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ABSTRACT

Methodologies of implementing nonlinear constitutive models of soil in FLAC are
studied in order to reduce numerical distortion, which has been found to occur in
nonlinear dynamic analysis when a nonlinear soil model is implemented using an
‘apparent modulus’ approach. Analyses undertaken using several simple nonlinear soil
models indicate that use of ‘plastic correction’ approach can eliminate or minimize the
problem. This approach is therefore adopted in the thesis to implement in FLAC a
bounding surface bubble soil model, i.e. the Bubble model. Satisfactory performance of
the Bubble model has been obtained in dynamic analysis without using any of the

additional mechanical damping given in FLAC.

An analytical study on the Bubble model is carried out with FLAC. On the basis of the
study, the hardening function is modified to better incorporate size ratio effects of the
yield surface and is explored to eliminate abrupt transition in stiffness from elastic region
to yielding. Pore water pressure is formulated with the assumption that the pore water
pressure is generated as a response to the constant volume constraint which prevents the
tendency for volume change when plastic volumetric strain takes place. The formulation
is added to the Bubble model so that pore water pressure can be generated automatically
by the model for fully saturated and undrained soil. FLAC analyses indicate that the

Bubble model is generally in good agreement with published experimental data.

The parameters and initial conditions associated with the Bubble model are studied with
FLAC analyses in triaxial stress space to investigate their influence on the model and to
investigate their effective ranges. Both large and small strain behaviors of the model are

explored in the parametric study.

Finally, the Bubble model is applied in the modeling of vertical vibration of rigid strip
foundations. The influence of soil nonlinearity on vertical compliance of rigid
foundations is investigated. Some major factors are considered, which include initial

stress level in soil, level of excitation and mass ratio of foundation.
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1 INTRODUCTION

1.1 General background

A study on numerical dynamic modeling with FLAC was carried out by the writer in
2001 for the purpose of investigating the influence of nonlinear behaviors of soil on the
dynamic response of rigid shallow foundations. A simple nonlinear constitutive
relationship for the cyclic response of lightly overconsolidated soil was implemented in
FLAC for the study, which was simplified from the original Pender model (Pender, 1978)
for a particular undrained case where effective mean principal pressure during triaxial
compression is constant. Further study on the topic was undertaken by Pender and Ni in

2004.

The previous work had indicated that a numerical distortion (instability) problem occurs
in nonlinear dynamic analysis when a nonlinear soil model is implemented in FLAC with
‘apparent modulus’ approach. Based on some initial study on Mohr-Coulomb model and
the modified Cam-clay model, it was proposed that use of ‘plastic correction’ approach
might be a solution to the problem. To verify this, further study needed to be carried out
using more sophisticated nonlinear work-hardening soil models. This was the initial drive

for the current study.

1.2  Objectives

The main objectives are:

* To explore methodologies of implementing nonlinear constitutive models of soil in
FLAC to minimize numerical instability in dynamic analysis;

* To undertake a study on a bounding surface bubble soil model, i.e. the Bubble model,
and implement the model in FLAC; and

* To investigate influence of nonlinearity of soil on dynamic response of rigid

foundations using the Bubble model.



1.3  Scope of work

Methodologies of implementing nonlinear soil models in FLAC

A user can implement a constitutive model with the programming language FISH
embedded in FLAC. A user-defined model (UDM) can be used in the same way as a
built-in model. However, some aspects with regard to implementing a constitutive model
are not explained explicitly in FLAC manuals. Much practice with simple models is
required to thoroughly understand FLAC’s methodologies prior to implementing a

sophisticated constitutive model.

On the other hand, numerical distortion is another issue to deal with in nonlinear dynamic
analysis. Previous work has indicated that a special kind of numerical distortion can be
introduced into a nonlinear dynamic analysis with FLAC (Ni, 2001). Although applying
additional mechanical damping can minimize the problem, a better solution needs to be

found so that results of nonlinear dynamic analysis can be more realistic.

The Bubble model

The Bubble model was first proposed by Al Tabbaa & Wood in 1989 as an extension to
the modified Cam-clay model and was formulated within the kinematic hardening
framework similar to the two-surface model proposed by Mréz et al. (1979). The model
has been further developed for modeling of structured soils (Wood, 1995; Rouainia &
Wood, 2000).

Although the framework of the model has been well established and the model can
demonstrate essential phenomena of pre-failure behaviors of natural clays, the modulus

functions of the model remain to be further studied.

Programming of the Bubble model
The ‘plastic correction’ approach is the recommended method for implementing the
Bubble model. The key criterion is that satisfactory dynamic analysis should be achieved

without using any additional damping.



Parametric study

The Bubble model has ten parameters. Some of them are non-standard parameters. The
study is aimed to gain some general knowledge about the importance of each parameter,
typical values of the non-standard parameters and qualitative inter-relationships between

the parameters.

Vertical vibration of rigid foundations
As an application of the Bubble model, the study investigates the influence of

nonlinearity of soil on dynamic response of rigid shallow foundations.

14 Layout of the thesis

Chapter 2 presents a literature review which covers ‘Constitutive models of soil’,
‘Nonlinear dynamic analysis with FLAC’ and ‘Vertical vibration of rigid foundations’.
The Bubble model and several other most relevant soil constitutive models are reviewed

and the main differences between them are discussed.

In Chapter 3, some key fundamentals are discussed with regards to the incremental
programming in FLAC as they are important to a successful implementation of a soil

constitutive model.

In Chapter 4, strategies of implementing nonlinear constitutive models are explored in
order to reduce numerical distortion. Two approaches, i.e. ‘apparent modulus’ approach
and ‘plastic correction’ approach, are discussed. A hyperbolic model in FLAC, which is
implemented with the ‘apparent modulus’ approach, is modified to demonstrate the
phenomenon of numerical distortion in nonlinear dynamic analysis. A bilinear model is
proposed and is implemented with the concept of the ‘plastic correction’ approach to

show the capability of the method to cope with numerical instability in dynamic analysis.



Chapter 5 presents the Bubble model in detail. Modifications to the model are proposed
and discussed. Some key aspects of the model are also discussed. The implementation of

the Bubble model is explained and the FISH code is appended to the chapter.

In Chapter 6 analyses with FLAC are carried out to test the Bubble model and the
implementation methodologies. The work includes illustration of the main features of the
model (e.g. non-intersection translation of the yield surface and destructuration process of
the structure surface), demonstration of its stress-strain behaviours, comparison with the
modified Cam-clay model and published experimental data, and verification of numerical

stability in dynamic analysis.

Chapter 7 presents a parametric study, which is carried out to investigate importance and
the effective range of each parameter of the Bubble model. Stress-strain behaviours of the
model with a maximum strain up to 10% are explored in the parametric study. G-y
behaviours over a small range of strain (less than 2%) are also analyzed and key

parameters affecting G-y curves are identified.

Chapter 8 is on the application of the Bubble model. FLAC analyses are undertaken to
investigate effects of nonlinearity of soil on vertical dynamic compliance of rigid
foundations. Factors studied include initial stress level in the soil, level of excitation and

mass ratio of foundation.

Chapter 9 presents a summary of the main results of the study including conclusions and

discussions.

1.5 General remarks

The study provides useful experience in implementation of soil constitutive models in
FLAC. Particularly, it has been found that the methodology of ‘plastic correction’
approach should be adopted when a nonlinear soil model is implemented in order to

eliminate or minimize numerical distortion in nonlinear dynamic analysis. In this method



dynamic damping can be purely hysteretic and no additional mechanical damping is
required to obtain a satisfactory dynamic analysis. For static analysis or linear dynamic

analysis, however, use of the method is not necessary.

The Bubble model was initially chosen for the study on numerical instability in nonlinear
dynamic analysis. Apart from that, an extensive analytical study on the Bubble model has
also been undertaken. Especially, the plastic modulus function and parameters of the
model have been studied. A modified plastic modulus function has been proposed, which
has been found to better incorporate the influence of the size ratio of the yield surface on

behaviours of the model.

The Bubble model has been implemented in FLAC for 2D plane strain problems. For 2D
plane stress or 3D problems, the FISH code of the model will need to be modified.
Analyses have been carried out using the Bubble model to simulate laboratory triaxial
tests and vertical vibration of rigid strip foundations. In general the results agree

satisfactorily with published data.



2 LITERATURE REVIEW

This literature review covers three parts: ‘Constitutive models’, ‘Nonlinear analysis with

FLAC’ and ‘Vertical vibration of rigid foundations’.

A full description of a kinematic hardening model for structured soils (Rouainia & Wood,
2000) is given in Chapter 5. The review in the chapter has been focused on the most
relevant background and development of the model. Recent development of other similar
models has also been reviewed. The main relations and differences between those models
are discussed. Attention has also been paid to application of those models in modeling
behaviours of natural soils and parametric studies. An overall comment regarding the
development of 2 or 3-surface models is given at the end of the chapter with areas
identified for further research.

The review of ‘nonlinear analysis with FLAC’ has been focused on implementation of
nonlinear constitutive models in FLAC and their application in dynamic modeling. The
main problems in nonlinear modeling with FLAC are discussed in the chapter and will be

addressed in Chapters 3 and 4.

2.1 Constitutive models of soil
2.1.1  Critical state soil mechanics and Cam-clay model

One of the main distinctive features of soil is its volumetric behaviour under shear. Prior
to the critical state soil mechanics, soil mechanics was based on theories for solid
engineering materials, e.g. metal. Those classical theories can not account for the
volumetric behaviour of soil appropriately. Early constitutive models (e.g. elastic and
perfectly plastic model) over-idealized the behaviours of soil. Although they are still
widely used for engineering purposes, they are fundamentally inappropriate and are not

representative of natural behaviours of soil. For the first time, critical state soil mechanics



proposed by Roscoe, Schofield and Wroth (1958) gave an appropriate description of

volumetric response of soil under shear.

The critical state soil mechanics describes a state of soil in the ‘p, g, e’ space. The critical
state of soil is an ultimate state of shear failure which the soil will eventually reach
regardless of its stress history and path. At the critical state, continuous shear strain
develops without change in stress and volume of soil, i.e. dg=dp =dv =0. The critical
state line is shown in Figure 2.1. The projection of the critical state line in p, g plane is
approximated by the relationshipg = Mp. It is also assumed that soil behaviours under
the surfaces are purely elastic. (Note: g is the deviator stress defined as the difference

between the major principal stress and minor principal stress, i.e. ¢ =0,—0,. p is the

effective mean stress, i.e. p = (0, + 0, +0,)/3. e is void ratio of soil).
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The general concept of using the theory of work-hardening plasticity to describe soil
stress-strain relationship was first proposed by Drucker et al (1957). They suggested
using a spherical ‘cap’ on the ‘Drucker-Prager cone’. The ‘cap’ can be expanded by
hydrostatic loading of the soil. This ‘cap’ model was further developed by a group of
researchers at Cambridge. With a small number of assumptions, a simple work-hardening
model was proposed by Roscoe and Schofield (1963), i.e. the original Cam-clay model
(See Figure 2.2). The use of simple formulations in p, e and p, g planes allows the model
to predict more realistically many behaviours of soil under undrained and drained

conditions.

ield locus

%

»
»

p

Figure 2.2 Yield locus of Original Cam-clay model

The Cam-clay model was soon further developed by Burland (1965) and Roscoe and
Burland (1968) to improve its prediction of the behaviours of normally-consolidated
soils. One of the main problems of the original Cam-clay model is the unrealistic
prediction of strain at small stress ratios. Large shear strain is predicted even at an
isotropic stress state. In the modified Cam-clay model (MCC), the yield and potential
surfaces become elliptical due to choice of a new formulation of work dissipation (See

Figure 2.3). The yield function in effective stress and isotropic hardening rule are given

by



2

f=]512 +(p=py 12> =(py12)> =0

2.1

Po
dp, =——dv?’
Do 1—x

Where p, denotes the size of the yield surface, dv” is the change in specific volume, and
A,k are the slope of virgin compression line and swelling line respectively on the v ~

In(p) plots (v is the specific volume of soil, i.e. v=1 +e).

It is assumed that any change in mean pressure is accompanied by elastic change in

volume and this suggests a formulation of the bulk modulus: K =vp/x .

qA

%
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Figure 2.3 Yield locus of modified Cam-clay model

The flow rule associated with the yield surface gives the following incremental form of

plastic strains.

del | 1| (M*=n*)p* 2yM*—n*)q" | dp
(2.2)

dey | H|2q(M* =7*)p’ 4q° dq

Where
n=qlp;



e 1s void ratio of soil; and

H is plastic modulus defined by a hardening function given by

_(+e)p’M*—5") (2.3)
Bl A—K

H

The Cam-clay model is a milestone in the development of non-linear constitutive laws.
However the assumption of elasticity under the state boundary surface limits its
application to monotonic loading because the model predicts a constant pore water
pressure response after the first cycle of loading under cyclic loading. Cyclic
accumulation of pore water pressure and cyclic degradation in stiffness can not be
predicted by the model. To extend the Cam-clay model for use under cyclic loading,
many constitutive models have been developed with different approaches. They include
the two-surface model proposed by Mréz et al (1979), the vanishing yield surface model
by Pender (1978) and the bounding surface model by Dafalias (1986). The following
review of literature summarizes the main stream of two or three-surface models which are

most relevant to the development of the Bubble model.

Note: The above literature review of the Cam-clay model is based on information from
various sources including Wood (1990), Pender (1989), Brito & Gunn (1987) and Botts
(1998).

2.1.2 Two - surface model (Mroz et al. 1979)

The concept of two-surface models is to reduce the elastic domain by introducing an
inner surface (yield surface) inside an outer surface (bounding surface). These models
involve an anisotropic (i.e. kinematic) hardening rule which allows the yield surface not
only to expand but also to translate or even rotate inside the bounding surface. Mroz
(1967) proposed a multi-surface kinematic hardening model for metal. The concept was
used to develop two or multi-surface models for soil by Mréz, Norris and Zienkiewicz

(1978a, 1978b and 1979).
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A simple version of the two-surface model is illustrated in Figure 2.4. F' = 0 is called the
consolidation surface (i.e. bounding surface), which reflects isotropic properties of the
material and depends on the density of soil. This surface is believed to represent the
memory of peak stresses (phenomena of dependence of soil properties on the

consolidation history). It may expand, contract and translate. Its function is given by

Figure 2.4 The two-surface model by Mroz

2
F=(p-c)+L-a>=0 (2.4)
n

In equation 2.4, n is the ratio of minor and major axes of the elliptical consolidation

surface; a is the major semi-diameter of ellipse; ¢ = a— is the distance from the origin to
m

the centre of the consolidation surface on p axis; m is the slope of the critical state line.
The consolidation surface is always centered on the p axis. When ¢ = a, i.e. n =m, Eq. 2.4

is the same as the yield function of the modified Cam-clay model.

11



A smaller yield surface (inner surface) is introduced, which represents the anisotropic

characteristics of plastic deformation. The yield function is given by

_ 2
fo=(1?—06,,)2+(qn—?q)—a§=0 2.5)

Where a, is the semi-diameter of the ellipse; a = (a )0, )is the centre of the yield surface

in p, g space. The yield surface has the same shape as the consolidation surface and the

ratio of size between the yield and consolidation surfaces is ay/a.

The flow rule is associated with the yield surface and is given by Equation 2.6.

p—a,
de? G
L (2.6)
! | K, | 49-9,
2
n°G,
(p—a )dp+q_ dq ( )2 03
» 2 qg-o
do = n G o=l(p-a )+ 27
" G, f {(P ») " :l (2.7)

In Eq.2.6 Kp is plastic modulus defined by a general form of hardening function, which is

given by

N
K, = Kyt (Kpy = Kp) () 2.8)
0

Where ¢ is the transformed distance from the stress point P on the yield surface to its

conjugate point R on the consolidation surface (see Figure 2.5),
ie.0=[(qy,—q,) /n> +(p,—p,y)°1". J, is the maximum distance, i.e. §, =2(a—a,).

a, is the major semi-diameter of the yield surface. J, plays a role in incorporating the

12



maximum preloading into the material memory. K, varies continuously from its initial
value K, on the yield surface when 6 = J, to the respective value K, on the consolidation
surface for ¢ =0, that is, when the yield surface contacts the consolidation surface. yis a

parameter controlling the degradation rate of plastic modulus.

Figure 2.5 lllustration of kinematic hardening rule

The isotropic hardening rule is given by

(1+e,)de’

T ] (2.9)

a=a,exp[

Kinematic hardening rule postulates that the surfaces f, and F do not intersect but engage
each other along the common normal. This assumption can be expressed mathematically
by associating each point P on the yield surface with a conjugate point R on the
consolidation surface characterized by the same direction of normal (see Figure 2.5).
Since the two surfaces have the same shape, the following scaling relationship is

applicable for each stress state on the yield surface.

13



Cp—C _0p—0, (2.10)

A descriptive form of the kinematic hardening rule is given by Eq.2.11. It has three terms.
The first term denotes the change of centre of consolidation surface, the second term
represents the size scaling and the third term denotes the translation along the line PR (i.e.

B line).

da-da,
—a)+ pd
a, (0, —a)+ fe (2.11)

ﬂ:(O-R_O-p)

do =da, +

Where da, —[da ,0], duis given by

da — d.
df,, - 2a, f°( )+ f°<qp—a NE =y o
du=; f %o a—°£da (2.12)
a—°[c—pp+£(pp—ap>]+—°[—qp+£<qp—aq)] pm
D a aq a,

The constitutive relation is given by.

dq=3G, (de, ~— %0 45 )
p Uy
2.13)
—a
_ K (ds, ———P "% 4o
Kp f

Where K is the bulk modulus formulated in the same way as in the modified Cam-clay

model and G, is the shear modulus.

For the undrained condition the following incremental formulation of pore water pressure

is utilized, which is identical to the equation proposed by Skempton and Sowa (1963).

14



dp, =dp' +a,dg (2.14)

Where a,, is the incremental pore pressure coefficient, A; denotes Skempton’s pressure

coefficient.

A vanishing elastic region (no yield surface) is considered by letting a,= 0, so there is no
need to identify the start of yielding. The plastic flow is then associated with the
consolidation surface. Similar equations to equations 2.6 can be obtained and apply from
the beginning of loading as there is no elastic region. However, Hashiguchi (1985)
reported that this vanishing model is not acceptable physically and mathematically.

Mréz, Norris and Zienkiewicz (1979) used the above two-surface model to study drained
and undrained behaviours of kaolin and Weald clays after isotropic and anisotropic
consolidation. The agreement between predicted and experimental stress paths were
satisfactory, especially for lightly over-consolidated clay. Response under cyclic loading
for a K, consolidation was also discussed for stress-controlled loading. The behaviours of
progressive densification after 4 cycles was demonstrated. For an undrained case, a

steady-state was reached after 50 cycles.

In summary, the kinematic hardening model proposed by Mréz et al in 1970s set up a
general framework for other researchers to develop similar two or three-surface models.
The model represented one branch of the efforts to extend the modified Cam-clay model
for use in cyclic loading. The concepts used to formulate the kinematic rule and
hardening function have been employed by many other workers to develop various

models.
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2.1.3 Kinematic hardening rule (Hashiguchi 1985)

Among many others, Hashiguchi (1981, 1983, 1985) formulated a two-surface model.
The model is formulated for a generalized stress state. A distinct-yield surface (i.e.
bounding surface) and a sub-yield surface are shown in Figure 2.6. A general form of the

distinct-yield surface is described by the following equation.

1@)-F(K)=0 015
C=0-0

Where ¢ is a second-order stress tensor. K is a scalar which describes the isotropic

hardening/softening of surface, K =0 when &¢” =0. ais the centre of the distinct-yield
surface describing the translation of the surface according to a prescribed kinematic

hardening rule. The degree of the function f'is denoted by n.
The sub-yield surface has the same shape as the distinct-yield surface, which encloses the

elastic region. The current stress stays either on or within the sub-yield surface. The

equation of the sub-yield surface is given by

J_”(E)-y_”F(K)=0 (2.16)
O =0-0a

Where y (0 <y <1)is amaterial constant; a is the center of the sub-yield surface.
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Distinct-yield surface
f@)=F

Figure 2.6 Two- surface model (Hashiguchi 1985)

A kinematic hardening rule was proposed by Hashiguchi (1985). It is formulated to avoid
intersection of sub-yield surface with distinct-yield surface. The hardening rule of the

distinct-yield surface is given as follows:

&zAépI+Btr(é”§ i 2.17)
' 5" [e]

In the above equation, the first term represents the contribution of isotropic hardening and
Iis the 2™ order identity tensor. The second term represents the anisotropic hardening.

‘tr’ is trace operator. A and B are two scalar functions of K (A>0,B>0). If B =0, the

hardening rule becomes isotropic.

Non-intersection condition of the surfaces is ensured by letting f(6,) < F(K) and
6, =6, —da. o,is the stress state at the intersecting point of the sub-yield surface and the

line through the centres of the two surfaces. By satisfying the non-intersection condition
and with a simple assumption, the kinematic hardening rule of the sub-yield surface is

obtained as follows:
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1F _ .

d=G+——(@—a)+ip (2.18)
nkF
ZO'y—O'
_ i 1F,
‘ _tr{n(a-nFO')}
T vap)

Where o is the conjugate stress on the distinct-yield surface. m denotes the stress

gradient on the sub-yield surface at the current stress state, which is normalized with

respect to the center of the sub-yield surface.

Compared with the kinematic hardening rule (Eq. 2.11) proposed by Mr6z et al (1979),
the major change in Eq. 2.18 is the second term, which represents the translation along
the line connecting the centers of the surfaces while in Eq.2.11 the second term is
associated with the translation along the line connecting the current stress state and the

center of the inner surface.

A three-surface model was also proposed by Hashiguchi (1985). Another surface, i.e.
loading surface, is introduced inside the sub-yield surface. The purpose is to smoothen

the transition of stiffness when stress path reaches on the sub-yield surface.

2.1.4 Recent development of two/three-surface models
Bubble model

The original Bubble model was proposed by Al Tabbaa & Wood (1989). It was
formulated for triaxial stress state. The model is similar to the two-surface model
proposed by Mréz et a (1979). The outer surface is the same as the modified Cam-clay
surface, which is centered on the p axis and passes through the origin but does not
intersect the g axis. The inner surface is called the ‘bubble’, which encloses the elastic
region. The size of the Cam-clay surface is indicated by p,. The bubble has the same

shape as the Cam-clay surface. The ratio of size between the bubble and the Cam-clay

18



surface is a constant expressed by the parameter ‘R’. The two surfaces are illustrated in

Figure 2.7. Their functions are given by

2
(p—po)2+f42—p§=0 (2.19)
_ 2
(p=p P+ L) g2pi =g (220)
Aq
<

Bubble
+

Rp, p

v

Cam-clay surface

zd
——

Figure 2.7 The original bubble model (Al Tabbaa & Wood, 1989)

The kinematic hardening rule of the bubble is given by

P=Pu
[5’7“}:5’4[’7“}5 R (2.21)
99, ] Po 4. 9=94. _,

R

Where S is given by

19



0 - 0
(p= p.)op =P py+ 4790 (5, °Po oy
5= p-p - q- q—pqo (222)
(=P L= (p=po+ e (T

The kinematic hardening rule is similar to the translation rule proposed by Hashiguchi
(1985). The translation rule of the bubble has to guarantee that the bubble and the
bounding surface can touch at a common normal, but must never intersect. A conjugate
point on the bounding surface can be associated with the current stress point on the
bubble in such a way that these two points have the same direction of outward normal.
Translation of the bubble, which occurs when plastic strains are being generated, can be
separated into two components. One part is associated with change in size of the surfaces
(the first term in Eq.2.21), the other part is associated with translation of the bubble along
the vector # (the second term of Eq.2.21).

The isotropic hardening rule is the same as that of the modified Cam-clay model but 4,x

are replaced by 1',x".

Py
op, =—————0¢’ 2.23
Po= T~ (2.23)

Where /' is the slope of normal compression lines in Inv : Inp compression plane; xis the

initial slope of the unloading lines in the /nv : Inp compression plane.

The hardening function is given by
h=h,+H (2.24)

Where hy is the plastic modulus when the bubble and the bounding surface are in contact

corresponding to the current stress point. H is a scalar quantity to ensure a smooth fall of

20



stiffness when the bubble approaches the bounding surface. iy and H are given by

equations 2.25 and 2.26 respectively.

h -“93:£Ql{p(p—-pa)+

T 1@:&2} (2.25)

M2

3
H = ﬁ(}) (2.26)
- K max

Where b is the component of the vector f in the direction of the normal to the bubble at

the current stress point. It is given by

1 p—p (9—9,),94—q
h=—— _ £ Foa — + a ¢ 2.27
Rwo{(p P R (p—py)l IYE ( R q)} (2.27)
For M<1, bnax 1s given by*
b =2p,(1—-R) (2.28)

It should be noted that in equation 2.28 by, only depends on the size of the surfaces.
Modification was made by Wood (1995) so that by,x also depends on the current stress

state.

In fact many other functions of H can be chosen as long as they can ensure a smooth fall
of stiffness. Choice of H may depend on the type of soil. Al Tabbaa & Wood (1989)
reported that transition of stiffness as the effective stress path leaves the elastic region on
reaching the edge of the bubble is too abrupt but this can be improved by altering the

hardening function H.

In summary the Bubble model is a simplified version of the two-surface model proposed

by Mr6z et a (1979). The kinematic hardening rule is based on the non-intersection rule

“For M 21, b

max = 2p0M(1—R)
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proposed by Hashiguchi (1985). A particular development of the Bubble model is the
hardening function which has elements similar to those of the modified Cam-clay model.
The model has been found to be quite successful in modeling some patterns of response
observed in slow cyclic oedometer and triaxial tests of speswhite kaolin. It requires only

two parameters in addition to the parameters of the Cam clay model.

Modified Bubble model (Wood, 1995)

The original Bubble model was extended by Wood (1995) for structured soil [Note:
structured soil is defined for natural soil following Mitchell (1976) as having different
mechanical behaviour after being remoulded due to damage to its initial structure, i.e.
particle arrangement and bonding]. It is assumed that the initial structure of soil is
progressively destroyed as plastic deformation occurs. The process of the destructuration
is represented by the steady fall of the structure surface (bounding surface) towards the
reference surface representing the intrinsic behaviours of remolded soil (Burland, 1990).
The kinematic hardening rule proposed by Hashiguchi (1985) is utilized and the
hardening function is similar to that proposed by Al Tabbaa & Wood (1989). The model
is still formulated for the triaxial stress state and no anisotropy of the structure surface is
considered. The structure and reference surfaces are centered on the p axis passing
through the origin of coordinates. The bubble has the same elliptical shape as reference
and structure surfaces. Their sizes are represented by Rp,, p, and rp, respectively as
shown in Figure 2.8. R is a constant (R = 0 ~1). r is between 1 and r, which represents
the initial size of structure surface and is not less than 1. r = 1 indicates completion of
destructuration when the structure surface coincides with the reference surface. r is

determined by an exponential destructuration law (see Eq.2.29).
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Figure 2.8 Bubble model for structured soil (Wood, 1995)

r:1+(r0—1)exp(_k8d)
l—K

—k (2.29)

T (—x)

or (r=1)de,

Where k is a parameter controlling the rate of destructuration with strain; Je , is the rate of

destructuration strain (¢, ), which is given as follows.

de, =1/(1= A)Pe!)* + Ade])? (2.30)

Where ‘A’ is a parameter ranging from O to 1, which reflects relative contribution of
volumetric and distortional strains to destructuration. For A = 0, destructuration is purely

volumetric and for A = 1, destructuration is entirely distortional.
The hardening function is similar to that proposed by Al Tabbaa & Wood (1989) but the

definition of by is slightly different from eq.2.28 as it depends on both the size of

surfaces and the current stress state. It is given by
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b, = 2(% —Dies 2.31)

Where n is the unit normal to the bubble at the current stress point; ¢ is the normalized

stress state with respect to the center of the bubble.

The model was further generalized by Rouainia & Wood (1998) for general stress state
with anisotropy of the structure surface and by Rouainia & Wood (2000) to incorporate

the Lode angle 6 into yield functions’. Details of the model are given in Chapter 5.

Comparison of the model with experimental data has shown that the Bubble model can
demonstrate the essential phenomena of pre-failure behaviours of natural clays (Swedish
clay): stiffness variation with strain, volumetric change accompanying distortion, peak

strength at small strains.

In summary, the modified Bubble model is an extension to the modified Cam-clay model
with kinematic hardening and bounding surface plasticity plus destructuration. Although
the model has three surfaces, it is in fact a two-surface model as the reference surface is
neither involved in the kinematic hardening rule nor the hardening function. It is used
only as a reference to the intrinsic behaviours of remolded soil. The model can be

regarded as a framework in the modeling of structured soil.

3-SKH model (Stallebrass)

An extension to the original Bubble model by Al Tabbaa & Wood (1989) was also
proposed by Stallebrass (1990) and was further developed by Stallebrass & Taylor
(1997). This is a three-surface model and is named ‘3-SKH’. Apart from the yield surface
(i.e. the bubble), another kinematic yield surface (history surface) is introduced into the
model to represent the influence of recent stress history on stiffness and shear-volumetric

response of soil. An associated flow rule is utilized in the 3-SKH model. A simple non-
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associated flow rule was used by McDowell (2002) and McDowell et al (2003) to
improve the 3-SKH model in predicting the coefficient of earth pressure at rest (K,) under
one-dimensional normal compression. The Lode angle 6 was incorporated into the critical

state parameter M.

Yield surface

<History surface

v

Bounding surface

Figure 2.9 3-SKH model
The main change of the 3-SKH model to the original Bubble model is the involvement of
a history surface in the translation rule and the hardening function (see Eq. 2.32).
Compared to Eq. 2.23, the new hardening function has one more term which is associated
with the history surface. This is believed to be able to ensure a smooth change in stiffness

when the surfaces are in contact.

(g—q,) b,

h= _ _
{(p plp(p—p,)+q IYE 1+(

Y py'S? 4 )V’pf} 232)

j‘ K blmax 2 max

It is understandable that the more surfaces are involved in the formulations of the
kinematic hardening rule and the hardening function, the smoother the transition in
stiffness. To introduce a precise memory of loading history within the bounding surface,

a set of nesting surfaces were also introduced by Mréz (1967), Mréz, Norris &

" McDowell (2003) indicated that Lode angle has little effect under triaxial conditions.
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Zienkiewicz (1978a) and Prevost (1977). Hashiguchi (1985) also proposed a 3-surface
model for this purpose by introducing a loading surface inside rather than outside the

yield surface.

S$3-SKH model (Baudet and Stallebrass)

Baudet & Stallebrass (2004) extended the 3-SKH model for structured soil. In this model
the degree of structure is entirely interpreted as and related to sensitivity of soil. The
bounding surface is called sensitivity surface and its size is represented by a sensitivity
parameter, S, which has a similar physical meaning as the parameter r of the modified
Bubble model (Wood, 1995). However, the ultimate value of S is not necessarily unity
and a value greater than unity can be used to simulate stable elements of structure such as
in Sibari clay (Coop & Cotecchia, 1995). The same destructuration law as Equation 2.28

is used except for the slight difference in defining destructuration strain which is given by

¢4 = J(67)? +(e7)? (2.33)

Unlike Eq.2.30, the above equation gives a destructuration strain which comprises
equally volumetric and distortional contributions (equivalent to A = 0.5 case in Eq.2.30).
In this model the sensitivity surface is centered on the p axis and anisotropy is not

included.

