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Abstract 

Clinical proteomics is a subject of systems biology that investigates large numbers of 

protein biomarkers associated with human disease. Like the other “omics”, proteomics 

use systems biology techniques to identify proteome-wide markers simultaneously. 

Unlike genomics that has been established for decades, proteomics is still in its infancy. 

The current biotechnologies have limited power to discover all the existing 20,000s 

proteins from the human body. Biologists have not been able to understand the molecular 

functions of lots of those identified proteins. Statistical techniques become essential in 

proteomics research because clinical proteomic studies generate a large amount of 

quantitative information through systems biology techniques to investigate proteins’ 

molecular activities. The complexities of clinical study and proteomic experiments also 

require statistical inputs to achieve valid and unbiased inferences. 

This PhD research firstly proposed a new method to assess the reproducibility in clinical 

proteomic studies when a new device or new tissue is being used for a proteomic 

experiment. The reproducibility assessment utilizes a dimensions reduction technique and 

permutation method to extend the evaluation from a single feature scale to a proteome-

wise scale. It secondly proposed algorithms to optimize the study design for a multiple 

stage study which bridges the biomarker discovery to clinical utility. The optimal design 

algorithms utilized a hybrid simulated annealing approach to finding the design 

parameters that achieve a maximal number of discoveries, under the constraints of cost 

and number of false discoveries. These algorithms were realized via a R package named 

“proteomicdesign”.  Finally, a multivariate multilevel model has been proposed for the 

analysis of proteomic data.  The non-random missing data presented in proteomic mass 

spectrometric experiments were estimated under a Bayesian framework. The proposed 

analytical method was tested in a simulated study and used in two real life clinical 

proteomic studies.  
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CHAPTER 1 

Introduction and overall review 

 

1.1. Motivation  

In the past five decades, scientists have made tremendous progress in understanding the 

human biological system at a genetic and genomics level. The current genetic and genomic 

literature extensively reports studies about understanding, treating and even preventing 

certain diseases (especially cancer). However, genes are only the “recipes” of the cell: the 

proteins encoded by the genes are ultimately the biological units driving the pathology and 

physiology of the disease (Annual report of National Cancer Institute 2007). The protein 

expression changes reflect the mutation from DNA, the therapeutic effects from drugs and 

the environmental changes in the human body. For these reasons, using advanced proteomics 

technology to study proteins systematically will improve mankind’s understandings of 

human disease and provide information at the molecular level for the prevention and 

invention of cures for the disease (Greef et al., 2007).  

Compared to genomics, proteomics is still in its infancy. The modern biotechnologies enable 

us to discover thousands of proteins simultaneously, but the high cost and the complexities of 

protein discovery and quantification remain the limitations for the whole-proteome study. 

Given the complexities of the proteomic studies, a lack of statistical methods to guide the 

study design, to manage and analyze the high throughput proteomic data is one of the 

obstacles to advancing proteomics in clinical research and ultimately in practice. Few of the 

current proteomic studies reach the last clinical validation stage. This problem reflects the 

future demands on advanced statistical and computational methods for the proteomics 

discovery and validation in the coming decades. As a biostatistician working in medical 

research, under the direction of a clinical supervisor who has been proactively working in 

biomarker research, my visionary and research-oriented mind encouraged me to initiate this 

PhD study of statistical methods in clinical proteomics.  
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1.2. Overview  

The National Cancer Institute in the United States is considered to be a pioneer of proteomic 

research. In 2007, it advocated standardizing the process from sampling collection to final 

data analysis in future proteomic research. In particular, clinical validation is considered to 

be the most important step in the entire process.  

 

“We do not suffer a lack of reported cancer biomarkers: The literature reports upwards of 

1,200 protein biomarkers, though very few of these have been validated, and even fewer have 

found their way into clinical practice. It has become increasingly clear that this dichotomy 

can be traced-in large part-to several levels of confounding variables.”  

 

- John E, Niederhuber, M.D. Director, National Cancer Institute 2007.  

 

According to this advocate, a five-year collaboration program CPTC (The clinical proteomic 

technology assessment for cancer), which aimed to identify, quantify and ultimately reduce 

sources of variability in the current proteomics workflows, was established. The long-term 

goals for the collaborative program are the generation of standard materials, including 

samples, antibodies, data, and protocols to be made available to the community for little or 

no cost. The first NCI biomarker discovery workflow suggested using defined proteomic 

platform performance characteristics (i.e. standard operating procedures and reference 

materials) at each step starting from sample collection up to data analysis of the biomarker 

discovery pipeline. The second workflow suggested is to use a three-stage process from 

unbiased discovery using 10’s samples, to targeted verification using 100’s samples and 

finally to clinical validation by using 1000’s samples (Figure 1.1a).  

