µ’ 

The influence of Poisson’s ratio is minor compared to that of parameters B and ψ . 

Figures 7.20 and 7.21 show that there is no significant difference in small strain stiffness 

and undrained shear strength if Poisson’s ratio increases from 0.1 to 0.3. This is 

consistent with the work by Gajo & Wood (2001). However, Possion’s ratio affects the 

drained shear strength significantly. 
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Figure 7.20 Influence of Poisson’s ratio on stiffness (undrained) 
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Figure 7.21 Influence of Poisson’s ratio on stiffness (drained) 

 

Parameters ‘ ∗∗ κλ , ’ 

∗∗ κλ ,  are interrelated, i.e. variation in one of them should be accompanied by variation 

of the other. To investigate significance of them, however, influence of each of the two 
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parameters is explored with the other being kept unchanged although this may result in 

unrealistic results. Figures 7.22 to 7.23 show that soil stiffness decreases as ∗λ  increases. 

Figures 7.24 & 7.25 show that the stiffness also decreases as ∗κ  increases.  
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Figure 7.22 Influence of ∗λ  on stiffness and strength (undrained, ∗κ =0.02) 
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Figure 7.23 Influence of
∗λ  on stiffness and strength (drained, ∗κ =0.02) 
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Figure 7.24 Influence of ∗κ  on stiffness and strength (undrained, 3.0=∗λ ) 
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Figure 7.25 Influence of ∗κ  on stiffness (drained, 3.0=∗λ ) 
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Parameter ‘ m’ 

In the bubble model, dimensionless scaling function, θM  is given as follows (i.e. Eq.5.6), 

θ)mm

mM
M θ

3sin()1()1(

2

−−+
=  

Where M is the critical state stress ratio for axisymmetrical compression. m is the ratio 

between radii of sections through the structure surface for axisymmetrical extension and 

compression. Rouainia and Wood (2000) recommended that m should be in the range 

between 0.7 and 1.0 to ensure convexity. The above equation is illustrated in Figure 7.26. 

 

For axisymmetrical compression (Lode’s angle θ =30˚), MM θ ≡ , hence m has no effect 

on the response of the model (see Figure 7.27). For axisymmetrical extension (Lode’s 

angle θ = -30˚), mMM θ = . Figure 7.28 shows the influence of m on stress-strain 

response under axisymmetrical extension. It can be seen that ultimate deviator stress 

decreases linearly with m, i.e. mmMpMpq cθcult 20000 ==≈ . 
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Figure 7.26 Dimensionless scaling function, θM  (M = 1.0) 
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Figure 7.27 Influence of parameter ‘m’(undrained axisymmetrical compression, m = 

0.7~1.0) 
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Figure 7.28 Influence of parameter ‘m’ (undrained axisymmetrical extension) 
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7.5      Destructuration parameters  

Parameter ‘A’ 

‘A’ is a dimensionless scaling parameter. Destructuration is entirely volumetric if A = 0 

and is entirely distortional if A = 1.0 (refer Eq. 5.12). Influence of parameter A is 

illustrated in Figures 7.29 and 7.30. Two cases for structured soil are considered, i.e r0 is 

2 and 4 respectively.  It can be seen that parameter A only affects residual strength of soil 

and has little effect on peak strength. The more contribution to destructuration of soil 

from plastic distortional strain, the lower the residual strength. If A = 0, post-peak stress-

strain curves flat off as plastic volumetric strain rate 0=p

vε& , hence there is no further 

destructuration. If A > 0, destructuration continues beyond the peak as plastic distortional 

strain rate 0≠p

qε& . Therefore for structured soil, parameter A should be chosen to be 

greater than 0, otherwise, destructuration would be incomplete. A = 0.5 should be used 

for the first trial in a modeling. 
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Figure 7.29 Influence of parameter ‘A’ (r0=2.0, undrained) 
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Figure 7.30 Influence of parameter ‘A’ (r0  = 4.0, undrained) 

 

Parameter ‘k’ 

 k is a parameter controlling rate of destructuration. A destructuration process is 

completed when the size ratio of the structure surface ‘r’ is 1. Figure 7.31 shows r always 

decreases with strain and the larger the parameter k, the faster the destructration. 

However the ultimate size of the structure surface (rpc) is independent of the parameter k 

(see Figure 7.32).  
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Figure 7.31 Influence of parameter ‘k’ on destructuration (r0 =2.0, drained) 
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Figure 7.32 Size of structure surface, rpc (r0 =2.0, drained) 
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Figure 7.33 Influence of parameter ‘k’ on stress-strain behaviour (r0 =2.0, drained) 
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Figure 7.33 shows that stress-strain curves converge to the same ultimate stress at large 

strain regardless of k. In addition, k  has little influence on peak strength and no effect on 

the pre-peak behaviour. It only affects the post-peak behaviours. 

 

 

7.6 Initial conditions 

3σ  and 
cop  

3σ  is equal to the initial mean effective stress (i.e. p), which determines initial elastic 

bulk modulus (Note: 
∗

=
κ

p
K  if K0 = 0). Figure 7.34 shows that initial stiffness of soil 

increases with 3σ while ultimate stress is independent of 3σ  as cop is constant (i.e. 200 

kPa) for the three cases.  This corresponds to overconsolidated soil with a 

preconsolidation pressure kPap 400max ≈  and the overconsolidation ratio is about 4, 2 

and 1.3 respectively. The behaviour is qualitatively consistent with experimental results 

(Ishihara, 1996). 

 

0

50

100

150

200

250

0 1 2 3 4 5 6

Vertical strain (%)

D
e
v
ia

to
r 

s
tr

e
s
s
 (

k
P

a
)

3σ = 100 kPa

200 kPa

300 kPa

 

Figure 7.34 Influence of initial stress (undrained, pc0 =200 kPa) 
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cop is a quantity defining the initial size of reference surface and controls the strength of 

soil (see Figure 7.35). cop  is related to the initial void ratio and stress history. For 

normally consolidated non-structured soil, 2/3σpco ≈  while for overconsolidated non-

structured soil, 2/maxppco ≈ . maxp is the maximum preconsolidation pressure. If 

undrained shear strength ‘su’ is available, Msp uco /2≈ . 
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Figure 7.35 Influence of initial size of reference surface (undrained, 3σ = 200 kPa) 

 

 

0r  and 0η  

0r  and 0η  describe the initial state of structure surface. 0r  is initial size ratio of structure 

surface to reference surface and 0η  is a measure of the initial anisotropy of the structure 

surface. 0r can be interpreted as a measure of sensitivity of the structured soil.  

 

It can be seen from Figure 7.36 that the peak stress increases with 0r while the residual 

stress converges to the same stress level close to cop  as cop represents strength of 
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remoulded soil. In this case, 0r  is approximately 1.5 to 2.0 times larger than the ratio 

between peak and residual stresses. 
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Figure 7.36 Influence of initial size of structure surface (
cop =200 kPa, k=8, undrained) 
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Figure 7.37 Influence of initial anisotropy ( 0r =2.0, 

cop =200 kPa, k=4, undrained ) 
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Anisotropy means deviation of the initial structure surface from the p axis in p, q space, 

i.e.  0000 )1( cpηrq −= . 0η > 0 means deviation to above the p axis and   0η < 0 to below 

the p axis. Figure 7.37 shows that the pre-peak behaviour is approximately symmetric 

about the curve for 0η = 0 (i.e. isotropic structure surface). However influence of 

anisotropy on stress-strain behaviour is generally minor given the levels of anisotropy in 

the case. 