The model was used to simulate drained probing tests and undrained triaxial tests on
natural specimens of Bothkennar clay. The sensitivity framework by Cotecchia &
Chandler (2000) was the basis for choosing initial and ultimate values of the sensitivity
parameter. Both sensitivity and destructuration parameters were derived from standard
1sotropic compression tests. A good agreement between computer simulation and
experiments on the G —y curves was obtained by using an initial sensitivity of 13.5 and

an ultimate sensitivity of 6. However, no data was shown for the small strain range less

than 4x1072 %.
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Kavvadas and Amorosi (2000) proposed a two-surface constitutive model for structured
soils. The model has two characteristic surfaces (see Figure 2.10): an internal plastic yield
envelop (PYE) and an external bond strength envelop (BSE). The internal plastic surface
(PYE) has the same role as the classical yield surface. The term ‘plastic’ was added to the
‘yield surface’ to point out the difference between plastic yielding and large-scale
yielding , i.e. de-structuring (Jardine et al, 1991). The external surface corresponds to

material states associated with appreciable rates of structure degradation.
In this model, the destructuration law and the isotropic hardening rule are combined into

one function (Eq.2.34), which describes the change in size of BSE. Both volumetric and

deviatoric contributions are equally included in the function.

0= aH(%) —¢& exp(—n,.e” )}g' P40, - ¢, exp(n, e " } (2.34)

q
. BSE
K PYE p,
O\/
” Gk »
< a »

Figure 2.10 Two-surface by Kavvadas and Amorosi (2000)
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The kinematic hardening rule of PYE is similar to that proposed by Al Tabbaa & Wood
(1989) (Eq.2.21). The plastic modulus function is given by

H=H +H'l —?)7 —1] (2.35)

0

Where H” is the plastic modulus at point M ”“where vector OM intersect BSE; dis the

normalized length of MM” (M is the current stress state); J,is the value of & upon
initiation of yielding. Thus ¢/4J, =1corresponds to initiation of yielding (i.e. H = o) and
6/9, =0 indicates that the material state lies on BSE (i.e. H =H"). The material
constant y (>0) determines the rate of degradation in plastic modulus H in the

range (oo, H”) . H” is formulated in such a way that when the surfaces are in contact

H =0.

Unlike other hardening functions, H” is associated with point M” rather than M’ and

d is associated with vector MM ” rather than MM’ (i.e. the so-called vector f); the

second term of the plastic modulus function is related to the first term while in other

hardening functions these two terms are independent of each other.

In this model, J,, is associated with the stress state upon onset of yielding. Hence it
depends on the position of the yield surface when yielding initiates. J,becomes constant
until it is reset when yielding re-initiates (in cyclic loading) while J, in the model by
Mréz’s et al (1979) or b, in the model by Al Tabbaa & Wood (1985) is a maximum
quantity corresponding to the current yield surface. The formulations of ¢ and J,ensures

an automatic fall of H from infinity upon onset of yielding to zero when surfaces are in
contact. The magnitude of H in other models such as the modified Bubble model is

controlled by additional material parameters.
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The model was calibrated against laboratory tests on the stiff overconsolidated Vallericca
clay (isotropic and anisotropic consolidation tests, anisotropically consolidated triaxial
shearing at both low and high pressures.). Very small yield surfaces were used. The ratio
of PYE to BSE was between 0.005-0.05 while the ratio of size between bubble and
structure surface was 0.048-0.145 in the paper by Rouainia & Wood (2000).

Although importance of the size of PYS was mentioned by Kavvadas and Amorosi (2000)

no comment was made on how it affects the behaviours of soil.

All the kinematic hardening models discussed above are formulated in such a way that
the yield surface can only expand (contract) and/or translate. A two-surface model, which
allows the yield surface not only expand (contract) and translate but also rotate inside the
bounding surface, was proposed by Gajo & Wood (2001) under the same framework of
the modified Bubble model. Stresses are generalized with respect to size, location and the
inclination of the bounding surface so that the bounding surface is fixed in a generalized

stress space. In the model, the hardening function has a new form as follows:

(2.36)

The model was calibrated against the modified Cam-clay model with the parameter B
being varied between 10~ and 10°. Parametric study indicated that B has much more

significant effects than bubble size R and Poisson’s ratio x on the response of the model.

A value of 107 for the parameter B was considered to be representative of many types of
natural clay. Both R and u were assumed to be 0.2 as they were found to have minor
role in the model. This was consistent with Smith (1992). A similar exponential
destructuration law was used as the modified Bubble model. A value of 0.5 was used for
parameter A and it was suggested that A may be obtained by comparing triaxial test with

one-dimensional compression test. It was also found that parameters k and i, which both

control rate of destructuration, are interrelated.
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2.2 Nonlinear dynamic analysis with FLAC

FLAC is a 2D finite difference programme and has become widely used for analysis and
design in a variety of fields in civil and mechanical engineering. A fully dynamic analysis
capability is offered in FLAC. However, only simple nonlinear soil models are available

in FLAC and they are basically for quasi-static analyses.

Wang (1999) implemented a bounding surface hypoplasticity model for sands into FLAC
to model the dynamic response of an embankment under cyclic loading. A sinusoidal
velocity wave with an amplitude of 0.61m/s and a frequency of 1 Hz was applied as a
horizontal input motion to the bottom and two vertical sides of the embankment. An
analysis was conducted for five cycles of the input motion indicating satisfactory
performance of the model. However, it is noticed that a 2% Rayleigh damping was

applied to the model and there was no explanation of why this was necessary.

Pender (1999 and 2000) implemented a hyperbolic model in FLAC to analyze the
propagation of shear wave and the dynamic response of a rigid foundation subjected to
vertical vibration. The soil model is for undrained lightly over-consolidated soil (Pender,

1978). Rayleigh damping of up to 5% was used.

A systematic study on nonlinear dynamic modeling with FLAC was carried out by Ni
(2001) to investigate dynamic response of rigid footings and a soil-footing-structure
system. It has been shown that for a dynamic analysis in which a nonlinear soil model is
implemented with ‘apparent modulus’ approach, a special kind of numerical distortion
will occur. This is due to the changing of shear moduli, especially the sudden change of
shear moduli when strain reversal takes place. Severe numerical distortion may occur in a
nonlinear dynamic modeling even if the timestep and element size are very small. A
typical phenomenon is a migrating stress-strain response (See Figure 2.11). The steady
state response may be disturbed or may never be reached due to the numerical distortion.
The higher the exciting frequency the more severe the problem is. In some cases,

numerical distortion could result in collapsing of a numerical model.
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Figure.2.11. Cyclic response of a hyperbolic model in simulating a triaxial dynamic test

The specimen is 200 mm in diameter and 400 mm in height. Due to the symmetry of the
specimen, only half of the specimen is modeled with a mesh of 32 elements. Soil
properties of the Pender model: p = 1.8 t/m3, Pes = 100 kPa, M =1.0,k=0.05,e=1.0, G
=20 MPa, K = 200 MPa. No additional damping is applied. The specimen is subjected to
a 30-cycle sinusoidal stress loading with a frequency of 1 Hz and a stress amplitude of 50

kPa.

Since no cyclic degradation of shear modulus is considered in the above soil model, the
dynamic response should settle down to a steady state and this steady state response

should not change under a regular continuous excitation.

It was found that the problem of migrating response only occurs in a nonlinear model and
reducing timestep or element size will not solve this problem. The problem was then

addressed by introducing an additional damping.
Figure 2.12 shows the result of a dynamic analysis in modeling the same problem as in

Figure 2.11. A 2% damping is applied. Compared to Figure 2.11a, Figure 2.12 gives a

relatively stable response within 30 cycles of vibration.
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Figure 2.12 Stress-strain response with 2 % local damping.

The use of a small amount of additional damping is appropriate in a nonlinear dynamic
analysis and is well established to cope with the ‘shock’ wave effect of the sudden change
in shear modulus when the direction of loading is reversed. As the majority of the
damping is from hysteresis, it is desirable from the theoretical point of view that a
nonlinear soil model be implemented with ‘plastic correction’ approach so that the
numerical distortion problem may be minimized. In FLAC, plasticity models, e.g. the
modified Cam-clay model, are implemented with an approach that involves an elastic
trial to estimate stress increments followed by a plastic correction for the stress
increments at each timestep. Hereinafter, this approach is termed ‘plastic correction’
approach compared to the ‘apparent modulus’ approach. It is also called ‘returning

mapping’ (Simo and Hughes 1998).

Further application of FLAC in modeling nonlinear dynamic response of rigid footings

subject to vertical and rocking vibration was reported by Pender and Ni (2004).
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2.3 Vertical vibration of rigid foundations

There are six possible degrees of freedom of vibration for a foundation due to unbalanced
forces. They include vibrations in vertical, lateral and longitudinal directions and rotation
about vertical, lateral and longitudinal axes. The work of the thesis is focused on the

vertical vibration only.

The foundation design for vibrating equipment is based on displacement considerations.
The medium on which a foundation is rested is soil or rock which exhibits significant
nonlinear behaviours. The displacement of the foundation includes two parts: cyclic
displacement due to elastic response of the soil-foundation system to the vibratory
loading and permanent displacement due to compaction or lateral displacement of soil

below the foundation.

Classical solutions to displacement of vertically-vibrating foundations are based on
elastic theory and different compliance (stiffness) functions have been proposed by

various workers. A brief description of the historical development is given below.

2.3.1 Classical work

Dynamic Boussinesq Problem

In 1904 Lamb studied the problem of vibration of a single vibrating force acting at a
point on the surface of an elastic half-space. The study included cases in which the
oscillating force R acts in the vertical direction. This is generally referred as the dynamic

Boussinesq problem.

Reissner’s solution

In 1936, Reissner proposed a solution to the problem of vibration of a uniformly loaded
flexible circular foundation rested on an elastic half-space. The solution was obtained by
integration of Lamb’s solution for a point vibrating force. The vertical displacement at

the center of the flexible loaded area can be given by
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Where

Q, = amplitude of the exciting force acting on the foundation

z = periodic displacement at the center of the loaded area
o = circular frequency of the applied load

r,=radius of the loaded area

G = shear modulus of the soil

fi» f, = Reissner’s displacement (compliance) functions

The following relation was obtained for a flexible circular foundation:

A= (2.38)
© G,

Where
A, = the amplitude of the vibration

o+ f
(I=ba’ f,)* +(ba’ f,)

Z = dimensionless amplitude, Z = \/

b = dimensionless mass ratio, b = m? = (E)[ ! - } = K@
pry 8 L0/ |

p = density of the elastic material
y = unit weight of the elastic material

. . / wr,
a,= dimensionless frequency, a, = wr, £ -2
G v

N

v, = velocity of shear waves in the elastic material on which the foundation is resting

34



The classical work of Reissner was further extended by Quinlan (1953) and Sung (1953)
to consider non-uniform distribution of the contact pressure. Three pressure distribution
cases were considered, i.e. uniform, parabolic distribution and the distribution for a rigid
foundation. Similar forms of solution can be obtained, but the displacement

functions f,, f, will depend on the distribution of contact pressure.

Richart and Whitman (1967) found that for a given a,,, the magnitude of the amplitude is

highest for the case of parabolic pressure distribution and lowest for rigid bases. For a
given type of pressure distribution and mass ratio, the magnitude of the amplitude also
greatly depends on the assumption of Poisson’s ratio. The larger the Poisson’s ratio the

smaller the amplitude.

Hsieh’s analogy

Based on Reissner’s displacement relation for flexible foundations, Hsieh (1962)
developed an equation similar to that for damped vibrations of single-degree-of-freedom
system. The soil is treated as a viscoelastic material (See Figure 2.13). The equation of

motion is given by

mi+c z+k z=0Q,sin(wt) (2.39)

Where the spring constant and dashpot coefficient are frequency dependent,

5 Gr -y
k =Gr —t—), ¢ =—%—2
z 0 .2 2 z w 2 2
2 s 2 s
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Lysmer’s Analogy
A simplified model was proposed by Lysmer and Richart (1966), in which k,and c, were

frequency independent. The compliance functions were redefined in the following form:

f_fiifs
1-v 1-v
) 0

F=

= F, +iF, (2.40)

Where functions of F1 and F2 are practically independent of Poisson’s ratio, shown as in
the Figure 2.14. The mass ratio was also modified by multiplying the previous mass ratio

with a factor of 1—v)/4.

Luco & Westmann’s solution

Luco & Westmann (1968) proposed a set of compliance functions for strip rigid footings
rested on elastic half space. Slight correction was made to the functions proposed by
Gazetas and Roesset (1979) based on results for a linearly hysteretic soil (corresponding

to 5% hysteretic damping).

The above compliance functions obtained from analytical calculations were found to be
in good agreement with those obtained from numerical analysis using elastic soil model
(See Figure 3.59, FLAC 4.0 Optional Features Manual). In the numerical model, a
massless strip footing is modeled rigid by slaving structural nodes together. Viscous
boundaries are used to model infinity. A sinusoidal vertical loading is applied to the
footing directly with no prior stresses in the model. A 5% damping is applied to the

model.

37



0.5

0.4

0.3

0.2 -f2,v
f1,v

Fi

0.1

0.0 1

-0.1 ‘ ‘ ‘ ‘

ao

Figure 2.15 Vertical compliance functions for rigid strip foundations (redrawn after

Gazetas and Roesset, 1979)

2.3.2 Nonlinear numerical modeling of vertical vibration of rigid foundations

In general behaviours of soil is nonlinear and only at low strain levels the elastic theory
may be considered applicable to soil. Numerical methods provide an effective way to

bridge elastic results and the realistic behaviours of soil.

Borja et al (1993) investigated the nonlinear dynamic response of vertically vibrating
rigid foundations to harmonic loads. Both circular and square foundations rested on an
elasto-viscoplastic half-space were modeled in the context of nonlinear finite element
method. The elasto-viscoplastic theory of Duvaut and Lions (1976) was used to model
the soil behaviours. It was shown that plastic deformation for vertically oscillating rigid

foundations results in an overall increase in displacement amplitudes and creation of
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resonance frequencies where motion is amplified above those at zero-frequency level (see

Figure 2.16).
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Figure 2.16 Vertically oscillating circular foundation on elastoplastic half space

(redrawn after Borja et al, 1993)

Pender (2000) reported that there are two distinct aspects of shallow strip foundation
response to loading: cyclic deformation and the accumulation of permanent settlement. It
was noted that the dynamic compliance of a foundation on a nonlinear soil exhibits
greater variation with cyclic loading frequency than the same foundation on an elastic
soil. Recent applications of the Pender model in undrained lightly over-consolidated soil
have been made by Pender (1999, 2000). The soil model was implemented in FLAC to
analyze the propagation of the shear wave and the dynamic response of a rigid foundation
subjected to vertical vibration. To simplify the calculation in FLAC, the nonlinear elastic
approach was used with an equivalent tangent shear modulus introduced to incorporate
elastic and plastic contributions. The nonlinear behaviours of soil is accounted for during
unloading and reloading. The result is shown in Figure 2.17, which agrees well

qualitatively with those by Borja ef al (1993). However the resonance at low frequency
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was not reported. The soil model was based on a work-hardening plasticity model by

Pender (1978), which was implemented as a hyperbolic model in FLAC (Pender, 1999).

Using the same nonlinear model, the writer (Ni, 2001) further analyzed the problem with
FLAC and the resonance at low frequency was found for both vertical and rocking
vibrations of a rigid strip foundation. The foundation was modeled as massless and
different loading levels were considered. Typical results are shown in Figures 2.18 and
2.19. A static pressure with a factor of safety of 4 was applied to the foundation prior to

the dynamic loading.

15
% € Nonlinear Soil properties: .
£ E Shear wave velocity 150 m/sec
o T,,/ Small strain shear modulus 40 MPa
83 10- Bulk modulus 200 MPa
23 Void ratio 1.0
c 2 ) M 1.0
8 5 Elastic k 0.05
£z 4 100 kPa
838 5 Density 1800 kg/m’
© =
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Figure 2.17 Cyclic displacement amplitude of a rigid foundation (redrawn after Pender,
2000)
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Figure 2.19 Vertical displacements a rigid strip foundation subject to rocking vibration
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Pender and Ni (2004) investigated a rigid footing with mass subject to vertical harmonic
vibration. Resonance at low frequency was complicated (see Figure 2.20). The
displacement at very low frequency of a nonlinear soil can be much larger than that of an
elastic soil when the stress level is high. However the influence of mass ratio needs to be
further explored on nonlinear dynamic compliance. Two general conclusions were

reached:

» The compliance function is found to be very close to that for the vibration of a
rigid footing on an elastic layer when the cyclic loading amplitude is small.
» Under low frequency excitation nonlinear stress-strain behaviours of soil beneath

the foundation has a significant effect on the dynamic response.

It was also noted that the static stress level prior to dynamic loading has a considerable

influence on dynamic compliance at low frequencies (see Figure 2.21).
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Figure 2.20 Vertical compliance function (cyclic pressure = 140 kPa)
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Figure 2.21 Influence of static factor of safety on displacement amplitude
24 Summary
Since the modified Cam-clay model was proposed in 1960s efforts have been made by
many workers to extend its application to cyclic loading. Among other models, two or
three-surface models, which introduce a small kinematically hardening yield surface
inside the Cam-clay surface, represent one approach to that purpose. Recent development
of two or three-surface models has been focused in simulating laboratory behaviours of

structured soils.

The kinematic hardening model can be traced back to Mroz (1967). A general framework
of two/three-surface models was established by Mré6z, Norris and Zienkiewicz(1979)
under the principles of the critical state soil mechanics. Many two/three-surface models
have been developed under the framework mainly to improve the formulations of the
kinematic hardening rule and hardening functions. The non-translation rule proposed by
Hashiguchi (1985) and the hardening function by Al Tabbaa & Wood (1989) have been
often used in various two/three-surface models. A unique hardening function proposed by
Kavvadas and Amorosi (2000) seems to have some advantages in modeling a smooth
transition in stiffness. Most of the two or three-surface models have been developed using

the associated flow rule which tends to over-predict the coefficient of earth pressure at
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rest (K,). McDowell et al (2003) introduced a simple non-associated flow rule in the 3-

SKH model (Stallebrass, 1990) to overcome the deficiency.

Wood (1995) extended the Bubble model (Al Tabbaa & Wood, 1989) for structured soils
using an exponential destructuration law. A general framework of constitutive law for
structured soils was outlined by Rouainia &Wood (2000) which incorporates the Lode
angle in yield functions. A similar model for structured soils, based on the 3-SKH model,
was proposed by Baudet & Stallebrass (2004). In this model parameters of structure and
destructuration are related to some physical characteristics and efforts have been made to
simulate behaviours of structured soils with those parameters derived from traditional

laboratory tests.

In general, the research on determining parameters of constitutive models has lagged far
behind the development of the models. Physical meanings of some parameters remain
unclear or undefined not to mention the determination of these parameters in laboratory.
More parametric study needs to be carried out to evaluate those models. By simulating
experimental data a general knowledge about values of those non-standard parameters

may be achieved for a particular type of soil.

The modified Bubble model (Rouainia & Wood, 2000) is selected for the research. It is
believed that this model provides more flexibility in modeling different soil beahvours

due to the following three facts: a general critical state stress ratio (M , ) is utilized in the

yield equations, which takes into account the unsymmetrical behaviors of soil under
compression and extension; the model allows the consideration of initial anisotropy of the
structure surface; contributions to destructuration of structured soil from plastic
volumetric strain and distortional strain are not necessarily equal and their contribution
percentages can be varied from 0 to 100%. Areas for further work may include improving
formulation of the hardening function, establishing qualitative relationships between non-
standard and standard parameters and determination of key parameters. Little reference
can be found about application of the Bubble model in dynamic analysis. It is worthwhile

to explore the dynamic performance of the model.
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In terms of implementation of constitutive models in FLAC, numerical instability in
dynamic analysis is to be addressed. The method of ‘plastic correction’ or ‘return

mapping’ has been suggested to cope with the problem of numerical distortion.
The influence of nonlinearity of soil on dynamic compliance of rigid foundations needs to

be further explored especially at low frequency range. Effects of mass ratio and bedrock

also need to be explored.
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3 SOME KEY ASPECTS OF PROGRAMMING WITH FLAC

FLAC has some basic soil constitutive models built in its source code. Any other soil
models can be implemented into FLAC with FISH - the programming language utilised in
FLAC. The FISH version of the modified Cam-clay model in FLAC provides an example

for implementing nonlinear plasticity soil models in the thesis.

In this chapter, some aspects of implementation of soil models are discussed. They are
important to a successful implementation of a soil constitutive model, but they are not

explained explicitly in FLAC manuals.

3.1 Finite elements in FLAC

In a FLAC model, a finite difference mesh is divided by the user into quadrilateral
elements. Internally, FLAC subdivides each quadrilateral element into two overlaid sets
of triangular sub-elements shown as Figure 3.1. A user-defined model (UDM) is called
four times per element (once for each sub-element) each time step. To get more accurate
results, stress and strain may need to be averaged over the four sub-elements. If not
specified, however, stress and strain of an element are only associated with the last-called

sub-element.

Figure 3.1 Sub-elements in a quadrilateral element
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In FLAC strain is constant in each set of sub-elements. Whether strain or stress is
constant or not between the two sets of sub-elements of an element depends on the shape

and boundary condition of the element. The following is an example.

Figure 3.2 shows three single-element 2D models. A cyclic vertical stress loading is
imposed on the top of each model. The amplitude of the stress is 50 kPa and the loading
frequency is 1Hz. The soil is elastic with 5% local damping applied. Before cyclic
loading is applied there is zero insitu stress. ‘Models a and b’ are the same in size and
shape but slightly different in the boundary condition. For ‘model 5’ the bottom is fixed
at both x and y directions while for ‘model a’ only y direction is fixed. ‘model ¢’ has the

same boundary condition as ‘model @’ but has a different geometric shape.

The linear elastic model in FLAC is utilised to demonstrate the influence of boundary
condition and shape of an element on stress in sub-elements. Two local variables,
‘vstress’ and ‘vstress_ave’, are added to the FISH code of the linear elastic model to
record respectively vertical stress of the last-called sub-element (i.e ‘sub-element d’) and
the averaged vertical stress of the four sub-elements. Results are shown in Figure 3.3 and

the code of the line elastic soil model is given at the end of this section.

i

(a) (b) ()

Figure 3.2 Three single-element 2D axisymmetric models
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It can be seen from Figures 3.3a and 3.3b that boundary condition can have a significant
influence on vertical stresses in the sub-elements. Figure 3.3a corresponding to Figure
3.2a indicates that due to symmetry of the boundary, vertical stress is uniform among the
two sets of sub-elements. Therefore time histories of the two variables are identical.
Figure 3.3b represents the result associated with Figure 3.2b. It shows that the averaged
vertical stress is greater than ‘sub-element d’. Figure 3.3c shows a slight difference in
vertical stress between the sub-elements. This means that the shape of the element has
less influence than the boundary condition on the uniformity of stress in sub-elements in

this case.

;FISH version of the linear elastic soil model

def m_elas
constitutive_model
f prop m_ g mk m el m_e2 m_g2
f_prop vstress vstress_ave
float $suml $sum2

case_of mode

case 1 ; initialization

mel =mk + 4.0 *m g/ 3.0

me2 =mk - 2.0 *mg / 3.0

mg2 = 2.0 * mg

case 2 ; running section

zsll = zsll + zdell * m_el + (zde22+zde33) * m_e2
72822 = zs22 + zde22 * m_el + (zdell+zde33) * m_e2
zs33 = zs33 + zde33 * m_el + (zdell+zde22) * m_e2
zsl2 = zs1l2 + zdel2 * m_g2

Ssuml=$suml+ (zdell+zde33) * m_e2 + zde22 * m_el
vstress=zs22 ;vertical stress component

if zsub > 0.0 then
Ssuml = $suml / zsub
vstress_ave=vstress_ave+$suml;averaged vertical stress
$suml=0.0

end_if

case 3; max modulus
cm_max = m k + 4.0 * m_g / 3.0
sm_max = m_g
end_case
end
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3.2  Local and global variables

All variables, except property variables, are globally recognised for all the elements of a
model. Values of global variables are not stored for each element. They are changed
when the next element is processed. Hence, at the end of each time step, values of global

variables are associated with the last-processed element.

Values of local variables are stored for each element and are retained unchanged until the
next time step. To ensure this, all local variables must be put after the FISH statement
F_PROP in a FISH code. All other statements such as FLOAT and INT are only for
global variables. However, misplacing global variables after statement F_PROP will not
cause any problems except increasing calculation burden and using more computer

memory.

All global variables start with a dollar sign $. Although this is not compulsory, the use of
symbol $ makes it convenient to distinguish global variables from local variables. One
advantage is that a list of all variables with names starting with sign $ can be printed out

using the command PRINT $fish.

3.3 Initialisation

In a typical UDM code, the first part following the statement ‘case I’ is normally for
initilisation. Initialisation is not compulsory as in a simple model but it can be

complicated in a sophisticated model.

It should be noted that ‘initialisation’ is executed only once per element per STEP
command prior to stepping. If multiple STEP commands appear in a data file, e.g for a
series of FLAC runs or quasi-static cyclic loading, initialisation will be repeated when
each STEP command is executed. This will cause errors in most cases. Hence, ‘re-

initialisation’ should be avoided in a UDM if it is not required.
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34 FISH state variables

Unlike user-defined state variables, all FISH state variables are manipulated internally by
FLAC. Although these FISH state variables can be employed in a function or an equation
in a UDM, they are either calculated internally by FLAC (e.g zde;;, zde,,, zdess and
zsub), or have to be calculated in a specific way (e.g zsi1, ZS22, 7833, zS12). All the FISH
state variables can not be printed out directly by the command PRINT and their history in
a run can not be recorded by the command HISTORY. The following will discuss some
aspects in using FISH state variables since they are crucial to a successful coding of a soil

constitutive relationship. These aspects are not explicitly discussed in the FLAC manuals.

3.4.1 Stress variables

In FLAC, zs,,, zS,, ZS3; and zs,, are FISH state variables associated with FLAC stresses,
i.e Sy, Sy S,, and s,,. They are not calculated according to the way in which they appear in
a UDM code. They are recognized and processed in a special way which may confuse a

user.

For example, to update stresses, the following incremental formulations are often used.

zsll = zsll + zdell * m_el + (zde22+zde33) * m_e2

72822 = 2822 + zde22 * m_el + (zdell+zde33) * m_e2 3.1
zs33 = zs33 + zde33 * m_el + (zdell+zde22) * m_e2

zsl2 = zsl2 + zdel2 * m_g2

& &, and

Where zde,,, zde,, zde;; and zde,, are strain rates standing for & w o €z

xx

éxy respectively; m_e;, m_e, and m_g, are coefficients being function of elastic moduli.
As a UDM is called four times per element each timestep (once for each sub-element), it
is apparent from the above equations that accumulation of stress increment is carried out

four times for each stress component.

In fact, there is no accumulation of stress increments when these equations are called

because they contain FISH state variables zs,,, s, zs;; and zs;, and FLAC treats them
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differently from user-defined variables. These equations are only executed once rather
than four times per element each timestep although the UDM code is called four times.
Only the stress increments associated with the last-called sub-element are added to

current stresses.

FLAC can distinguish FISH state variables from user-defined variables. If the FISH state
variables (zs,, ... ) are replaced by a set of user-defined variables (s;;...) in the above
equations, four stress increments will be accumulated and added to each stress

3

component. Therefore, ‘s;;..."” are four times larger than (zs,;...). To demonstrate this,
the model for Figure 3.2a is utilized. A vertical stress of 50 kPa is applied at the top of the

model. The following equations are added to the FISH code of the previous linear elastic

model.
sll = sll + zdell * m_el + (zde22+zde33) * m_e2
s22 = 522 + zde22 * m_el + (zdell+zde33) * m_e?2 (3.2)
s33 = 3833 + zde33 * m_el + (zdell+zde22) * m_e2
sl2 = sl2 + zdel2 * m_g2

;FISH version of the linear elastic model
def m_elas
constitutive_model
f_prop m g m k m el m e2 m_g2 st22
f_prop sll s22 s33 sl2

case_of mode
case 1 ; initialization
m_el m k + 4.0 * m_
me2 =mk - 2.0 * m_
m g2 = 2.0 * m_g
case 2 ; running section

g/ 3.0
g/ 3.0

zsll = zsll + zdell * m_el + (zde22+zde33) * m_e2
72822 = zs22 + zde22 * m_el + (zdell+zde33) * m_e2
zs33 = zs33 + zde33 * m_el + (zdell+zde22) * m_e2
zsl2 = zsl1l2 + zdel2 * m_g2
st22=zs22
sll = sll1l + zdell * m_el + (zde22+zde33) * m_e2
s22 = 822 + zde22 * m_el + (zdell+zde33) * m_e2
s33 = 3833 + zde33 * m_el + (zdell+zde22) * m_e2
sl2 = sl2 + zdel2 * m_g2

case 3; max modulus

cm_max = m k + 4.0 * m_g / 3.0
sm_max = m_g
end_case
end

52



0 Number of steps

o 10 20 30 40 50 60 70 80

ZS22

o
o
T

100 -

-150
NN S22
200 P -~ I — S S

Vertical stress (kPa)

-250 -

-300 -

Figure 3.4 Comparison between FISH state variable and user-defined variable

(282 is FISH state vertical stress, sy, is un-averaged user-defined vertical stress)

It can be seen from Figure 3.4 that the steady value of zs22 is 50 kPa while s22 is 200
kPa. This means that Eq.3.2 is executed four times each timestep while Eq.3.1 only once,
hence, the user-defined stress variables need to be averaged, i.e to be divided by a factor

of 4 (see Figure 3.5).

3.4.2 Sub-element averaging

Values of some variables, e.g. plastic strains, may need to be averaged over the four sub-
elements. ‘zsub’ is an FISH state variable indicating when averaging can be processed.
Initially “zsub” has a value of 0 and it becomes 2 or 4 when calculation of one element
has been completed over its four sub-elements. Therefore when the statement “if zsub>0"

is true averaging takes place.

“If zsub >0 then...end_if ” 1is only used when a user-defined variable needs to be
averaged over the four sub-elements. The previous FISH code of the linear elastic model
is modified to get the correct values of user-defined stress variables (s,;, S», s3; and s;,) by

averaging their stress increments.
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;EFISH version of the linear elastic model
def m_elas

constitutive_model

f prop m_ g m k m el m_e2 m g2

f_prop sll s22 s33 sl2

float $dzsll $dzs22 $dzs33 $dzsl2

case_of mode
case 1 ; initialization

mel =mk + 4.0 *m_g / 3.0
me2 =mk - 2.0 * mg / 3.0
m g2 = 2.0 * m_g

case 2 ; running section
$dzsl11=%dzsll + zdell * m_el + (zde22+zde33) * m_e?2
$dzs22=5dzs22 + zde22 * m_el + (zdell+zde33) * m_e2
$dzs33=5dzs33 + zde33 * m_el + (zdell+zde22) * m_e?2
$dzsl12=$dzsl2 + zdel2 * m_g2
zsll=zsl1ll + zdell * m_el + (zde22+zde33) * m_e2
2822=2522 + zde22 * m_el + (zdell+zde33) * m_2
zs833=2z533 + zde33 * m_el + (zdell+zde22) * m_2
zs1l2=2zs12 + zdel2 * m_g2

if zsub>0 then
$dzsl1=$dzsll/zsub
Sdzs22=%dzs22/zsub
$dzs33=$dzs33/zsub
Sdzsl2=%dzsl2/zsub
sll = s11 + S$dzsll
S22 = s22 + $dzs22
s33 = s33 + $dzs33
sl2 = sl12 + S$dzsl2
$dzs11=0.
$dzs22=0.
$dzs33=0.
$dzsl12=0.

end_if

case 3; max modulus
cm_max = m k + 4.0 * m_g / 3.0
sm_max = m_g

end_case
end

o O O O
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Figure 3.5 Comparison between FISH state variable and user-defined variable

(282, is FISH state vertical stress; sy, is averaged user-defined vertical stress)

Figure 3.5 shows a comparison between the FISH state variable ‘zs,’ and the user-
defined variable ‘sy;’. Since ‘s,,’ has been averaged, it gives the correct value of 50 kPa.
As zsy, is associated with the last called sub-element while sy, is the averaged value of
the four sub-elements, they are slightly different before the system reaches the

equilibrium state.