This PhD research aims to investigate and establish statistical methods for clinical proteomic 

studies on the multi-dimensional scales. It comprises three parts: Part I) Reproducibility 

assessment for proteomics studies using mass spectrometry; Part II) Optimal design for a 

multistage clinical proteomic study; Part III) Analytical method to cope with laboratories and 

patients’ variability for the proteome-wide data analysis, including methods for handling 

missing data.  
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1.2.1 Overview for part I: Multi-dimensional reproducibility assessment in clinical proteomic 

study  

In this first section, a global reproducibility assessment method is proposed as an alternative 

to the traditional approach that only assesses one single feature (peak) in proteomic studies. 

The global reproducibility assessment method works on multiple features (peaks) of the high 

throughput data from the mass spectrometers. It utilizes principal component analysis to 

reduce the dimensions of the data. It then derives the Tracy-Widom distributed test statistics 

for the k largest Eigenvalues of the data matrix to distinguish the underlying structure of the 

high dimensional data from the noise. The proposed global assessment adopts the 

multivariate permutation method on the identified significant principal component sub-

spaces, to assess if there are significant deviations between the mass spectrometry technical 

replicates, by using two proposed multivariate test statistics. Chapter 2 of this thesis embeds 

a paper describing the proposed method published in a proteomics journal. More detailed 

statistical reviews on the relevant methodologies can also be found in the discussion chapter 

7.     

 

1.2.2 Overview for part II: Multi-stage optimal design of proteomic study  

In this second section, a multi-stage optimal design in proteomic study is investigated. The 

optimization design concept comes from traditional multistage sampling theory (Skol et al., 

2007) and optimal experimental design theory. In the multi-stage sampling theory, nj samples 

are selected from j specified clusters. The total number of clusters m and the total number of 

candidates n are chosen as to minimize the overall variance given a set budget and cost of the 

survey. m and n are also chosen as to  maximize the inverse information matrix (fisher 

information matrix). In recent years, gene association studies adopt this similar idea to 

optimize the multi-stage design (mainly two stages) where genetic markers are selected from 

the first stage and validated in the second or later stages. The optimization criteria commonly 

are the overall cost (Moerkerke and Goetghebeur, 2008), the overall power (Zehetmayer et 

al., 2008; Kitamura et al., 2009) or the False Discover Rate (FDR)(Kitamura et al., 2009). In 

proteomic studies, the number of proteins identified from the current technology is much less 

than the number of identified genes. The number of markers is normally between several 

hundred to several thousand in proteomic studies compared to hundreds of thousands in a 
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genetic study. However, the design problem is similar. These studies have limited research 

budgets to test a large sample size for the identification, and the laboratory technology is 

expensive. Optimization in allocations of the number of screened candidates and number of 

samples is necessary. In the past decade, many genome-wide association studies showed that 

two-stage design is more cost-effective than one stage design (Jaya M. Satagopan and Elston, 

2003; Zuo et al., 2008). This part of the PhD research aims to assess methods used in genetic 

studies and develop a multi-stage optimization method in proteomic studies. The 

optimization option being investigated is to maximize power when cost is a limit for a three-

stage design.  

Hyper simulated annealing algorithm is used to find the optimal solution for a simulated 

function and an approximated analytical function of the estimated number of true discoveries 

(power), under a three-stage design as outlined in NCI’s workflow(figure 1.1a). The 

utilization of biological grouping information to assist the design is also assessed, and 

recommendations of when to use grouping information are given in this section.  

Chapter 3 of this thesis presents a paper describing the proposed method published in 

”Journal of statistical application in genetic and molecular biology”. More detailed statistical 

reviews on the relevant methodologies are also described in the discussion chapter 7.    

  

1.2.3 Overview for part III: A multivariate multilevel model for analyzing clinical proteomic 

data with non-random missingness  

In this third section, multivariate multilevel methods are investigated for the analysis of the 

data from clinical proteomic studies using the mass spectrometer. The high-throughput data 

from multiple runs of mass spectrometry experiments brings challenges to the data analysis. 

These challenges originate from the hierarchical levels of the quantification of protein 

abundance, the complexities of the clinical study and the experiment, the large amount of 

information, and the non-random missingness of the intensity data.  

A multivariate multilevel model is proposed to analyze the hierarchical protein expression 

data, taking into account different types of variations from the experimental factors such as 

the physical features of the assays, the molecular feature of proteins, and the experimental 

effects. The identified non-random missingness of the protein expression data is proposed to 

be modeled under the Bayesian hierarchical framework. Two different posterior sampling 
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methods, Gibbs sampling and Hamiltonian Monte Carlo using No U Turn sampling are 

evaluated in this section.  