 

 

Maximum bulk modulus ‘Kmax’ 

Kmax is not a parameter of the bubble model but is required by FLAC to determine a 

critical timestep for an analysis. (Note: FLAC automatically calculates a critical timestep 

according to stiffness, zone size and Rayleigh damping ratio. The critical timestep 

decreases with stiffness and Rayleigh damping ratio but increases with zone size). Kmax 

should be greater than the maximum bulk modulus calculated from the 

formula, 0K
κ

p
K +=

∗
, otherwise, instability may occur for a dynamic analysis. However, 

Kmax does not affect a static problem as long as it is greater than a certain value which is 

not necessarily the maximum bulk modulus calculated from the above function. The 

maximum bulk modulus is about 12 MPa for the problem as shown in Figure 7.38. It is 

found that the minimum Kmax required to ensure stability of the static analysis is only 2 

MPa as shown in Figure 7.39 while for dynamic analysis using the single-zone triaxial 

model Kmax = 200 MPa is required for a satisfactory result (see Figure 7.40). 
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Figure 7.38 Calculated bulk modulus during undrained triaxial compression 

(With reference parameters given in Section 7.1) 
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Figure 7.39 Influence of Kmax  on static analysis 
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Figure 7.40 Dynamic response of a single-zone triaxial model (10 Hz, 20 cycles, vertical 

strain amplitude = 2%) 
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7.7 γ−G curves 

Three key parameters, R, ∗κ and B are considered to have the most influence on the 

γ−G  curves, especially in the small strain range. This section presents a general picture 

of how these parameters affect γ−G  curves. The abrupt transition in stiffness from 

elastic region to yielding is discussed. An alternative hardening function is also proposed 

based on the concept of the model by Kavvadas and Amorosi (2000) in order to smoothen 

the γ−G  curves.  

 

7.7.1 Laboratory γ−G curves 

Reduction in shear modulus (G) with shear strain has been historically expressed as a 

function of confining pressure and plasticity index (PI) for clays, which is idealised on 

basis of laboratory testing. Normalised shear modulus (i.e. the shear modulus ratio 

maxG
G ) is used to express the nonlinear behaviour of strain-dependent modulus of soil. 

Experimental γ−G  curves have been presented by many researchers (e.g. Ishihara, 

1996). A typical laboratory γ−G curve is shown in Figure 7.41. 
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Figure 7.41 A typical laboratory γ−G curve for cohesive soils 

(Based on data from Kokusho et al. 1982) 
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7.7.2 γ−G curves of the Bubble model 

The study in this section is to focus on stiffness degradation within small strain range and 

to explore the transition in stiffness from elastic region to yielding. Al Tabbaa and Wood 

noted in 1989 that there is an abrupt transition in stiffness from elastic region to yielding. 

However, there has been no published information on γ−G curves of the Bubble model. 

Stallebrass and Taylor (1997) presented data of tangent shear modulus versus deviator 

stress but there is no sufficient small strain stiffness data. Their data also indicates there is 

an abrupt transition in shear modulus. Kavvadas and Amorosi (2000) proposed an 

alternative hardening function to smoothen the stiffness transition. Although they did not 

show γ−G  data, it seems to be obvious that the solution should work. Therefore, their 

concept is adopted in Section 7.7.3 for the bubble model. 

 

The secant shear modulus is considered for the study. The effective confining pressure p 

is taken to be 600 kPa herein. Accordingly, the initial reference surface is sized with pc0 

being 350 kPa. A small bubble is utilised with R equal to 0.001 to explore 

γ−G behaviour at small strain levels. All other parameters and initial conditions are the 

same as the reference date given in Section 7.1 except parameters ∗κ and B which have 

been found to play main roles in affecting γ−G  curves. 

 
The same single-element triaxial model is utilised to model undrained response up to 2% 

vertical strain. A small strain increment of 10-6 % per step is used and results of analyses 

are recorded every other 100 steps to reduce burden in data processing. 

 
Figure 7.42a presents three curves with ∗κ equal to 0.02, 0.005 and 0.001 respectively. 

As bulk modulus is given by 0K
κ

p
K +=

•
 and 0K is zero in this case, Gmax for the three 

curves is 18 MPa, 72 MPa and 360 MPa respectively (Note: the effective Poisson’s ratio 

is 0.25 herein).  However, due to data filtering (i.e. record and output FLAC calculations 

at a regular period, e.g. every 10 to 1000 timesteps in order to reduce data processing 

burden in Excel and Mathcad), Gmax obtained from FLAC modeling is smaller than that 
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calculated from the above elastic formula. For convenience, Gmax is taken to be the shear 

modulus corresponding to 10-4 % shear strain. This is also consistent with published 

laboratory data (See Figure 7.41).  Note: The shear strain herein is so called ‘triaxial 

shear strain’ (Schofield and Wroth, 1968), which equals to the vertical strain for 

undrained triaxial stress conditions. 

 

It can be seen that shear modulus degrades faster with shear strain if ∗κ is smaller. Due to 

presence of the elastic range (i.e. the bubble), there is a flat portion of curve at the 

beginning. This flat portion of curve decreases in length as Gmax increases on the 

condition that the bubble size is constant (i.e. R = 0.001). This means that the bubble with 

a constant R is engaged at smaller strain if the soil is stiffer.  

 

In Figure 7.42, plastic modulus parameter B is increased proportionally as the elastic 

modulus ∗κ  is deceased. It has been found that influence of ∗κ  has the similar pattern 

even if B is constant. Analyses have also been carried out by varying other parameters 

and initial conditions, which suggest the same findings stated above (results are not 

presented herein). 

 

Figure 7.42(a) γ−G curves 

 

02.0=*κ , B = 1000 

005.0=*κ , B = 4000 

001.0=*κ , B = 20000 



 213 

 
 

Figure 7.42(b) Stress-strain curves 

 

Figure 7.42 Influence of ∗κ on small strain behaviour ( 0K = 0) 

 
 

However, the influence of ∗κ on γ−G curves is secondary when 0K  dominates the bulk 

modulus. This is illustrated in Figure 7.43a, where the doted curve is associated with 

0K = 90 MPa and ∗κ =0.02 while the solid curve is for 0K = 0 MPa and ∗κ = 0.005(i.e. 

the blue curve in Figure 7.42a), hence Gmax is 72 MPa for both of the two cases. As B is 

the same, the two γ−G curves are almost identical.  

 

Figure 7.43b shows the influence of parameter B on γ−G curves. It can be seen that B 

affects the reduction rate in shear modulus significantly at very small strain levels but has 

less influence at high strain levels.  Parameters •λ and ψ have similar influence (results 

are not presented herein). 

02.0=*κ , B = 1000 

005.0=*κ , B = 4000 

001.0=*κ , B = 20000 
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(a) B = 4000 (Gmax =72 MPa) 

 

  
 

(b) 02.0* =κ , 0K = 90 MPa (Gmax =72 MPa) 

Figure 7.43 γ−G behaviour when 00 ≠K  

02.0=*κ , K0 = 90 MPa 

005.0=*κ , K0 = 0  

B = 16000 

 4000 

 2000 

 8000 
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7.7.3 Smooth transition in shear modulus  

Although a very large value can be selected for the parameter B to smoothen the 

transition in stiffness, there is always a drop in stiffness when the yielding starts as B can 

not be infinity. It has also been found that one penalty to use a large value of B is that the 

model becomes too stiff after yielding takes place. This can be seen from Figure 7.43b, 

that is, as B increases, there is less and less reduction in shear modulus between 10-3 % 

and 0.1 % shear strain. 

 

Instead of using a large value of B, a multiplier is applied to the second term of the 

hardening function (Eq. 5.21), which is infinity at yielding and continuously decreases 

after yielding. The multiplier is given as follows: 

ψ

0

1

γγ
χ

−
=                                                                                                  (7.1) 

χ
b

b

κλ

pBR
HH

*

2

ψ

n
)(

)(

1

max
*

3
c

2c
−

+=                                (7.2) 

Where γ  is shear strain and 0γ is the shear strain corresponding to the onset of yielding 

(i.e. the point when the bubble is first touched by the stress point). If the stress point 

moves back into the bubble (unloading) and re-touches the bubble, 0γ needs to be reset. 