Another important point is that if sub-element averaging is necessary in a UDM, FISH
state variables (zs,;...) must be updated prior to the statement “if zsub>0...”. Although
they can appear in a function or equation, they should never be updated inside “if zsub>0
then...end_if” statements. This is different from user-defined variables. The following is
a FISH code of the linear elastic model with FISH stress variables updated inside “if

zsub>0 ...end_if” statements.
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;FISH version of the linear elastic model

def m_elas

constitutive_model
f_prop m g m k m el m e2 m_g2

case_of mode
initialization

case 1 ;
m_el
m _e2 =
m_g2 =
case 2 ;
if zsub>
zsll
2822
zs33
zsl2
end_if
case 3;
cm_max
sSm_max
end_case
end

Using the same problem as for Figure 3.3a, Figure 3.6 shows that if FISH stress variables
( zS11, Z8y, 7833 and zs,,) are updated inside “if zsub >0 ... end_if” , they do not give the
correct response. Stress amplitude of approximately 25 kPa is obtained (the thick line)

while it should be about 50 kPa (i.e. the applied dynamic force) as inertia forces are

0

=mk + 4.0 * m_g

mk - 2.0 * m_g
2.0 * m_g
running

then
zsll
2822
zs33
zsl2

+ + + o+

section

zdell *
zde22 *
zde33 *
zdel2 *

max modulus
mk + 4.0 *m_g / 3.0

m_g

negligible in this case.

An important task in a UDM is to update FISH stress variables, i.e zs,,, ZSy, zS;; and zs,.
No matter how simple or sophisticated a code is, there must be a section in a UDM

updating the FISH stress variables and this section should not be put inside “if zsub>0

then ... end_if” statements.

~ ~
w w

m_el
m_el
m_el
m_g2

[eNe]

+
+
+

(zde22+zde33)
(zdell+zde33)
(zdell+zde22)
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Figure 3.6 Influence of location where FISH stress variables are updated

(Thick line: inside “if zsub>0..”; thin line: prior to sub-element averaging)

3.4.3 Strain increments

zde,,, zde,,, zde;; and zde,, are strain increments. They are generated by FLAC internally
according to boundary conditions and the current stress. They can appear in a function of

a code but should not be updated by the user in a UDM.

3.4.4 Pore water pressure

In a FLAC calculation stresses stored at each timestep are normally total stresses (e.g. Sxx,

syy and s,,). When a soil constitutive law is called each time to calculate elastic moduli

for the next timestep, effective stresses are always used, hence the following equation

needs to be incorporated into the incremental formulations of a UDM:

o =c—u (3.3)

Where u is the pore water pressure generated by a soil model itself (see Chapter 5). gis

the total normal stress represented by zs,;, zs» and zs;; in a FISH code.
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For example, if the mean effective normal stress ‘p’ is needed in a soil model, the

following equation should appear in the FISH code:

P =(z51 + 252+ 2553 )/3—u (3.4)

However if the pore water pressure ‘u’ is generated by means of the ground water mode
approach in FLAC (i.e using ‘gw’ configuration mode and ‘set flow off’, see FLAC4.0
manual Theory and Background) rather than by the user-defined soil model, the effective
stresses will be automatically calculated by FLAC and FISH state variables zs,,, zs, and
zs;; are always effective stresses. Therefore the above equation becomes as follows while

the FLAC stresses, Sy, S,y and s,, are still stored as total stresses:

P = (28 + 2802+ 2833 )/3 (3.5)

This can be seen by the following example in which a conventional triaxial test of elastic
soil is modeled (see the data file). The linear elastic soil model is used with
modifications to the previous FISH code. FLAC stress (s,,), pore water pressure (pp) and
FISH state variable zs,, (represented by a user variable $zs,, as histories of FISH state
variables can not be recorded directly by the command HISTORY). Pore water pressure

is generated by Ground water mode approach in this example.

;data file for a triaxial test
config axi gw

grid 1,1

gen 0.0, 0.0 0.0,0.1 0.1,0.1 0.1,0.0
fixy j 1

fix x I 1

set flow off

water dens 1 bulk 2e6 tens 1elO
call elas.fis

model m_elas

prop m_g 4.0e3 m_k 2.0e4 den 1.7
his syy

His $zs22

his pp

his ydisp I 1 j 2

fix y j 2

ini yv -1.0e-6 j=2

step 2000
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;FISH version of the linear elastic model

def

m_elas

constitutive_model
prop m_g m_k m el m_e2 m g2
float $zs22

£

case_of mode

case 1 ; initialization
mel =mk + 4.0 * m_g
me2 =mk - 2.0 * m_g
m g2 = 2.0 * m_g

case 2 ; running section
zsll = zsll + zdell *
72822 = zs22 + zdel22 *
zs33 = zs33 + zde33 *
zsl2 = zsl2 + zdel2 *
$2522=2822

case 3; max modulus
cm_max = m_k + 4.0 * m_g / 3.0
sm_max = m_g

end_case

end

Stress and pore water presure
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Figure 3.7 Effective and total stresses
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It can be seen from Figure 3.7 that FISH variable zs,, is converted to effective stress
automatically by FLAC although Eq.3.3 is not incorporated in the FISH code. If the pore
water pressure is generated by the soil model itself, the user has to convert the FISH
variables zs,;, zs» and zs;; to effective stresses which are used to check yield and

calculate elastic moduli in the FISH code of the soil constitutive model (see Chapter 5)

It is also noted that even if the FISH state variable zs,, is replaced with a user defined
stress variables (here $zs,, ), the conversion from total stress to effective stress is still
carried out by FLAC automatically. However the user’s variable must be put after “zsub
> 0 then” statement to avoid accumulation of stress over the four sub-element (see the
following FISH code). Figure 3.8 shows that the user defined variable ‘$zs,,” is effective

stress.

;FISH version of Elastic model
def m_elas
constitutive_model
f_prop m g m k m el m e2 m g2
float $zs22

case_of mode

case 1 ; initialization
mel = mk + 4.0 * m_
m_e?2 mk — 2.0 * m_
mg2 =2.0 * mg

case 2 ; running section

g/ 3.0
g/ 3.0

zsll = zsll + zdell * m_el + (zde22+zde33) * m_e2
2822 = 23822 + zde22 * m_el + (zdell+zde33) * m_e2
zs33 = zs33 + zde33 * m_el + (zdell+zde22) * m_e2
zsl2 = zsl1l2 + zdel2 * m_g2
if zsub>0 then
$zs22 = $2s22 + zde22 * m_el + (zdell+zde33) * m_e2
end_if
case 3; max modulus
cm_max = m k + 4.0 * m_g / 3.0
sm_max = m_g
end_case

end
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3.5 Summary

FLAC divides each quadrilateral element into two overlaid sets of triangular sub-
elements. A user-defined model (UDM) is called four times per element (once for each
sub-element) each timestep. Whether stress or strain is constant or not over the four sub-
elements depends on boundary condition and shape of the element. To get more accurate
results, stress and strain may need to be averaged over the four sub-elements although
this may not always provide “the correct” solution if a specific boundary condition is
involoved. If not specified, however, stress and strain of an element are only associated

with the last-called sub-element.

All local variables (e.g. property variables) must be defined under statement F_PROP in
a UDM code. Re-initialization should be avoided when multiple STEP commands occur

in a data file.

FISH state variables are manipulated internally by FLAC. They are not treated according
to the logic with which they appear in a code. They are not averaged over sub-elements
and are only associated with the last-called sub-element. They should not be updated

within ‘if zsub>0 then... ... end_if’ statements.

If pore water pressure is generated by a user’s soil model, stresses must be converted into
effective stresses by the user before the yield function is called. If the pore water pressure
is generated by FLAC as in ‘gw’ model, stresses are automatically converted to effective

stresses.
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4 PLASTIC CORRECTION APPROACH

Previous study (Ni, 2001) has indicated that numerical distortion (instability) occurs in
nonlinear dynamic analysis if a nonlinear constitutive law of soil is implemented using
‘apparent modulus’ approach. ‘Plastic correction’ approach is expected to be able to

reduce the numerical distortion.

The above two implementation approaches are discussed in this chapter. The hyperbolic
model in FLAC, which is implemented with ‘apparent modulus’ approach, has been
modified for cyclic loading to demonstrate the phenomenon of numerical distortion in
nonlinear dynamic modelling while a bilinear model has been implemented with the
concept of ‘plastic correction’ approach. The bilinear model has been found to perform
satisfactorily in dynamic analysis without using any additional damping to cope with the

numerical distortion problem.

4.1 ‘Apparent modulus’ approach
For a linear elastic model, there is no failure criterion. Only a set of constant
deformational properties are required to perform a mechanical calculation. Either bulk

modulus (K) and shear modulus (G) or Young’s modulus (E) and Poisson’s ratio (u ) can

be used. A general form of stress-strain relationship is given as follows.

c6=D°-¢ 4.1)

Where D° is a 4 by 4 matrix of elastic deformational constants, i.e. K and G or E and

1 (Note: FLAC prefers the use of K and G although any pair of the above four elastic

parameters can be used for describing the deformational characteristics of an isotropic

elastic material). 6 and & are stress and strain rate tensors respectively, each of which is
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expressed by a 4 by 1 matrix. For the plane strain problem, the above equation can be

expressed in the following form:

Ao-xx €, e, 6, 0 Agxx
Ao, | _|e, e e O | Az, (4.1a)
AO'ZZ e, €, ¢ 0 Agzz
Ao . 0 0 0 e Agxy

Where ¢, :K+§G, e, :K—gG and e, =2G

Similarly, a nonlinear model may be expressed as follows:

6=D"-¢ 4.2)

Where D is the matrix containing variable elements which depend on the current stress
and strain. Equation 4.2 may be expressed in a similar form to Eq.(4.1a), except that the

elements of the matrix are not constants.

In the ‘apparent modulus’ approach, at each timestep in an incremental calculation, D
needs to be computed according to a specific soil model. This may involve a series of
complicated incremental computation as in a bounding surface model (See Eq.5.32 in
Chapter 5) or a simple closed-form solution as in a hyperbolic model (e.g. Duncan and
Chang, 1970, also see Eq. 4.6 in this chapter). The equivalent modulus (usually tangent
modulus) is formulated in such a way that it varies from the small strain modulus (i.e. the
elastic modulus) to a very small value close to zero. The ‘apparent modulus’ approach is
conceptually illustrated in Figure 4.1, where Gy, is the apparent shear modulus, G. is the

small strain shear modulus, g is the deviator stress and ¥ is the engineering shear strain.

At time 7 in a nonlinear incremental calculation, the equivalent modulus is calculated and
is used to update the stress at time 7 + Az using Hooke’s law, which is expressed herein as

equations 4.1 and 4.2. At the first timestep of the entire calculation and the second
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timestep after a strain reversal takes place (Note: it is the second timestep not the first
timestep because there is a one-step delay in the calculation of modulus), the equivalent
modulus is taken to be the small strain modulus (i.e. elastic modulus). At any other
timesteps, the equivalent modulus is smaller than the small strain modulus and it
decreases as plastic deformation increases. Therefore, a sudden change in the equivalent
modulus occurs each time when a strain reversal takes place (See Figure 4.2). This is
considered to be the cause of the numerical distortion in a nonlinear dynamic analysis.
However, this is still an assumption (see Section 4.3.1 and Section 4.4). This assumption
justifies the use of plastic correction approach to solve the distortion problem because this

approach utilises elastic modulus which is constant or changes slightly.

time ¢+ Ar

Ry

Figure 4.1 lllustration of ‘apparent modulus’ approach
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Figure 4.2 Sudden change in apparent modulus

It should be pointed out that in Eq. 4.2, £is the total strain increment (or rate) rather than
the elastic part of the strain increment as in ‘plastic correction’ approach. This is because
that the nonlinear behaviour is taken into account by using the equivalent modulus which

contains contributions form both elastic and plastic behaviours.

4.2 ‘Plastic correction’ approach
4.2.1 Explicit and implicit integration

There are two ways to carry out the plastic correction, i.e. explicit and implicit (Dunne
and Petrinic, 2005). The explicit integration method is normally employed in a finite
difference program such as FLAC while the implicit method is often used in a finite
element program. There is a good explanation in FLAC manual (Cundall, 2000) about the

advantages and disadvantages between these two integration methods.
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Figure 4.3 Conceptual illustration in general stress space of plastic correction

The incremental form of Hooke’s law same as Eq.4.2 is used in both explicit and implicit
integration methods except that the total strain increment (& ) in Eq.4.2 needs to be
replaced with the elastic part (£°) of the total strain increment and the equivalent elasto-
plastic stiffness matrix D needs to be replaced with the elastic stiffness matrix D° (see
Eq.4.3). The main difference between explicit and implicit methods is the way in which

the plastic strain increment is obtained.

6=D°-¢&° 4.3)

In the explicit method (shown as Figure 4.3a), a very small timestep is required to ensure
that stress after the plastic correction stays on the hardening surface. The use of a large
timestep may result in the stress drifting from the surface after many timesteps. Therefore
the solution of the explicit method is conditionally stable. After the stress increment is
obtained through the above equation, it is added directly to the stress at time ¢ to get the

new stress at the end of timet+ Ar. Whether the new stress remains on the hardening
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surface or not depends on how small the timestep is. An error is inevitable after many
timesteps of calculation and satisfactory results can only be achieved by using very small

timesteps.

In the implicit method (shown as Figure 4.3b), plastic strain increment is obtained
through an iteration process (using Newton’s method to solve the yield function), which
ensures that the stress at 7 + At satisfies the yield condition, i.e. falls onto the hardening
surface. Therefore, the solution of the implicit integration is unconditionally stable and a

large timestep may be used in a calculation.

4.2.2 Procedures of plastic correction

In ‘plastic correction’ approach, D° rather than D is computed each timestep and only
the elastic part of a strain rate contributes to change in the stress rate. However

components of D° may not be necessarily constant.

The incremental algorithm used in FLAC involves computation of the elastic modulus at
time ¢, which is used to obtain a trial stress at time ¢+ Ar with the Hooke’s law
corresponding to the total strain increment (&). If no yielding occurs, the trial stress is

taken to be the real stress. Otherwise, the real stress is obtained by replacing the total

strain increment with the elastic part (£°) of the total strain increment in the Hookes’ law
while the modulus remains to be the elastic modulus computed at time 7. As the elastic
modulus is much less variable than the equivalent modulus, there is no abrupt change in
the modulus during the incremental calculation. Therefore, the numerical distortion

encountered in the ‘apparent modulus’ approach is expected to be reduced or eliminated.

Figure 4.4 shows the flow chart utilised to programme the ‘plastic correction’ approach in

FLAC. The ‘plastic correction’ approach is illustrated in Figures 4.5 (a) and (b).

Given a total strain rate (&), a trial stress rate (d"""’l) is first obtained from an elastic trial

using the following relation.
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d'trial — De 8 (4.4)

trial

This trial stress rate (6™ ) is then used to check plastic yielding and the plastic part (&)

of the strain rate (&) is calculated if yielding occurs. The actual stress rate (6 ) is
obtained through a correction of the strain rate in Eq.4.4 so that only the elastic part of the

strain rate contributes to the change in the stress rate, i.e.

6=D°-(¢-¢")=D°-¢° 4.5)

.| Apply a strain
increment, &

A

Get stress increment
from elastic trial

o-_trtal — De &

A

Check yield No | Accept the trial stress
increment 6 = 6"
Yes
A 4
Correct the Compute plastic

stress increment, [«
6=D° -(¢-¢&")

strain increment, &”

Figure 4.4 Flow chart of ‘plastic correction’ approach

( D¢ is the matrix of elastic moduli)
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Figure 4.5 Conceptual illustration of ‘plastic correction’ approach
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4.3 Implementation of two nonlinear models
4.3.1 A hyperbolic model

The hyperbolic soil model developed by Duncan and Chang (1970) is implemented in
FLAC with ‘apparent modulus’ approach. In the model, the apparent tangent Young’s

modulus, E;, is defined by the following relation.

E;=(-R;.SL)*.E; and E, =KP,(c,/P,)" (4.6)

Where

SL=(0,—0,)/(0,—0,), is stress level;
(0,—03), =(2ccosp+20,sinp)/(1-sinp) is the deviatoric stress at failure as

determined by the Mohr-Coulomb criterion;

E; is the initial Young’s modulus;

K, n are model parameters; P, is atmospheric pressure;
R, =(0,-05),/(0,—0;),, i1s a model parameter used to describe the curvature of the

ult

hyperbolic function; (¢, —0o;),, 1s the theoretical asymptote of the hyperbolic function.

ult

The model was developed for use in static loading condition. Hereinafter the model is
extended for cyclic loading purely for the purpose to explore the problem of numerical
distortion. It is assumed that the stress-strain relation in unloading follows the same

relation as Eq.4.6 but the stress level (SL) is modified as follows:

SL=[(o, —03)—(0,—03)1/(0, —03), 4.7)
where
(o, —04), 1s the deviator stress, i.e. g, at the last turning point.

The above modification has been incorporated in the FISH code of the hyperbolic model

appended to this section, in which Ry is assumed to be 1.0 and for convenience the initial
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Yong’s modulus E; and strength (o, —0;), are given as inputs. Figure 4.6 shows the

flow chart used in coding of the model.

Apply strain rate, &

A

A 4
Calculate current stress and deviator stress
new old . new __ _old .
o =" +0 q"" =q"" +q
A 4
Check strain reversal No.
» old __ _new
q9 =4
Yes
A\ 4 A 4
Update go .| Update shear modulus, G
_ _old 7
9o =4

Figure 4.6 Flow chart of a hyperbolic model modified for cyclic loading

Figure 4.7 shows the response of an axisymmetrical single-zone model simulating a
conventional triaxial specimen subject to a 100-cycle vertical sinusoidal loading. The

frequency is 1Hz and axial strain amplitude is 1%. E; =112.5 MPa, (o, —0;) P = 400 kPa,

bulk modulus = 200 MPa, ¢,=100 kPa, p = 18 kN/m’. 1% Rayleigh damping is applied.

The response is stable within 100 cycles.

Numerical distortion occurs if there is no additional damping applied to the model (See
discussions in Section 4.4). Figure 4.8 shows that an unstable response occurs within 12
cycles. This is due to the sudden change in modulus at turning points. A non-physical
vibration is caused when strain reversal takes place. Hence extra unbalanced forces are
introduced into the grid nodes. These unbalanced forces are accumulated cyclically and

may lead to collapsing of the model.
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Figure 4.7 Dynamic response of the hyperbolic model
(100-cycle vertical sinusoidal loading, frequency =1 Hz

with 1% Rayleigh damping, timestep = 1x10™ second)
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Figure 4.8 Dynamic response of the hyperbolic model without additional damping

(12- cycle vertical sinusoidal loading, frequency =1 Hz, timestep=1.0x10" second)
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Figure 4.9 Static response of the hyperbolic model

(20 cycles, maximum strain = 1%, strain increment = 0.001% per step)
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Figure 4.10 Dynamic response with a timestep of 1.0x1 0 second

(15- cycle vertical sinusoidal loading, frequency =1 Hz, no damping)
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It has been found that the model works well in a static analysis (see Figure 4.9) and a
satisfactory performance of the model can be obtained using an appropriate strain
increment. In a dynamic analysis, however, reducing timestep (similar to reducing the
strain increment in static analysis) does not help solve the problem of numerical
distortion. In Figure 4.10, the timestep is 10 times smaller than that in Figure 4.8. The
performance of the model is stable within the first 12 cycles, but it gets worse and worse
afterwards. Therefore it is essential to apply an additional damping, as in Figure 4.7, to
obtain a satisfactory performance of a nonlinear soil model if it is implemented with the

‘apparent modulus’ approach.

;FISH code of the Duncan elastic-hyperbolic model
;jbased on FLAC’s hyp.fis and modified for cyclic loading
;update young's modulus each timestep while bulk modulus is constant
set echo off
def hyper_bn

constitutive_model
;——— model variables ——-

f_prop y_mod b_mod yield y_initial

;soil property variables, yield=2*Su

;v_initial=initial Young's modulus

f_prop h_el h_e2 h_g2 vy_squared

f_prop g0 g sign_old g_old GO

float $dg $sign $shear $g_ult

float $dzsll $dzs22 $dzs33 $dzsl2

float $dsl $ds2 $ds3 $dif S$suml $sum?2

f_prop stepCommand

case_of mode
;——— initialization —-——

case 1
if StepCommand=0 then
if y_mod = 0.0 then
y_mod = y_initial

end_if
Sshear = 3.0 * y_mod * b_mod / (9.0*b_mod-y_mod)
h_el = b_mod + 1.333333 * S$Sshear
h_e?2 = b _mod - 0.6666667 * Sshear
h_g2 = 2.0 * S$shear
yield_1 =2.0*yield
G0=$shear
StepCommand=1.0

Endif

;——— running section —--—-

case 2
zvisc = 0.0
;jcalculate stress increments
Sdzsll = (zde22+zde33) * h_e2 + zdell * h_el
Sdzs22 = (zdell+zde33) * h_e2 + zde22 * h_el
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$dzs33 = (zdell+zde22) * h_e2 + zde33 * h_el
Sdzsl2 zdel2 * h_g2

;jcalculate deviator stress increment

Sdsl = $dzsll - $dzs22

Sds2 = $dzs22 - $dzs33

$ds3 = $dzs33 - $dzsll

Sdg = $dsl*sdsl + $ds2*$ds2 + $ds3*S$ds3
$dg = 0.7071l*sqgrt($dg + 6.0*$dzsl12*$dzs12)
;Calculate stresses

zsll = zsll + $dzsll

2522 = zs22 + $dzs22

zs33 = zs33 + $dzs33

zsl2 = zsl2 + $dzsl2

;accumulate deviator stress increment among sub-zones
Ssuml = $suml + $dg

;accumulate strain increment among sub-zones
Ssum2=$sum2+zde22

;jAverage user's variables over sub-zones

if zsub > 0.0 then
$dg=$suml/zsub
Ssuml=0.0
$sign=sgn($sum2/zsub)
Ssum2=0.0
g=g+$dg*$sign ;current deviator stress
;check strain reversal
if $sign*sign_o01d<0.0 then
g0=g_old
yield=yield_1
end_if
;update Young's modulus
Sdif = max(0.0,yield-abs (gq—g0))
y_mod = y_initial * $dif"2/ yield"2
;convet Young's modulus to shear modulus
$shear = 3.0 * y_mod * b_mod / (9.0*b_mod-y_mod)
;calculate the three modulus variables for next step

h_el = b_mod + 1.333333 * S$shear
h_e2 = b_mod - 0.6666667 * S$shear
h_g2 = 2.0 * S$shear
;store variables
g_old=q
sign_old=$sign

end_if

case 3

;——— max modulus —---

$shear = 3.0 * y_mod * b_mod / (9.0*b_mod-y_mod)
cm_max = b_mod + 1.333333 * $shear

sm_max=G0
cm_max=b_mod + 1.333333 * GO

end_case

end

;opt hyper_bn
set echo on
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4.3.2 A bilinear model

It has been found in previous study (Ni, 2001) that an unstable response will occur in a
dynamic analysis if a bilinear model is implemented with the ‘apparent modulus’
approach. The larger the difference between yield and elastic modulus of soil, the more

severe the problem.

Herein the bilinear model is implemented using the concept of ‘plastic correction’
approach. A constant modulus is used and when yielding occurs a stress correction is

carried out instead of using a yield modulus.
The bilinear model is formulated in a triaxial stress space. It is assumed that the same

stress-strain relation applies to both compression and extension and there is no tension

failure. The yield function is defined as follows:

(4.8)

Where ¢, is the axial strain; g is the deviator stress; A and B are two constants with the

same unit as g, which determines two yield lines as shown in Figure 4.11.

An elastic trial calculation is carried out each timestep to get a trial stress and if yielding
occurs, i.e. f >0, the trial stress point is corrected back onto the yield lines. As there is no
formulation in calculating plastic strain in this case, the plastic correction is performed

with a correction ratio defined as follows:

A
=2 4Bt

|q| y 4.9)
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Figure 4.11 A bilinear model using ‘plastic correction’ approach
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Figure 4.12 Flow chart of implementation of a bilinear model
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o =a" . ratio (4.10)

Figure 4.12 shows the flow chart for implementation of the bilinear model and the FISH
code is also given at the end of this section. The bilinear model has been found to
perform well in dynamic analysis without any additional damping. Figure 4.13 shows that
a 16-zone model (simulating a triaxial specimen 0.4 m in height and 0.2 m in diameter)
undergoes a dynamic loading for 1000 cycles without any sign of numerical distortion.
No additional damping is applied. A high frequency of 20 Hz is chosen to test the
performance of the bilinear model as numerical distortion is frequency dependent and the

higher the frequency, the more severe the distortion.
The bilinear model is identical to the Mohr-Coulomb model when B = 0. A comparison

in dynamic analysis between these two models is shown in Figure 4.14. There is virtually

no difference in the dynamic response.
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Figure 4.13 Dynamic response of a multi-zone bilinear model

(triaxial specimen 0.2 m by 0.4 m, 16 elements, sinusoidal loading, 1000 cycles, 20 Hz;
G=40 MPa, K = 200 MPa, A=260 kPa, B = 800 kPa.)
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Figure 4.14 Comparison of the bilinear model with Mohr-Coulomb model

(triaxial specimen 0.2 m by 0.4 m, 16 elements, sinusoidal loading, 200 cycles, 20 Hz;
G=40 MPa, K = 200 MPa; left — Bilinear model, A=200 kPa, B = 0 kP; right — Mohr-
Coulomb model, q,=200 kPa)
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;FISH version of the bilinear model
;jimlemented with ‘Plastic correction approach’
;jthis version is for triaxial stress condition

set echo off

def m_bilinear
constitutive_model
f_prop b_g b_k A B
f_prop b_el b_e2 b_sh2
f_prop strain

float S$ratio $zde22 $gq $qg_max

case_of mode
; ——— i1nitialization —---
case 1
b_el =
b_e?2
b_sh2 = 2. _ g

Il
N oo
o~ ~

+

O N
oo
* %

* |

; ——— running section —---
case 2
zvisc = 0.0
; ——— get new stresses from
zsll= zsll + (zde22 +
72822= 72822 + (zdell +
zs833= zs33 + (zdell +

b_g / 3.0
b_g / 3.0
old

zde33) * b_e2 + zdell
zde33) * b_e2 + zde22
zde22) * b_e2 + zde33

zs1l2 =zsl12 + zdel2 * b_sh2

Szde22=S$zde22+zde22
Sq=(zs22-zs11)
strain=strain+zde22

$g_max=sgn ($q) *A+ B*strain

if abs($qg)>abs($gq_max)
Sratio=abs ($g_max/$q)

zsll=zsll*S$Sratio

zs22=zs22*Sratio

zs33=zs33*Sratio

zsl2=zsl2*Sratio
end_if

; ——— max modulus —--
case 3
cm_max
sm_max = b_g
end_case

end

opt m_bilinear

set echo on

then

bk + 4.0 * b_g / 3.0
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4.4 Discussion on numerical distortion

The numerical distortion (instability) encountered in ‘apparent modulus’ approach is
considered to have nothing to do with the effects of timestep or zone size. As shown in
Section 4.3.1, reducing timestep does not help to solve the problem. Previous study has

also indicated that reducing zone size does not help either.

The problem may be partly due to the formulation of a soil model. For example, in a
nonlinear model, an equivalent apparent tangent shear modulus may be formulated as

follows:

GG’
UPI’=Ge+Gp 4.11)
Where G, is the apparent tangent shear modulus, G° is the small strain shear

modulus and G” is the plastic shear modulus.

G’ may be formulated in such a way that it varies from infinity (o) to zero so that
Gpp has a range of value between the small shear modulus and zero. Therefore,
around the strain reversal points, G' may well exceed the precision limits of a
computer, which can cause computational error. One can solve the problem by
specifying values of shear modulus when G’ exceed the precision limits (i.e. using
‘if ... then’ statements in a FLAC program to avoid execution of the above
equation). However, this will normally result in non-smooth transition in calculated

stiffness.

The above computational error may also be introduced into a nonlinear model
implemented using ‘plastic correction’ approach as a large plastic modulus is also
required at the onset of yielding in order to obtain a smooth transition from elastic

region to elasto-plastic region.
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However there may be other reasons causing the problem, which can be more
dominating than the precision limits of numbers. From analyses using the Duncan
and Chang model (Section 4.3.1), it has been found that even though values of
variables do not exceed the precision limits, severe distortion still occurs. It is
suspected that the sudden change in apparent modulus appears to be one of the
main reasons. Due to the repetitive sudden change in stiffness, some non-physical

vibrations may be generated in the system.

In ‘apparent modulus’ approach, both of the above two factors contribute to the
problem. It is expected that the distortion problem can be reduced in ‘plastic
correction’ approach (as shown in Section 4.3.2) because there is no sudden change
in modulus. However, computational errors may still be generated if the value of a

variable exceeds the precision limits of a computer during the calculation.
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4.5  Summary

Two approaches for implementing nonlinear soil models in FLAC, i.e. ‘apparent

modulus’ and ‘plastic correction’, have been discussed.

The hyperbolic model provided in FLAC has been modified for cyclic loading to explore
the problem of numerical distortion. It has been found that numerical distortion occurs in

dynamic analysis if a nonlinear model is implemented with ‘apparent modulus’ approach.

This kind of numerical distortion is considered to be associated with strain reversals.
Computational errors are introduced into the calculation around the turning points. The
reasons for the errors may include: computed values of some variables exceed the
precision limits of a computer; non-physical vibration is caused by the sudden change in

stiffness of the model.

No matter what reason it is, it has been found that the problem has nothing to do with the
size of timestep. Hence, reducing timestep does not help to reduce the problem. However,
it can be minimised by applying an additional damping, which damps out to some extent
the extra unbalanced forces caused by the errors. The numerical distortion does not occur
in a static situation because a large default damping ratio (80%) is applied in FLAC. In a
dynamic analysis, the numerical distortion becomes more severe as the errors can
accumulate cyclically. An additional damping (say 5%) may not be sufficient to eliminate
the problem. On the other hand, this additional damping may well affect the results of the
analysis. Therefore, for dynamic analysis, ‘plastic correction’ approach has to be used to

obtain a satisfactory result.

A bilinear model has been implemented in FLAC using the principle of ‘plastic
correction’ approach. Satisfactory dynamic performance has been obtained from the
bilinear model without using any additional damping. This has formed the basis for the
work of implementing a more advanced plasticity model, i.e. the Bubble model in

Chapter 5.
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5 THE BUBBLE MODEL AND ITS IMPLEMENTATION IN FLAC

The Bubble model was first proposed by Tabbaa & Wood (1989). It was extended by
Wood (1995) for structured soils, i.e. most natural soils, which have different stress-strain
behaviours after being remoulded. More general formulations were given by Rouania &
Wood (1998, 2000) in general stress space and Lode’s angle was introduced into the yield
functions. Further work was undertaken by Gajo & Wood (2001) to include rotational

hardening in the model.

A full description of the model proposed by Rouania & Wood (2000) is presented in
Section 5.1. For consistency, it is still called ‘Bubble model’. An alternative form to the
plastic modulus function of the model is proposed and discussed in Section 5.2, which
has been found to better incorporate the influence of bubble’s size on response of the
model. The elastic bulk modulus function has also been extended for over-consolidated
soils. The modified model has been implemented in FLAC with the ‘Plastic correction’
approach as described in Chapter 4. Main aspects of the implementation are discussed in
Section 5.4. A complete FISH code of the model is attached to the chapter with detailed

notations.