 

In this section, a simulated study and two cases studies are included using the proposed 

analytical method. One case study evaluated the coronary proteomic profile changes after 

percutaneous coronary intervention in patients with ischemic heart disease. The other case 

study aims to evaluate the reproducibility for the proteomics analysis using the lymphocyte 

cells, and to identify if there are any outstanding cellular proteins markers for patients with 

Common Variable Immune Deficiency.  

 

 

1.3. General review on mass spectrometry  

1.3.1. History of proteomic development  

The proteomics study discovers proteins and quantifies the expression of protein in live 

creatures under different conditions. Clinical proteomics identifies and validates disease 

related proteins from human tissues, mainly from patients’ tissues. Healthy humans normally 

participate in the study as controls for comparison with patients. The original proteomic 

research began in 1970-1980. In the 1990s, Wilkins formularized it into a discipline and 

formally gave it the name “proteomics” as a term to represent “the protein complement of 

genome” (http://www.proteome.org.au/History-of-Proteomics/default.aspx). Although 

proteomics has become a mainstream discipline since this time, Leigh Anderson and others 

firstly investigated it using two-dimensional gel electrophoresis technology in the 1970s (L. 

Anderson, 2005). Anderson used this highly revolutionary technique to separate the proteins 

in blood and leukocyte. While the limitations in its reproducibility hindered its expansion, the 

introduction of immobilized PH gradient in 1980s improved its production and kept it as one 

of the important techniques for protein quantification. Meanwhile, mass spectrometry 

ionization technology was developed to quantify peptides, and this allowed protein 

identification and quantification to be performed on a larger scale. After the mid-1990s, mass 

spectrometry became the mainstream technique in systems biology for protein identification 

and quantification.  
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Systems biology is a systematic approach that integrates bio-analytical platforms with 

biostatistical and bioinformatic platforms to investigate complementary measurement 

modalities, it includes transcriptomics, proteomics and metabolomics. In life science, it is 

applied particularly for innovative drug discovery and development, and biomarker discovery 

(Greef et al., 2007). Proteomics belongs to systems biology. It is a part of network biology 

that enables us to study the proteins behaviors of an entire biological system (i.e. cell, 

subfraction of the cell, plasma, serum, etc.). The main application of proteomic will be 

identifying diseased related multiple proteins using the systematic quantification 

technologies (2D gel, mass spectrometry) and verifying the finding by a targeted approach.  

The systematic approach will allow the direct selection of optimal biomarker candidate 

proteins, skipping over the long laboratory process from non-systematic techniques. The 

targeted approaches will validate the results in a much larger size of diseased samples. The 

current commonly used targeted approaches are immunoassays and mass spectrometry for 

candidate protein quantification (L. Anderson, 2005). The former approach to using antibody 

arrays has the advantage of high sensitivity and specificity for quantifying the specific 

protein, but it is limited by the available antibody arrays for constituting the new marker. The 

latter approach serves to evaluate candidate biomarkers prior to the big investment of 

immunoassay (L. Anderson, 2005).  

 

1.3.2 The systematic approach using different types of protein quantification by mass 

spectrometry (MS) ionization  

Mass spectrometry is one of the most important physical methods in analytical chemistry 

today. An outstanding advantage of MS, compared with other molecular spectroscopies, is its 

high sensitivity for quantification in trace amounts of chemicals. A mass spectrometer is 

designed to perform three basic functions (Chapman, 1996):  

1. Provide gas-phase ions from sample molecules. Methods for ionizations are electron 

ionization (EI), Chemical ionization (CI), Fast-Atom bombardment (FAB), Matrix-assisted 

Laser desorption/Ionization (MALDI), Electrospray (ES), Ion-spray Ionizations (ESI), and 

Atmospheric pressure chemical Ionization (APCI).  

2. Separate the gas-phase ions according to their mass-to-charge ratio (m/z).  

3. Detect and record the separated ions.  
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The process of using mass spectrometry to separate ions is called ionization. There are two 

types of ionization: MALDI and ESI. In MALDI, ionization is realized by transferring laser 

energy to make the analyte molecules charged and accelerated before entering into the 

analyzer. ESI is an atmospheric ionization technique, where the ions are emitted from a 

droplet into the gas phase under atmospheric pressure. There are four types of mass analyzer 

commonly used and summarized as followed (Chapman, 1996):  

MS-MS is a two-stage mass spectrometry. At the first stage, selected particular ions 

undertake collision induced dissociation (CID). At the second stage, the resultant fragment 

ions are subsequently measured using a second mass analyzer.  

LC-MS/MS is liquid chromatography combined with a two-stage mass spectrometry. Liquid 

chromatography is an analytical chemistry technique that enables the separation of different 

compounds (i.e. peptides) from complex samples and thus assists the protein identifications 

(Palagi et al., 2007). The LC-MS/MS method combines reversed-phase high-pressure liquid 

chromatographic separation with electrospray ionization (ESI) in two-stage mass 

spectrometry. This technique known as peptide mapping separates and provides molecule 

weight information on the peptides resulting from digestion of the protein.  