At yielding, 0γγ = , hence, ∞=χ  (i.e. the hardening modulus is infinity) and it 

continuously decreases after yielding. As a quantity is not allowed to be divided by zero 

in FLAC, at the yielding point, the plastic strain rate is set to be zero with a ‘if…then’ 

logic statement. Figure 7.44 shows three curves using the new hardening function 7.2. 

Parameters are the same as in Section 7.7.2 except the parameters R, B and ∗κ . 
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Figure 7.44 γ−G curves with smooth transition in shear modulus (R=0.01, B=1000) 

 
 
It can be seen that there is no abrupt transition in shear modulus when the stress crosses 

the bubble from the elastic region. The size of the elastic region decreases as ∗κ  

decreases. The shear strain at yielding for the curve in the middle in Figure 7.44 is 1.84e-3 

%. Compared to the typical curve in Figure 7.41, the above curves are satisfactory in 

terms of the shape and smooth transition. To model a particular soil, one has to optimize 

the parameters by trial and error.  

 

The hardening function 7.2 is only used in this section to demonstrate an alternative 

option to eliminate abrupt transition in stiffness. The hardening function 5.21 is used in 

Chapter 8  

002.0=*κ , Gmax  = 180 MPa 

02.0=*κ , Gmax  = 18 MPa 

005.0=*κ , Gmax  = 72 MPa 
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7.8 Summary 

The study in this chapter indicates that the most important parameters of the bubble 

model are plastic modulus parameters B,ψ  and the Cam-clay parameters ∗∗ κλ , . Poisson’s 

ratio ( µ ) generally has less important role in the bubble model. 

 

Bubble size R affects stiffness at small strains but has no effects on strength of soil. A 

practical range between 0.1 and 0.2 can be used unless one is to model nonlinear 

behaviour of soil at very small strains. 

 

B and ψ  control degradation in stiffness of soil due to plastic deformation. Stiffness 

increases with B and decreases withψ . To smoothen transition in stiffness from elastic 

region to yielding, one needs to increase B or decreasesψ . However, the two parameters 

are found to be interrelated. The main factor affecting B is pc0.  For normal ranges of 

∗λ and ∗κ , relationships between B, ψ and pc0  have been explored and can be used for the 

first trial in selection of the two parameters to model a problem. 

 

An alternative hardening function based on the concept by Kavvadas is proposed to 

smoothen transition in stiffness when the stress point crosses the bubble. γ−G curves 

obtained with the function are satisfactory compared to typical laboratory curves.  

 

∗λ and ∗κ affect the behaviour of the Bubble model significantly. Stiffness decreases with 

∗κ  and ∗λ . ∗κ  has the most significant role in affecting γ−G curves. The small strain 

shear modulus of soil degrades faster as ∗κ decreases. 

 

Parameter m should be in the range of 0.7~1.0 to ensure convexity (Rouania and Wood, 

2000). If m =1, behaviour of soil in extension is identical to that in compression. If 1≠m  

it only affects the behaviour of soil in extension. The behaviour of soil in compression is 

not affected by the parameter m.  
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For structured soils, parameter A controls the ratio of contribution between plastic 

volumetric and distortional strain. Use of lower values of A (i.e. less contribution from 

plastic distortional strain) tends to result in higher residual strength. Hence a value of 0.5 

is recommended for parameter A so that volumetric and distortional strains are equally 

accounted for. 

 

Parameter k controls rate of destructuration of structured soil but only affects the 

immediate post-peak response. The larger the parameter, the faster the destructuration. 

However, it has little influence on peak and residual stresses and no effect on the pre-

peak behaviour of soil.  

 

Initial size (r0) of structure surface can be generally interpreted as sensitivity of soil. In 

the study, r0 has been found to be 1.5~2 times of sensitivity index, which only affects 

peak stress. Residual stress is controlled by intrinsic conditions (e.g. pc0 ) and has been 

found to be insensitive to r0. 

 

Anisotropy parameter 0η  has no important effect on stress-strain behaviour of structured 

soil if it is in the range between –0.5 and 0.5. 

 

Initial mean effective stress (p0 or 3σ ′  ) only affects initial elastic modulus of soil in the 

bubble model while strength of the soil is only controlled by initial size of the bounding 

surface, i.e. pc0 for non-structured soil. For normally consolidated non-structured soil, 

2/p 3co σ ′≈  while for over-consolidated non-structured soil, 2/maxppco ≈ . maxp is the 

maximum preconsolidation pressure. It is also found that Msp uco /2≈  for non-

structured soil. It can be inferred from this relationship that for structured soils, 

)./(2 0rMsp uco ≈  ( us is undrained shear strength). 
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Appendix 7.1 Data file for modelling triaxial/oedometer tests 

 
; triaxial/oedometer model(static and dynamic) 

; units: m, kPa, t/m3 

; 

;============== data setup ======================= 

def setup 

;==== given data ====== 

   ;<grid> 

    numXzones       =1 ;2 

    numYzones       =1 ;8 

    Width           =0.1 

    Height          =0.1 ;0.4 

   ;<analysis type> 

    dynamic         =0; 1---dynamic; 0---static 

    axiSym          =1; 1---axis symmetric;0---plane strain 

   ;<Loading type> 

    LoadType        =1; 1-Velocity loading;2-Stress loading 

   ;<Drained condition> 

    Drainage=0 ; 1--drained, 0--undrained 

   ;<History record frequency> 

    HisStepNum      =1 

   ;<insitu stress> 

    sigma3 =600 

    sigma3_=-sigma3 

   ;<dynamic setup> 

    Frequency       =10 

    Cycles          =10 

    StrainAmplitude =1e-2 

    StressAmplitude =-100.0  

    DampingType=0;1-Local damping;2-Rayleigh damping;0-No damping 

    DampingRatio=0.01 

    DampingFrequency=50 

    DydtType=1;1-Auto timestep calculated by FLAC;2-User timestep 

    dt_user         =1.0e-5 

   ;<static setup> 

    MaxStrain =2e-2 

    VelocityStatic=-1e-9;1e-8 

    DeviatorStress=-50 

    StaticPressure=sigma3_+DeviatorStress 

    StaticCyc=0;0--monotonic;>1---cyclic 

    apparent=0; 1-to calculate apparent shear modulus;0-not calculate  

   ;<soil constitutive model> 

  ;==== Derived data ============== 

    figp  = numXzones + 1 

    fjgp  = numYzones + 1 

   ;<dynamic> 

    period          = 1.0/frequency 

    L_damping       =DampingRatio/100.0*pi 

    omega = 2.0 * pi / period 

    VelocityAmplitude = Height * StrainAmplitude * omega 

    Duration = period * Cycles 

   ;<static>  

    HalfStepNum=int(Height*MaxStrain/abs(VelocityStatic)) 

    FullStepNum=HalfStepNum*2 
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    UnloadStepNum=int(FullStepNum/1.0) 