5.1 Description of the model (Rouania & Wood, 2000)

The Bubble model is an extension to the modified Cam-clay model and is formulated
within the kinematic hardening framework similar to the two-surface model proposed by
Mro6z et al. (1979). The non-intersection translation rule proposed by Hashiguchi (1985)
is utilised in the model. The model can be used for both structured and non-structured

soils. It can also be reduced to the modified Cam-clay model.
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Basic elasto-plastic assumption
The Bubble model, like other elasto-plastic models, has been developed on the basic

assumption that strain rate consists of two parts, i.e. elastic and plastic strain rates.

e=¢&"+¢’ (5.1)
The constitutive relation presented in this section is formulated in general stress space.
All the tensor quantities are denoted by bold characters. The superimposed dot stands for
time differentiation. Further details of all the tensor quantities and tensor products are
given in Appendix B attached to this chapter.
The elastic constitutive relation is given by the following equation.

6=D°" & (5.2)

Where D° is a matrix of isotropic elastic properties presented by the bulk and shear

moduli, K and G. The bulk modulus, K, is defined as follows:

k=2 (5.3)

Where p is the mean effective principal stress, x* is the slope of the swelling line in a
logarithmic specific volume-logarithmic mean stress compression plane (i.e.

Inv ~ Inp plane) rather than in a specific volume-logarithmic mean stress compression

plane (Butterfield, 1979).

Yield surfaces

The Bubble model has three surfaces, i.e. reference surface, bubble and structure surface.
The three surfaces have the same elliptical shape and their size and location change when
plastic strain occurs. The analytical equations are expressed in ‘p, s’ space. p is mean

principal stress and s is deviatoric stress tensor.
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p= %tr[a] s=0c—pl 5.4

Where o is the stress tensor, I is the second-rank identity tensor and tr[.] is the trace

operator of [.].

The reference surface is utilised to model intrinsic behaviour of reconstituted soils. It
passes through the stress origin and is always centered on the p axis in the p, g space. Its
size changes when plastic volumetric strain occurs according to an isotropic hardening

rule (See Eq.5.19). The analytical equation is defined as follows:

3
2M ;)

= ($):()+(p—p)*—=(p.)* =0 (5.5)

Where p. is a scalar variable defining the size of the reference surface (See Figure 5.1);

M ,is a dimensionless scaling function of Lode’s angle 6, which affects the shape of the

surfaces in deviatoric space. It is given by

_ 2mM
(1+m)—(1-m)sin(36)

(5.6)

0

Where m is the ratio between radii of the sections through the surface for axisymmetrical
extension and compression in deviatoric plane. It should be between 0.7 and 1.0 to ensure
convexity. M is the critical state stress ratio for axisymmetrical compression. Lode’s

angle 0 is related to the second and third deviatoric invariants, i.e. J2 and J3:

<X (5.7)

— <60 ==sin
237 |76

6 3

-7 1. _1|Z—3\/§J3}
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Figure 5.1 Three surfaces of the Bubble model

The bubble is the boundary of elastic behaviour. When stress path engages the bubble
plastic deformation occurs and the size of the bubble changes according to the isotropic
hardening rule, and, at the same time, it translates inside the structure surface according
to a kinematic hardening rule. Its analytical equation, i.e. the yield function, is defined as

follows:

2;;5 (s_sa):(s_sa)"'(P_Pa)z_(RPC)Z:0 (5.8)

[y =
In the above equation, {pa,sa}T = a denotes the location of the centre of the bubble. R is

a constant parameter representing the ratio of size between the bubble and reference

surface.
The structure surface acts as a bounding surface. It collapses towards the reference

surface as plastic strain develops. Both volumetric and shear strain contribute to the

destructuration. After completion of the destructuration, the size of structure surface is
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only controlled by the isotropic hardening rule. The analytical equation of the structure

surface is given by

3

F=—"1
2M

[s—(r=Dnop J:[s —(r=Dmop )+ (p=rp)* =(p.)> =0 (5.9

Where 7, is a dimensionless deviatoric tensor controlling the structure surface,

{rpc,(r—l)iy0 D, }T = a denotes the centre of the structure surface. The scalar variable r,

which represents the process of the progressive destructuration of a structured soil, is the
ratio of the sizes between the structure surface and the reference surface and it is assumed

to be a monotonically decreasing function of the plastic strain.

r:1+(r0—1)exp[—;k8d* :l (5.10)
(4 —x)

Where A~ is the slope of the normal compression line expressed in a logarithmic specific

volume-logarithmic mean stress compression plane (i.e. Inv ~ Inp plane); ry is the initial

size of the structure surface and k is a parameter controlling the rate of destructuration

with strain. The incremental form of equation (5.10) is given as follows:

: k :
l’:—m(l"—l)gd (511)

In this equation ¢, is an assumed destructuration strain rate having the following form:

¢, =[(1—-A)EP)? + AED)?]"? (5.12)

Where &7 = [5 (¢ :é7)]""* is the equivalent plastic shear strain rate, é” =r[£”] is the

plastic volumetric strain rate. ‘A’ is a scaling parameter ranging between 0 and 1. For A =
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0 the destructuration is entirely volumetric, while for A = 1 the destructuration is entirely

distortional.

Flow rule

The flow rule is associated with the bubble. When the yield function f, =0 (i.e. in

numerical analysis, f, = 0) is satisfied, plastic strain occurs, which is given by

v :%(ﬁ:o‘)ﬁ (5.13)

Where ¢ is the stress rate and n denotes a unit vector representing the normalised stress

gradient on the bubble at the current stress state and ||ﬁ|| = |17 :i"? =1. The computation

of m involves the derivatives of Lode’s angle with respect to stress (see Appendix 5.3). H

is the scalar plastic modulus expressed as follows:

1 Bp] b .,
= 14
H Hc+”n”2 u*_x*)R(b ) (5.14)

max

Where n is the stress gradient on the bubble at the current stress state. ||n|| =[n:n]".B,

w are two material parameters controlling the rate of decay of stiffness with strain. H, is

the plastic modulus associated with the conjugate stress state ¢ _on the structure surface.

It is given by

3
s—s-):n,+Rp. |—
ZM;( a) ’10 pc 2M§

rpc<T[(p—pa)+ (p—pz)s—s;) ”:>

H =

C

: 4 (S—Sa) :(S_Sa)]

}L*_ * _ 72
4 =x)l(p-p;) +2Me

(5.15)

Where the quantity 7 is given by
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1/2

34 (s—s5;):(s—53)

-1
T=(p-p)—k(—)| d=A)p—-p.)>
(p—pz)—k( . )| ( X p—pz) +2M

2
0

(5.16)

In Eq.5.14, b is a normalised distance between current stress point ¢ on the bubble and
the conjugate stress point o, on the structure surface, and b, i1s obtained when the

bubble is touching the structure surface at a point diametrically opposite to the conjugate

stress point (see Figure 5.10 in Section 5.3). b and bnax are expressed as follows:

b=n:(c, —0) (5.17)
b, = 2(% —Din:e (5.18)

Where 6 =6 —a is the normalised stress with respect to the centre of the bubble.

Isotropic hardening rule
In line with the Cam-clay model, a volumetric hardening rule is adopted in the Bubble
model, i.e. all the three surfaces change in size only when plastic volumetric strain

occurs. It is given by

T -
. —K

Kinematic hardening rule
When plastic strain occurs the bubble translates inside the structure surface according to

the kinematic hardening rule given by

s b g Py T B ID) + (B p )1+ )]
r

C

P —— (6.—-0) (5.20)
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Where 6 =6 —a is the normalised stress with respect to the centre of the structure

surface. Discussions about the kinematic hardening rule are given in the next section.

5.2 Modifications of the Bubble model

5.2.1 Plastic modulus function

3
” 1”2 (X*Bp’;*)R (bb ), the second
n - max

In the hardening modulus function, i.e. H = H_+

term is an interpolation function which affects the behaviour of the model significantly.
The interpolation function is not unique. Any other form can be adopted as long as a
steady fall of stiffness with strain towards Cam-clay value can be achieved as the bubble
approaches the structure surface. This will not change the fundamental framework of the

constitutive model in Section 5.1.

It has been found that for a given set of parameters, in order to obtain a realistic response
of the model, the value of parameter B has to be varied in a large range if the bubble size

parameter R changes.
Figure 5.2 shows the initial state of a non-structured soil in triaxial stress space. To show

the influence of bubble size on the response of the model, three bubble sizes (R = 0.1, 0.2

and 0.3) are considered while other parameters are the same, which are given as follows:

2=03 x =0.02 u=025M=1.0 m=1.0 B=4 y=1.0
n,=0r,=1.0A=05 k=8 o, =p,=100kPa
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Figure 5.2 Initial state of a non-structured soil
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Figure 5.3 Stress-strain behaviour with variable bubble size (B = 4)

Figure 5.3 shows the undrained stress-strain curves of the model corresponding to the

three bubble sizes. As o = p.,=100 kPa and M = 1, a realistic response of the model

should correspond to an ultimate deviator stress of about 100 kPa. Therefore the curve for

R = 0.1 represents the realistic response. It is expected that the ultimate stress for the
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other two bubble sizes should be similar as the initial conditions are the same. To achieve
similar results for different bubble sizes, the value of parameter B has to be varied. It has
been found that B has to be varied from 0.5 to 50 if bubble size R changes from 0.05 to

0.3 in order to get consistent realistic results (see Figures 5.4 and 5.5).

120

100 -
T
o
< 80 -
§ —R=0.05,8=0.3
% 601 ——R=0.1,B=4
2 —_R=0.2,B=20
© 40 -
3 —R=0.3,8=50
[m)]

20

0 T T T T T
0 1 2 3 4 5 6

Vertical strain (%)

Figure 5.4 Response of the bubble model to different combinations of B and R

60

50 - .

40 -

30 -

Parameter B

20 .

10

0 e T T T
0.0 0.1 0.2 0.3 0.4
Size of bubble R

Figure 5.5 Relationship between B and R
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Although it is not difficult to find a value of B to suit a particular bubble size, it is more
desirable that B should be less sensitive to the bubble size. To better incorporate the
influence of bubble size into the interpolation function, a temporary parameter, C, is
introduced into the function (Note: The bubble size R is also hidden in b, b, H. and n).

C is a function of bubble size R. The hardening function is now given by

1 Cp] b
— H C : 174
.+ ||"||2 @ - (bm)

Using the same parameters and varying y between 0.5 and 1.5, a relationship of
parameters C and R is found by trial and error to achieve realistic responses of the model.
Results are shown in Figure 5.6. It can be seen that the relation of C and R in the original
interpolation function is opposite to the best fit curve. This explains why B has to be

varied in a large range.

The best fit relation of C and R, i.e. C = 580.0 R, suggests a new form of the hardening

modulus function as follows:

1 BR’p} b
H=H : ¥ 5.21
c+”n||2 7 —K*)(bmax) (5.21)
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Figure 5.7 Response of the model with new hardening function and constant B

(R = 0.001 ~1.0, B = 2000)

Figure 5.7 presents responses of the model using the new hardening modulus function for
the same problem. The bubble size is varied between 0.001 and 1.0 while all other
parameters are the same for each bubble size. All the responses are similar and realistic

using a constant value of B.
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5.2.2 Elastic bulk modulus

In the Bubble model elastic bulk modulus is defined as Eq.5.3,i.e. K = P It is obvious

.

K
that if the confining pressure is zero the bulk modulus would be zero. This is true for
normally consolidated soil but not for over-consolidated soil. For natural soil, use of the
equation tends to result in over estimation of deformation. Therefore, for over-

consolidated soil the bulk modulus is modified as follows.

+K, (5.22)

Where K| is the bulk modulus when the confining pressure is zero.

5.3  Discussions
Comparison of parameters between Bubble model and the modified Cam-clay model

When R = 1.0, r, = 1.0 and #, =0, the Bubble model is reduced to the modified Cam-

clay model. Parameters k and A have no influence as no initial structure of soil is
involved. Parameter m is ranged between 0.7 and 1.0 and has no influence in

axisymmetrical compression. Therefore parameters of the Bubble model are reduced

to}'*,K*’M7pw B7 l/j’ ,u-

Parameters of the modified Cam-clay model include: 4,x, M, p_ , u. A reference point

(v,0, Do) on the normal consolidation line must be specified to use the model.

p., and p_ represent the size of yield surface. In the Bubble model p, corresponds to
the centre of the yield surface while p_ in the modified Cam-clay model is associated

with the intersection point of the yield surface and the p axis, i.e p_, =2p, (see Figure

5.8).
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Modified Cam-clay
model

Figure 5.8 Yield surface

Butterfield (1979) suggested using a logarithmic specific volume-logarithmic mean stress

compression plane rather than a specific volume-logarithmic mean stress compression

plane. Typical values for the two parameters A1, x from Butterfiled are given in Table 1.

Table 5.1 Typical values of parameters A and &°

(Butterfield, 1979)

Soil x K

Mexico City Clay 0.498 0.025
London Clay 0.083 0.037
Newfoundland peat 0.214 0.117
Newfoundland silt 0.103 0.016
Chicago Clay 0.154 0.045
Boston blue Clay 0.122 0.024
Drammen Clay, plastic 0.140 0.016
Drammen Clay, lean 0.104 0.018
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Stallebrass and Taylor (1997) used A = 0.073 and x" = 0.005 in the 3-SKH model for
Speswhite kaolin while Morrison (1994) used A= 0.18 and x = 0.035 in the modified

Cam-clay model for the same soil.

Rouainia and Wood (2000) used A = 0.252 and x = 0.0297 in the Bubble model for
Norrkoping clay.

In fact, A',x vary with mean principal stress. For small strain problems A',x can be

related to A,x by

X zi and k¥ =~ — (5.23)

Where v, is the initial specific volume corresponding to the initial mean effective

principal stress p,. Further explanation about the above relationships is given as follows.

In the logarithmic specific volume-logarithmic mean stress compression plane shown as

Figure 5.9, the compression line is defined by

(L )=—xrmL) (5.24)

Vio p,

Differentiation of Eq.5.24 gives

(5.25)

On the other hand, in the specific volume-logarithmic mean stress compression plane, the

compression line is defined by
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y=v, - ,un(pi ) (5.26)

Differentiation of Eq.5.26 gives

dv=_ (5.27)
p

Substitution of Eq.5.25 gives

Az = 4 (5.28)
v
Similarly, the following relationship can be obtained
o=k (5.29)
v

. . A .
For small strain problems,v = v,, hence 4 = — and kx = —
Yo Vo

The above relationships will be used in Section 6.3 when the Bubble model is

compared with the modified Cam-clay model.
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Figure 5.9 Normal consolidation line and swelling line

Stress gradient and normalized stress gradient

BR’p;
12 : pi ( b )", involves the magnitude of
k)

The hardening modulus, H = H_+

stress gradient n at the current stress state on the bubble. In all other formulations of the

model, normalised stress gradient n has to be used, which is the stress gradient

normalised with respect to its magnitude, i.e. ||17 || = [17 'n ]“2 =1.

Distance of current stress state to structure surface

The hardening modulus depends on the location of current stress state, which is
measured as a normalised distance between the current and conjugate stress points with

respect to the direction of stress gradient, i.e. b=n :(6, —6). bnax 1s obtained when the

bubble is touching the structure surface at a point diametrically opposite to the conjugate

stress point, i.e. b, = 2(% -Dn:o.
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Figure 5.10 Normalised distance of bubble to structure surface

Non-intersection translation rule

In the Bubble model, the non-intersection translation rule proposed by Hashiguchi (1985)

is employed to describe the kinematic hardening of the bubble, i.e,

&=é+(a_&)(i+&)+ﬁ:{é—-&[(r'/r)ﬂpc/pc)]+a(r'/r)}
r

c

(6.-0)

n:(oc,—o)

The bubble translates along the line connecting the current and conjugate stress points
and eventually comes into contact with the structure surface as shown in Figure 5.11.
However this hardening process is significantly influenced by hardening modulus. As the
interpolation function of the hardening modulus is arbitrarily defined and is not
interrelated to the translation rule, the bubble may never reach the structure surface if an
inappropriate value of parameter B is selected, i.e. the critical state of soil can be reached
before the bounding surface is engaged by the current stress state (See Figures 6.15 and

6.17 in Section 6.1).
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Structure surface

v

Figure 5.11 Kinematic hardening of bubble

Volumetric hardening

Although the Bubble model is formulated in kinematic hardening framework, volumetric
hardening has a major influence on the response of the model. When r, = 1 translation of

the centre of the structure surface is given by
a=[p, 0]" (5.30)

While translation of the centre of the bubble is given by

a‘=é+(a—&)(&)

c

+ﬁ:{f-&(pc/pc)}(ac _g) (5.31)
n:(o,—o)
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As p. is only controlled by plastic volumetric strain hence hardening of the yield surface

is purely volumetric when r, = 1.

Reference surface

The Bubble model is actually a two-surface model. The reference surface represents the
intrinsic behaviour of a remoulded soil. It is not directly involved in the hardening rule or
hardening function. However the use of a reference surface makes it possible to illustrate

the destructuration process of a structured soil.

Incremental stress-strain relation

The incremental stress-strain relation is given by

(D¢ :n)®(n:D°)
H+n:D:n

Dep =D€_

(5.32)

Where the symbol ® denotes a tensor product in the sense that(a ®b),,, = a;b,, . This

relation is only necessary when the ‘apparent modulus’ approach is utilised. In the thesis,
Eq.5.32 is not involved in the formulations of the Bubble model as the ‘plastic correction’

approach is adopted.

Determination of parameters

Parameters A, ¥, M and m have clear physical meanings and can be readily obtained
from conventional laboratory tests. A and x~ represent the compressibility of soil and can
be obtained from oedometer tests. M represents the slope of the critical state line in p, g
space can be obtained from triaxial tests. m can be expressed as the ratio of deviator

stresses between triaxial extension and triaxial compression tests.
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The parameter R reflects the size elastic region. It is believed that R depends on several
factors including overconsolidation ratio, initial effective confining stress and initial
density of soil. However, no reference has been found as to how to determine the value of
R experimentally. For this reason, the influence of R has been investigated in the
parametric study in Section 7.2 to assess its effective ranges. For a particular type of soil,
R can be obtained by comparison between numerical analyses and triaxial compression

tests.

r, represents the sensitivity of a structured soil and can be related to the sensitivity index.
As the sensitivity index can be easily obtained from triaxial tests, the relationship
between r, and the sensitivity index can be established for a particular type of soil by
matching numerical modelling results with triaxial testing data. A preliminary study is

given in Section 7.6 (see Figure 7.36).

D, 1s the initial value of p_and is related to the preconsolidation pressure. It is believed
that it is adequate for a numerical modelling to assume: p_, = preconsolidation pressure/(2

ro). More discussion on determination of p_, is given in Section 7.6.

Parameters 7,, B, A,y and k can not be related directly to physical characteristics of soil.

However, for a specific soil, these parameters can be quantified by fitting numerical
modelling results with experimental curves (e.g. triaxial stress-strain curves). A

preliminary study on these parameters is also carried out in Chapter 7.

5.4 Pore water pressure

Water and soil particles are assumed to be incompressible, hence, under undrained
condition when the soil is fully saturated, the following equation is assumed to be

applicable:
el +6 =0 (5.33)
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Where ¢7,¢ are plastic and elastic volumetric strain rate respectively due to relative

movement between soil particles.

If plastic deformation takes place, i.e. ¢ # 0, to maintain the constant volume of soil,
pore water pressure is generated to compensate the plastic volumetric change (Schofield

and Wroth, 1968), i.e. ¢ =—¢”. The pore water pressure is given by

u=Két =—Ke’ (5.34)

Where K is the drained bulk modulus of the soil.

If the current stress is inside the bubble, there is no plastic deformation, i.e. ¢’ =& =0.

Therefore zero pore water pressure will be generated.

5.5 Implementation

The Bubble model is implemented in FLAC using the computer language FISH
embedded in FLAC. Some key aspects in implementing a constitutive model with FISH
are discussed in the Chapter 3. The ‘plastic correction’ approach described in the Chapter
4 is utilised for the implementation of the Bubble model. A general flow chart of the
programme for the Bubble model is shown in Figure 5.12. The complete programme with

detailed notations is appended to this chapter.
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Input parameters and initialise stress state

v

Apply an increment of strain
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f207? stress state
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(kinematic hardening)
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Update current elastic moduli
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Figure 5.12 Flow chart for implementation of the Bubble model
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Appendix 5.1 Notation

bmax

=T

J2
J3

b

3

S|

S>

A scaling factor ranged between 0 and 1 controlling the ratio of contribution to
destructuration between equivalent plastic shear strain and plastic volumetric
strain

A material parameter controlling the magnitude of plastic modulus

A normalised distance between current stress point (& )on the bubble and the
conjugate stress point (¢, ) on the structure surface (i.e. normalised with respect to
n)

The maximum value of b and it is obtained when the bubble is touching the
structure surface at a point diametrically opposite to the conjugate stress point
Matrix of isotropic elastic properties

Plastic modulus at the current stress state

Plastic modulus at the conjugate stress state ¢ on the structure corresponding to

the current stress state

Second-rank identity tensor (bold characters denote tensors)

Second deviatoric stress invariant

Third deviatoric stress invariant

Bulk modulus

Bulk modulus when the effective confining pressure is zero

A scalar controlling the rate of destructuration with strain

Ratio between radii of sections through the structure surface for axisymmetrical
extension and compression in deviatoric plane

Critical state stress ratio for axisymmetrical compression (i.e. ¢/p)

A dimensionless scaling function of Lode angle 8, m and M

A unit vector representing the normalised stress gradient on the bubble at the
current stress state( o )

A unit vector representing the normalised stress gradient on the structure surface

at the conjugate stress state (o, )
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D.

pcO

Iy

QO Q] Q Q-

Q

Current mean effective stress
Initial mean effective stress

Distance from the origin of the p, g coordinate system to the centre of the

reference surface on the p axis

Initial value of p,

A scalar variable defining the distance from the origin of the p, g coordinate
system to the projection of the bubble centre on the p axis

A scalar defining the relative size of the structure surface with respect to the
reference surface (i.e. ratio of the major or minor radii between the structure
surface and the reference surface)

Rate of r (the superimposed dot denotes rate or increment)

Initial value of r (>1)

A scalar defining the relative size of the bubble with respect to the reference
Deviatoric stress tensor

A tensor defining the location of the bubble centre in deviatoric stress space
Total strain rate tensor

Elastic strain rate tensor

Plastic strain rate tensor

An assumed destructuration strain rate
Plastic volumetric strain rate
Equivalent plastic shear strain rate

Current stress rate tensor

Current stress tensor

Current stress tensor normalised with respect to the bubble centre

Current stress tensor normalised with respect to the centre of the structure surface

Conjugate stress tensor on the structure surface at a point where the normal of the

structure surface is the same as that of the bubble at the current stress point if it
engages the bubble
Lode’s angle
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A tensor defining the location of the bubble centre in normal stress space
Rate of a controlled by the kinematic hardening rule

A dimensionless tensor denoting the initial anisotropy of the structure surface
A tensor defining the centre of the structure surface in normal stress space

Rate of &

surface (i.e. ratio of the major or minor radii between the bubble and the reference
surface)

The slope of the swelling line in a logarithmic specific volume-logarithmic mean
stress compression plane (i.e. [nv ~ Inp plane)

The slope of the compression line in a logarithmic specific volume-logarithmic
mean stress compression plane

A material parameter controlling the rate of decay of plastic modulus

Poisson’s ratio

Initial specific volume corresponding to the initial mean effective stress
Specific volume on the normal consolidation line corresponding to the initial

mean effective stress
Specific volume on the normal consolidation line corresponding to the current

mean effective stress
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Appendix 5.2 Expanded equations

The following equations are given in the order they appear in Section 5.1.

(D Equation 5.1

eE=¢&"+¢’
Where,
Ae,, Ag, O Ae, Ae, 0
Total strain increment E=|Aey Agy 0 |or|Ae, Ae 0
0 0 Aey, 0 0 Aeg,
Ag;, Ag;, 0 Aey, Ae 0
Elastic strain increment  €° =|Ae;, Aeg;, 0 |or [Ael  Agl O
0 0 Asgj 0 0 Ae
Ael, Aeg), 0 Ael  Ael 0
Plastic strain increment &€” =|Ae],  Aej, 0 |or|Asf  Agl O
0 0 A&l 0 0 Ae!

Note: in all the codes provided in the thesis, the subscripts X, y and z correspond to 1, 2
and 3 respectively, which are consistent with FLAC. Hence, the following equations are

expressed using subscripts 1, 2 and 3.
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The equation may be rewritten as follows:

Ag,, Aeg, O Ag;, Aeg;, 0 Ael, Aegl, 0
Ae,, Ae,, 0 |=|Ag;, Asgy, 0 [+]Agl, Aeg), O

0 0 Aey, 0 0  Aej 0 0 Ael
(Ag), +Ael)  (Ag), + Acty) 0
=| (Ag5, +Aey)  (Ag;, +Agy),) 0
0 0 (Aes; +Aely)

2) Equation 5.2
6=D°-¢&°

The equation can be rewritten as follows:

Ac,, e, e, e, 0][Ae, Ao, =e g, +e,Acy), +e,Acy,
A, e, e e 0|Aey, Ao, =e,Ac,, +eAc,, +e,Aey,
= . or Ao., =e,Ag,, +e,Ac,, +e Ac
A O A 33 2 11 2 22 1 33
033 €, € ¢ €33

Ao, =eA¢
Ao, | 10 0 0 el e, 712 = 650
4 2
Where ¢, =K+§G, e, =K—§G and e, =2G

3) Equation 5.4

1 1
)4 :§tr[a] = ng(a“ +0,,+0;;)

The equation, s = ¢ — pI , can be rewritten as follows:

Sy =0 — P

S S 0 oy —Pp Oy 0 _
s 0 |= 0 or Sp =0p =P
=S| 8a S» =l %12 Op—P ¢ —g »
33 — Uz ™
0 0 s 0 0 Oy =D

Spp =821 =02
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4 Equation 5.5

3
=5 @@ +(p=p) = (p) =0
0
ie.
3 sy s, O Sy S 0
fzm Sy Sy 0 (i]sy sy, O +(p_pc)2_(p0)2
0

0 0 sy, 0 0 sy,

3
= 2 {511511 +.80,8 T 533853 +2512512}+ (p— Pc)2 _(Pc)2
2M

3
= 2 {S121+S§2+S323+2S122}+(P_Pc)2_(Pc)2 =0
2M,

®)) Equation 5.7

_—nsﬁzlsin_1 —_3\@]3 <

6 3 2732 |76
Where,

J, :%(s :8) :%(sfl +55, + 55 +255)

_ _ 2
J3 =8155833 = 5335,

(6) Equation 5.8

£, = 21;2 (s=5,):(s—8,)+(p—p.)’ —(Rp,)* =0

4

Where,

Stibe  St2be 0

Sz =| S Sape O | 1s the bubble centre in deviatoric space, and
0 0

S33pc

1 )
p. = g(cr“hc +0,,, +0;;,.), the subscript ‘bc’ stands for bubble centre.
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s, S, 0 Stibe  Si2be 0
(5=5)=[5y Sun 0 |=|Sm S 0
0 0 s 0 U

oy—Pp 01, 0 O1ipe — Pz 0 120¢ 0
=| Op Oy —PD 0 - 0 12¢ O b ~ Pz 0
L 0 0 O33— P 0 0 O33pc — Pz
_(0'11 —P)— (01 — P3) 012 ~ 012 0
= 012 012 (64, = P)— (03 — P3) 0
L 0 0 (033 = p)— (033, — Pz)
_(0_11 — 0O\ — P+ DPz) 015 ~ 01 0
= 013 =0 (0 =0pp. =P+ D7) 0
L 0 0 (033 =033, =P+ Dy)

(s—s;):(s—5,)=(0,, =0y, _P+pa)2 +(0y =0y _P+Pa)2 + (033 — 033, _P+pa)2

2
+2(0), —01,)

Iy = 21312 (s=s):(s=s.)+(p=p;)" —(Rp,)’*

[4

3
2M;

+(p—p,)’—(Rp,)* =0

{(0'11 O — Pt Pa)z +(0y =0y — P+ Pa)z +(033 =03 — P+ Pa)2 +2(0, _Ulzbc)z}
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(7) Equation 5.9

3

F 2
2M

[s—(r=Dy,p.J:[s —(r=Dnyp ]+ (p—1mp,)* = (p,)* =0

Where, s is the deviatoric stress tensor as shown in Eq.5.4, and

Mo
0 — 0
NE)
n, = % 0 0] is tensor coefficient controlling anisotropy of the structure surface
0O 0 O

in deviatoric stress space. 7, is shown as in Figure 5.1 and is defined in p-g plane.

The reference (Rouania & Wood, 2000) does not give a description of the contents in the

tensor coefficient7,. The above expression has been obtained from information in Figure

5.1 and the following assumption made by the writer: the anisotropy of the structure
surface in deviatoric stress space is only caused by the shear stress components. In other
words, all the normal stresses of the centre of the structure surface are taken to be the
same. This assumption is only made to approximate the anisotropy and the actual centre

of the structure surface is not affected.

The stress and deviatoric tensors at the centre are given by the following expressions:

r n,(r=1) 0 0 n, O
a=|n(r-1) r Olp.and s, =|n, O O|\r-I)p,=n,(r-1)p,=(r-1)n,p,
0 0 r 0 0 O

From the above deviatoric stress, the deviatoric stress measure is obtained:

Q(i :‘ %(s& :s&) =\/§’7(,)(r'])l7c
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From p-g plane given in Figure 5.1, the deviatoric stress measure is obtained as follows:
4 =1o(r-1)p,
By comparing the above two expressions of the deviatoric stress measure, we get

’

My
n,=—Fr
V3

_ " _
0 —= 0
J3
Mo
Hence, n,=|—= 0 O
J3
0 0O O

Mo
s—(r=Dn,p.|=|5, s 0 |-(r-1—= 0|p.
[ 0 ] 21 22 \/g

0

i [m—%(r—l)pc] 0
=[s), _%(r_l)Pc] Sy 0
0 0 S35

[s—(r=Dnyp.Jils = (r =Dy p. ] = 52 + 5% + 5% + s, —%(r—l)pclz

F= 2]512 [s = (- =Dmop i ls = =Daep ]+ (p=1p)* =)’

0

3 n
:W;{Sﬁ +55, + 55 +2[s,, —T‘;(r—nmz}+ (p—rp.)> = (p.)’
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(7 Equation 5.12

¢ =[A-AED)? + AEDN T

Where ¢! is the equivalent plastic shear strain increment given by as follows,
1/2
5 5 Ael, Aeg), 0 Ael, Aeg), 0
&y = [5 (& :&")]"? = \/; Ael, Ael, 0 |:] Ay, Aeg), 0
0 0 Ael 0 0 Ael

} \/g[ms}’,)z +(8ch)* + (Aeh)? +2(8ch)]

¢! is the plastic volumetric strain increment given as follows,
el =tr[é" = Ae], + Ael, + Aej,

(8) Equation 5.13

&v :%(ﬁ:o‘)ﬁ

Where 6 is the stress increment same as in Eq.5.2 except it is expressed in second rank

tensor,

Ao,, Ao, O
ie.6=|Ao, Ao, 0 |,and
0 0 Aoy,

n denotes a unit vector representing the normalised stress gradient on the bubble at the

current stress. It is given by
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n, n, 0 n, n, 0

_ 1 1 1
n:H”:H Ny Ny 0 :\/ — s o Ny Ny 0
0 0 ny, (nyy +ny, +ng3 +2n5) 0 0 ny,
Hence,
&'=—Mm:0o)n
n, n, 0 Aoy, Aoy, 0 n, n, 0

n, n, 0 |:|Ac, Ac,, O ||n, n, O

0 0 ny 0 0 Aoy;;|| 0O O ny

= 2 2 2 2
H(n;, +n5 +n3; +2n;,)

1
= H(n121 N n222 N n% N 2n122 {nuAau +ny,A0,, +n,A0,; + 2”12A012}- Ny Ny 0
; 0 0 ny

n,,,n,,, Ny, and n, are derived and given in Appendix C.