MALDI –TOF MS uses a time of flight (TOF) spectrometer together with MALDI (Matrix 

Assist Laser Desorption/Ionization) technique. It absorbs energy at the laser wavelength and 

isolates analyte molecules within some form of solid solution. It is easy to use and is 

considered as a good solution for clinical diagnosis due to its high automation, high 

throughput and better tolerant to salt and impurity samples than ESI (Chapman, 1996; 

Palmblad, 2009).  

SELDI-TOF MS is another laser ionization technique combined with a time of flight 

analyzer, which SELDI stands for Surface Enhance Laser Desorption Ionization. It is similar 

to MALDI MS, with protein adsorption, partition, electrostatic interaction or affinity 

chromatography on a solid-phase protein chip surface. The laser ionizer samples have been 

co-crystallized with a matrix on a target surface. Unlike the MALDI MS, the protein chip 

chromatographic surfaces in SELDI are uniquely designed to retain proteins from complex 

mixtures according to their properties. SELDI MS can be used for targeted study (Issaq et al., 

2003).  
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Among the different types of mass spectrometers, the most common strategies for protein 

identification are through MALDI-TOF MS and Tandem MS/MS. When identification using 

MALDI-TOF, it is the first step to generate peptide mass fingerprints (PMF’s) for the 

enzymatically digested protein samples. However, not all proteins can be identified directly 

by PMF’s, for instances, when the protein sequence does not present in the database or the 

spectrum only contained limited number of peptides. Additionally, MALDI-TOF is less 

effective for the analysis of complex protein mixtures as only the most abundant proteins are 

identified. Small proteins (20kda or less) may also prove difficult to analyze as these tend to 

generate fewer appropriately sized tryptic peptides for matching than big proteins do. When 

identification uses tandem MS/MS, the separation elements are physically separated and 

distinct. The process has multiple steps over time (Chapman, 1996).  

The emphasis of proteomics is changing from a misfocussing high-throughput approach 

where the results are of limited value, to a more focusing approach that involves detailed 

analyses of the protein samples. The proteins of interest can be enriched by a cell 

fractionation method, and/or an affinity based protein purification strategy (Chapman, 1996).  

 

1.3.3 The candidate approach  

After the panel of candidate proteins is identified from the high-throughput mass 

spectrometer, a candidate or target approach is employed to verify and validate the 

identification. The targeted approach, which emerged as using immunoassay to identify a 

disease-associated marker in 1950, has a longer history than the systematic approach. It has 

produced most of the protein markers for diagnosis now (L. Anderson, 2005). Further 

laboratory improvement in the antibody specificity enables multiplex proteins to be tested in 

the immunoassay one at a time. In the 1990s, the Targeting finger print MS approach 

emerged as an alternative candidate approach that saved cost of producing a large amount of 

new immunoassay. It has been employed before a large amount of investment in the new 

antibody and immunoassay. 

The two aforementioned candidate approaches, multiplex antibody and targeting finger print 

MS are considered to be an optimal strategy in the verification and validation stage of a 

clinical proteomic study.  
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Figure 1.1a  Assessing the performance of Key Process Steps in the Candidate 

Biomarker Pipeline. This figure is published on the NCI website and recreated by the 

author. It illustrates a proposed multi-stage process in proteomic research with features and 

sample size suggested in each stage. 
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Figure 1.1b An optimized multistage design in clinical proteomic research proposed 

in this research 
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Figure 1.2 Ionization process 
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Reviewing methods in the multi-stage study designs, it is found that although there are many 

publications in the literature discussing multi-stage design in gene association studies, there 

are not many for proteomic studies. In the literature of multi-stage gene association studies, 

Satagopan and Zuo published several papers in multi-stage design in the early 2000s (J. M. 

Satagopan et al., 2002; J. M. Satagopan et al., 2004; Zou et al., 2006).  In one of these papers, 

Jaya M. Satagopan and Elston (2003) proposed a cost-optimized method utilizing the Monte 

Carlo grid search to find the optimal solution for a two-stage genotyping association study 

under the constraints of an overall type I error rate and statistical power. Zuo et al. (2008) 

also proposed an optimization method for maximizing the statistical power given the total 

costs. In Zuo’s paper, a mixed integer nonlinear program (MINLP) was introduced to solve 

the numerical integration problem.  