    ReloadStepNum=int(FullStepNum/1.0) 

 end 

setup 

;========================================== 

def analysisType 

 if axiSym =1 then 

  command 

  config axi dyn ;gw  

  end_command 

 end_if 

if axiSym =0 then 

  command 

  config dyn ;gw 

  end_command 

end_if 

if dynamic =0 then 

  command 

   set dyn off 

  end_command 

 end_if 

end 

analysisType 

;======================================== 

grid numXzones, numYzones 

gen 0.0 0.0 0.0,Height Width,Height Width,0.0 

fix y j 1 

fix x I 1 

;fix x ;for oedometer test 

;fix x  figp 

;set flow off 

;water dens 1 bulk 2e6 tens 1e10 

Def insitu ;initial stress condition 

 command    

  m e 

  prop sh 4.0e4 bulk 2.0e5 den 1.7 

  ini sxx sigma3_ syy sigma3_ szz sigma3_ 

  app pressure sigma3 I=figp 

  app pressure sigma3 j=fjgp 

 end_command 

 if dynamic=0 then 

   command 

    solve  

   end_command 

 end_if 

 if dynamic=1.0 then 

   command 

    set dyn off 

    solve  

    set dyn on 

   end_command 

 end_if 

end 

insitu 

his reset 

ini xd 0 yd 0 

ini xv 0 yv 0 
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;============================================ 

call bubble.fis  

   model bubble 

   prop b_kmax 2e5 b_poiss 0.25 b_mod0 9e4 

   prop b_lambda 0.3 b_kappa 0.02 b_M 1.0 b_mm 1.0 

   prop r_bub 0.001 aa 0.5 bb 4000 k 8 psigh 0.5 

   prop nambda0 0.0 r_str0 1.0 pc0 350 

   prop density 1.7 psr 3.0 

def stress_ratio 

  sum = 0.0 

  loop i (1,izones) 

    loop j (1,jzones) 

      sum =sum  + syy(i,j)/sxx(i,j);drained 

    endLoop 

  endLoop 

  stress_ratio= sum/(izones*jzones) 

 end 

def qq 

  sum = 0.0 

  loop i (1,izones) 

    loop j (1,jzones) 

      sum =sum  + syy(i,j)-sxx(i,j) 

    endLoop 

  endLoop 

  qq= sum/(izones*jzones) 

 end 

def effp 

 effp=(sxx+syy+szz)/3.0+pp 

end 

def totp 

 totp=(sxx+syy+szz)/3.0 

end 

 

Def hisrecord 

   if Dynamic = 1.0 then 

     command 

       his dytime 

     end_command 

   end_if 

   command 

    his nstep HisStepNum 

    his qq;1 

    his ydis i 1 j fjgp;2 

    his vertical_s;3 

    his stress_ratio 

    his volumetric_s;4 

    his pv;5 

    his pc;6 

    his r_str;7 

    his $p;8 

    his $q;9 

    ;his effp 

    his s_p;10 

    his s_q;11 

    his b_p;12 

    his b_q;13 

    his q_strain ;14 plastic shear strain 
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    his qt_strain ;15 total shear strain 

    his b_mod;16 

    his $app_g;17 

    his pwp;18 

  end_command 

 end 

hisrecord 

his dytime 

;============================================ 

set ncw=100 

set step 1000000000 

def wave 

 if LoadType=1 

   wave = VelocityAmplitude * cos(omega * dytime) 

 else 

   wave = StressAmplitude * sin(omega * dytime) 

 endif 

end 

def ssolve 

 if dynamic = 1 then 

  if DampingType=1 then 

    command 

     set dy_damp local L_damping 

     end_command 

  end_if 

  if DampingType=2 then 

    command 

     set dy_damp rayl DampingRatio Frequency 

    end_command 

  end_if 

  if LoadType = 1  

     command 

     fix y j fjgp 

     app yvel 1.0 his wave j=fjgp 

     end_command 

  end_if 

  if LoadType =2 then 

    command 

    app nstress -1.0 his wave j fjgp 

    end_command 

   endif 

  if DydtType=2 then 

     command 

     set dydt dt_user 

     end_command 

   endif 

  command 

    solve dytime Duration 

  end_command 

 end_if 

 if dynamic =0 then 

   if LoadType =1 then 

      command 

      fix y j fjgp 

      ini yv VelocityStatic j=fjgp 

      step HalfStepNum 

      end_command 



 223 

    if StaticCyc>0 then 

     loop n (1,staticCyc) 

       VelocityStatic=-VelocityStatic 

       command 

       ini yv VelocityStatic j=fjgp 

        step UnloadStepNum 

        end_command 

       VelocityStatic=-VelocityStatic 

       command 

       ini yv VelocityStatic j=fjgp 

        step ReloadStepNum 

        end_command 

     end_loop 

    end_if 

  end_if 

  if LoadType =2 then 

   command 

    app nstress StaticPressure j fjgp 

    ;app nstress StaticPressure i figp 

    solve 

    ;step 80 

   end_command 

  end_if 

 end_if 

end 

ssolve 

;================================ 

plot his -1 vs -2 hold 

set hisfile B2000 ;name of file to save data 

his write -1 vs -2 skip 100 
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Appendix 7.2 MathCad programme for processing γ−G curves 
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8 APPLICATION OF THE BUBBLE MODEL  
 

 

 

In this chapter the Bubble model is applied to the modeling of vertical vibration of a rigid 

strip foundation. The infinite rigidity of the foundation is modeled using the ‘slave y’ 

feature in FLAC so that the dynamic timestep is not affected by the stiffness of the 

foundation. The foundation is directly subjected to a sinusoidal vertical excitation. Effects 

of nonlinearity of soil on vertical dynamic compliance of the rigid foundation are 

investigated. Several factors are considered, which include initial stress condition in the 

soil, level of excitation and mass ratio of foundation. 

 

 

8.1 Parameters of the Bubble model 

Parameters of the Bubble model have been chosen on the basis of Chapters 5 and 7 and 

are considered to be associated with homogeneous, over-consolidated and non-structured 

soil. The modified function for elastic bulk modulus of soil (Eq.5.22, 0K
κ

p
K +=

∗
) is 

used herein. This gives a virtually constant bulk modulus of soil in the soil-foundation 

model as the bulk modulus is dominated by the initial modulus ( 0K ) while influence of 

change in effective mean pressure (p) is relatively small and negligible under undrained 

condition. The parameters are given in Table 8.1. 

 

Table 8.1 Soil parameters in modeling foundation vibration 

*λ  *κ  M m µ R B ψ  
0r  0η  

0.15 0.02 1.0 1.0 0.25 0.05 1800 0.5 1.0 0.0 
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The parameters A and k do not affect results herein as non-structured soil is considered. 

In addition to the above parameters, other initial conditions are given as follows: 

Unit weight of soil, =ρ 1.8 t/m
3 

Centre of initial bounding surface,pc0 = 210 kPa 

Bulk modulus of soil under zero confining pressure, 0K = 60 MPa 

 

The chosen parameters and initial conditions correspond approximately to soil with an 

undrained shear strength of 100 kPa and an elastic shear modulus of 40 MPa. 

 

To investigate nonlinear dynamic behaviours of soil under relatively small strains, a small 

bubble size is utilized, i.e R = 0.05 (4 times smaller than the normally used). This will 

ensure that plastic deformation takes place in the soil immediately beneath the foundation 

prior to dynamic loading. Therefore, effects of soil nonlinearity on compliance of the 

foundation are effectively reflected in the modeling. Figure 8.1 shows the static stress-

strain behaviours of the soil with the chosen parameters and initial conditions.  
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Figure 8.1 Undrained stress-strain response of soil ( 3σ =100 kPa) 
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8.2 FLAC model 

Due to symmetry in both geometry and loading, the left boundary of the FLAC model is 

set to coincide with the central line of the foundation. The model is 10 m in height and 10 

m in width. 400 square elements with the same size are utilised, i.e. each element is 0.5 m 

by 0.5 m.  

 

Initial stresses are generated in the model by switching on ‘gravity’ and applying an 

additional surcharge of 20 kPa on the surface. The soil is considered to be elastic at this 

stage. Then the elastic soil is changed into nonlinear soil characterized by the Bubble 

model and static vertical loads are applied incrementally to the foundation. Figure 8.2 

shows the relationship between settlement and bearing pressure of the foundation. The 

ultimate bearing capacity of the foundation is considered to be approximately between 

400 kPa and 450 kPa.  
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Figure 8.2 Pressure-settlement curve 
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Static loading prior to dynamic loading is applied in such a way that static bearing 

pressure of the foundation corresponds to a particular factor of safety with respect to an 

assumed ultimate bearing capacity of 450 kPa. When the dynamic loading is applied to 

the foundation the right and lower boundaries are changed to quiet boundaries. The FLAC 

model in the dynamic loading stage is shown as Figure 8.3. For clarity the static pressure 

on the top boundary is not shown in the figure. 