9) Equations 5.15 and 5.16

3 3 n
. rpc<T|:(p_pa)+2M§ (S_Sa):ﬂo"'Rpc}_ZM; (p—pa)(s—sa):ro>
" , 3
2= -p-)?
(4 —x)l(p—py) +2M;

(s—s,):(s—s.)]

Where the quantity 7'is given by

1/2
T:(p_p“)_k(rT_l)l:(l_A)(p_pa)2 + 2?;3 (s—sa):(s—sa)}

p- 1s a scalar quantity given in Eq.8. Deviatoric stress tensor s is given in Eq.4.
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(s—s,):(s—s,) is also the same as in Eq.5.8. All other terms in Eq.5.15 are

scalar quantities except the following tensor inner product:

(s—5;):n,
0o Mo g
(6,,—=p)— (0, — Pz) 015 01 0 0 3
= 015 — 01 (04, = P)— (0. — P3) 0 : T(; 0 0
0 0 (033 = P) = (033 — Pz) 0 0O O

=20, - Ulzbc)%

(10)  Equation 5.17

b=n:(c,—o0)

| n, n, 0 O11i 012 0 o, o0, 0
= ny Ny 0 f: 0315 022 0 |-|oy o0, O
\/(nlzl + n222 + n323 + 2n122)
0 0 ny 0 0 03y 0 0 o5

1

2 2 2 2
\/(”11 +ny, +ny, +2n;,)

{nn (O-IIQ/' —0,)+ny, (Uzzcj —0y)+ Ny, (033cj —033)+2n), (GIZCj —0p )}

The subscript ‘cj’” stands for conjugate.
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(10)  Equation 5.18

r _
b =2(—-Dn:o
max (R )

Where 6 =6 —a is the normalised stress with respect to the centre of bubble. & is the

stress tensor of the bubble center and is given by,

Otibe O 12pc 0
O =0, O 0
0 0 0 33pc
Hence,
o, 0, 0 Oi1be O 12pc 0 0177 011bc 012 =0 p2pc 0
6=0-a=\0, 0y, 0 |-]0,, Oy 0 |=|0y-0. 03 -0, 0
0 0 oy 0 0 0 33pc 0 0 033 = 033
r _
b = Z(E—l)n ‘o
r
2(—-1 ny ny o 0 011" 01 012 =0 p2pc 0
_ R .
_\/( > 12 tnk ot 2l Ny Ny 0|20y -0y, 00y, 0
n.+n n n
11 T 1y T3 12 _
0 0 ny 0 0 033 = 033,

r
Z(E o))
= > > > > {nu (011 -0 115) t 19 (0 55 - 055 ) +133(0 35 - 035,.) + 20, (0, -0y, )}
\/(”11 +ny, + 1y +2n;;)
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(10)  Equation 5.20

s it oy s Pey BB GG+ (b p)I1+E I
r

C

c,—0)

n:(c.—o)

Where r and p_are two scalar quantities (all the dots denote increment i.e. rate). a is

the stress tensor at the centre of the structure surface. Its general expression is given as
follows (Note: an assumption is made in Eq. 5.9 for approximation to account for

anisotropy of the structure surface):

O-Ilsc 0-125(7 0
a=\0,, 0,, 0 [,andtheincrement of the structure surface center is
0 0 0-33sc

The subscript ‘sc’ stands for structure surface center.

6 =06 —a is the normalised stress with respect to the centre of the structure surface,

which is given by,
o, o0, 0 Orise Ol 0 011 " O0g15¢ 012 =02 0
6=6—-a=|0, 0, 0 |-|0,, 0, 0 |=|0, -0y, 0y-0y, 0
0 0 oy 0 0 oy 0 0 033 = 0334

Hence,

Ao, -Ac,,. Ao, -Ac,y, 0
6=|Ao, -Ac,, Ao, -Ac,, 0

0 0 Aoy, -Ao ;.
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n : (o, —o)is given by Eq.5.17.

For clarity three scalar quantities, they are given by,
¢, =(+% and ¢, = L
L 5 D,

-GG D+ pIIEG D] _ 72,6+ eT)
i n:(c,—o) B n:(c,—o)

Each tensor term in the above function has been given previously, therefore, for clarity

¢, 1s not expanded. As the result of ¢, is a scalar quantity, Eq.5.20 becomes as follows,

a=d+(@—a), +c,(c, —0)

AG, e ATy, 0

a=|A0,, Ac,,, 0
0 0 Ao,

Ao,y Aoy, 0 O1ibe O 12pc 0 Orisc Orase 0
=|A0,,, Aoy, 0 910200 T2 0 |=|0us Oy 0 ¢
0 0 Ao 3, 0 0 0 33pc 0 0 0 335¢

011 O12¢ 0 o, o0, 0
+C33| 021 022 0 |—|o, 0, O

0 0 0y, 0 0 oy
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Each element of the above stress tensor @ can be obtained as follows:

Ao,y =A0,,, +(0,, —0,,.)C +C5 (011cj —-0,)

A0 35, = A0 35, + (033, =035, )C, HC5 (033cj —03;)
A0 1y, = A0 +(0 5 =05, )C, +C5 (O-IZCj —0,,)

Aoy, = A0y,
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Appendix 5.3 Derivation of stress gradient

n, _ % o1
Jo

)

0,0, 0
Stress tensor, ¢ =|0,,0,, 0
0 0 oy

o 1
Mean principal stress, p = gtr[a]

1 0 O
Deviator stress tensor,s = —pl , I ={0 1 0
0 0 1

(6,,—p) o0 0 _S11 s, 0
ie.s=| o, (6,—-p) 0
0 0 (oz3-p)] |0 0 s5

Centre of the bubble in deviator stress space,

Sttbe  S12pe 0

Sz = | Sibe S22pc 0

0 0 S33pc

Deviator stress normalised with respect to the centre of bubble,

ST S1we 12 T S12pe 0
§=8-85 =52 " Spe S22 T Some 0
0 0 533 7 S33pc
1 3
or s; =0y __Zo-jj = Siipe i=1-3and 5, =5, =S, =0, — S,
=1
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The yield function of the bubble is given by

3
fo= 5y (5=52) (s =8+ (p=pg) = (Rp,)* =0

0

3 _
or f, :Fh +(p-p.)’ —(Rp,)* =0

0

Where J, =%(s-sa):(s-sa)=%§:§:%(§ﬁ +55 +55+253)

Components of the stress gradient are given by

of, -6 -0M, 3 dJ, dp
L= = J + +2(p—-p-)—
" e, M,y e, M2 a0, PTG

0 i ij 0

Where:
%=%(i:j) or =00 # j)
_ 2mM _ dmM
0 — . -
(1+m) — (1—m)sin(30) 2(l+m)+3\/§(l—m)JJ;2
2
o s

oM, —1243m(1 - m)M 75"
do. 2 9o

T 204+ m)+ 33301 m) JJ;z} i

2

1 1
J, :E(S:s) 25(5121 +55, + 55 +255)

aJ, 1 3

— = L= N=s. I=1—
0. 3 (3s; jzﬂsjj) Sy 1 3
aJ, oy

do,, 2
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_ _ 2
J3 =8155,83; = 5335,

a{ /5 } J32 d/, _EJ;MJS%

2
J;"” do; 2 do;
- 3
do; J5
oJ 1
3 _ 2
= —[355,833 = (51,50 + 5,533 + 52533) + 53,1
do,,
oJ 1
3 2
= —[35),855 = (8,50 + 5,533 + 52853) + 57,1
do,, 3
oJ 1
3 _ 2
=—[3508), = (8155, + 8,833 +55,833) —25),]
do,, 3
aJ
3 _
3 =—253,5,
Oy
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Appendix 5.4 FISH code of the Bubble model

; Implemented for axisymmetric or 2D plane strain problems

set echo off
def bubble
constitutive_model
;— Model variables
f_prop b_kmax b_poss
;i b_poss is Poisson's ratio, ##, assumed to be constant
; b_kmax is the maximum bulk modulus, K, chosen to ensure numerical
; stability.

f_prop b_lambda b_kappa b_M b_mm b_bod0
; 2’7K 7M’ml KO
Ky is initial bulk modulus corresponding to zero confining pressure

f_prop r_bub AA BB k psigh nambda0O r_str0 pcO
12 RaA7B7kaV/77707r07pco

f_prop r_str pc s_mod b_mod b_g0 el e2 e3
f_prop s_zsllc s_zs22c s_zs33c s_zsl2c

A

; center of structure surface in general stress space, d
f_prop b_zsllc b_zs22c b_zs33c b_zsl2c

; center of bubble in general stress space, @

f_prop s_dsllc s_ds22c s_ds33c s_dsl2c

; center of structure surface in deviator stress space, Sg
f_prop b_dsllc b_ds22c b_ds33c b_dsl2c

; center of bubble in terms of deviator stress, §g

f _prop b_p b_g s_p s_g
; center of bubble and structure surface in p,g space, Par 4%

i and Pg s (g,

float $dzsll $dzs22 $dzs33 $dzsl2

; stress rate, O
float $zsll $zs22 $zs33 $zsl2

; Stress from elastic trial, Gﬂml

float $s_dzsllc $s_dzs22c $s_dzs33c $s_dzsl2c

; translation rate of structure surface center, &
float $b_dzsllc $b_dzs22c $b_dzs33c $b_dzsl2c

; translation rate of bubble center, a

float $dsll $ds22 $ds33 $dsl2

; deviator stress, s

float $J2 $J3 $J_2

; the 2nd and 3rd deviatoric invariants

; S$J_2 is the 2" deviatoric invariant w.r.t bubble centre
float $p $qg

; current stress in p, g space

float $fb $M S$Hc S$H
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7 fb, Mg,Hc,H

float $s $s_dp $ds

float $b S$bmax $dgamma S$dpc $dr_str

;$dpc is rate of p., pc

;$dr_str is rate of structure surface size, F
float Sb_zsll $b_zs22 S$Sb_zs33 $b_zsl2

;stress w.r.t bubble centre, c

float $s_zsll $s_zs22 $s_zs33 S$Ss_zsl2

;stress w.r.t center of structure surface, o
float $zsllcj $zs22cj $zs33cj $zsl2cj

;jconjugate stresses on the structure surface, o,

float $s_zsllcj $s_zs22cj $s_zs33cj $s_zsl2cj
;jconjugate stress w.r.t center of structure surface, o
float $b_dsll $b_ds22 $b_ds33 S$b_dsl2

; deviator stress w.r.t center of bubble, §

float $s_dsll $s_ds22 $s_ds33 S$s_dsl2

; deviator stress w.r.t centre of structure surface, S
float $s_dzsll $s_dzs22 $s_dzs33 $s_dzsl2

c

; stress rate w.r.t center of structure surface, c
float $pzdell $pzde22 S$pzdel33 Spzdel?2

; plastic strain rate, &°
float $pv_zde $pg_zde

; Spv_zde is plastic volumetric strain éf

; Spg_zde is equivalent plastic shear strain rate é;

float $dg_trial $dg $dsl $ds2 $ds3 $q_zde

; Sg_zde is equivalent total shear strain rate éq

f_prop pv volumetric_strain vertical_strain g _strain gt_strain
; pv is the accumulated plasic volumeric strain X éf

; g_strain is the accumulated equivalent plastic shear strain X é:

; gt_strain is accumulated equivalent total shear strain X éq

float $nll $n22 $n33 $nl2 $n

; Snll $n22 $n33 $nl2 are components of stress gradient on the bubble
; Sn is the inner product of the stress gradient tensor, $n=($nll)?+
; (5n22)%+($n33)2%+2($n12) 2.

float $sp $T $theta

; $sp i1s inner product of deviator stress w.r.t bubble centre,

i Ssp=8S:85=(8s-5;):(s—5;)

; Stheta is Lode angle, 6.

float S$cl $c2 $c3 $c4d $c5 S$c6 $c7 $c8 $c9 $cl0 S$cll $cl2 $cl3

float $MI11 $M22 $M33 $M12 $J11 $J22 $J33 $J12

float $sum_fb $sum_pzdell S$sum_pzde22 S$sum_pzde33 $sum_pzdel?2

float $sum_zdell S$sum_zde22 S$sum_zde33 S$sum_zdel?2

float $zdell $zde22 $zde33 $zdel2

float $sum_ P $sum_pvStrain $sum_pgStrain

f_prop stepCommand bulk_max shear_max

f_prop app_g ; apparent shear modulus

;the following are for undrained
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float $dpwp $dv $Ssum_pwp Sapp_g
f_prop pwp

case_of mode
;— Initialization ——-
case 1
if stepCommand=0 then

; this "if" statement is necessary due to the multiple

"step" commands

pc=-pcO

; centre of reference surface is always on p axis

; pco given by user is positive if it is compressive

; pc must be compressive in the bubble model

; according to FLAC's sign convention, compressive pressure
; 1s negative

r_str=r_str0

nambdaO=nambdal/1.732

;No 1s defined in p, g space (see Figure 2 on page 156),
;i.e. at the centre of the structure surface, g=(ry—1)p:no

; but from page 155, the centre of the structure surface in deviator

0 n O
; stress space,s. = (r,—Dn,p,, n,=|n, 0 0
0O 0 O

; hence if nambda0O (7,) is specified from the definition in Figure 2,

; it should be divided by a factor of 1.732 for being consistent with

Mo
0 — 0
NE)
; elements of tensor #f,,i.e 7, = 0 (see explanation in Appendix B)
0

Ty
V3
0

0
0

; initial stress in p, g space

Sp=(zsll+zs22+2s33)/3.0

if $p=0 then;for analysis starting from zero insitu stress
Sp=-0.001

end_if

$Sg=zs22-zsll;only for triaxial stress condition

;j<structure surface>

; center of structure surface, &=:{ﬂ%,(r—ﬂ)ﬂ0pcy
$s=nambdal* (r_str-1) *pc

s_p=r_str*pc ; P.

; center of structure surface in deviator stress space
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0 ss O
i S, = $s 0 O

0 0 0
s_dslle=0.0
s_ds22c=0.0
s_ds33c=0.0
s_dsl2c=$s

s_p $s 0
; centre of structure surface,dd =| $s S_p 0
0 0 S_p

s_zsllc=s_p
S_Z7s22C=sS_p
s_zs33c=s_p
s_zsl2c=$s
s_g=s_zsl2c*1.732

; <bubble>

; center of bubble, a

; initial bubble centre is assumed to be at the initial stress point
; check if bubble model is reduced to MCC model

if r_bub>0.95 then

; Bubble model is reduced to Cam-clay model and reset bubble’s

; centre, i.e. coincide with the centre of reference surface

; Bubble model becomes MCC model when R=1.0 for non-structured soil.
; In data file, less than 1.0 (e.g. 0.998)should be used rather than

; 1.0 for R, otherwise meCZ() —> eg.26 unexecutable

b_zsllc=pc
b_zs22c=pc
b_zs33c=pc
b_zsl12c=0
end_if

; center of bubble in p axis, Py

b_p=(b_zsllc+b_zs22c+b_zs33c) /3.0

; check if bubble interescts structure surface

; the following two “if” statements are only valid for isotropic

; 1nitial stress condition,i.e both structure surface and bubble are
; initially centered on p axis. In the case of anisotrpic condition,
; checking must be conducted manually to enure a non-intersection

; initial condition.

if abs(b_p)<abs(r_bub*pc) then
;initial bubble centre is at the far left side
; reset it to the ‘minimum’ point i.e (Rp.,0) in p, g space
b_zsllc=r_bub*pc
b_zs22c=b_zsllc
b_zs33c=b_zsllc
Sp=(zs11+zs22+2s33) /3.0
end_if
if abs(b_p)>abs(2*r_str0*pc-r_bub*pc) then
;initial bubble centre is at the far right side
; reset it to the ‘maximum’ point i.e (2ryp.—-Rp.,0) in p,qg space
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b_zsllc=2*r_strO0*pc-r_bub*pc

b_zs22c=b_zsllc

b_zs33c=b_zsllc

Sp=(zs11+zs22+2s33) /3.0
end_if

Structure surface,
diameter=2r,p,

‘minumum’ point, (Rp,, 0) ‘maximum’ point, (2r,p.-Rp,, 0)

; center of bubble in deviator stress space, §

b_dsllc=b_zsllc-b_p

b_ds22c=b_zs22c-b_p

b_ds33c=b_zs33c-b_p

b_dsl2c=b_zsl2c

b_g=b_zs22c-b_zsllc;only for triaxial stress condition

a

; initial shear modulus, maximum value chosen for controlling
; numerical stability
b_g0=3.0*b_kmax* (1.0-2.0*b_poss)/(2.0*(1.0+b_poss))
;initial buck modulus calculated from the initial stress
b_mod=abs ($p) /b_kappa+b_mod0
;initial shear modulus
s_mod=3.0*b_mod* (1.0-2.0*b_poss)/(2.0*(1.0+b_poss))
stepCommand=1.0

end_1if ; "if stepCommand =0 then"

;——— Running section ——-

case 2

zvisc = 1.0 ;set to 1.0 for stiffness proportional damping
;<elastic coefficients>

el = b _mod + 4.0 * s_mod/3.0
e2 = b _mod - 2.0 * s_mod/3.0

e3 = 2.0 * s_mod

j========= apply strain rate =======

;<stress rate (6 )from elatic trial>
Sdzsll=el*zdell+e2*zde22+e2*zde33
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Sdzs22=e2*zdell+el*zde22+e2*zde33
Sdzs33=e2*zdell+e2*zde22+el*zde33
Sdzsl2=e3*zdel?2

; calculating apparent shear modulus s_m
if apparent=1 then

Sdsl = $dzsll - $dzs22

Sds2 = $dzs22 - $dzs33

$ds3 = $dzs33 - $dzsll

Sdg_trial = $dsl*$dsl + $ds2*$ds2 + $ds3*$ds3

Sdg_trial = 0.7071*sgrt($Sdg_trial + 6.0*$dzsl2*S$dzsl2)
end_if

;<trial stresses, G”ml>

$zsll=zs11+$dzsll+pwp

$2522=2522+$dzs22+pwp

$2533=2533+$dzs33+pwp

$zs12=2s12+5dzsl2

Sp=($2s11+$2s522+$2s33) /3.0;mean effective stress
; deviator stress, §

$dsl1=$zs11-$p

Sds22=$zs22-$p

$ds33=$2zs33-$p

Sdsl2=S$zs12

; deviator stress w.r.t bubble center, §s=5-§
Sb_dsll=Sdsll-b_dsllc

Sb_ds22=$ds22-b_ds22c

Sb_ds33=$ds33-b_ds33c

Sb_dsl1l2=$dsl2-b_dsl2c

; invariants J2, J3

a

1
i J, =Es:s, J; =det|s|
$J2=($ds11*$ds11+$ds22*$ds22+$ds33*$ds33+2*$ds12*$ds12) /2.0

$J3=5ds11*5ds22*$ds33-5$ds33*Sds12*$dsl2
SJTJ_2=(Sb_dsll”2+S$b_ds2272+S$b_ds33"2+2*$b_ds1272)/2.0
; Lode's angle
if $J2=0.0 then
SM=2*b_mm/ (1+b_mm) *b_M
else

3437,

$cl=-2.59807*$J3/($J2)~1.5 ;sin(30) = — B
2J;

if abs($cl)=1.0 then
if $cl=1.0 then
SM=b_M
end_if
if $cl=-1.0 then
SM=b_m*b_mm
end_if
else
Scl=sgn($cl)*min(abs($cl),0.99999)
Stheta=atan($cl/sqrt (1-5c172))/3.0
; FLAC has no asin function
SM=2*b_mm*b_M/ ((l+b_mm)-(l-b_mm) *sin (3*Stheta))
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_ 2mM
(1+m)—(1—-m)sin360

’ A49
end_1if
end_if
; Inner product of deviator stress w.r.t bubble centre
i Scs=(s-5;):(s—5;)
$sp=2*$J_2
;<Bubble yield function>

3 .- 2 2
; = Ss:5+(p-pz) —(Rp,)
fo NYE p-p P

o
$fb=$sp*3.0/$M"2/2.0+ ($p-b_p) "2-r_bub”2*pc"2

Ssum_zdell=$sum_zdell+zdell
Ssum_zde22=$sum_zde22+zde22
Ssum_zde33=S$sum_zde33+zde33
Ssum_zdel2=$sum_zdel2+zdel?2

if $fb >0.0 then
;yield (plastic deformation) takes place

. trial . .
;use trial stress O 1 to calculate plastic strain rate
;<computation of normalised stress gradient on bubble>

Y
v Baij

Scl=-12*1.732*b_mm* (1-b_mm) *b_M

Sc2=2* (1+b_mm)

$c3=3*1.732* (1-b_mm)

Scd=sqgrt ($J2)
$c5=1/($c2+$c3*$J3/$J2/Sc4)
$Sch=$cl*$c572

$c6=5ds12"2
$c7=$ds11*5ds22+3ds11*$ds33+5ds22*5ds33

SM11=(3*$ds22*$ds33-$c7+$c6) /3.0
SM11=1/$c4"3*S$M11
SM11=$M11-3.0/2.0/$c475*$J3*3dsll
SM11=$c5*$M11

SM22=(3*$ds11*3$ds33-5c7+Sc6)/3.0
SM22=1/$c4”3*SM22
SM22=5M22-3.0/2.0/$c4"5*$J3*$ds22
SM22=$c5*$M22

SM33=(3*$ds22*3ds11-Sc7-2*$c6) /3.0
SM33=1/$c4~3*SM33
SM33=$M33-3.0/2.0/%c4"5*$J3*$ds33
SM33=$c5*S$M33

SM12=-2/$c4"3*$dsl2*$ds33
S$M12=$M12-3/$c4"5*$J3*5dsl2
SM12=Sc5*$M12

$J11=Sb_dsll
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$J22=8b_ds22
$J33=8b_ds33
$J12=2*$b_dsl2

$nll=-6/$M"3*$J_2*$M11
Snll=$nl1l1+3.0/SM"2*$J11+2.0/3.0* ($Sp-b_p)

$N22=-6/$M 3*S$J_2*$M22
$n22=$n22+3.0/$M*2%$J22+2.0/3.0* ($p-b_p)

$N33=-6/$M 3*S$J_2*$M33
$n33=$n33+3.0/$M*2%$J33+2.0/3.0* ($p-b_p)

$nl2=-6/$M"3*$J_2*$M12
$nl12=5n12+3.0/$M"2*$J12

New stress point after

correction Stress point from
New bubble elastic trial
after correction

e —
-
—

Current stress point
Current bubble

Bubble from
elastic trial

Se—eo _————
——mmvm_———

; normalise stress gradient, n

$n=sqrt ($n1172+$n22°2+$n33°2+2+$n12°2); [nf=(n:n)"™

_ n;
Snll=$nll/%n; nU::";H

$n22=%n22/5%n
$n33=5$n33/5%n
$nl12=%$nl12/%n

snmsnvsn ; [pf

;<stress w.r.t the bubble center @ >
Sb_zs11=$zsll-b_zsllc
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Sb_zs22=%$zs22-b_zs22c
Sb_zs33=$2zs33-b_zs33c
Sb_zs12=%$zs12-b_zsl2c

;j<stresses w.r.t structure surface centre o>
Ss_zsl1ll=S$zsll-s_zsllc
Ss_zs22=$zs22-s_zs22c
Ss_zs33=$zs33-s_2zs33c
Ss_zsl12=$zsl2-s_zsl2c

;<conjugate stress w.r.t structure surface centre 0,>

O O

r R
$s_zsllcj=r_str/r_bub*$b_zsll
$s_zs22cj=r_str/r_bub*$b_zs22
$s_zs33cj=r_str/r_bub*$b_zs33
$s_zsl2cj=r_str/r_bub*S$b_zsl2

; conjugate stress point on structure surface
; Gc::&cﬁ-&

$Szsllcj=$s_zsllcj+s_zsllc
$7s22cj=$s_zs22cj+s_zs22c
$7zs33cj=$s_zs33cj+s_zs33c
$zsl2cj=$s_zsl2cj+s_zsl2c

; <plastic variables at current point>
i b=n:(c.—o0)
Sb=$n11*($zsllcj-S$zsll)

Sb=$b+Sn22* ($zs22cj-$2s22)

Sb=3Sb+S$n33* ($zs33cj-$2zs33)
Sb=Sb+2*$nl12* ($zs12cj-S$zs12)

r
i by =2—-Di:e
(R )

Shmax=$nll*$b_zsll
Sbmax=S$bmax+3$n22*Sb_zs22
Sbmax=$bmax+$n33*Sb_zs33
Sbmax=$bmax+2*$nl2*S$b_zsl12
Sbmax=2.0* (r_str/r_bub-1) *$Sbmax
Scll=abs ($b/Sbmax)

1/2

r—1 3A
i T=(p=pg)—k(—)| A=A)p—pz)° + (s —s7): (s —5;)
r 2M
$cl=3.0/(2.0*SM"2)
Sc2=Scl/sM"2
$c3=$p-b_p
ST=sqrt (((1-AA) *$c3"2+AA*Sc2*S$sp) )
ST=$Sc3-k*(r_str-1)/r_str*S$ST
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3 3 e
AT (p—pz)+ (s—s;):my+Rp,. |— (p—pz)s—8;):—
p p—p M2 Mo + Kkp M2 p—p -

. 116 _ % : %
A =k D(p—pa)* +—(s—55):(s—5;)]
2M
Sc4=nambdal/r_str
$ch=2*S$b_dsl2*nambdal
$Sc6=$ch5/r_str
SHc=S$T* ($c3+$cl*$ScS5+r_bub*pc)
SHc=$Hc-5$c3*S$cl*Sc6
SHc=r_str*pc*S$SHc
$Hc=$Hc/ (b_lambda-b_kappa)
SHc=abs ($Hc) / ($c372+5c2*S$sp)
1 Bp? b
;original H = £ )Y

C+ 2 * * b
"n” (i —K )R max
; SH=SHc+BB* (abs (pc)) "3*$cll”psigh/r_bub/ (b_lambda-b_kappa)/S$n

1 BplR® b
jmodified equation, H =H_+ 5 f% —( )’
"n” (i —K ) bmu

SH=$Hc+BB* (abs (pc)) "3*r_bub”2.0*$cll”psigh/ (b_lambda-b_kappa)/S$n

N R
;calculate plastic multiplier, y::;;(n :6)

Sdgamma=($nl1l1*$dzsl11+Sn22*$dzs22+$n33*$dzs33+2*$nl12*$dzs12) /S$SH

;plastic strain rate, e’ =)ﬁi
Spzdell=S$dgamma*$nll
Spzde22=$dgamma*$n22
Spzde33=5$dgamma*$n33
Spzdel2=S$dgamma*$nl2
;plastic volumetric strain rate
Sdv=S$Spzdell+$pzde22+S$pzde33
;jpwp rate
if Dranage=0 then
Sdpwp=-b_mod*$dv;undrained
Ssum_pwp=$sum_pwp+Sdpwp
else
Sdpwp=0;drained
end_if

; corrected stress rate, 6::l)e~(é-ép)
Szdell=zdell-$pzdell
$zde22=zde22-$pzde2?2
$zde33=zde33-$pzde33
Szdel2=zdel2-$pzdel?2

Sdzsll=el*Szdell+e2*S$zde22+e2*S5zde33

Sdzs22=e2*Szdell+el*$Szde22+e2*S$zde33
$dzs33=e2*$Szdell+e2*Szde22+el*S$zde33

136



Sdzsl2=e3*$zdel?2
; calculate apparent shear modulus, app_g
if apparent = 1 then
Sdsl = $dzsll - $dzs22
Sds2 Sdzs22 - $dzs33
Sds3 $dzs33 - $dzsll
$dg = $dsl*$dsl + $ds2*S$ds2 + $ds3*$ds3
Sdg = 0.7071*sqrt($dg + 6.0*S$dzsl2*$dzsl12)
app_g=s_mod*$dq/$dg_trial;apparent tangent shear modulus
end_if
Ssum_pzdell=$sum_pzdell+S$Spzdell
Ssum_pzde22=$sum_pzde22+S$Spzde22
Ssum_pzde33=$sum_pzde33+S$Spzde33
Ssum_pzdel2=$sum_pzdel2+Spzdel?2
zvisc=0.0
end_if; if $fb>0.0
;update stress, 6=06+0
zsll=zs11+$dzsll
2822=2s522+5$dzs22
z5833=2533+5$dzs33
zs12=2zs512+S$dzsl2

if zsub>0.0 then
if $p>=0 then
;Sp=-0.01
nerr=168
error=1
end_if
pwp=pwp+S$sum_pwp/zsub
Ssum_pwp=0
Sp=(zs11+2s22+2s33)/3.0+pwp
Sg=zs22-zsll;only for triaxial stress condition

; total strain rate &
Szdell=$sum_zdell/zsub

Ssum_zdell=0.0

Szde22=$sum_zde22/zsub

Ssum_zde22=0.0

Szde33=$sum_zde33/zsub

Ssum_zde33=0.0

Szdel2=$sum_zdel2/zsub

Ssum_zdel2=0.0
vertical_strain=vertical_strain+$zde22*100
volumetric_strain=volumetric_strain+ ($zdell+$zde22+$2zde33)*100
$Sq_zde=$zdell"2+$2de22"2+$2de3372+2*$zdel2"2

Sqg_zde=sqrt (2.0/3.0*S$g_zde) ;toal equivalent shear strain rate éq

gt_strain=gt_strain+$qg _zde*100 ;total equivalent shear strain sq

if $fb>0.0 then
; update str surface & bubble centers and size

; plastic strain rate er
Spzdell=S$sum_pzdell/zsub
Ssum_pzdell=0.0
Spzde22=$sum_pzde22/zsub
Ssum_pzde22=0.0
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Spzde33=$sum_pzde33/zsub
Ssum_pzde33=0.0
$Spzdel2=$sum _pzdel2/zsub
Ssum_pzdel2=0.0

;———— 1sotropic and kinematic hardening —--—-

Spv_zde=Spzdell+$pzde22+Spzdel33 ; plastic volumetric strain rate

pv=$pv_zde*100+pv ;plastic volumetric strain 85

; equivalent plastic shear stain

Spg_zde=S8pzdell”"2+$pzde22"2+Spzde3372+$pzdel2”2
$Spg_zde=sgrt (2.0/3.0*$pg_zde) ; —[2/3(8 )flz
g_strain=qg_strain+S$pg_zde*100 ; 85

((".P

$dpc=$pv_zde/ (b_lambda-b_kappa) *abs (pc) ; P, =—5——F
(4 —x)
. py2 <p\271/2
&g =[A=A)EY)" +AEG)]
Spa_zde=sqgrt ( (1-AA) *Spv_zde*S$pv_zde+AA*Spg_zde*S$Spg_zde)
k

; destruction strain rate, F=-— ————————(r ng
(1" -x)
Sdr_str=-k/ (b_lambda-b_kappa) * (r_str-1) *$Spg_zde
; kinematic hardening (update centers of bubble and str surface)
; translation rate of str surface centre
; change of str surface centre in deviator space,

i dsg =d[(r=Dp.nq]
Sds=nambdal* ( (r_str-1) *$dpc+pc*$dr_str)
; change of str surface centre in p axis, dpa:=d(npc)

Ss_dp=r_str*$dpc+pc*S$dr_str
pc=pc+$dpc ;isotropic hardening
r_str=r_str+$dr_str ;update size of str surface

; change of str surface centre in general stress space,&
Ss_dzsllc=$s_dp

$s_dzs22c=$s_dp

$s_dzs33c=$s_dp

$s_dzsl2c=5$ds

; stress rate w.r.t str surface centre 6'=d'-&
$s_dzsll1l=$dzsl1l-$s_dzsllc
Ss_dzs22=$dzs22-$s_dzs22c
$s_dzs33=$dzs33-$s_dzs33c
$Ss_dzsl2=$dzsl2-$s_dzsl2c