In the area of statistical methods for proteomic data analysis, Hill et al. (2008) and Oberg and 

Mahoney (2012) are the early advocators of using analysis of variances (ANOVA) as an 

alternative to the protein ratio approach for analyzing data from mass spectrometry 

experiments. They proposed using ANOVA to estimate the differences in protein abundances 

between disease and healthy subjects, and to take into account variances brought into the 

intensity data from the mass spectrometry experiments.  Luo et al. (2009)  recently suggested 

using the Markov Chain Monte Carlo method to draw inferences from the estimates of the 

ANOVA model, which also takes into account the protein abundances related missingness of 

the data. Luo’s method has similarities to the analytical method proposed in chapter 4 of this 

thesis. Nevertheless, the analytical method presented in chapter 4 takes further improvements 

by introducing a multivariate multilevel structure and by including the instrumental 

influences of the mass spectrometer in a Bayesian model.      

More literature reviews are given in the corresponding chapter for each topic.  
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CHAPTER 2 

A multi-feature reproducibility assessment of mass spectral 

data in clinical proteomic studies 

 

Abstract 

Background 

Use of mass spectrometry to investigate disease-associated proteins among thousands of 

candidates simultaneously creates challenges with the evaluation of operational and 

biological variation.  Traditional statistical methods, which evaluate reproducibility of a 

single feature, are likely to provide an inadequate assessment of reproducibility.  This chapter 

proposes a systematic approach for evaluation of the global reproducibility of multi-

dimensional mass spectral data at the post- identification stage.  

 

Methods 

The proposed systematic approach combines dimensional reduction and permutation 

methods to assess and summarize the reproducibility. First, principal component analysis is 

applied to the mean quantities from identified features of the replicated samples. An 

eigenvalue test is used to identify the number of significant principal components that 

reflect the underlying correlation pattern of the multiple features.  Second, a simulation-

based multivariate permutation test is applied to the resultant principal components scores. 

As the byproduct of the analysis, a modified form of Bland Altman or MA Plot is produced 

to visualize the discordance among the replicates on the projected principal components 

subspaces.  

 

Results  

Application of this method to data from both a cardiac LC-MS/MS experiment with iTRAQ 

labeling and simulation experiments derived from an ovarian cancer SELDI-MS experiment 

demonstrate that the proposed global reproducibility test is sensitive to the simulated 

systematic bias when the sample size is above 15. The two proposed test statistics (max t 

statistics and a sign score statistic) for the permutation tests are shown to be reliable.  
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Conclusion 

The methodology presented in this chapter provides a systematic approach for global 

measurement of reproducibility in clinical proteomic studies.  

 

2.1. Introduction 

2.1.1 Motivation and general review in the reproducibility assessments for proteomics 

studies 

Mass spectrometry and liquid chromatography are standard tools used to profile and quantify 

thousands of proteins simultaneously in clinical proteome research.  To obtain reliable 

results, a high level of reproducibility in both proteins identification and quantification are 

needed (Hale et al., 2003; Mcguire et al., 2008).  Possible sources of variation may be 

technical or biological in origin. Technical sources of variation can alter the quantification of 

measured proteins due to small differences from sample preparation, chromatography, the 

condition of the ion source, and the overall performance of the mass spectrometer. Biological 

sources of variation include differences between individuals within a population and 

physiological variation in individuals from one time to another. It is therefore important 

when conducting clinical proteomic study to include an assessment of technical and clinical 

reproducibility in many circumstances, such as when the biological tissue or disease has not 

been studied before. 

Standard statistical methods used for evaluating reproducibility include the Bland Altman 

coefficient of reproducibility, the limit of agreement, the correlation coefficient, and linear 

regression. However, these assessments are generally limited to single measurements. In 

proteomics studies, reproducibility assessments are usually performed for a randomly 

selected sample of peaks or for candidate peaks of interest. The coefficient of variation, the 

correlation coefficient, the intra class correlation coefficient or the limits of agreement are 

determined for one peptide or protein at a time. Few studies have evaluated reproducibility of 

mass spectral data at a multivariate level.  

Some proteomic studies have borrowed statistical methods from those developed for 

genomic studies because of similarities in the properties of the data. In micro-array 

reproducibility studies (Lyne et al., 2003; Chen et al., 2007), correlation coefficients and 

auto-correlations have been used to assess the association between replicates of micro-array 
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data. The percentage of overlapping genes is used to assess the proportion of common 

identification between replications (Chen et al., 2007). McShane et al. (2002) introduced two 

global measures of reproducibility in the high-dimensional space of micro-array data. They 

employed a cluster-specific robustness index (R index) and a discrepancy index (D index) to 

assess the reproducibility of components of interest formed by cluster analysis in the original 

data and the noised perturbed replicates. The R index estimates the proportion of pair 

specimens in replicates that form the same cluster as the original data. The D index estimates 

the number of discrepancies between the clusters from the original data and the best-

matching cluster from the replicates. 