 

The soil-foundation model has a natural frequency of about 6 Hz as shown in Figure 8.4, 

which has been obtained by letting the model to vibrate under gravity. 

 

  FLAC (Version 4.00)        

LEGEND

   17-Apr-05   1:46

  step     14491

 -1.667E+00 <x<  1.167E+01

 -1.667E+00 <y<  1.167E+01

Grid plot

0  2E  0      

 0.000

 0.200

 0.400

 0.600

 0.800

 1.000

(*10^1)

 0.000  0.200  0.400  0.600  0.800  1.000

(*10^1)

JOB TITLE :                                                                                 

                                 

                                 

Quiet boundary

Q
ui

et
 b

o
un

da
ry

F
ix

 x
  

bo
un

da
ry

Dynamic loading  FLAC (Version 4.00)        

LEGEND

   17-Apr-05   1:46

  step     14491

 -1.667E+00 <x<  1.167E+01

 -1.667E+00 <y<  1.167E+01

Grid plot

0  2E  0      

 0.000

 0.200

 0.400

 0.600

 0.800

 1.000

(*10^1)

 0.000  0.200  0.400  0.600  0.800  1.000

(*10^1)

JOB TITLE :                                                                                 

                                 

                                 

Quiet boundary

Q
ui

et
 b

o
un

da
ry

F
ix

 x
  

bo
un

da
ry

Dynamic loading  FLAC (Version 4.00)        

LEGEND

   17-Apr-05   1:46

  step     14491

 -1.667E+00 <x<  1.167E+01

 -1.667E+00 <y<  1.167E+01

Grid plot

0  2E  0      

 0.000

 0.200

 0.400

 0.600

 0.800

 1.000

(*10^1)

 0.000  0.200  0.400  0.600  0.800  1.000

(*10^1)

JOB TITLE :                                                                                 

                                 

                                 

Quiet boundary

Q
ui

et
 b

o
un

da
ry

F
ix

 x
  

bo
un

da
ry

Dynamic loading

 
 

Figure 8.3 FLAC model in dynamic loading stage 
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Figure 8.4 Vibration of the soil-foundation model under gravity 

(Displacement is in metre and dynamic time in second) 

 

8.3 Typical response  

The following dynamic responses of the rigid foundation have been obtained with the 

initial stress conditions corresponding to a static factor of safety of 3. The foundation is 

massless. 

 

Figure 8.5 shows that permanent displacement of the foundation increases progressively 

until a steady state response is reached. This is typical of a machine foundation. 
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Figure 8.5 Dynamic displacements (24 Hz, 5 kPa stress amplitude, 100 cycles) 
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Figure 8.6 Dynamic displacements (24 Hz, 20 kPa stress amplitude, 48 cycles) 
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Figure 8.7 Dynamic displacements (24 Hz, 100 kPa stress amplitude, 5 cycles) 

 
When the dynamic stress level increases, large plastic deformation first occurs around the 

corner of the foundation after some cycles of vibration and develops cyclically to other 

areas in the soil until failure of the foundation occurs (See discussions in Section 9.2). 

Figure 8.6 shows that excessive displacement occurs at around 48 cycles when the stress 

amplitude is increased to 20 kPa. It has been found that the larger the stress amplitude is, 

the earlier the excessive displacement occurs. Figure 8.7 presents the response when the 

stress amplitude is 100 kPa.  

 

To investigate effects of nonlinearity of soil on dynamic compliance of the rigid 

foundation, a minimum of 10 cycles of vibration is considered to be necessary. To ensure 

that the excessive displacement will not occur within 10 cycles of vibration when the 

stress amplitude is large, an upper bound of plastic strain rate is specified for plastic 

correction, which is represented by a plastic strain ratio (psr), i.e. a ratio of maximum 

plastic strain rate to total strain rate. The influence on displacement response has been 

assessed and shown in Figure 8.8 where the stress amplitude is 60 kPa and the plastic 
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strain ratio (psr) ranges from 0.7 to 1.0. Both permanent displacement and amplitude of 

displacement are affected. The percentage of reduction in the average displacement 

amplitude due to the use of ‘psr’is calculated and given in Table 8.2. 

 

Table 8.2 Average amplitude of displacement in 10 cycles 

Ratio of maximum 
plastic strain rate to 
total strain rate 
(denoted by ‘psr’ ) 

1.0 0.9 0.8 0.7 

Average amplitude of 
displacement in 10 
cycles (mm) 

2.032 1.574 1.433 1.252 

Percentage of reduction 
in displacement 
amplitude w.r.t. psr = 1 
 

- 25% 30% 40% 
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Figure 8.8 Influence of plastic strain ratio on displacement response (24 Hz, 60 kPa 

stress amplitude, 10 cycles) 
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As an approximation, psr = 0.9 is used in the following analyses for a few cases when 

stress amplitudes are large and the average displacement amplitudes are amended 

according to the percentages shown in the above table. Indication will be given when a 

psr smaller than 1.0 is utilised. 

 

The above responses are associated with forced vibration under a continuous sinusoidal 

loading. Figure 8.9 shows response of the foundation to a half cycle of sinusoidal loading. 

No additional damping is applied. It can be seen that the transient vibration decays 

quickly due to hysteretic damping. 
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Figure 8.9 Transient vibration (0.5 cycle, 24 Hz, 60 kPa, no additional damping) 

 

 

8.4 Vertical compliance of the rigid foundation 

To investigate influence of soil nonlinearity on vertical compliance (i.e. displacement) of 

the rigid foundation, average amplitudes of displacement in 10 cycles of vibration are 

calculated for variable conditions which include initial stress (i.e. factor of safety), 

excitation level (i.e. stress amplitude and frequency) and mass ratio of foundation. 

 

Dimensionless frequency parameter, a0, is introduced as it is used traditionally and is 

given as follows: 



 234 

 

sv

fbπ
a

2
0 =                                                                                               (8.1) 

 

Where f is the excitation frequency in cycles per second, b is the half width of the 

foundation in meter and v s  is shear wave velocity of soil, which is approximately 150 

m/sec for the given soil parameters. 

 

8.4.1 Comparison between nonlinear and elastic models 

Average amplitudes of displacement in 10 cycles are plotted against the dimensionless 

frequency, a0. Figure 8.10 shows a comparison between the Bubble model and the elastic 

model, where cyclic stress amplitude is 20 kPa. The initial stress condition corresponds to 

a static factor of safety of 3. For the Bubble model 0.5% Rayleigh damping is applied and 

for the elastic model the damping ratio is 5%. Amplitudes of displacement are normalized 

with respect to the static displacement under a pressure of 20 kPa (see Figure 8.11), 

where the magnification ratio is the ratio of dynamic displacement amplitude to static 

displacement amplitude. It can be seen that influence of nonlinearity is important in the 

low frequency range, especially around the natural frequency of the foundation while this 

influence is secondary in the high frequency range. The influence can also be seen from 

the resonant responses. Multiple resonant responses can be obtained with the Bubble 

model while the elastic model shows that the displacement amplitude decreases 

monotonically with the exciting frequency. 
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Figure 8.10 Amplitude of displacement (Stress amplitude = 20 kPa) 
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Figure 8.11 Normalised amplitude of displacement (Stress amplitude = 20 kPa) 

 

 

8.4.2 Effects of dynamic stress level 

Calculations have also been carried out to investigate the influence of nonlinear 

behaviour of soil under different levels of dynamic stress. The results are presented in 

Figure 8.12, which indicate that the influence of soil nonlinearity increases with the stress 

amplitude. 