; use corrected stress to calculate new bubble centre
; recalculate deviator stresses §

Sdsll=zsll+pwp-Sp

$ds22=zs22+pwp-S$p

$ds33=zs33+pwp-Sp

$dsl2=zs12

; recalculate deviator stress w.r.t bubble centre §5=S-—Sa
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Sb_dsll=$dsll-b_dsllc
Sb_ds22=%ds22-b_ds22c
Sb_ds33=%ds33-b_ds33c
Sb_dsl2=%dsl2-b_dsl2c

; recalculate stress w.r.t bubble centre G
Sb_zsll=zsll+pwp-b_zsllc
Sb_zs22=2zs22+pwp-b_zs22c
$Sb_zs33=2zs33+pwp-b_zs33c
Sb_zsl2=zs12-b_zsl2c

; recalculate stress w.r.t str surface centre o
$s_zsll=zsll+pwp-s_zsllc

$s_zs22=2522+pwp—s_zs22c

$s_zs33=zs33+pwp—-s_zs33c

Ss_zsl2=zsl2-s_zsl2c

; recalculate conjugate stress w.r. str surface centre o
$s_zsllcj=r_str/r_bub*$b_zsll
$s_zs22cj=r_str/r_bub*$b_zs22
$s_zs33cj=r_str/r_bub*$b_zs33
$s_zsl2cj=r_str/r_bub*$b_zsl2

; recalculate conjugate stress on str surface 0,

c

Szsllcj=$s_zsllcj+s_zsllc
$zs22cj=S8s_zs22cj+s_zs22c
$zs33cj=$s_zs33cj+s_zs33c
$zsl2cj=$s_zsl2cj+s_zsl2c

; translation rate of bubble centre a
Sc7=$dr_str/r_str
$c8=$dpc/pc+$cT
Sb_dzsllc=($dzsll-$s_dzsllc
Sb_dzs22c=($dzs22-$s_dzs22c
Sb_dzs33c=($dzs33-$s_dzs33c
Sb_dzsl2c=($dzsl2-$s_dzsl2c

—-8s_7s11*$c8+Sb_zsll*Sc7
—Ss_2z822*5c8+%Sb_zs22*Sc
—8s_zs833*$c8+Sb_zs33*Sc7
—8s_2zs12*$c8+Sb_zsl2*Sc7

$c9=5$n11*Sb_dzsllc+$n22*Sb_dzs22c+S$n33*Sb_dzs33c
$c9=5c9+2.0*$nl2*$b_dzsl2c
$cl0=%nl1l1*(Szsllcj-zsll-pwp)+Sn22* ($z2s22cj-zs22-pwp)
$c10=5cl0+$n33*($2s33cj-2zs33-pwp) +2*$nl2* ($zsl2cj-zsl2)

Sb_dzsllc=%$c9/$cl0*
Sb_dzs22c=$c9/$cl0*
Sb_dzs33c=%$c9/$cl10*
Sb_dzsl2c=$c9/$cl0*

Szsllcj-zsll-pwp)
$zs22Ccj-zs22-pwp)
$zs33cj-zs33-pwp)
$zsl2cj-zsl2)

—~ o~~~

Sb_dzsllc=$s_dzsllc+(b_zsllc-s_zsllc)*$c8+Sb_dzsllc

Sb_dzs22c=$s_dzs22c+ (b_zs22c-s_zs22c) *$c8+Sb_dzs22c

Sb_dzs33c=$s_dzs33c+ (b_zs33c-s_zs33c)*$c8+Sb_dzs33c
)

Sb_dzsl2c=$s_dzsl2c+(b_zsl2c-s_zsl2c)*$c8+Sb_dzsl2c

; new bubble centre a=a+a
b_zsllc=b_zsllc+$b_dzsllc
b_zs22c=b_zs22c+S$b_dzs22c
b_zs33c=b_zs33c+$b_dzs33c
b_zsl2c=b_zsl2c+S$b_dzsl2c

; new bubble centre on p axis pg
b_p=(b_zsllc+b_zs22c+b_zs33c) /3.0
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; new bubble centre in deviator stress space, §-

b_dsllc=b_zsllc-b_p
b_ds22c=b_zs22c-b_p
b_ds33c=b_zs33c-b_p
b_dsl2c=b_zsl2c

b_g=b_zs22c-b_zsllc

; new center of structure surface a=da+a
s_zsllc=s_zsllc+S$s_dzsllc
S_zs22c=s_zs22c+S$s_dzs22c
s_zs33c=s_zs33c+S$s_dzs33c
s_zsl2c=s_zsl2c+$s_dzsl2c

; new center of str surface on p axis
s_p=r_str*pc ; or s_p=(s_zsllc+s_zs22c+s_zs33c) /3.0
s_g=s_zsl2c*1.732

; new center of str surface in deviator stress space

s_dsllc=s_zsllc-s_p
s_ds22c=s_zs22c—-s_p
s_ds33c=s_zs33c-s_p
s_dsl2c=s_zsl2c
end_if ;if $fb>0
; calculate elastic moduli
b_mod=abs ($p) /b_kappa+b_mod0
s_mod=3.0*b_mod* (1.0-2.0*b_poss)/(2.0*(1.0+b_poss))
end_if ;zsub>0.0
case 3
; calculate apparent shear modulus
if apparent =1 then
if $fb>0 then
Sapp_g=s_mod*$dq/$dg_trial
else
Sapp_g=s_mod
end_1if
end_if
;— Max modulus ——-
bulk_max=b_kmax
shear_max=b_g0

sm_max = shear_max

cm_max = bulk_max + 1.333333 * shear_max
end_case

end

;opt bubble
set echo on
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6 VERIFICATION OF THE BUBBLE MODEL

The Bubble model described in Chapter 5 is implemented in FLAC using the
methodologies explained in Chapters 3 and 4. This chapter presents some typical results
of numerical modelling with FLAC to verify the implementation. The non-intersection
condition and destructuration process are verified. Typical responses of the model are
demonstrated. The model is also verified against the modified Cam-clay model and

published experimental data.

Dynamic analyses are carried out to verify the plastic correction approach in coping with

numerical distortion (instability) in dynamic analysis.

6.1 Modelling of non-structured soil
6.1.1 Example 1

To demonstrate basic features of the Bubble model, non-structured soil is considered
herein (i.e. ro=1.0). A set of parameters are chosen to simulate behaviours of normally
consolidated to overconsolidated stiff clay. Figure 6.1 shows initial surfaces of the model
for three cases, which are assumed to be associated with three remoulded triaxial
specimens. The three specimens are compacted to have a same initial void ratio, i.e. they
have a same initial structure (bounding) surface corresponding to a same pre-
consolidation pressure of 400 kPa. The specimens then undergo triaxial compression
under different effective confining pressures (i.e. 50 kPa, 200 kPa and 350 kPa).
Therefore, the three specimens correspond to an overconsolidation ratio of 4, 2 and 1.14

respectively.

It is assumed that the initial bubble size is the same for the three specimens as they have

the same preconsoildation pressure. A single zone axisymmetrical FLAC model is utilised
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to simulate the conventional triaxial test. The following parameters are used for the

Bubble model:
2=03 k =0.02 u=025M=1m=1B=600 y=05R=0.1

As non-structured soil is considered, the parameters A and k are not required. Elastic bulk
modulus is determined by Equation 5.3. Apart from the above parameters initial

conditions are specified as follows: 7, =0 p.o = 200 kPa

An isotropic confining stress o is applied, i.e. 50 kPa, 200 kPa and 350 kPa for Case 1,

Case 2 and Case 3 respectively. Hereinafter, the initial centre of the bubble is always

assumed to be at the initial stress point.

4 4 (kPa)

200 Structure & Reference surfaces

Case 1 Bubble Case 2 Bubble Case 3 Bubble

() (1 () .
0 W 200 350 p(kPa)

Figure 6.1 Initial stress conditions of three cases (same structure surface)
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6.1.1.1 Drained behaviour

The non-intersection translation rule proposed by Hashiguchi (1985) is employed in the
Bubble model to ensure a smooth transition of the bubble without intersecting the
structure surface. A typical stress-strain behaviour of the model for Case 2 is shown in
Figure 6.2. To verify the non-intersection condition, locations and sizes of the bubble and
structure surface at 5%, 10% and 20% vertical strain are illustrated respectively in
Figures 6.3, 6.4 and 6.5. Stress path and trace of the bubble centre are also shown in the
figures. Figure 6.3 shows that the bubble is very close to the structure surface at 5% strain
but they are not in contact. They are in contact from a strain between 5% and 10%.
Figures 6.4 and 6.5 shows the bubble and structure surface are in touch while their sizes
are only slightly larger than at 5% strain. The bubble is contained inside the structure
surface during the whole loading process. This verifies that the non-intersection condition

is satisfied.

250

200 +

150 -

100 -

Deviator stress (kPa)

50

0 5 10 15 20 25

Vertical strain (%)

Figure 6.2 Drained stress-strain behaviour for Case 2
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Figure 6.3 Location of surfaces at 5% vertical strain
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Figure 6.4 Location of surfaces at 10% vertical strain
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Figure 6.5 Location of surfaces at 20% vertical strain

300

250 - 50 kPa
200 - a
350 kPa
150
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Deviator stress (kPa)

50 A

0 5 10 15 20 25
Vertical strain (%)

Figure 6.6 Drained stress-strain behaviour (same initial structure surface)
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Figure 6.7 Volumetric strain (same initial structure surface)
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Deviator stress, q (kPa)
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Mean stress, p (kPa)

Figure 6.8 Drained stress path (same initial structure surface)
Figure 6.6 shows drained stress-strain curves for the three cases. It can be seen that higher

confining pressure corresponds to larger small strain stiffness but the deviator stress is

similar at 20% strain regardless of the confining pressure.
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Figure 6.7 shows the volumetric strain behaviour of the model. A dilative behaviour can
be seen for Case 1, which starts from a vertical strain of approximately 3%. At a higher
confining pressure, e.g. for Case 2 (200 kPa) and Case 3 (350 kPa), the model shows
contractive behaviour. Therefore the model qualitatively agrees with normally observed
laboratory behaviours of soil. Figure 6.8 shows stress paths of the three cases. The

gradient of the stress path is the same for the three cases as expected, i.e. Ag/A4p =3.

However, at the vertical strain of 20%, the stress paths have not reached the critical state
line (CSL). This suggests that the soil parameters need to be further optimised in order to
obtain better quantitative agreement with experimental results. The set of selected
parameters appear to be more satisfactory to Case 2. For the other two cases, some

parameters (e.g. B and y ) need to be adjusted individually in order to achieve better

results.

6.1.1.2 Undrained behaviour

Undrained stress-strain curves for the above three cases are presented in Figure 6.9. The
ultimate stress is virtually the same, which is smaller than the drained strength and is
reached at smaller strains compared to the drained cases. This is due to the undrained
condition under which the isotropic hardening is insignificant so that the size of the
structure surface (p.) changes in much smaller scales than under the drained condition.

This can be seen form Figure 6.10.
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Figure 6.9 Undrained stress-strain behaviour (same initial structure surface)
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Figure 6.10 Isotropic hardening of the structure surface
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Figure 6.11 Undrained effective stress path (same initial structure surface)
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(a) Comparison between the three cases
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(b) Enlarged at small strain range for 50 kPa confining pressure

Figure 6.12 Pore water pressure (same initial structure surface)

Figure 6.11 shows effective stress paths under the undrained condition and Figure 6.12a
shows pore water pressure response for the three cases up to 10% strain. For Case 1,
negative pore water pressure is generated from about 1% strain and this corresponds to its
effective stress path curving towards the right hand side to meet the critical state line
(CSL). Prior to 1% strain, pore water pressure is positive but is too small to be shown in
the figure. An enlargement of the pore water pressure at small strains is shown in Figure

6.12b.

6.1.2 Example 2

Figure 6.13 shows initial surfaces for another set of three different cases. Each case is
assumed to be associated with a different initial structure surface. The actual bubble size

varies for each case accordingly. Only the undrained condition is considered herein.
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Figure 6.13 Initial stress states of three cases (variable initial structure surface)
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Figure 6.14 Undrained stress-strain behaviour (variable initial structure surface)
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Cases 2 and 3 correspond to normally-consolidated stiff clay while Case 1 represents
over-consolidated clay in a firm state. The bubble is initially in contact with structure
surface for each case. All other parameters are the same as those given in previous

example in Section 6.1.1. Results are shown in Figures 6.14 to 6.16.

As expected, the ultimate stress linearly increases with initial size of structure surface as
shown in Figure 6.14. Effective stress paths are shown in Figure 6.15. It can be seen that
all the three curves tend to approach the theoretical critical state line (CSL) regardless of
initial stress state but stay slightly short of the CSL at 10% vertical strain. Figure 6.15
shows pore water response, which also suggests that the critical state has not been
reached at 10% strain as pore water pressure is not stable. In fact when the bubble is close
to the structure surface, plastic modulus falls quickly so a large strain is needed for the
stress path to reach the critical state line. On the other hand, it is possible that in a
numerical modelling a steady flow occurs while the stress path may never reach the
theoretical CSL. The stress path is mainly affected by the parameter B. Figure 6.17 shows
the influence of B on stress path. It can be seen from Figure 6.17a that stress paths at 10%
strain are closer to the CSL for B = 1000 than for B = 600. When B is increased to 2000,
the CSL is reached at 20% strain (see Figure 6.17b)
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Figure 6.15 Effective stress path (variable initial structure surface)
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Figure 6.16 Pore water pressure (variable structure surface)
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Figure 6.17 Influence of ‘B’ on effective stress path
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6.2  Modelling of structured soil
6.2.1 Example 1

In this section the purpose is to verify the capability of the Bubble model in modelling
general behaviours of structured soil. The parameters selected herein are typically for

very stiff over-consolidated cohesive soil, whihc are given as follows:

Standard parameters 2 =03k =002M=1.0u=025m=1.0
Destructuration parameters A=05k=8
Bubble size R=0.2

Hardening modulus parameters B=600 y = 0.5

Initial conditions Nn,=0 ro=2 pe=200kPa o,= 350 kPa

Where ry = 2 means initial size of the structure surface is twice that of the reference

surface as shown in Figure 6.18.

600
400 [~ Structure surface n
200/ ..-----..Reference surface —
3 : Bubble
$ oK)
o b
_200 — “"-----"’- —
—400 - 7]
-600 | | | | |
0 200 400 600 800 1000 1200
p (kPa)

Figure 6.18 Initial stress conditions of structured soil
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Figure 6.19 Undrained stress-strain behaviour of structured soil

Undrained stress-strain behaviour of the structured soil is shown in Figure 6.19.
Compared to the previous non-structured soil, it can be seen that a peak stress of 300 kPa
is reached at a vertical strain of about 3% due to the initial structure of soil (i.e. ro= 2).
However, the residual stress is similar in magnitude to the ultimate stress for the non-
structured soil shown in Figure 6.9 as the reference surface has the same size for the two

cases.

In this case isotropic hardening is insignificant due to the undrained condition, hence
there is little change in p., i.e p. = p.o = 200 kPa. This means the reference surface and

the bubble are almost constant in size.

The structure surface always decreases in size upon occurrence of plastic deformation
and collapses towards the reference surface no matter the plastic deformation is
contractive or dilative. When the initial structure is totally removed, i.e. r is reduced from
ro to 1.0 the two surfaces are in contact. Under undrained condition the destructuration is

mainly controlled by distortional plastic strain. The destructuration process is expressed

156



by reduction of the size ratio r. Figure 6.20 shows that r is initially 2.0 and decreases to
1.0 when the vertical strain is about 30%. The rate of destructuration is controlled by the
parameter k which is 8 in this example. Influence of k on destructuration will be

discussed in Chapter 7.

The destructuration process is illustrated more directly in Figures 6.21 to 6.23. The
reference surface and the bubble virtually do not change in size. The bubble is brought
upwards after being engaged by the current stress then pushed downwards again due to
destructuration which results in collapsing of the structure surface. Destructuration is
completed at about 30% strain, at which the structure surface coincides with the reference
surface as shown in Figure 6.23. It can be seen that the bubble is always contained under

the structure surface. This again verifies the non-intersection condition of the model.
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Figure 6.20 Destructuration of structured soil
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Figure 6.22 Surfaces at 10% strain
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Figure 6.24 Initial stress conditions of structured soil with anisotropy



The soil described in Figure 6.18 has an isotropic initial structure surface, i.e. 7, =0.
Figure 6.24 shows the initial stress state of the structured soil which has an anisotropic
structure surface (7, =0.5). In p, g pace, the centre of the structure surface is at (400,

100). All other parameters are the same as those for Figure 6.18.

Figure 6.25 indicates that the anisotropy results in a smaller peak stress but no difference
in residual stress. Figure 6.26 shows the surfaces when the vertical strain is 30%.
Comparison of Figure 6.26 with Figure 6.23 indicates that the anisotropy affects the
stress path and translation path of the bubble but does not affect the final sizes and

locations of the surfaces as they are only controlled by the intrinsic behaviour of soil.
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Figure 6.25 Influence of anisotropy on stress-strain behaviour
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Figure 6.26 Surfaces after destructuration at 30% strain (1, =0.5)

6.2.2 Example 2

Figure 6.27 shows three different initial stress conditions of the same structured soil as
showed in Figure 6.18. Each case corresponds to a different location of the initial bubble
but the structure and reference surfaces remain the same as before. The centre of bubble
is at current stress point for each case. 0'3 is 100 kPa, 350 kPa and 600 kPa for Case 1,
Case 2 and Case 3 respectively. The three cases correspond to cohesive soil which is in a
very stiff state. The over-consolidation ratio is approximately 8 for case 1, 2.3 for Case 2

and 1.3 fro case 3. All other parameters are the same as those for the previous structured

soil.
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Figure 6.27 Initial stress conditions for three cases of a structured soil

The results are presented in Figures 6.28 to 6.30. It can be seen that small strain response
including peak stress varies between the three cases due to variable initial stress states
while there is no significant difference in residual stress. However, Figure 6.29 shows
that the effective stress path for case 1 deviates from the CSL unlike the other two cases.
This indicates that one single set of parameters can not satisfy all the three cases.
Although their structure and reference surfaces are the same, some parameters may need

to be adjusted individually to suit the different initial location of the bubble.

Figure 6.30(a) show pore water pressure for the three cases. Figure 30(b) shows the pore

water pressure at small strain range for Case 1 only.
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Figure 6.28 Undrained stress-strain behaviour of structured soil
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Figure 6.29 Effective stress path of structured soil
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Figure 6.30 Pore water pressure response of the structured soil
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6.3 Comparison with the modified Cam-clay model

The bubble model can be reduced to the modified Cam-clay model when R = 1, rp=1 and

n, =0. A FISH version of the modified Cam-clay model is available in FLAC. The

Bubble model is compared with the modified Cam-clay model. Correlations between
parameters of the two soil models have been discussed in Section 5.3. Two compatible

sets of parameters and initial conditions for stiff cohesive soil are given as follows:

The Bubble model The Modified Cam-clay model

I=03 k" =002M=Im=1u=0.25 A=0.426 k=0.0284 M=1pu=025
B =400 yv=0.5 p,=50 kPa v, = 2.0 (reference point)

Peo = 200 kPa o, = 200 kPa Peo = 400 kPa o= 200 kPa

Figure 6.31 shows a good agreement in stress-strain behaviour between the two models.
A value of 0.998 is used for parameter R instead of 1.0 to avoid execution of a quantity
being divided by zero in computing hardening modulus (see Equations 5.14 and 5.18 in

Chapter 5).

250
Bubble model (R=0.998)
200 i ﬁ
«
<
=~ 150 | Cam-clay model
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o
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50
O T T T T T
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Figure 6.31 Comparison with modified Cam-clay model (Drained)
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6.4 Comparison with experiment

Experimental data used herein for comparison was published by Lee and Seed (1967).
The soil used in their experiment was fine uniform sand which was dredged from
Sacramento River about 30 miles upstream from San Francisco Bay. The specific gravity
and limiting void ratio were Gy= 2.68, ey, = 0.61 and ep,x = 1.03. Tests were performed
on samples prepared to four initial densities. The loose sample had an initial void ratio of
0.87, a relative density of 38% and a frictional angle of 34°. Three drained triaxial test
results of the loose sample are used here for comparison. The confining pressure is 100

kPa, 450 kPa and 2000 kPa respectively.

It is appropriate to assume that the sand was non-structured as it was reconstituted, i.e. ry
= 1. The parameter R can be assumed to be the same for the three tests. Key parameters to
be selected are initial size of the structure surface (po) and hardening modulus
parameters (B and y ). Parameter y controls curvature of a stress-strain curve. For a
qualitative comparison, it is reasonable to assume y to be the same for the three tests and
only to vary parameter B for each test. It was reported that the sand was relatively
incompressible at low pressures and at high pressures there was considerable volume
change due to crushing of grains (See Figure 6.32). To simulate the three tests,
parameters of the Bubble model are given as follows and initial stress conditions of the

three samples are shown in Figure 6.33.

2F =03k =002M=I1m=1u=0.3
R=0157n,=0 y=1

o; (kPa) B Peo (kPa)
100 600 300
450 1800 900
2000 25000 1200

Note: For non-structured soils A and k are not used.
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Figure 6.33 Initial stress conditions of three tests
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A general agreement in stress-strain-volume behaviour between the modeling and test
results can be seen from Figures 6.34 (a) and (b), where solid curves present results of the
modeling. The difference is generally smaller at high confining pressures than at low
confining pressures. However variation in small-strain behaviour is not insignificant,
especially for low confining pressures. The Bubble model with the selected parameters
predicts smaller moduli and less dilative behaviour than the experiment. Therefore, for
further research, more comparisons with laboratory testing results are required to identify
the capabilities and limitations of the Bubble model. Stress-strain behaviour at small

strain of the model will be studied in Chapter 7.
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Figure 6.34 Comparison of Bubble model with published experiment data
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6.5  Dynamic behaviour of the Bubble model

The main purpose to employ the ‘plastic correction’ approach in implementing the
Bubble model in FLAC is to minimise numerical distortion (non-physical instability)
without applying any additional damping. To verify whether or not this has been
achieved, dynamic performance of the Bubble model is investigated under both drained
and undrained conditions. For drained condition, a steady state response should be
reached after an initial vibration and should stay reasonably stable. For undrained
condition, whether or not a steady state response can be reached and can stay stable
depends on generation of pore water pressure. If cyclic change in pore water pressure is

small, the steady state response should also stay stable (i.e. non-liquefiable).

6.5.1 A single-zone FLAC triaxial model

A single zone axisymmetrical model is utilised to represent a dynamic triaxial test (see
Figure 6.35). The zone is a 0.1 m by 0.1 m square. The only reason to use a square zone
is to avoid another type of numerical distortion which may occur in dynamic analysis if
non-squared zones are used. The zone size is chosen to be much smaller than 10% of the
shear wave wavelength of soil so that no size effects will be introduced into the

modelling.

Strain-controlled
dynamic loading

3 [

q

) [

Figure 6.35 A single zone triaxial model
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Non-structured loose sand is considered for the analysis herein with the parameters given

as follows:
2=03 k' =002M=1m=1u=025R=0.2B =400 y=1.0 p, =100 kPa

Two initial stress conditions are considered. o is 50 kPa for Caseland 150 kPa for Case

2. The single zone model is subjected to a strain-controlled sinusoidal loading with a

magnitude of maximum vertical strain of 2.5% and a frequency of 1Hz.

*q (kPa)
Structure & reference
100 surfaces
Casel Case 2
bubble bubble

J

(N - .
\0 /) p=100\ 159/ p (kPa)

Figure 6.36 Initial stress conditions

For both drained and undrained conditions steady state responses are reached and they
stay stable within 200 cycles (see Figures 6.37 to 6.45). For clarity only Figure 6.43
shows the response up to 200 cycles while all other figures only show responses up to 40

cycles.

Figures 6.37 and 6.38 show the drained stress-volume-strain response for Case 1 (o= 50

kPa). Dilative behaviour is obtained, which results in a cyclic increase in volume before a
constant magnitude and amplitude of volume are reached. The amplitude of deviator
stress and stiffness of soil decrease cyclically due to dilation before the steady state is

reached.
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Figure 6.37 Drained dynamic stress-strain behaviour of Case 1 soil
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Figure 6.38 Dynamic volumetric response of Case 1 soil
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Figure 6.39 Undrained dynamic stress-strain response of Case 1 soil
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Figure 6.40 Dynamic pore water pressure of Case 1 soil
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Figure 6.41 Drained dynamic stress-strain behaviour of Case 2 soil
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Figure 6.42 Dynamic volumetric response of Case 2 soil (40 cycles)
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Figure 6.43 Dynamic volumetric response of Case 2 soil (200 cycles)

Figure 6.40 shows that negative pore water pressure is generated, which reach its
maximum magnitude in only a few cycles and decreases gently with approximately a
constant amplitude. This corresponds to a stable stress-strain response and the cyclic

change in stiffness is insignificant (see Figure 6.39)

Drained stress-strain-volume responses of Case 2 soil (5= 150 kPa) are shown in

Figures 6.41 and 42. It can be seen that there is a cyclic densification in volume and
hence a cyclic increase in stiffness of soil before the steady state is reached. The steady

state response stays stable for the whole duration of vibration (See Figure 6.43).
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Figure 6.44 Undrained dynamic stress-strain response of Case 2 soil
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Figure 6.44a Cyclic response of undrained deviator stress of Case 2 soil
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Figure 6.45 Dynamic pore water pressure of Case 2 soil

Undrained responses are similar to those of Case 1 soil except that the pore water
pressure is positive (see Figure 6.45). However, the model predicts a stiffness increase in
the first three cycles (see Figures 6.44 and 6.44a). This is inconsistent with cyclic
behaviours of soils normally observed in laboratory, i.e. the stiffness should decreases
with the development of a positive pore water pressure. The causes of this disparity

remain to be investigated in the future research.

6.5.2 A multizone FLAC triaxial model

A multizone numerical model is utilized to represent a triaxial specimen which is 0.2 m
in diameter and 0.4 m in height. The model consists of 16 square zones. The size of each

zone 1s 0.05 m.

The same parameters as those for the single-zone model are used except the initial
confining pressure is increased to 300 kPa (see Figure 6.46). This is to avoid generation
of tensile mean stresses during vibration as the Bubble model does not allow tensile mean

stress. Accordingly the initial centre of the structure surface is increased to 200 kPa. The

177



amplitude of strain is reduced to 1% for the same purpose. The frequency is increased to
10 Hz to further investigate dynamic performance of the model as the higher the

frequency is, the more severe the numerical distortion could be.

*q (kPa)
Structure & reference
200 surfaces
0 200 /3;00\ >
Y p (kPa)

Figure 6.46 Initial stress state of the multizone FLAC model

Undrained dynamic responses of the multizone model are shown in Figures 6.47, 6.47a
and 6.48. Results are similar to those of the single-zone model for Case 2 soil. A stable

stress-strain response is obtained without using any additional damping.

Deviator stress (kPa)
(6)]

Vertical strain (%)

Figure 6.47 Undrained dynamic stress-strain response of a multizone triaxial model
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Figure 6.47a Cyclic response of undrained deviator stress of a multizone triaxal model
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Figure 6.48 Dynamic pore water pressure (40 cycles)
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6.6  Summary

The Bubble model has been implemented in FLAC with the ‘plastic correction’ approach.
In this chapter fundamental features of the Bubble model have been demonstrated with
the FLAC programme. The Bubble model has been found to be able to simulate essential
behaviours of both remoulded and structured soils. The non-intersection condition
between the bubble and the structure surface has been verified. Destructuration process

for structured soil has also been illustrated.

The Bubble model has been further verified by its comparison with the modified Cam-
clay model and published experimental data (Lee and Seed 1967). Good agreement has

been obtained.

Dynamic performance of the Bubble model has been investigated for both single-zone
and multi-zone FLAC models. It has been found that a stable response can be obtained
without using any additional damping. This verifies that numerical distortion problem in
nonlinear dynamic analysis can be eliminated or minimised by means of the

implementation methodologies used in this thesis.

The data file for the triaxial model is attached to Chapter 7.
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7 PARAMETRIC STUDY OF THE BUBBLE MODEL

The bubble model requires ten soil parameters and some initial conditions. Five of the
parameters are similar to those of the Cam-clay model, i.e. 2okt M ,mand u and they
can be obtained directly from laboratory tests while the other five are non-standard

parameters, i.e. R,B,y,k,A. Initial conditions include r,,7,, p.,,0;,. The non-standard

parameters and most of the initial conditions can not be obtained directly from laboratory
tests. For a specific type of soil, determinations of these parameters and the initial
conditions rely on curve-fitting between numerical modelling and experimental results

(Also see discussions in Section 5.3).

The objective of this chapter is to investigate influence of the above parameters and
initial conditions on behaviour of the bubble model and importance of each parameter.
Particularly qualitative study is carried out to investigate influence of bubble size R and
plastic modulus parameter B. Results obtained from this chapter provide a general

guidance in choosing parameters for application of the bubble model in Chapter 8.

The parametric a study is carried out by using a set of selected parameters and varying
one parameter while assuming other parameters unchanged although, in reality, some of
the parameters are inter-related. This may result in unrealistic behaviours of the model.
However, the assumption is considered to be necessary and appropriate for the purpose of

parametric study.

7.1 Typical values of parameters

Typical values of parameters are given as below, which are utilised as reference

parameters for parametric study.
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Table 7.1 Typical soil parameters for parametric study

ya K M m u R B W k A K,
(MPa)
03] 002 | 1.0 1.0 [ 025 ] 0.2 | 600 | 05 4 0.5 0

Note: all parameters are dimensionless except K, which is elastic bulk modulus associated with zero confining pressure
(see Eq.5.22)

Initial conditions are specified as follows:
r,=10, n,=0
Peo = 200 kPa, &', = 200 kPa

q A
200 Reference & Structure surfaces
Bubble
0 400
03

Figure 7.1 Initial locations of surfaces associated with reference parameters

The above parameters are chosen to represent non-structured soil (r,= 1.0 and 7, =0, i.e

structure surface coincides with reference surface as shown in Figure 7.1). The initial
conditions correspond approximately to cohesive soil with an undrained shear strength of
100 kPa. An initial elastic bulk modulus of 10 MPa is calculated form Eq.5.22 and this

corresponds to a shear modulus of 6 MPa and a Young’s modulus of 15 MPa.
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Plastic modulus parameters ( B and y ) control degradation of stiffness when plastic

deformation occurs and affect performance of the model significantly. Little past
experience can be based upon for determination of the two parameters. Preliminary study

indicates that a value of 600 for B and 0.5 for y are suitable in this case.

In order to model nonlinear behaviours of soil at very small strain, a very small bubble
size is required, i.e. parameter R should be close to zero. However, this will require a very
small timestep in analysis (e.g. less than 10® m displacement or 10™ % strain per step for
a single element model) while a timestep of 10°m displacement per step is found to be
suitable for most cases. Therefore use of a very small bubble will cause significant
computational burden. A value of 0.2 for parameter R is considered to be appropriate for
the parametric study. The value is similar to those used by Rouainia & Wood (2000) and
Gajo & Wood (2001). They suggested that R has a minor role in affecting overall

behaviours of the model compared to parameter B.

Parameters A and k do not affect behaviours of non-structured soils. For structured soils,
A can be varied in a range between 0 and 1. Herein A is given a value of 0.5, which
means that volumetric and distortional strains are equally taken into account in
destructuration law. This is a special case of the bubble model, which is equivalent to S3-
SKH model (Baudet and Stallebrass, 2004). k is an arbitrary parameter that controls the
rate of destructuration. A value of 4.16 was used for Norrkdping clay by Rouainia &
Wood (2000) and 0.5 for Bothkennar clay by Baudet and Stallebrass (2004). Herein k is

taken to be 4 as a reference value.