Statistical methods applied to assess the reproducibility of mass spectral data have shown 

similarity to those used in micro-array studies. In an early study (Semmes, 2005), inter-

laboratory reproducibility was assessed by four measures: (1) coefficient of variation, (2) 

resolution, (3) signal to noise ratio and (4) normalized intensity for three chosen diagnostic 

peaks. They also assessed the classification agreement across laboratories by applying 

boosted logistic regression and boosted decision trees. The pre-processing of the data was 

standardized by a robotic system. The m/z values of peaks were controlled to within 0.2%. 

The coefficient of variation (CV) for the intensity of the three peaks used in the assessment 

was 15%-36%. Four out of the six labs obtained perfect agreement in the classification of 

patients and controls. The study was well designed with standardization and blind controls. 

A study by (Pelikan and Bigbee, 2007) introduced methods to assess the multivariate 

reproducibility of proteomics studies. This study simulated the sequential features of clinical 

proteomic data from multiple time intervals (sessions). The authors assessed the 

reproducibility of signal, discriminative features and multivariate classification models 

between replicates from different sessions. They suggested a signal difference score to assess 

the reproducibility of profile signals. This signal difference score measures the average 

Euclidean distance dE between all pairs of spectra, with smaller values indicating more 

similarity. Both the real signal (peak) and the noise were included in the measurement of 

similarity between spectra. They also suggested a differential expression score to assess the 

reproducibility of discriminative features. The differential score quantifies the difference 

observed in a single profile feature between the case and control groups. It is similar to the 
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Fisher-like score 








, where µ and σ represent the mean and variance of the sample 

respectively, while + and – represent patients and controls respectively. 

Chong et al. (2006) conducted a reproducibility study of LC-MS/MS iTRAQTM data. In this 

study, the authors used three different model organisms as well as a double database search 

strategy, which aimed to minimize the false positive rate. They also employed multiple LC-

MS/MS analyses to achieve better reproducibility. The CV was the only measure used to 

quantify precision. The iTRAQ quantification was highly reproducible with an average CV 

of 0.09 (range 0.04 to 0.14). 

Of these proteomic reproducibility studies, only Pelikan’s group introduced a global measure 

to assess reproducibility in mass spectral signal data. They tried to minimize the information 

loss by using the whole range of the spectrum, but at the cost of increased noise. It is 

therefore difficult to distinguish poor reproducibility (real changes in the quantities of peaks) 

from noise.  This chapter proposes a permutation method to assess the global reproducibility 

of multiple features (proteins or peaks) in the dimension-reduced principal component space 

simultaneously, and a discordance index based on cluster analysis methodology to 

summarize the bias between replicated samples. 

   

2.1.2 The random matrix theory and high dimensional data 

Random matrix theory (RMT) has been introduced in multivariate statistics analysis by T. W. 

Anderson (1984), Marida et al. (1980), and Muirhead (1982). The largest eigenvalues of the 

Wishart distributed sample covariance matrix are the center of the RMT research for 

multivariate analysis. Onatski (2008) extended Karoui (2007)‘s theory from the non-singular 

Wishart complex matrices (n>p) to singular Wishart matrices. In a paper by Onatski (2008), 

they proved that the joint distribution of the first m scaled and centralized eigenvalue of a 

complex Wishart matrix weakly converged to the m-dimensional joint Tracy-Widom 

distribution, when n and p approach infinity but /n p is within the compact subset of 

 0, . Such convergence takes places in both n p  and n p cases. They further applied 

the extended theory to a sequential test that there are m significant largest eigenvalues in a 

high dimensional n p data. The largest m eigenvalues theory establishes a new inferential 
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framework for high dimensional data applicable in “omic”, imaging and financial problems, 

where the underlying number of dimensions are usually believed to be much smaller than the 

observed data.   

The proposed reproducibility method described below utilizes Onatski’s theory to test the 

underlying structure of the mass spectral data, in order to identify the major signal 

information from the noise.   

 

2.1.3 The multivariate permutation  

Permutation method provides a simulation method for estimating the population parameters, 

in contrast to the analytical method for approximating population parameters. There are three 

types of permutation test: 1) exact permutation tests; 2) moment permutation test; and 3) 

Monte Carlo permutation test (Berry et al., 2011). The exact permutation test generates all 

possible arrangements from the observed data with equal probability. The Monte Carlo 

permutation tests only generate a large number (i.e 10000) of the arrangements from the 

observed data when enumeration of the observed data is not feasible.  

Classical multivariate test statistics, which assume the data is multivariate normal distributed 

under the MANOVA framework, cannot be applied in high dimensional data when the 

number of observation n is small than the number of dimensions p. The distribution–free 

permutation methods become the alternatives for these data, especially after the advent of 

high-speed computers between1990-2000.  