 

Effects of stress amplitude on displacement of foundation have been further investigated 

at two specific frequencies, i.e. a0 = 0.5 and 2.0 respectively. For stress amplitudes 

greater than 60 kPa, a plastic strain ratio (psr) of 0.9 is applied in nonlinear analyses and 

accordingly the results are increased by 25% (see Table 8.2 in Section 8.3). These results 

are shown in Figures 8.13 and 14. It can be seen that nonlinearity of soil corresponds to a 

significant increase in the amplitude of displacement at certain stress levels. At low levels 

of dynamic stress, there is insignificant difference between nonlinear and elastic models 

and this difference becomes negligible if the excitation frequency is high. 
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Figure 8.12 Influence of dynamic stress 
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Figure 8.13 Influence of dynamic stress (a0 = 0.5) 
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Figure 8.14 Influence of dynamic stress (a0 = 2) 

 



 238 

 

8.4.3 Effects of initial static stress (i.e. factor of safety) 

Previous analyses are associated with an initial static stress condition having a factor of 

safety of 3. Higher levels of initial static stresses, i.e. lower factors of safety, are expected 

to induce more plastic deformation during vibration. In this section, the static factor of 

safety is varied from 1.5 to 9 to investigate its influence on the dynamic displacement of 

the rigid foundation.  

 

Figure 8.15 shows that there is little change in the amplitude of displacement if the factor 

of safety is larger than 4 but it increases sharply when the factor of safety is lower than 3. 

The results have been obtained with a dynamic stress amplitude of 20 kPa and a 

dimensionless frequency of 0.5.  

 

Figure 8.16 shows the influence of factor of safety at different levels of frequency for the 

same stress amplitude. As expected, the influence is amplified at resonant frequencies 

and is minor at high frequencies. 

 

Figure 8.17 shows the time history of displacement. It indicates that permanent 

displacement is also affected by the factor of safety, i.e. the lower the factor of safety the 

larger the permanent displacement.  
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Figure 8.15 Influence of factor of safety (a0 = 0.5, stress amplitude = 20 kPa) 
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Figure 8.16 Influence of factor of safety (stress amplitude = 20 kPa) 
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Figure 8.17 Time history of displacement (a0 = 0.5, stress amplitude = 20kPa) 

 

8.4.4 Effects of mass ratio 

A massless foundation has been considered in the previous analyses. Influence of 

foundation mass is investigated in this section. For a strip foundation the mass ratio is 

given by 

2bρ

m
mr =                                                                                               (8.2) 

 
Where m is the weight of foundation per meter length (kN/m); ρ  is the unit weight of 

soil (kN/m3); b is the half width of the foundation. It has been found that the mass ratio 

has a significant influence on the amplitude of displacement if the ratio is greater than 1.0 

(see Figure 8.18). However, unlike the results obtained from a damped single-degree-of-

freedom system (Richart & Woods, 1970), nonlinear analyses show that mass ratio has 

little influence on resonant frequencies of the vibrating system. This is consistent with the 

findings by Gazetas & Roesset (1979). Using a semi-analytical procedure in their study 

on a strip foundation on layered halfspace, they found that the resonant frequency is 
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almost independent of the mass ratio of the foundation when the mass ratio is less than 2. 

Further study is required in this area. 
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Figure 8.18 Influence of mass ratio (stress amplitude = 20 kPa, FOS = 3) 

 

8.5 Compliance and impedance functions 

Figure 8.19 shows comparisons of the real and imaginary parts of the compliance 

functions between FLAC modelling and the semi-analytical solution (Gazetas & Roesset, 

1979). The FLAC results have been obtained using the method described in FLAC 

manuals for a machine foundation (see Figures 3.58 and 3.60, Dynamic Analysis, FLAC 

4.0).  If a0 is greater than 0.5, there is a good agreement. When a0 is below 0.5, however, 

there is a significant difference in imaginary part (i.e. f2,,v). Figure 8.20 shows comparison 

of the real and imaginary parts of the impedance functions between the two methods. It 

can be seen that there is a general agreement in the real part of the impedance function, 

i.e. )ff/(f 2
v,2

2
v,1v,1 + , in the frequency range of 0.5 to 1.5. However the difference is 

significant beyond this frequency range. There is a good agreement in the imaginary part 

of the impedance function, i.e. )ff/(f 2
v,2

2
v,1v,2 + , for the frequency range of 0.25 to 2.5. 
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Figure 8.19 Comparison of compliance functions of a rigid foundation between FLAC 

modeling and the semi-analytical solution by Gazetas & Roesset, 1979 
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Figure 8.20 Comparison of impedance functions of a rigid foundation between FLAC 

modeling and the semi-analytical solution by Gazetas & Roesset, 1979 
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8.6 Summary 

The Bubble model has been applied to numerical modeling of a 2D soil-foundation 

boundary problem to investigate influence of soil nonlinearity on dynamic compliance of 

a rigid strip foundation subject to vertical vibration.  

 

Static analyses were carried out prior to dynamic modeling, which indicated that the  

ultimate bearing capacity of a 4 m wide strip shallow foundation is about 450 kPa for 

homogeneous soil with an undrained shear strength of 100 kPa. 

 

Typical dynamic responses have been obtained with the model, which shows that a 

steady state response is expected to be obtained if excitation stress is small while 

excessive displacement is expected to occur within limited cycles when the dynamic 

stress is large.  

 

Amplitude of displacement is averaged over 10 cycles to assess dynamic compliance of 

the foundation. Comparative study indicates that there is no significant difference in the 

dynamic compliance between nonlinear and elastic soil at low stress levels. For a given 

excitation frequency, amplitude of displacement increases linearly with dynamic stress 

for elastic soil while it increases sharply at a certain stress level for nonlinear soil. For a 

given dynamic stress, amplitude of displacement decreases monotonically with frequency 

for elastic soil while it peaks at multiple frequencies for nonlinear soil. Significant 

differences between nonlinear and elastic results occur at the fundamental natural 

frequency of the vibratory system. 

 

Dynamic has been found to be affected by initial stress, i.e static factor of safety. 

Amplitude of displacement decreases with factor of safety but becomes virtually constant 

if the factor of safety is greater than a certain level. 

 

Mass ratio of the foundation has been found to affect the amplitude of displacement 

significantly. However resonant frequencies are not affected by the mass ratio. This is 

different from the traditional single-degree-of-freedom solution. 



 245 

Appendix 8.1 FLAC  data files for vertical vibration of rigid foundations 

 
; Initial stress  

; File name:v1.dat 

Config dyn  

Def setup 

  Width   =10.0 

  Height  =10.0  

  NumXzones =20 

  NumYzones =20 

  ;derived data 

  figp=numXzones+1 

  fjgp=numYzones+1 

end 

setup 

Grid numXzones, numYzones 

Gen 0.0 0.0 0.0 Height, Width, height, width, 0.0 

m e 

Prop den 1.8 shear 4e4 bulk 6.0e4 

;set large 

Fix y j 1 

Fix x I 1 

Fix x I figp 

Set grav 10 

Set dyn off 

app pressure 20 j fjgp 

Solve  

pause 

Save v1.sav 

New 

 

;Rigid footing subject to vertical static loading 

;File name:v2.dat 

rest v1.sav 

ini xd 0.0 yd 0.0 

ini xv 0 yv 0 

def footing 

 drainage=1.0;1.0 for drained,0 for undrained 

 B = 4.0 ;total width of footing 

 ;derived data 

 ZoneXsize=width/numXzones 

 Finum=B/2.0/zoneXsize 

 Fi=finum+1 

 Fjgp_1=fjgp-1 

 Fj=numYzones-finum 

 End 

Footing 

 