Standard parameters A, ¥, M , m and u are selected in normal ranges for clay. It needs to
be pointed out that Poisson’s ratio, u, is taken to be 0.25 for both undrained analyses (i.e.
same as the drained analyses) because effective stresses are utilized in the bubble model.
Gajo & Wood (2001) found that Poisson’s ratio has a less important role than other
parameters. m 1is a ratio between radii of sections through structure surface for

axisymmetrical extension and compression in deviatoric plane, which should be between
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0.7 and 1.0 to ensure convexity. Herein m is taken to be 1.0 by assuming behaviour of

soil in extension is identical to that in compression.

lq

+ 73

-

-

Figure 7.2 Single-element triaxial model

An axisymmetric numerical model comprising a single square element is utilized to
model the conventional triaxial test. A square element is considered to be better than a
non-square one in reducing numerical errors. Although the single-element model does not
match the shape of a real triaxial specimen, it is considered to be suitable for the

qualitative study herein.

7.2 Size of bubble

Introduction of a smaller yield surface into the bubble model is to reduce elastic range of
soil. The size of elastic range (i.e. bubble) is represented by parameter R in the bubble
model. Figure 7.3 shows stress-strain curves for a range of values of R. To show the
elastic range clearly, B is given a smaller value of 300 rather than the reference value of
600 as the larger the value of B, the smoother the transition of stiffness when the bubble

1s engaged(see Section 7.3).
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Figure 7.3 Elastic range vs bubble size (B = 300, drained)

The curve for R =1.0 is equivalent to the result of the modified Cam-clay, indicating an
apparent elastic range up to a vertical strain of 1% in this case while the curve for R =

0.005 shows a nonlinear behaviour from the beginning of loading.

For most natural soils elastic range is very small. Hence a small value of R should be
used so that a smooth transition in modulus can be obtained. However this increases
computational time significantly as a much smaller timestep must be used to avoid errors
during elastic trial. Otherwise, stress may drift from the bubble. When larger values of R
have to be used one has to find a suitable value of B to get a smooth transition in stiffness

(See Section 7.7).
Although R affects small strain behaviour, it has little effect on ultimate stress of soil and

the stress-strain behaviour at large strains as long as a suitable value of B is selected. This

can be seen from Figures 7.4 and 7.5.
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Figure 7.4 Stress-strain behaviour (B =500, drained)
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Figure 7.5 Stress-strain behaviour (B=600, drained)
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Figure 7.6 Influence of R on volumetric behaviour (B=600, w =0.5, drained)
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Figure 7.7 Volumetric strain vs mean pressure (B = 600)
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It can also be seen from Figure 7.6 that R has only minor influence on volumetric strain.
Figure 7.7 shows that R has little influence on relationship between volumetric strain and
mean pressure. An oedometer test is simulated by allowing only vertical deformation for
the single element model. An initial all-round pressure of 200 kPa is applied to the model

so that the model has an initial stiffness prior to loading (Note: bulk modulus is given by

K= L +K ,and K is zero herein). The mean effective pressure for the plot is the total
K

mean effective pressure acting on the model less the initial all-round pressure.

The results so far suggest that R has little effect on the overall stress-strain response of
the bubble model when R is less than 0.2. The following analyses are carried out to check
if this is still true when other parameters are changed. To ensure realistic results, B is

varied accordingly as B is found to be inter-related to these parameters (see Section 7.3).
Figures 7.8 to 7.11 show similar results even when parameters y,u, A", k" are varied

significantly.
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Figure 7.8 Stress-strain behaviour (y =1.0, B=1500, drained)
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Figure 7.9 Stress-strain behaviour ( ft =0.35, B =250, drained)
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Figure 7.10 Stress-strain behaviour (A" =0.2, B = 350, drained)
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Figure 7.11 Stress-strain behaviour ( k* = 0.04, B = 280, drained)
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Figure 7.12 Undrained stress-strain behaviour
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Figure 7.13 Pore water pressure

Figure 7.12 shows that the undrained stress-strain behaviour is also insensitive to the
parameter R although pore water pressure may increase sharply at high strain levels when
R is greater than 0.2 (see Figure 7.13). It is also noticed that the same pore water pressure

is generated by the model at a particular strain level regardless of the value of R.

It can be concluded from the above study that if one is not particularly interested in small
strain behaviour of the model, e.g G — 7y relationship (see Section 7.7 ), R can be selected

within a range of 0.1 to 0.2. Unless specified, R is 0.2 in the following analyses.

7.3  Plastic modulus parameters ‘B and v’
B and y are two plastic modulus parameters, which significantly affect stress-strain
behaviour of the bubble model after yielding takes place. B controls magnitude of

stiffness and y controls rate of degradation in stiffness.
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Figure 7.14 Influence of ‘B’ on stress-strain behaviour (y =0.5, R = 0.2)
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Figure 7.15 Influence of parameter B (y = 0.5,R=0.01)
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Figure 7.14 shows that post-yielding stiffness of soil increases with B and the larger the
value of B, the smoother the transition in stiffness. However the relationship is less
sensitive to B when B is greater than a certain value (e.g. 600 in this case). At this value
of B a realistic response is obtained with the ultimate deviator stress being approximately

180 kPa (g, = p'M =~ p,,M =200kPa).

B only affects the stiffness when plastic deformation occurs. In Figure 7.14 an elastic
range up to a maximum vertical strain of about 0.25% can be clearly seen when B is 200.
Figure 7.15 shows that B starts to affect stiffness from a much lower level of strain as the

elastic range is 20 times smaller, i.e. R = 0.01.
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Figure 7.16 Influence of parametery (B=600)

Figure 7.16 shows that stiffness and strength of soil decreases as y increases and the
realistic response corresponds to a value of 0.5. Therefore if y is increased, B must also

be increased to get realistic results.

For non-structured soil initial size of bounding surface (p.,) is considered to be the main

factor affecting the parameter B. Relationships between p., and B are explored with a

193



criterion that ultimate deviator stress approximately equals p M . The calculated

relationships are shown in Figures 7.17 to 7.19 for different values of .
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Figure 7.17 Relationship between B and p.o (y = 0.5)
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Figure 7.18 Relationship between B and p.o (w = 1.0)
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Figure 7.19 Relationship between B and p.o (y = 1.5)

The above relationships have been obtained with the parameters u,1", x° given in

Section 7.1 and are expected to vary as these parameters change. However, these

relationships can be used as the first trial for selecting values of parameters B and y in an

analysis.

7.4  Standard parameters

Poisson’s ratio ‘1’

The influence of Poisson’s ratio is minor compared to that of parameters B and y .
Figures 7.20 and 7.21 show that there is no significant difference in small strain stiffness
and undrained shear strength if Poisson’s ratio increases from 0.1 to 0.3. This is

consistent with the work by Gajo & Wood (2001). However, Possion’s ratio affects the

drained shear strength significantly.
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Figure 7.20 Influence of Poisson’s ratio on stiffness (undrained)
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Figure 7.21 Influence of Poisson’s ratio on stiffness (drained)

’

Parameters ‘1", k"
A',x" are interrelated, i.e. variation in one of them should be accompanied by variation

of the other. To investigate significance of them, however, influence of each of the two
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parameters is explored with the other being kept unchanged although this may result in
unrealistic results. Figures 7.22 to 7.23 show that soil stiffness decreases as A" increases.

Figures 7.24 & 7.25 show that the stiffness also decreases as x* increases.
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Figure 7.22 Influence of ' on stiffness and strength (undrained, k" =0.02)
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Figure 7.23 Influence of X on stiffness and strength (drained, k" =0.02)
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Figure 7.24 Influence of k° on stiffness and strength (undrained, A* =0.3)

300
*= 0.06
250 - K
_ .03
[0}
.02
< 200 »
= _
3 0.01
£ 150 -
S
©
< 100 A
[)
[m)]
50 |
0 T T T T T T
0 2 4 6 8 10 12

Vertical strain (%)

Figure 7.25 Influence of k" on stiffness (drained, ' =0.3)
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Parameter ‘ m’

In the bubble model, dimensionless scaling function, M, is given as follows (i.e. Eq.5.6),

_ 2mM
"~ (1+m) - (1—m)sin(30)

0

Where M is the critical state stress ratio for axisymmetrical compression. m is the ratio
between radii of sections through the structure surface for axisymmetrical extension and
compression. Rouainia and Wood (2000) recommended that m should be in the range

between 0.7 and 1.0 to ensure convexity. The above equation is illustrated in Figure 7.26.

For axisymmetrical compression (Lode’s angle =30°), M, = M , hence m has no effect
on the response of the model (see Figure 7.27). For axisymmetrical extension (Lode’s
angle 6 = -30°), M, =mM . Figure 7.28 shows the influence of m on stress-strain

response under axisymmetrical extension. It can be seen that ultimate deviator stress

decreases linearly with m, i.e. g, = p M, = p.,mM =200m .
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Figure 7.26 Dimensionless scaling function, M , (M = 1.0)
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Figure 7.27 Influence of parameter ‘m’(undrained axisymmetrical compression, m =
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Figure 7.28 Influence of parameter ‘m’ (undrained axisymmetrical extension)
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7.5 Destructuration parameters
Parameter ‘A’

‘A’ 1s a dimensionless scaling parameter. Destructuration is entirely volumetric if A = 0
and is entirely distortional if A = 1.0 (refer Eq. 5.12). Influence of parameter A is
illustrated in Figures 7.29 and 7.30. Two cases for structured soil are considered, i.e r, is
2 and 4 respectively. It can be seen that parameter A only affects residual strength of soil
and has little effect on peak strength. The more contribution to destructuration of soil
from plastic distortional strain, the lower the residual strength. If A = 0, post-peak stress-
strain curves flat off as plastic volumetric strain rate¢” =0, hence there is no further
destructuration. If A > 0, destructuration continues beyond the peak as plastic distortional

strain rate s(f # 0. Therefore for structured soil, parameter A should be chosen to be

greater than 0, otherwise, destructuration would be incomplete. A = 0.5 should be used

for the first trial in a modeling.
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Figure 7.29 Influence of parameter ‘A’ (r,=2.0, undrained)
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Figure 7.30 Influence of parameter ‘A’ (rg = 4.0, undrained)

Parameter ‘k’

k is a parameter controlling rate of destructuration. A destructuration process is
completed when the size ratio of the structure surface ‘r’ is 1. Figure 7.31 shows r always
decreases with strain and the larger the parameter k, the faster the destructration.
However the ultimate size of the structure surface (rp,) is independent of the parameter k

(see Figure 7.32).

n
o
|

1.8

1.6

1.4

1.2 1

Size ratio of structure surface, r

1.0 T T

0 5 10 15 20 25 30 35 40
Vertical strain (%)

Figure 7.31 Influence of parameter ‘k’ on destructuration (rp=2.0, drained)
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Figure 7.32 Size of structure surface, rp. (ro=2.0, drained)

350

300 -

250 +

200 -

150

100 -

Deviator stress (kPa)

50 -

O T T T
0 5 10 15 20 25 30 35 40

Vertical strain (%)

Figure 7.33 Influence of parameter ‘k’ on stress-strain behaviour (ro=2.0, drained)
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Figure 7.33 shows that stress-strain curves converge to the same ultimate stress at large
strain regardless of k. In addition, k£ has little influence on peak strength and no effect on

the pre-peak behaviour. It only affects the post-peak behaviours.

7.6 Initial conditions
o, and p,,
o, 1s equal to the initial mean effective stress (i.e. p), which determines initial elastic

bulk modulus (Note: K =£* if K, = 0). Figure 7.34 shows that initial stiffness of soil
K

increases with o, while ultimate stress is independent of o, as p,_ is constant (i.e. 200
kPa) for the three cases. This corresponds to overconsolidated soil with a
preconsolidation pressure p . = 400kPa and the overconsolidation ratio is about 4, 2

and 1.3 respectively. The behaviour is qualitatively consistent with experimental results

(Ishihara, 1996).
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Figure 7.34 Influence of initial stress (undrained, p., =200 kPa)
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P, 1s a quantity defining the initial size of reference surface and controls the strength of
soil (see Figure 7.35). p, is related to the initial void ratio and stress history. For
normally consolidated non-structured soil, p., = o,/2 while for overconsolidated non-
structured soil, p., =p, . /2. p,.. 1is the maximum preconsolidation pressure. If

undrained shear strength ‘s, is available, p,, =2s /M .
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Figure 7.35 Influence of initial size of reference surface (undrained, o,= 200 kPa)

1, and 1,

r, and 1, describe the initial state of structure surface. 7 is initial size ratio of structure
surface to reference surface and 7, is a measure of the initial anisotropy of the structure

surface. r,can be interpreted as a measure of sensitivity of the structured soil.

It can be seen from Figure 7.36 that the peak stress increases with r, while the residual

stress converges to the same stress level close to p. as p,, represents strength of
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remoulded soil. In this case, r, is approximately 1.5 to 2.0 times larger than the ratio

between peak and residual stresses.
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Figure 7.36 Influence of initial size of structure surface ( p,, =200 kPa, k=8, undrained)
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Figure 7.37 Influence of initial anisotropy (r,=2.0, p, =200 kPa, k=4, undrained )
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Anisotropy means deviation of the initial structure surface from the p axis in p, g space,

ie. q,=r —Dn,p, - 1n,> 0 means deviation to above the p axis and 7,< 0 to below

the p axis. Figure 7.37 shows that the pre-peak behaviour is approximately symmetric

about the curve for 5,= 0 (i.e. isotropic structure surface). However influence of

anisotropy on stress-strain behaviour is generally minor given the levels of anisotropy in

the case.

Maximum bulk modulus ‘K.

K... 1s not a parameter of the bubble model but is required by FLAC to determine a
critical timestep for an analysis. (Note: FLAC automatically calculates a critical timestep
according to stiffness, zone size and Rayleigh damping ratio. The critical timestep
decreases with stiffness and Rayleigh damping ratio but increases with zone size). K,

should be greater than the maximum bulk modulus calculated from the
formula, K = % + K, otherwise, instability may occur for a dynamic analysis. However,
K

K... does not affect a static problem as long as it is greater than a certain value which is
not necessarily the maximum bulk modulus calculated from the above function. The
maximum bulk modulus is about 12 MPa for the problem as shown in Figure 7.38. It is
found that the minimum K, required to ensure stability of the static analysisis only 2
MPa as shown in Figure 7.39 while for dynamic analysis using the single-zone triaxial

model K., = 200 MPa is required for a satisfactory result (see Figure 7.40).
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Figure 7.38 Calculated bulk modulus during undrained triaxial compression

(With reference parameters given in Section 7.1)
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Figure 7.39 Influence of K, on static analysis
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Figure 7.40 Dynamic response of a single-zone triaxial model (10 Hz, 20 cycles, vertical

strain amplitude = 2%)
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7.7 G — ycurves

Three key parameters, R, x¥"and B are considered to have the most influence on the

G — y curves, especially in the small strain range. This section presents a general picture
of how these parameters affect G —y curves. The abrupt transition in stiffness from

elastic region to yielding is discussed. An alternative hardening function is also proposed
based on the concept of the model by Kavvadas and Amorosi (2000) in order to smoothen

the G — ¥ curves.

7.7.1 Laboratory G — ycurves

Reduction in shear modulus (G) with shear strain has been historically expressed as a
function of confining pressure and plasticity index (PI) for clays, which is idealised on

basis of laboratory testing. Normalised shear modulus (i.e. the shear modulus ratio

% ) 1s used to express the nonlinear behaviour of strain-dependent modulus of soil.

Experimental G —y curves have been presented by many researchers (e.g. Ishihara,

1996). A typical laboratory G — ¥ curve is shown in Figure 7.41.
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Figure 7.41 A typical laboratory G — y curve for cohesive soils
(Based on data from Kokusho et al. 1982)
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7.71.2 G —ycurves of the Bubble model

The study in this section is to focus on stiffness degradation within small strain range and
to explore the transition in stiffness from elastic region to yielding. Al Tabbaa and Wood
noted in 1989 that there is an abrupt transition in stiffness from elastic region to yielding.
However, there has been no published information on G — ¥ curves of the Bubble model.
Stallebrass and Taylor (1997) presented data of tangent shear modulus versus deviator
stress but there is no sufficient small strain stiffness data. Their data also indicates there is
an abrupt transition in shear modulus. Kavvadas and Amorosi (2000) proposed an
alternative hardening function to smoothen the stiffness transition. Although they did not

show G — y data, it seems to be obvious that the solution should work. Therefore, their

concept is adopted in Section 7.7.3 for the bubble model.

The secant shear modulus 1s considered for the study. The effective confining pressure p
is taken to be 600 kPa herein. Accordingly, the initial reference surface is sized with p,,
being 350 kPa. A small bubble is utilised with R equal to 0.001 to explore

G — ybehaviour at small strain levels. All other parameters and initial conditions are the

same as the reference date given in Section 7.1 except parameters k" and B which have

been found to play main roles in affecting G — ¥ curves.

The same single-element triaxial model is utilised to model undrained response up to 2%
vertical strain. A small strain increment of 10° % per step is used and results of analyses

are recorded every other 100 steps to reduce burden in data processing.

Figure 7.42a presents three curves with k" equal to 0.02, 0.005 and 0.001 respectively.

As bulk modulus is given by K = ﬁ + K, and K, is zero in this case, G, for the three
K

curves is 18 MPa, 72 MPa and 360 MPa respectively (Note: the effective Poisson’s ratio
is 0.25 herein). However, due to data filtering (i.e. record and output FLAC calculations
at a regular period, e.g. every 10 to 1000 timesteps in order to reduce data processing

burden in Excel and Mathcad), G, obtained from FLAC modeling is smaller than that
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calculated from the above elastic formula. For convenience, G, is taken to be the shear
modulus corresponding to 10* % shear strain. This is also consistent with published
laboratory data (See Figure 7.41). Note: The shear strain herein is so called ‘triaxial
shear strain’ (Schofield and Wroth, 1968), which equals to the vertical strain for

undrained triaxial stress conditions.

It can be seen that shear modulus degrades faster with shear strain if x"is smaller. Due to
presence of the elastic range (i.e. the bubble), there is a flat portion of curve at the
beginning. This flat portion of curve decreases in length as G, increases on the
condition that the bubble size is constant (i.e. R = 0.001). This means that the bubble with

a constant R is engaged at smaller strain if the soil is stiffer.

In Figure 7.42, plastic modulus parameter B is increased proportionally as the elastic
modulus x” is deceased. It has been found that influence of x* has the similar pattern
even if B is constant. Analyses have also been carried out by varying other parameters
and initial conditions, which suggest the same findings stated above (results are not

presented herein).
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Figure 7.42(a) G — y curves
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Figure 7.42(b) Stress-strain curves

Figure 7.42 Influence of k" on small strain behaviour (K, = 0)

However, the influence of x“on G — ycurves is secondary when K, dominates the bulk
modulus. This is illustrated in Figure 7.43a, where the doted curve is associated with
K,=90 MPa and x"=0.02 while the solid curve is for K,= 0 MPa and k"= 0.005(i.e.

the blue curve in Figure 7.42a), hence G, is 72 MPa for both of the two cases. As B is

the same, the two G — y curves are almost identical.

Figure 7.43b shows the influence of parameter B on G — ycurves. It can be seen that B
affects the reduction rate in shear modulus significantly at very small strain levels but has
less influence at high strain levels. Parameters A’and y have similar influence (results

are not presented herein).
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7.7.3 Smooth transition in shear modulus

Although a very large value can be selected for the parameter B to smoothen the
transition in stiffness, there is always a drop in stiffness when the yielding starts as B can
not be infinity. It has also been found that one penalty to use a large value of B is that the
model becomes too stiff after yielding takes place. This can be seen from Figure 7.43b,
that is, as B increases, there is less and less reduction in shear modulus between 102 %

and 0.1 % shear strain.

Instead of using a large value of B, a multiplier is applied to the second term of the
hardening function (Eq. 5.21), which is infinity at yielding and continuously decreases

after yielding. The multiplier is given as follows:

1

S 7.1)
|V_y0|

HeH +— Pe_( by, (7.2)

TG b

Where y is shear strain and y,is the shear strain corresponding to the onset of yielding
(i.e. the point when the bubble is first touched by the stress point). If the stress point
moves back into the bubble (unloading) and re-touches the bubble, y,needs to be reset.
At yielding, y=y,, hence, y =c (i.e. the hardening modulus is infinity) and it

continuously decreases after yielding. As a quantity is not allowed to be divided by zero
in FLAC, at the yielding point, the plastic strain rate is set to be zero with a ‘if...then’

logic statement. Figure 7.44 shows three curves using the new hardening function 7.2.

Parameters are the same as in Section 7.7.2 except the parameters R, B and «".
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Figure 7.44 G — y curves with smooth transition in shear modulus (R=0.01, B=1000)

It can be seen that there is no abrupt transition in shear modulus when the stress crosses

the bubble from the elastic region. The size of the elastic region decreases as k"
decreases. The shear strain at yielding for the curve in the middle in Figure 7.44 is 1.84¢”
%. Compared to the typical curve in Figure 7.41, the above curves are satisfactory in
terms of the shape and smooth transition. To model a particular soil, one has to optimize

the parameters by trial and error.

The hardening function 7.2 is only used in this section to demonstrate an alternative
option to eliminate abrupt transition in stiffness. The hardening function 5.21 is used in

Chapter 8
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7.8  Summary

The study in this chapter indicates that the most important parameters of the bubble
model are plastic modulus parameters B,y and the Cam-clay parameters A, k" . Poisson’s

ratio ( u ) generally has less important role in the bubble model.

Bubble size R affects stiffness at small strains but has no effects on strength of soil. A
practical range between 0.1 and 0.2 can be used unless one is to model nonlinear

behaviour of soil at very small strains.

B and y control degradation in stiffness of soil due to plastic deformation. Stiffness
increases with B and decreases withy . To smoothen transition in stiffness from elastic
region to yielding, one needs to increase B or decreasesy . However, the two parameters
are found to be interrelated. The main factor affecting B is p,. For normal ranges of
A'and k”, relationships between B, y and p., have been explored and can be used for the

first trial in selection of the two parameters to model a problem.

An alternative hardening function based on the concept by Kavvadas is proposed to

smoothen transition in stiffness when the stress point crosses the bubble. G — y curves

obtained with the function are satisfactory compared to typical laboratory curves.

A'and x"affect the behaviour of the Bubble model significantly. Stiffness decreases with

k" and A'. k" has the most significant role in affecting G — y curves. The small strain

shear modulus of soil degrades faster as x"decreases.

Parameter m should be in the range of 0.7~1.0 to ensure convexity (Rouania and Wood,
2000). If m =1, behaviour of soil in extension is identical to that in compression. If m # 1
it only affects the behaviour of soil in extension. The behaviour of soil in compression is

not affected by the parameter m.
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For structured soils, parameter A controls the ratio of contribution between plastic
volumetric and distortional strain. Use of lower values of A (i.e. less contribution from
plastic distortional strain) tends to result in higher residual strength. Hence a value of 0.5
1s recommended for parameter A so that volumetric and distortional strains are equally

accounted for.

Parameter k controls rate of destructuration of structured soil but only affects the
immediate post-peak response. The larger the parameter, the faster the destructuration.
However, it has little influence on peak and residual stresses and no effect on the pre-

peak behaviour of soil.

Initial size (r,) of structure surface can be generally interpreted as sensitivity of soil. In
the study, r,has been found to be 1.5~2 times of sensitivity index, which only affects
peak stress. Residual stress is controlled by intrinsic conditions (e.g. p. ) and has been

found to be insensitive to r,

Anisotropy parameter 7, has no important effect on stress-strain behaviour of structured

soil if it is in the range between —0.5 and 0.5.

Initial mean effective stress (p, or o, ) only affects initial elastic modulus of soil in the

bubble model while strength of the soil is only controlled by initial size of the bounding
surface, i.e. p., for non-structured soil. For normally consolidated non-structured soil,

p., =0,/2 while for over-consolidated non-structured soil, p,, = p,. /2. p,.. is the
maximum preconsolidation pressure. It is also found that p  =2s, /M for non-

structured soil. It can be inferred from this relationship that for structured soils,

D., = 2s,/(M.ry) (s,is undrained shear strength).
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Appendix 7.1 Data file for modelling triaxial/oedometer tests

; triaxial/ocedometer model (static and dynamic)
; units: m, kPa, t/m3

def setup
;==== glven data ======
;<grid>
numXzones =1 ;2
numYzones =1 ;8
Width =0.1
Height =0.1 ;0.4
;<analysis type>
dynamic =0; 1l---dynamic; 0O---static
axiSym =1; l-—-—-axis symmetric;0-—--plane strain
;<Loading type>
LoadType =1; 1-Velocity loading;2-Stress loading

;<Drained condition>
Drainage=0 ; l--drained, O--undrained
;<History record frequency>
HisStepNum =1
;<insitu stress>
sigma3 =600
sigma3_=-sigma3
;<dynamic setup>
Frequency =10
Cycles =10
StrainAmplitude =le-2
StressAmplitude =-100.0
DampingType=0;1-Local damping;2-Rayleigh damping;0-No damping
DampingRatio=0.01
DampingFrequency=50
DydtType=1;1-Auto timestep calculated by FLAC;2-User timestep
dt_user =1.0e-5
;j<static setup>
MaxStrain =2e-2
VelocityStatic=-1e-9;1le-8
DeviatorStress=-50
StaticPressure=sigma3_+DeviatorStress
StaticCyc=0;0-—-monotonic;>1---cyclic
apparent=0; 1-to calculate apparent shear modulus;0-not calculate
;<soil constitutive model>
;==== Derived data ==============
figp = numXzones + 1
fjgp = numYzones + 1
; <dynamic>
period = 1.0/frequency
L_damping =DampingRatio/100.0*pi
omega = 2.0 * pi / period
VelocityAmplitude = Height * StrainAmplitude * omega
Duration = period * Cycles
;<static>
HalfStepNum=int (Height*MaxStrain/abs (VelocityStatic))
FullStepNum=HalfStepNum*2

219



UnloadStepNum=int (FullStepNum/1.0)
ReloadStepNum=int (FullStepNum/1.0)
end

if axiSym =1 then
command
config axi dyn ;gw
end_command
end_if
if axiSym =0 then
command
config dyn ;gw
end_command
end_if
if dynamic =0 then
command
set dyn off
end_command
end_if
end
analysisType
grid numXzones, numYzones
gen 0.0 0.0 0.0,Height Width,Height Width, 0.0
fixy § 1
fix x I 1
;fix x ;for oedometer test
;fix x figp
;set flow off
;water dens 1 bulk 2e6 tens 1el0
Def insitu ;initial stress condition
command
m e
prop sh 4.0ed4 bulk 2.0e5 den 1.7
ini sxx sigma3_ syy sigma3_ szz sigma3_
app pressure sigma3 I=figp
app pressure sigma3 j=fjgp
end_command
if dynamic=0 then
command
solve
end__command
end_if
if dynamic=1.0 then
command
set dyn off
solve
set dyn on
end_command
end_if
end
insitu
his reset
ini xd 0 yd 0O
ini xv 0 yv O
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call bubble.fis
model bubble
prop b_kmax 2e5 b_poiss 0.25 b_modO 9e4
prop b_lambda 0.3 b_kappa 0.02 b M 1.0 b_mm 1.0
prop r_bub 0.001 aa 0.5 bb 4000 k 8 psigh 0.5
prop nambdaO 0.0 r_str0 1.0 pcO 350
prop density 1.7 psr 3.0
def stress_ratio
sum = 0.0
loop i (1,izones)
loop j (1, jzones)
sum =sum + syy(i,]J)/sxx(i,Jj);drained
endLoop
endLoop
stress_ratio= sum/ (izones*jzones)
end
def gg
sum = 0.0
loop i (1,izones)
loop j (1, jzones)
sum =sum + syy(i,J)-sxx(i,])
endLoop
endLoop
gg= sum/ (izones*jzones)
end
def effp
effp=(sxx+syy+szz)/3.0+pp
end
def totp
totp=(sxx+syy+szz) /3.0
end

Def hisrecord
if Dynamic = 1.0 then
command
his dytime
end_command
end_if
command
his nstep HisStepNum
his gg;1
his ydis 1 1 j fjgp;2
his vertical_s;3
his stress_ratio
his volumetric_s;4
his pv;5
his pc;6
his r_str;7
his $p;8
his $qg;9
;his effp
his s_p;10
his s_qg;11
his b_p;12
his b_qg;13
his g_strain ;14 plastic shear strain
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his gt_strain ;15 total shear strain
his b_mod;16
his $Sapp_g;17
his pwp;18
end_command
end
hisrecord
his dytime

set ncw=100
set step 1000000000
def wave
if LoadType=1
wave = VelocityAmplitude * cos(omega * dytime)
else
wave = StressAmplitude * sin(omega * dytime)
endif
end
def ssolve
if dynamic = 1 then
if DampingType=1 then
command
set dy_damp local L_damping
end_command
end_1if
if DampingType=2 then
command
set dy_damp rayl DampingRatio Frequency
end_command
end_1if
if LoadType =1
command
fix y j figp
app yvel 1.0 his wave j=fjgp
end_command
end_1if
if LoadType =2 then
command
app nstress -1.0 his wave j fijgp
end_command
endif
if DydtType=2 then
command
set dydt dt_user
end_command
endif
command
solve dytime Duration
end_command
end_if
if dynamic =0 then
if LoadType =1 then
command
fix y j figp
ini yv VelocityStatic j=fjgp
step HalfStepNum
end_command
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if StaticCyc>0 then
loop n (1,staticCyc)
VelocityStatic=-VelocityStatic
command
ini yv VelocityStatic j=fjgp
step UnloadStepNum
end_command
VelocityStatic=-VelocityStatic
command
ini yv VelocityStatic j=fjgp
step ReloadStepNum
end_command
end_loop
end_if
end_1if
if LoadType =2 then
command
app nstress StaticPressure j fjgp
;app nstress StaticPressure i figp
solve
;step 80
end_command
end_1if
end_if
end
ssolve

plot his -1 vs -2 hold
set hisfile B2000 ;name of file to save data
his write -1 vs -2 skip 100
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Appendix 7.2 MathCad programme for processing G — 7 curves

Programme to process -y curves (Undrained trigxial test)

Ho:= 0.1 Height of triaxial specimen {m)

dl = i dZ = i d3 = i
O wun xls O wun2 xls O wrun3 xls

Input data of deviatar stress (kPa) vs vertical displacement (m). The first column of each matrix{d1,
d2 and d3) is displacement and the second is deviator stress.

Crmaxl = 12000 Crmand = 72000 Crmasd = 360000

Frocesa(®) = for ie 1. rows(x)

(). 100
B —————
Hao
(2). 100
G & — Secant shear modulus

3=y

augment(s ,G:J

{2
G satiol = Process(dl) vl = Prncess(dlj{l} 3l = Pmcess(dlj{z} gl = (dlj{z}
Crriaxl
{2
. . Process(dd)
(_ratind = T Cmae W2 = Prucess(cﬂj{l} 02 = Pru:ucess(dij{z} g = (@{2}
{2
. . Process(d3)
(_ratind = T Cmas W3 = Prucess(cﬂj{l} 33 = Pru:ucess(l:ﬂj{z} g3 = (@{2}
| pmm——s . '
075 |- I
E 05 ]

025 - —

i - I_3 1 1 |
110 1-10

om 01
Shear strain (%)
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8 APPLICATION OF THE BUBBLE MODEL

In this chapter the Bubble model is applied to the modeling of vertical vibration of a rigid
strip foundation. The infinite rigidity of the foundation is modeled using the ‘slave y’
feature in FLAC so that the dynamic timestep is not affected by the stiffness of the
foundation. The foundation is directly subjected to a sinusoidal vertical excitation. Effects
of nonlinearity of soil on vertical dynamic compliance of the rigid foundation are
investigated. Several factors are considered, which include initial stress condition in the

soil, level of excitation and mass ratio of foundation.