Permutation method will be an ideal tool to facilitate the global test of the multidimensional 

pair data. The permutation test relies on the a single assumption that the paired data are 

exchangeable (Good, 2005). It therefore can be used in reproducibility algorithm to derive a 

test statistics that takes into account the correlated structure of mass spectral data.  

The following proposed method utilizes the permutation approach in the inferential analysis 

for the reproducibility assessment of the high dimensional proteomic data.  
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2.2. Method 

2.2.1 The clinical study design and experimental design for a clinical proteomic study to 

assess the reproducibility 

As for the classical reproducibility assessment in a clinical study, two to four biological or 

technical replicates will be prepared for each participant. In the case of testing unknown 

tissues, both patients and normal controls are expected to be included in the study.  

If the assessment is for a labeling experiment, i.e. iTRAQ, the replicates can be randomly 

assigned into a 4 plex (label) or an 8 plex (label) assay, using completed random block 

design or row-to-column design to achieve the orthogonality for eliminating potential label 

effect.    

 

2.2.2 Types of data and pre-processing of the data 

The format of feature quantification from different types of MS experiments can be either  

the actual or relative intensity such as the area of peaks, or other derived quantities.  Most of 

the peak identification algorithms include baseline subtraction and normalization for pre-

processing raw MS data.  Normalization reduces the variation among identified proteins.    

 

2.2.3 Global reproducibility testing 

A global permutation reproducibility test based on all identified features (proteins or peaks) 

is proposed. This reproducibility assessment tests the hypothesis that there is no significant 

difference in the paired quantities of multiple features projected in the dimensional reduced 

subspace. In this assessment, firstly the averages of all paired quantities are projected into the 

p dimensional principal component (PC) space, where p equals the number of features minus 

1. Secondly an Eigenvalue test is used to verify how many of these p PC dimensions explain 

significant amounts of variance of the quantification data. The resultant m significant PC 

dimensions form the PC space for the further analysis. Thirdly, two global multivariate test 

statistics, the maximum T statistic and the sign score statistic, are proposed for a global 

permutation test in the principal component space. The empirical permuting distributions of 

these two test statistics are simulated using the Monte Carlo permutation for comparison with 

the observed sample test statistics. This post hoc assessment is expected to identify 

systematic bias between paired quantifications. Each step is described in more detail below.   
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Step I: Principal component analysis and limit of agreement in the first principal 

component subspace 

To begin, the quantification format of data for analysis needs to be determined. Based on the 

determined quantification, the common features (proteins or peaks) from all individual 

spectra are identified for dimensional reduction. A high proportion of common features 

identified from each experiment (run) indicates good reproducibility of the identification 

process. Experiment and run are used interchangeably in the following sections. A data 

matrix n pM  is constructed by averaging the quantities of p features among all replicates 

[1, ]j ql  in n biological samples, where q equals the total number of replicates. Principal 

component analysis (PCA) is applied to the data matrix n pM  to create the orthogonal 

principal unit projection vectors jν  for p PC dimensions.   The resultant PCA unit projection 

vector jν  is used to project each individual replicate [1, ]j ql separately onto the PC space.  

The first principal component scores derived from the PCA explain the highest percentage of 

the variance from the data and have the largest eigenvalue; an assessment of the agreement 

between replicates using the first principal component scores provides an initial estimate for 

the global reproducibility. A visualization tool, namely the First Principal Component (FPC) 

plot which is modified from the Bland Altman plot (Bland and Altman, 1986) is produced as 

the byproduct in this global assessment. The First Principal Component plot also has features 

similar to those of the MA plot in a micro-array study. It is a scatter plot with the x-axis 

being the first principal component scores 0η , which is derived by projecting the data matrix 

of the averaged quantities of the replications n pM onto the first principal component 

subspace (i.e. 1n p  M  ), and the y-axis being the difference between jη  and 0η , where jη is 

the first principal component scores for individual replicate. 

 

Step II: Eigenvalue testing  

The proteomic profile of each sample contains proteins that are correlated and may belong to 

the same functional group. Principal component analysis projects these correlated data into 

independent PC dimensions to identify groups of proteins. While the collected data is a 
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sample from the population of interest, the PC space formed by the principal components 

(eigenvectors) may vary from sample to sample.  In principal component analysis, a positive 

eigenvalue of the principal component reflects how much variance is explained by this 

component. The first principal component with the largest eigenvalue explains the largest 

percentage of the data variance, while a small positive eigenvalue could result from random 

noise.  The eigenvalue test proposed by Onatski (2008) provides evidence of how many of 

the observed positive eigenvalues from the sample are not due to chance.    