;set dyn on 

call bubble.fis  

model bubble 

prop b_kmax 2.0e5 b_poiss 0.25 b_mod0 6e4 

prop b_lambda 0.15 b_kappa 0.02 b_M 1.0 b_mm 1.0 

prop r_bub 0.05 aa 0.5 bb 1800 k 4 psigh 0.5 

prop nambda0 0.0 r_str0 1.0 pc0 210.0 

prop density 1.8 psr 1.0 
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def beamsetup 

  loop I (1, finum) 

    j=I+1 

    command 

     struc beam beg grid i fjgp end grid j fjgp 

    end_command 

  end_loop 

end 

beamsetup 

stru prop 1 e=1 I=1 a=0.00001 den=2.4 ;massless 

def ggg 

  loop nn(1,fi) 

    command 

     struct node nn fix x r 

    end_command 

    nn1=nn-1 

    if nn>1 then 

     command 

      struct node nn slave y nn1 

     end_command 

    end_if 

  end_loop 

end 

ggg 

His nstep 20 

His yd I 1 j fjgp 

Set ncw=1 

;set gravity 15;check natural frequency 

;set dyn on 

;solve dytime 0.7 

App pressure 50 I 1,fi j fjgp 

solve 

save v2_50.sav 

App pressure 100 I 1,fi j fjgp 

solve 

save v2_100.sav 

App pressure 100 I 1,fi j fjgp 

solve 

save v2_150.sav 

step 3000 

save v2_150_FOS3.sav 

new 

 

; Rigid footing subject to vertical vibration 

;File name:v3.dat 

rest v2_150_FOS3.sav 

ini xd 0.0 yd 0.0 

ini xv 0 yv 0 

def dynamicData 

  Drainage=0.0 ; undrained during dynamic loading 

  a0=0.5 

  Frequency =a0*150.6/4.0/pi 

  StressAmplitude=20.0 

  Cycles=10 

  HisStep=20 

  ;L_damping=5/100.0*pi 
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  Onecycle=1.0/frequency  

  Endcycle=1000*onecycle 

  Duration=cycles*onecycle 

  Count=0.0; for compliance function computation 

  Sh_mod=4.0e4 

  Period=1.0/frequency 

End 

DynamicData 

stru prop 1 e=1 I=1 a=0.00001 den=2.4;mass ratio=0.0 

;stru prop 1 e=1 I=1 a=0.375 den=2.4 ;mass ratio=0.5 

;stru prop 1 e=1 I=1 a=0.75 den=2.4 ;mass ratio=1.0 

;stru prop 1 e=1 I=1 a=1.5 den=2.4 ;mass ratio=2.0 

set dyn on 

def wave 

  if dytime>endcycle 

  wave=0.0 

 else 

  Wave = stressAmplitude*sin(2*pi*frequency*dytime) 

 endif 

End 

app xquiet yquiet i figp  

app xquiet yquiet j 1 

app nstress 1.0 his wave I 1,fi j fjgp 

def dummy; for computing average amplitude, real/imaginary  

  count=count+1.0 

end 

;set large 

his nstep HisStep 

his reset 

his dytime 

His yd I 1 j fjgp 

his dummy 

his wave 

Set ncw=1 

Set step=9000000 

;set dy_damp Local L_damping  

set dy_damp=rayl 0.005 frequency ;mass 

solve dytime Duration 

save v3.sav 

plot his 2 vs 1 hold 

call com.dat ;compute compliance function 

;Compute static displacement under 20kPa 

;File name:v2_20.dat 

;rest v2_150_FOS3.sav 

ini xd 0.0 yd 0.0 

ini xv 0 yv 0 

His nstep 20 

His yd I 1 j fjgp 

 

App pressure 170 I 1,fi j fjgp 

solve 

step 4000 

print yd 
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9 CONCLUSIONS AND DISCUSSIONS 
 

 

 

This thesis presents a study on implementation of nonlinear soil models in FLAC, the 

Bubble model and its application in nonlinear dynamic analysis with FLAC. Section 9.1 

summaries the main results and conclusions. Discussions on the limitations of the Bubble 

model are given in Section 9.2. 

 

 

9.1 Main results and conclusions 

9.1.1 Implementation of soil constitutive models in FLAC 

Some important aspects related to implementation of constitutive models in FLAC have 

been explored. Understanding them is critical to implementation of a soil model.  

� In FLAC each quadrilateral element comprises two overlaid sets of triangular sub-

elements. A user-defined constitutive model (UDM) is called four times per element 

(once for each sub-element) each timestep. Whether stress or strain is constant or not 

over the four sub-elements depends on boundary conditions and shape of the element. 

Stress and strain may need to be averaged over the four sub-elements for more 

accurate results. If this is not specified in a user defined model (UDM), however, 

stress and strain of an element are only associated with the last-called sub-element. 

 

� If pore water pressure is generated by the UDM, stresses must be converted into 

effective stresses before the yield function is called in the UDM. If the pore water 

pressure is generated by FLAC (e.g. in FLAC’s GW mode analysis), stresses are 

automatically converted to effective stresses. 
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9.1.2  Numerical distortion in nonlinear dynamic analysis 

Efforts have been made to overcome a specific type of numerical distortion which only 

occurs in nonlinear dynamic analysis, not in static incrementally nonlinear or linear 

dynamic analysis. 

�  The study indicates that severe numerical distortion may occur in dynamic analysis if 

a nonlinear constitutive soil model is implemented using the ‘apparent modulus’ 

approach. In this approach, an apparent tangent modulus is used to account for 

nonlinear stress-strain behaviour of soil and there is a sudden change in the apparent 

modulus when a strain reversal takes place.  

 

� It has been found that reducing the timestep does not help to solve the problem of 

numerical distortion. However the numerical distortion can be minimised by applying 

additional mechanical damping using the in built mechanisms in FLAC. 

 

� Alternatively, the ‘plastic correction’ approach has been found to be a solution to the 

problem. Satisfactory dynamic performance of nonlinear soil models implemented 

with this approach can be obtained without applying any additional damping. This has 

been verified using different nonlinear soil models (e.g. Bubble, Bilinear, Cam-clay 

models) 

 

 

9.1.3 The Bubble model 

The Bubble model proposed by Rouania & Wood (2000) has been studied and 

implemented in FLAC with the ‘plastic correction’ approach. 

� An alternative form to the plastic modulus function of the model has been proposed, 

which is considered to better incorporate size ratio effects of the yield surface.  

� A multiplier to the plastic modulus function is also proposed to smoothen transition in 

stiffness from elastic region to yielding, which is based on the concept of the 

hardening function proposed by Kavvadas (2000).  
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� The non-intersection translation rule of the yield surface and monotonic 

destructuration rule of the structure surface have been verified. 

 

� The Bubble model can be reduced to be equivalent to the modified Cam-clay model. 

Comparison of the Bubble model with the modified Cam-clay model built in FLAC 

has indicated that virtually identical results can be obtained if equivalent parameters 

are chosen for the two models. 

 

� There is a general agreement between the Bubble model and the published 

experimental data (Lee and Seed 1967) in modelling the stress-strain behaviours of 

loose sand. However, the agreement is poor in lower range of effective confining 

stress. The Bubble model predicts less dilatancy than the measured in laboratory. As a 

result, the predicted small strain behaviours are less stiff than the measured.  

 

� Performance of the Bubble model in dynamic analysis has been found satisfactory in 

terms of the numerical stability. A steady state response can be obtained and 

maintained for at least 200 cycles without using any additional damping to cope with 

numerical instability in modelling a triaxial dynamic test. The drained cyclic 

behaviours of sands (e.g. cyclic densification and dilation) can be satisfactorily 

predicted with the model. However, the prediction for undrained behaviours of soil is 

unsatisfactory. The problem lies in the unrealistic simulation of cyclic responses 

during the first few cycles although the overall behaviours are consistent with 

laboratory observations.  

 

 

9.1.4 Parameters of the Bubble model 

The Bubble model requires ten parameters and some initial conditions. Five of the 

parameters are similar to those of the Cam-clay model, i.e. mMκλ ,,, ** and µ , while the 

other five are non-standard parameters, i.e. AkψBR ,,,, . The initial conditions include 

30000 ,,, σpηr c
. 
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� The Bubble model is most affected by the plastic modulus parameters B,ψ  and the 

Cam-clay type parameters ∗∗ κλ , . The Poisson’s ratio generally has less important role 

in the Bubble model. 