8.1 Parameters of the Bubble model

Parameters of the Bubble model have been chosen on the basis of Chapters 5 and 7 and

are considered to be associated with homogeneous, over-consolidated and non-structured

soil. The modified function for elastic bulk modulus of soil (Eq.5.22, K = P, K,) is

K*
used herein. This gives a virtually constant bulk modulus of soil in the soil-foundation
model as the bulk modulus is dominated by the initial modulus ( K,) while influence of
change in effective mean pressure (p) is relatively small and negligible under undrained

condition. The parameters are given in Table 8.1.

Table 8.1 Soil parameters in modeling foundation vibration

*

X K M m u R B 4 r Mo

0.15] 0.02 | 1.0 1.0 | 025 | 0.05 | 1800 | 0.5 1.0 0.0
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The parameters A and k do not affect results herein as non-structured soil is considered.

In addition to the above parameters, other initial conditions are given as follows:

Unit weight of soil, p =1.8 t/m’
Centre of initial bounding surface,p.,= 210 kPa

Bulk modulus of soil under zero confining pressure, K,= 60 MPa

The chosen parameters and initial conditions correspond approximately to soil with an

undrained shear strength of 100 kPa and an elastic shear modulus of 40 MPa.

To investigate nonlinear dynamic behaviours of soil under relatively small strains, a small
bubble size is utilized, i.e R = 0.05 (4 times smaller than the normally used). This will
ensure that plastic deformation takes place in the soil immediately beneath the foundation
prior to dynamic loading. Therefore, effects of soil nonlinearity on compliance of the
foundation are effectively reflected in the modeling. Figure 8.1 shows the static stress-

strain behaviours of the soil with the chosen parameters and initial conditions.

250

200 -

150

100 -

Deviator stress (kPa)

50

0 T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2

Vertical strain (%)

Figure 8.1 Undrained stress-strain response of soil (0,=100 kPa)
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8.2 FLAC model

Due to symmetry in both geometry and loading, the left boundary of the FLAC model is
set to coincide with the central line of the foundation. The model is 10 m in height and 10
m in width. 400 square elements with the same size are utilised, i.e. each element is 0.5 m

by 0.5 m.

Initial stresses are generated in the model by switching on ‘gravity’ and applying an
additional surcharge of 20 kPa on the surface. The soil is considered to be elastic at this
stage. Then the elastic soil is changed into nonlinear soil characterized by the Bubble
model and static vertical loads are applied incrementally to the foundation. Figure 8.2
shows the relationship between settlement and bearing pressure of the foundation. The
ultimate bearing capacity of the foundation is considered to be approximately between

400 kPa and 450 kPa.

Pressure (kPa)

0 100 200 300 400 500 600 700

-100 -

-150 +

-200 -

-250 +

Settlement (mm)

-300 -

-350 -

-400

Figure 8.2 Pressure-settlement curve
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Static loading prior to dynamic loading is applied in such a way that static bearing
pressure of the foundation corresponds to a particular factor of safety with respect to an
assumed ultimate bearing capacity of 450 kPa. When the dynamic loading is applied to
the foundation the right and lower boundaries are changed to quiet boundaries. The FLAC
model in the dynamic loading stage is shown as Figure 8.3. For clarity the static pressure

on the top boundary is not shown in the figure.

The soil-foundation model has a natural frequency of about 6 Hz as shown in Figure 8.4,

which has been obtained by letting the model to vibrate under gravity.

JOB TITLE : (“108M)
FLAC (Version 4.00) Dynamic loading
LEGEND e
17-Apr-05 1:46
step 14491
-1.667E+00 <x< 1.167E+01 L 0.800

-1.667E+00 <y< 1.167E+01

L 0.600

L 0.400

Fix x boundary
Quiet boundary

L 0.200

L 0.000

Quiet boundary

T T T T T T T T T T T
0.000 0.200 0.400 0.600 0.800 1.000
108)

Figure 8.3 FLAC model in dynamic loading stage
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JOB TITLE : Veritcal vibration of rigid footing

FLAC (Version 4.00)
(1002 )
LEGEND

29-May-05 3:03

step 7332 -0.200
HISTORY PLOT

Y-axis :
Y displacement( 1, 21) -0.400

X-axis :
Dynamic time

-0.600

-0.800

-1.000

Figure 8.4 Vibration of the soil-foundation model under gravity

(Displacement is in metre and dynamic time in second)

8.3  Typical response

The following dynamic responses of the rigid foundation have been obtained with the
initial stress conditions corresponding to a static factor of safety of 3. The foundation is

massless.

Figure 8.5 shows that permanent displacement of the foundation increases progressively

until a steady state response is reached. This is typical of a machine foundation.
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JOB TITLE : Vertical vibration of rigid footing
FLAC (Version 4.00)
(1004
LEGEND
29-May-05 2:06 0.000
step 43243
-1.000
HISTORY PLOT
Y-axis : -2.000
Y displacement( 1, 21)
X-axis : -3.000
Dynamic time
-4.000
-5.000
-6.000
-7.000
-8.000
5 10 15 20 25 30 35 40
(100"

Figure 8.5 Dynamic displacements (24 Hz, 5 kPa stress amplitude, 100 cycles)

JOB TITLE : Vertical vibration of rigid footing
FLAC (Version 4.00)
(10702
LEGEND
29-May-05 12:05
step 27319 -0.200
HISTORY PLOT
Y-axis : -0.400
Y displacement( 1, 21)
X-axis :
Dynamic time -0.600
-0.800
-1.000
-1.200
2 4 6 8 10 12 14 16
(100"

Figure 8.6 Dynamic displacements (24 Hz, 20 kPa stress amplitude, 48 cycles)
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JOB TITLE : Vertical vibration of rigid footing

FLAC (Version 4.00)

LEGEND

29-May-05 12:55
step 17389 -0.400
HISTORY PLOT

Y-axis : -0.800
Y displacement( 1, 21)

X-axis :
Dynamic time -1.200

-1.600 /
-2.000 /

-2.400

Figure 8.7 Dynamic displacements (24 Hz, 100 kPa stress amplitude, 5 cycles)

When the dynamic stress level increases, large plastic deformation first occurs around the
corner of the foundation after some cycles of vibration and develops cyclically to other
areas in the soil until failure of the foundation occurs (See discussions in Section 9.2).
Figure 8.6 shows that excessive displacement occurs at around 48 cycles when the stress
amplitude is increased to 20 kPa. It has been found that the larger the stress amplitude is,
the earlier the excessive displacement occurs. Figure 8.7 presents the response when the

stress amplitude is 100 kPa.

To investigate effects of nonlinearity of soil on dynamic compliance of the rigid
foundation, a minimum of 10 cycles of vibration is considered to be necessary. To ensure
that the excessive displacement will not occur within 10 cycles of vibration when the
stress amplitude is large, an upper bound of plastic strain rate is specified for plastic
correction, which is represented by a plastic strain ratio (psr), i.e. a ratio of maximum
plastic strain rate to total strain rate. The influence on displacement response has been

assessed and shown in Figure 8.8 where the stress amplitude is 60 kPa and the plastic
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strain ratio (psr) ranges from 0.7 to 1.0. Both permanent displacement and amplitude of
displacement are affected. The percentage of reduction in the average displacement

amplitude due to the use of ‘psr’is calculated and given in Table 8.2.

Table 8.2 Average amplitude of displacement in 10 cycles

Ratio of maximum
plastic strain rate to
total strain rate
(denoted by ‘psr’)
Average amplitude of
displacement in 10 2.032 1.574 1.433 1.252
cycles (mm)
Percentage of reduction
in displacement
amplitude w.r.t. psr=1

1.0 0.9 0.8 0.7

- 25% 30% 40%

Dynamic time (sec)

0 0.1 0.2 0.3 0.4 0.5
0
psr= 0.7
5 0.8
S 0.9
E
= -10 -
(O]
S
(0]
& -15
[e X
2
©
8 -20 { psr=1.0
=
O
>
-25 4
-30

Figure 8.8 Influence of plastic strain ratio on displacement response (24 Hz, 60 kPa

stress amplitude, 10 cycles)
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As an approximation, psr = 0.9 is used in the following analyses for a few cases when
stress amplitudes are large and the average displacement amplitudes are amended
according to the percentages shown in the above table. Indication will be given when a

psr smaller than 1.0 is utilised.

The above responses are associated with forced vibration under a continuous sinusoidal
loading. Figure 8.9 shows response of the foundation to a half cycle of sinusoidal loading.
No additional damping is applied. It can be seen that the transient vibration decays

quickly due to hysteretic damping.

Dynamic time (sec)

D 0.1 0.2 0.3 0.4 0{5

Vertical displacement (mm)
o

Figure 8.9 Transient vibration (0.5 cycle, 24 Hz, 60 kPa, no additional damping)

8.4  Vertical compliance of the rigid foundation

To investigate influence of soil nonlinearity on vertical compliance (i.e. displacement) of
the rigid foundation, average amplitudes of displacement in 10 cycles of vibration are
calculated for variable conditions which include initial stress (i.e. factor of safety),

excitation level (i.e. stress amplitude and frequency) and mass ratio of foundation.

Dimensionless frequency parameter, a,, is introduced as it is used traditionally and is

given as follows:
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_ 24 8.1

Where f is the excitation frequency in cycles per second, b is the half width of the

foundation in meter and y g is shear wave velocity of soil, which is approximately 150

m/sec for the given soil parameters.

8.4.1 Comparison between nonlinear and elastic models

Average amplitudes of displacement in 10 cycles are plotted against the dimensionless
frequency, a,. Figure 8.10 shows a comparison between the Bubble model and the elastic
model, where cyclic stress amplitude is 20 kPa. The initial stress condition corresponds to
a static factor of safety of 3. For the Bubble model 0.5% Rayleigh damping is applied and
for the elastic model the damping ratio is 5%. Amplitudes of displacement are normalized
with respect to the static displacement under a pressure of 20 kPa (see Figure 8.11),
where the magnification ratio is the ratio of dynamic displacement amplitude to static
displacement amplitude. It can be seen that influence of nonlinearity is important in the
low frequency range, especially around the natural frequency of the foundation while this
influence is secondary in the high frequency range. The influence can also be seen from
the resonant responses. Multiple resonant responses can be obtained with the Bubble
model while the elastic model shows that the displacement amplitude decreases

monotonically with the exciting frequency.
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Figure 8.10 Amplitude of displacement (Stress amplitude = 20 kPa)
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Figure 8.11 Normalised amplitude of displacement (Stress amplitude = 20 kPa)

8.4.2 Effects of dynamic stress level

Calculations have also been carried out to investigate the influence of nonlinear
behaviour of soil under different levels of dynamic stress. The results are presented in
Figure 8.12, which indicate that the influence of soil nonlinearity increases with the stress

amplitude.

Effects of stress amplitude on displacement of foundation have been further investigated
at two specific frequencies, i.e. a, = 0.5 and 2.0 respectively. For stress amplitudes
greater than 60 kPa, a plastic strain ratio (psr) of 0.9 is applied in nonlinear analyses and
accordingly the results are increased by 25% (see Table 8.2 in Section 8.3). These results
are shown in Figures 8.13 and 14. It can be seen that nonlinearity of soil corresponds to a
significant increase in the amplitude of displacement at certain stress levels. At low levels
of dynamic stress, there is insignificant difference between nonlinear and elastic models

and this difference becomes negligible if the excitation frequency is high.

2.0

30kPa (Bubble model)

1.5
20kPa
1.0 H 5 kPa

i

Elastic
0.5 4 model

Magnification ratio
(Normalised amplitude of displacement)

0-0 T T T T
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Dimensionless frequency, ao
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Figure 8.12 Influence of dynamic stress
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Figure 8.13 Influence of dynamic stress (ap= 0.5)
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Figure 8.14 Influence of dynamic stress (ap= 2)
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8.4.3 Effects of initial static stress (i.e. factor of safety)

Previous analyses are associated with an initial static stress condition having a factor of
safety of 3. Higher levels of initial static stresses, i.e. lower factors of safety, are expected
to induce more plastic deformation during vibration. In this section, the static factor of
safety is varied from 1.5 to 9 to investigate its influence on the dynamic displacement of

the rigid foundation.

Figure 8.15 shows that there is little change in the amplitude of displacement if the factor
of safety is larger than 4 but it increases sharply when the factor of safety is lower than 3.
The results have been obtained with a dynamic stress amplitude of 20 kPa and a

dimensionless frequency of 0.5.

Figure 8.16 shows the influence of factor of safety at different levels of frequency for the
same stress amplitude. As expected, the influence is amplified at resonant frequencies

and is minor at high frequencies.
Figure 8.17 shows the time history of displacement. It indicates that permanent

displacement is also affected by the factor of safety, i.e. the lower the factor of safety the

larger the permanent displacement.
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8.4.4 Effects of mass ratio

A massless foundation has been considered in the previous analyses. Influence of
foundation mass is investigated in this section. For a strip foundation the mass ratio is
given by

_ m
r pbz

(8.2)

m

Where m is the weight of foundation per meter length (kN/m); p is the unit weight of
soil (kN/rn3 ); b is the half width of the foundation. It has been found that the mass ratio
has a significant influence on the amplitude of displacement if the ratio is greater than 1.0
(see Figure 8.18). However, unlike the results obtained from a damped single-degree-of-
freedom system (Richart & Woods, 1970), nonlinear analyses show that mass ratio has
little influence on resonant frequencies of the vibrating system. This is consistent with the
findings by Gazetas & Roesset (1979). Using a semi-analytical procedure in their study

on a strip foundation on layered halfspace, they found that the resonant frequency is
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almost independent of the mass ratio of the foundation when the mass ratio is less than 2.

Further study is required in this area.
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Figure 8.18 Influence of mass ratio (stress amplitude = 20 kPa, FOS = 3)

8.5 Compliance and impedance functions

Figure 8.19 shows comparisons of the real and imaginary parts of the compliance
functions between FLAC modelling and the semi-analytical solution (Gazetas & Roesset,
1979). The FLAC results have been obtained using the method described in FLAC
manuals for a machine foundation (see Figures 3.58 and 3.60, Dynamic Analysis, FLAC
4.0). If ayis greater than 0.5, there is a good agreement. When a,is below 0.5, however,
there is a significant difference in imaginary part (i.e. f, ,). Figure 8.20 shows comparison
of the real and imaginary parts of the impedance functions between the two methods. It

can be seen that there is a general agreement in the real part of the impedance function,

i.e. f,, /(f}, +f,,), in the frequency range of 0.5 to 1.5. However the difference is

significant beyond this frequency range. There is a good agreement in the imaginary part

of the impedance function, i.e.f,  /(f}, +f; ), for the frequency range of 0.25 to 2.5.
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8.6  Summary

The Bubble model has been applied to numerical modeling of a 2D soil-foundation
boundary problem to investigate influence of soil nonlinearity on dynamic compliance of

arigid strip foundation subject to vertical vibration.

Static analyses were carried out prior to dynamic modeling, which indicated that the
ultimate bearing capacity of a 4 m wide strip shallow foundation is about 450 kPa for

homogeneous soil with an undrained shear strength of 100 kPa.

Typical dynamic responses have been obtained with the model, which shows that a
steady state response is expected to be obtained if excitation stress is small while
excessive displacement is expected to occur within limited cycles when the dynamic

stress is large.

Amplitude of displacement is averaged over 10 cycles to assess dynamic compliance of
the foundation. Comparative study indicates that there is no significant difference in the
dynamic compliance between nonlinear and elastic soil at low stress levels. For a given
excitation frequency, amplitude of displacement increases linearly with dynamic stress
for elastic soil while it increases sharply at a certain stress level for nonlinear soil. For a
given dynamic stress, amplitude of displacement decreases monotonically with frequency
for elastic soil while it peaks at multiple frequencies for nonlinear soil. Significant
differences between nonlinear and elastic results occur at the fundamental natural

frequency of the vibratory system.

Dynamic has been found to be affected by initial stress, i.e static factor of safety.
Amplitude of displacement decreases with factor of safety but becomes virtually constant

if the factor of safety is greater than a certain level.
Mass ratio of the foundation has been found to affect the amplitude of displacement

significantly. However resonant frequencies are not affected by the mass ratio. This is

different from the traditional single-degree-of-freedom solution.
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Appendix 8.1 FLAC data files for vertical vibration of rigid foundations

; Initial stress
; File name:vl.dat
Config dyn
Def setup
Width =10.0
Height =10.0
NumXzones =20
NumYzones =20
;derived data
figp=numXzones+1
fjgp=numYzones+1
end
setup
Grid numXzones, numYzones
Gen 0.0 0.0 0.0 Height, Width, height, width, 0.0
m e
Prop den 1.8 shear 4e4 bulk 6.0e4
;set large
Fixy j 1
Fix x I 1
Fix x I figp
Set grav 10
Set dyn off
app pressure 20 j fijgp
Solve
pause
Save vl.sav
New

;Rigid footing subject to vertical static loading
;File name:v2.dat
rest vl.sav
ini xd 0.0 yd 0.0
ini xv 0 yv O
def footing
drainage=1.0;1.0 for drained, 0 for undrained
B = 4.0 ;total width of footing
;derived data
ZoneXsize=width/numXzones
Finum=B/2.0/zoneXsize
Fi=finum+1
Fjgp_l=fjgp-1
Fj=numY¥zones-finum
End
Footing

;set dyn on

call bubble.fis

model bubble

prop b_kmax 2.0e5 b_poiss 0.25 b_mod0 6e4

prop b_lambda 0.15 b_kappa 0.02 b_M 1.0 b_mm 1.0
prop r_bub 0.05 aa 0.5 bb 1800 k 4 psigh 0.5
prop nambdalO 0.0 r_str0 1.0 pcO 210.0

prop density 1.8 psr 1.0

245



def beamsetup
loop I (1, finum)
Jj=I+1
command
struc beam beg grid i fjgp end grid j fjgp
end_command
end_loop
end
beamsetup
stru prop 1 e=1 I=1 a=0.00001 den=2.4 ;massless
def ggg
loop nn(l,fi)
command
struct node nn fix x r
end_command
nnl=nn-1
if nn>1 then
command
struct node nn slave y nnl
end_command
end_if
end_loop
end
999
His nstep 20
His yd I 1 j fjgp
Set ncw=1
;set gravity 15;check natural frequency
;set dyn on
;solve dytime 0.7
App pressure 50 I 1,fi j figp
solve
save v2_50.sav
App pressure 100 I 1,fi j figp
solve
save v2_100.sav
App pressure 100 I 1,fi j fjgp
solve
save v2_150.sav
step 3000
save v2_150_FO0S3.sav
new

; Rigid footing subject to vertical vibration
;File name:v3.dat
rest v2_150_FOS3.sav
ini xd 0.0 yd 0.0
ini xv 0 yv O
def dynamicData
Drainage=0.0 ; undrained during dynamic loading
a0=0.5
Frequency =a0*150.6/4.0/pi
StressAmplitude=20.0
Cycles=10
HisStep=20
;L_damping=5/100.0*pi
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Onecycle=1.0/frequency

Endcycle=1000*onecycle
Duration=cycles*onecycle
Count=0.0; for compliance function computation

Sh_mod=4.0e4

Period=1.0/frequency

End
DynamicData
stru prop 1 e=1 I
;stru prop 1 e=1
;stru prop 1 e=1
;stru prop 1 e=1
set dyn on
def wave
if dytime>endcycle
wave=0.0
else

.375 den=2

.75 den=2.4

.5 den=2.4

1 a=0.00001 den=2.4;mass ratio=0.0

.4 ;mass ratio=0.5

;mass ratio=1.0

;mass ratio=2.0

Wave = stressAmplitude*sin(2*pi*frequency*dytime)

endif
End

app xquiet yquiet i figp

app xquiet yquiet j 1

app nstress 1.0 his wave I 1,fi j fjgp
def dummy; for computing average amplitude,

count=count+1.0
end
;set large
his nstep HisStep
his reset
his dytime
His yd I 1 j f£jgp
his dummy
his wave
Set ncw=1
Set step=9000000

;set dy_damp Local L_damping

set dy_damp=rayl 0.005 frequency ;mass

solve dytime Duration
save v3.sav
plot his 2 vs 1 hold

call com.dat ;compute compliance function
;Compute static displacement under 20kPa

;File name:v2_20.dat
;jrest v2_150_FO0S3.sav
ini xd 0.0 yd 0.0

ini xv 0 yv O

His nstep 20

His yd I 1 j fijgp

App pressure 170 I 1,fi j figp

solve
step 4000
print yd
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9 CONCLUSIONS AND DISCUSSIONS

This thesis presents a study on implementation of nonlinear soil models in FLAC, the
Bubble model and its application in nonlinear dynamic analysis with FLAC. Section 9.1
summaries the main results and conclusions. Discussions on the limitations of the Bubble

model are given in Section 9.2.

9.1  Main results and conclusions
9.1.1 Implementation of soil constitutive models in FLAC

Some important aspects related to implementation of constitutive models in FLAC have

been explored. Understanding them is critical to implementation of a soil model.

» In FLAC each quadrilateral element comprises two overlaid sets of triangular sub-
elements. A user-defined constitutive model (UDM) is called four times per element
(once for each sub-element) each timestep. Whether stress or strain is constant or not
over the four sub-elements depends on boundary conditions and shape of the element.
Stress and strain may need to be averaged over the four sub-elements for more
accurate results. If this is not specified in a user defined model (UDM), however,

stress and strain of an element are only associated with the last-called sub-element.

» 1If pore water pressure is generated by the UDM, stresses must be converted into
effective stresses before the yield function is called in the UDM. If the pore water
pressure is generated by FLAC (e.g. in FLAC’s GW mode analysis), stresses are

automatically converted to effective stresses.
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9.1.2 Numerical distortion in nonlinear dynamic analysis

Efforts have been made to overcome a specific type of numerical distortion which only
occurs in nonlinear dynamic analysis, not in static incrementally nonlinear or linear

dynamic analysis.

» The study indicates that severe numerical distortion may occur in dynamic analysis if
a nonlinear constitutive soil model is implemented using the ‘apparent modulus’
approach. In this approach, an apparent tangent modulus is used to account for
nonlinear stress-strain behaviour of soil and there is a sudden change in the apparent

modulus when a strain reversal takes place.

» It has been found that reducing the timestep does not help to solve the problem of
numerical distortion. However the numerical distortion can be minimised by applying

additional mechanical damping using the in built mechanisms in FLAC.

» Alternatively, the ‘plastic correction’ approach has been found to be a solution to the
problem. Satisfactory dynamic performance of nonlinear soil models implemented
with this approach can be obtained without applying any additional damping. This has
been verified using different nonlinear soil models (e.g. Bubble, Bilinear, Cam-clay

models)

9.1.3 The Bubble model
The Bubble model proposed by Rouania & Wood (2000) has been studied and

implemented in FLAC with the ‘plastic correction’ approach.

» An alternative form to the plastic modulus function of the model has been proposed,

which is considered to better incorporate size ratio effects of the yield surface.

» A multiplier to the plastic modulus function is also proposed to smoothen transition in
stiffness from elastic region to yielding, which is based on the concept of the

hardening function proposed by Kavvadas (2000).
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» The non-intersection translation rule of the yield surface and monotonic

destructuration rule of the structure surface have been verified.

» The Bubble model can be reduced to be equivalent to the modified Cam-clay model.
Comparison of the Bubble model with the modified Cam-clay model built in FLAC
has indicated that virtually identical results can be obtained if equivalent parameters

are chosen for the two models.

» There is a general agreement between the Bubble model and the published
experimental data (Lee and Seed 1967) in modelling the stress-strain behaviours of
loose sand. However, the agreement is poor in lower range of effective confining
stress. The Bubble model predicts less dilatancy than the measured in laboratory. As a

result, the predicted small strain behaviours are less stiff than the measured.

» Performance of the Bubble model in dynamic analysis has been found satisfactory in
terms of the numerical stability. A steady state response can be obtained and
maintained for at least 200 cycles without using any additional damping to cope with
numerical instability in modelling a triaxial dynamic test. The drained cyclic
behaviours of sands (e.g. cyclic densification and dilation) can be satisfactorily
predicted with the model. However, the prediction for undrained behaviours of soil is
unsatisfactory. The problem lies in the unrealistic simulation of cyclic responses
during the first few cycles although the overall behaviours are consistent with

laboratory observations.

9.1.4 Parameters of the Bubble model

The Bubble model requires ten parameters and some initial conditions. Five of the
parameters are similar to those of the Cam-clay model, i.e. A k", M ,mand u, while the

other five are non-standard parameters, i.e. R,B,y,k,A. The initial conditions include

TosMos PeosO30+
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The Bubble model is most affected by the plastic modulus parameters B,y and the

Cam-clay type parameters A,k . The Poisson’s ratio generally has less important role

in the Bubble model.

Parameters B and y control degradation in stiffness of soil. Stiffness increases with B
and decreases withy . To smooth the transition in stiffness from elastic to elasto-
plastic behaviour, one needs to increase B or decreases y . However, the two
parameters are found to be interrelated. The main factor affecting B is p.,. For normal
ranges of 1"and k", relationships between B, y and p., have been explored and can be

used for the first trial in selection of the two parameters to model a problem.

Parameter R (size ratio of the yield surface) affects stiffness at small strain levels but
has no effects on the shear strength of soil. An effective range between 0.1 and 0.2
can be used unless one is to model nonlinear behaviour of soil at very small strain

levels.

Stiffness decreases with x" and A". x* has the most significant role in affecting

G — ycurves. Shear modulus degrades more quickly with shear strain as x*decreases.

Parameter m should be in the range of 0.7~1.0 to ensure convexity (Rouania and
Wood, 2000). If m =1, behaviour of the Bubble model in extension is identical to that
in compression. If m # 1, it only affects the model in extension. The behaviour of the

model in compression is not affected by the parameter m.

For structured soils, parameter A controls the ratio of contribution between plastic
volumetric and distortional strains. Use of lower values for A (i.e. less contribution
from plastic distortional strain) tends to result in larger residual strength. A value of
0.5 (i.e. volumetric and distortional strains are equally accounted for) is

recommended for the parameter A in the first trial of a modelling.
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» Parameter k controls rate of destructuration of structured soil but has little influence

on peak and residual stresses.

» Initial size (r,) of structure surface can be generally interpreted as sensitivity of soil.
In the study, r, has been found to be 1.5~2 times of sensitivity index, which only
affects peak stress. Residual stress is controlled by intrinsic conditions (e.g. p.o) and

has been found to be insensitive to r,.

» Anisotropy parameter 7, has no important effects on stress-strain behaviours of

structured soil if it is in the range between —0.5 and 0.5.

9.1.5 Application of the Bubble model

The Bubble model has been used in modeling with FLAC of the vertical vibration of rigid
strip foundations to investigate influence of soil nonlinearity on dynamic compliance of

the foundations.

» For an elastic soil-foundation system, a steady state dynamic response can always be
reached regardless of excitation levels. However, for a foundation rested on a highly
nonlinear soil, the steady state response can only be obtained when the excitation
level is low. Excessive displacement of the foundation is expected to occur within
limited cycles if the dynamic stress is large. Due to the limitation of the Bubble model
that it does not allow tensile mean principal stress, the steady state response can not
be demonstrated numerically under high levels of excitation (see the discussion in

Section 9.2).

» There is no significant difference in the dynamic compliance between nonlinear and

elastic soil if the excitation stress level is low.
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» For a given excitation frequency, amplitude of displacement increases linearly with
dynamic stress for elastic soil while it increases sharply at a certain magnitude of

stress for nonlinear soil.

» For a given dynamic stress, amplitude of displacement decreases monotonically with
frequency for elastic soil while it peaks at multiple frequencies for nonlinear soil.
Significant differences between nonlinear and elastic results occur at the fundamental

natural frequency of the vibratory system.

» Dynamic compliance has been found to be affected by initial stress, i.e static factor of
safety. Amplitude of displacement decreases with factor of safety but becomes

virtually constant if the factor of safety is greater than a certain level.

» Mass ratio of the foundation has been found to affect the amplitude of displacement
significantly. However resonant frequencies are not affected by the mass ratio. This is

different from the results of the traditional single-degree-of-freedom solution.

9.2 Discussion

The Bubble model can not sustain tension, i.e. the effective mean stress must be always
compressive (p'<0) in an analysis. If a positive mean stress occurs even in a single
element, the model will stop functioning and as a result the analysis will not be able to

continue. This is the same as in the modified Cam-clay model.

It is easy to prevent a positive mean stress from occurring in modeling a triaxial dynamic
test. An all-round static confining pressure can be applied to the numerical model to
counteract dynamic pore water pressure and tensile stress induced by dynamic loading so

that the effective mean stress remains negative.

However, positive mean stress becomes an issue in modeling of the vertical vibration of

shallow foundations. It has been found that a positive mean stress normally occurs in
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elements immediately adjacent to the two sides of a shallow strip foundation, especially

when the dynamic stress is large. This can be explained using the following equation:

p'=p,+3(Ap+Au) 9.1

Where p’ is the effective mean stress (negative for compressive and positive for
tension). p; is the initial effective mean stress corresponding to overburden pressure
(always negative). Apis the rate of total mean stress induced by dynamic loading, which

is either positive or negative depending on the direction of the dynamic loading. Au is the
rate of pore water pressure, which is related to volumetric plastic strain and is always

positive or zero unless dilative behaviours occur.

As p; is small in elements near the ground surface while Auis significantly larger in

elements immediately adjacent to the two sides of the foundation than other elements, p’
becomes zero or positive after some cycles of vibration due to build-up of the pore water
pressure. The higher the stress or frequency, the earlier the positive mean stress occurs. It
can be seen from Eq. 9.1 that even under drained condition, positive mean stress may still

occur.

Similarly to the modeling of a dynamic triaxial test, an overburden surcharge can be
applied to the foundation model (e.g. for a deep foundation). This will delay or prevent
occurrence of the positive mean stress. However, unlike triaxial modeling where plastic
strain is virtually uniform in all the elements, plastic strain develops unevenly in a
foundation model (i.e. significantly higher in elements adjacent to corners of the
foundation). Although the effective mean stress may be maintained negative by applying
an overburden surcharge, excessive plastic deformation or even plastic flow may be
generated in those elements and this consequently results in severe damage to the
geometry of the elements (See Figure 9.1). Even if this occurs to one single element,

FLAC stepping will stop automatically.
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More work is needed to understand the problems described above although it seems quite
clear that they may be common when a highly nonlinear plasticity soil constitutive is
used. The Bubble model has a small yield surface. The smaller the yield surface, the more
nonlinear the behaviours of the model. In Chapter 8, the size ratio of the yield surface is
only 0.05 (4 times smaller than that used in the available published references). Hence
high nonlinearity is considered to have significant effects on the problem. It has been
found that if a larger size ratio is used for the yield surface, a larger dynamic stress can be
applied to the foundation without inducing the above problem. In Chapter 8, the plastic
strain is reduced by a factor (psr) of 0.7~0.9 to ensure 10 cycles of vibration are achieved

for cases when the dynamic stress is large.
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9.3  Suggestions for further research

The following areas are recommended for further research:

> Determination of parameters

Parameters (A, B, k, R, r,, ) can not be obtained directly by laboratory testing. Their

correlations with well-defined and measurable parameters need to be investigated by

numerical simulations of laboratory testing results.

> Model tests

The Bubble model has been used by other researchers to simulate different types of clay.
The current study has also found that the model can capture general behaviors of natural
soils. However, much more numerical simulations of experimental results need to be
carried out in order to better understand the capabilities and limitations of the Bubble
model. The outcome of further verifications can then be used to identify rules and to

define scope for application of the model in the engineering practice and research studies.

> Implementation of the Bubble model for non-plane strain problems
The Bubble model has been implemented for 2D plane strain problems and the FISH
code of the model can be readily extended for use in general 3D problems without

changing its framework and procedure set out in the thesis.
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