 

� Parameters B and ψ  control degradation in stiffness of soil. Stiffness increases with B 

and decreases withψ . To smooth the transition in stiffness from elastic to elasto-

plastic behaviour, one needs to increase B or decreases ψ . However, the two 

parameters are found to be interrelated. The main factor affecting B is pc0. For normal 

ranges of ∗λ and ∗κ , relationships between B, ψ and pc0 have been explored and can be 

used for the first trial in selection of the two parameters to model a problem. 

 

� Parameter R (size ratio of the yield surface) affects stiffness at small strain levels but 

has no effects on the shear strength of soil. An effective range between 0.1 and 0.2 

can be used unless one is to model nonlinear behaviour of soil at very small strain 

levels. 

 

� Stiffness decreases with ∗κ and ∗λ . ∗κ  has the most significant role in affecting 

γ−G curves. Shear modulus degrades more quickly with shear strain as ∗κ decreases. 

 

� Parameter m should be in the range of 0.7~1.0 to ensure convexity (Rouania and 

Wood, 2000). If m =1, behaviour of the Bubble model in extension is identical to that 

in compression. If 1≠m , it only affects the model in extension. The behaviour of the 

model in compression is not affected by the parameter m.  

 

� For structured soils, parameter A controls the ratio of contribution between plastic 

volumetric and distortional strains. Use of lower values for A (i.e. less contribution 

from plastic distortional strain) tends to result in larger residual strength. A value of 

0.5 (i.e. volumetric and distortional strains are equally accounted for) is 

recommended for the parameter A in the first trial of a modelling.  
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� Parameter k controls rate of destructuration of structured soil but has little influence 

on peak and residual stresses.  

 

� Initial size (r0) of structure surface can be generally interpreted as sensitivity of soil. 

In the study, r0 has been found to be 1.5~2 times of sensitivity index, which only 

affects peak stress. Residual stress is controlled by intrinsic conditions (e.g. pc0 ) and 

has been found to be insensitive to r0. 

 

� Anisotropy parameter 0η  has no important effects on stress-strain behaviours of 

structured soil if it is in the range between –0.5 and 0.5. 

 

 

9.1.5 Application of the Bubble model 

The Bubble model has been used in modeling with FLAC of the vertical vibration of rigid 

strip foundations to investigate influence of soil nonlinearity on dynamic compliance of 

the foundations.  

 

� For an elastic soil-foundation system, a steady state dynamic response can always be 

reached regardless of excitation levels. However, for a foundation rested on a highly 

nonlinear soil, the steady state response can only be obtained when the excitation 

level is low. Excessive displacement of the foundation is expected to occur within 

limited cycles if the dynamic stress is large. Due to the limitation of the Bubble model 

that it does not allow tensile mean principal stress, the steady state response can not 

be demonstrated numerically under high levels of excitation (see the discussion in 

Section 9.2). 

 

� There is no significant difference in the dynamic compliance between nonlinear and 

elastic soil if the excitation stress level is low.  
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� For a given excitation frequency, amplitude of displacement increases linearly with 

dynamic stress for elastic soil while it increases sharply at a certain magnitude of 

stress for nonlinear soil.  

 

� For a given dynamic stress, amplitude of displacement decreases monotonically with 

frequency for elastic soil while it peaks at multiple frequencies for nonlinear soil. 

Significant differences between nonlinear and elastic results occur at the fundamental 

natural frequency of the vibratory system. 

 

� Dynamic compliance has been found to be affected by initial stress, i.e static factor of 

safety. Amplitude of displacement decreases with factor of safety but becomes 

virtually constant if the factor of safety is greater than a certain level. 

 

� Mass ratio of the foundation has been found to affect the amplitude of displacement 

significantly. However resonant frequencies are not affected by the mass ratio. This is 

different from the results of the traditional single-degree-of-freedom solution. 

 

 

9.2 Discussion 

The Bubble model can not sustain tension, i.e. the effective mean stress must be always 

compressive (p΄<0) in an analysis. If a positive mean stress occurs even in a single 

element, the model will stop functioning and as a result the analysis will not be able to 

continue. This is the same as in the modified Cam-clay model. 

 

It is easy to prevent a positive mean stress from occurring in modeling a triaxial dynamic 

test. An all-round static confining pressure can be applied to the numerical model to 

counteract dynamic pore water pressure and tensile stress induced by dynamic loading so 

that the effective mean stress remains negative.   

 

However, positive mean stress becomes an issue in modeling of the vertical vibration of 

shallow foundations. It has been found that a positive mean stress normally occurs in 
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elements immediately adjacent to the two sides of a shallow strip foundation, especially 

when the dynamic stress is large. This can be explained using the following equation: 

 

∑ ++′=′ )u∆p∆(pp 0                                                                           (9.1) 

 

Where p′  is the effective mean stress (negative for compressive and positive for 

tension). 0p′  is the initial effective mean stress corresponding to overburden pressure 

(always negative). p∆ is the rate of total mean stress induced by dynamic loading, which 

is either positive or negative depending on the direction of the dynamic loading. u∆ is the 

rate of pore water pressure, which is related to volumetric plastic strain and is always 

positive or zero unless dilative behaviours occur.  

 

As 0p′  is small in elements near the ground surface while u∆ is significantly larger in 

elements immediately adjacent to the two sides of the foundation than other elements, p’ 

becomes zero or positive after some cycles of vibration due to build-up of the pore water 

pressure. The higher the stress or frequency, the earlier the positive mean stress occurs. It 

can be seen from Eq. 9.1 that even under drained condition, positive mean stress may still 

occur.  

 

Similarly to the modeling of a dynamic triaxial test, an overburden surcharge can be 

applied to the foundation model (e.g. for a deep foundation). This will delay or prevent 

occurrence of the positive mean stress. However, unlike triaxial modeling where plastic 

strain is virtually uniform in all the elements, plastic strain develops unevenly in a 

foundation model (i.e. significantly higher in elements adjacent to corners of the 

foundation). Although the effective mean stress may be maintained negative by applying 

an overburden surcharge, excessive plastic deformation or even plastic flow may be 

generated in those elements and this consequently results in severe damage to the 

geometry of the elements (See Figure 9.1). Even if this occurs to one single element, 

FLAC stepping will stop automatically.  
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More work is needed to understand the problems described above although it seems quite 

clear that they may be common when a highly nonlinear plasticity soil constitutive is 

used. The Bubble model has a small yield surface. The smaller the yield surface, the more 

nonlinear the behaviours of the model. In Chapter 8, the size ratio of the yield surface is 

only 0.05 (4 times smaller than that used in the available published references). Hence 

high nonlinearity is considered to have significant effects on the problem. It has been 

found that if a larger size ratio is used for the yield surface, a larger dynamic stress can be 

applied to the foundation without inducing the above problem. In Chapter 8, the plastic 

strain is reduced by a factor (psr) of 0.7~0.9 to ensure 10 cycles of vibration are achieved 

for cases when the dynamic stress is large. 

 

 

Figure 9.1 Badly deformed elements 

 



 256 

9.3 Suggestions for further research 

The following areas are recommended for further research: 

� Determination of parameters 

Parameters (A, B, k, R, r0,ψ ) can not be obtained directly by laboratory testing. Their 

correlations with well-defined and measurable parameters need to be investigated by 

numerical simulations of laboratory testing results. 

� Model tests 

The Bubble model has been used by other researchers to simulate different types of clay. 

The current study has also found that the model can capture general behaviors of natural 

soils. However, much more numerical simulations of experimental results need to be 

carried out in order to better understand the capabilities and limitations of the Bubble 

model. The outcome of further verifications can then be used to identify rules and to 

define scope for application of the model in the engineering practice and research studies. 

� Implementation of the Bubble model for non-plane strain problems 

The Bubble model has been implemented for 2D plane strain problems and the FISH 

code of the model can be readily extended for use in general 3D problems without 

changing its framework and procedure set out in the thesis. 
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