The eigenvalues from principal component analyses are random variables with their own 

distribution (BeJan, 2005). In a matrix with n< p, where n is the number of observations and 

p is the number of dimensions, the number of positive eigenvalues is n-1. Based on random 

matrix theory, Onatski (2008) extended the theory for the distribution of the largest 

eigenvalue to the distribution of several largest eigenvalues. He further applied this theory for 

the asymptotic test statistics    
0K i  K i i 1 i 1 i 2max

MAX /           , where λi is the ith 

largest eigenvalue of the sample covariance matrix, and λi+1, λi+2 is the consecutive largest 

eigenvalue following λi, k0 denotes the number of significant eigenvalues in the null 

hypothesis and kmax denotes the maximum number of significant eigenvalues known a priori. 

He proved that    
0K i  K i i 1 i 1 i 2max

MAX /            equals the distribution of 

i i 1 i 1 i 2
max 00 i k kMAX  ( ) / ( )µ µ µ µ       , where 1 k kmax 0

,  .   have the joint (kmax -

k0)-dimensional Tracy-Widom distribution,. This eigenvalue assessment tests the null 

hypothesis of k0 significant eigenvalues against the alternative hypothesis that the significant 

number of eigenvalue k is greater than k0 and less than kmax+1. This will be equivalent to 

testing the null hypothesis of 0k    against the alternative hypothesis that max 01k k k   . 

 

Using this test statistics sequentially, eigenvalues are assessed from the largest to the smallest 

until a non-significant positive eigenvalue is identified. The m identified significant 

eigenvectors which correspond to eigenvalue λ1 to λm, are used to derive the n x m dimension 

principal components for permutation. This is an alternative approach to the subjective 

approach of Scree plots (Rencher, 2002) that have been widely used to determine the number 

of significant dimensions .  
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Step III: Permutation to test global reproducibility.  

The permutation method has been widely used to simulate the empirical distributions of test 

statistics for comparing quantities between two groups (Good, 2005; Neubert and Brunner, 

2007; Wheldon et al., 2007). In the context of a proteomic reproducibility study, we propose 

the permutation method to test whether there are significant differences in the paired 

multiple-feature quantities in m significant PC dimensions. Permutation provides the 

empirical distributions of the global test statistics. The observed global test statistics are 

compared with these empirical distributions to derive the permutation p values.  

We propose both a parametric and a non-parametric test statistic. The parametric statistic is 

the maximum t statistic 1Max i m iT   of the m paired PC differences.  Set
 0i

i

i

u
T

std


 , 

where iu  is the mean difference and istd  is the standard deviation of the difference in the ith 

resultant PC scores. The non-parametric statistic is a two dimensional sign score, log
p

p




 
 
 

, 

where P+ is the total number of positive differences in m PCs of n samples, that is, 

P+=
 

n

j

m

i
ijg

1 1

, where ijg =1 when the difference between the two replicates is positive and 

zero otherwise, and P- is the total number of negative differences in m PCs of n samples, P-

=
 

n

j

m

i
ijf

1 1

, where fij=1 when the difference between the two replicates is negative and zero 

otherwise.    

Let Zm,n represents the data matrix of the  differences derived from m paired PC scores by n 

samples.  In each Monte Carlo permutation (Good, 2005), the sign of each element of the 

Zm,n matrix is independently switched with probability 0.5.  Equivalently, for each i and j 

(1≤i≤m, 1≤j≤n), the original and replication values are independently permuted. One 

thousand Monte Carlo permutations provide the empirical distributions of the two proposed 

global test statistics iT and log
p

p




 
 
 

. The permutation p value is the proportion of 
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permutations in which the absolute observed test statistics is equal to or greater than the 

absolute permutation test statistic.   

 

2.2.2. Summary statistics for agreement with multiple features  

 

In addition to detecting bias in the reproducibility, a global index of reproducibility is formed 

by applying cluster analysis to the data, fixing the number of clusters at the sample size.  

Ideally, each sample should cluster with its replicate. The discordance index measures the 

proportion of samples that fail to cluster with their replicates.  

 

 

2.3. Results 

Two different types of quantification data (SELDI-MS and LC-MS/MS with iTraqTM 

labeling) were used to demonstrate the proposed method. In the SELDI-MS experiment, 

common peaks were identified with the PROcess algorithm (Li, Xiaochun 

http://bioconductor.org/packages/2.4/bioc/html/PROcess.html), where the local maxima of 

intensities in each identified peak region were used as the analyzed quantity.  In the LC-

MS/MS labeling experiment, peptides identified by ProteinPilotTM with “used” indicator =1 

were filtered by confidence score and aligned across different runs; For the purpose of this 

reproducibility analysis, the weighted averages of reporter ion peak areas were calculated for 

peptides that multiple observations in a single protein summary.  The resultant peptide areas 

are summed for each protein that they belonged to. Within each run, median normalization 

was applied to the summed areas across labels on the natural log scale. After pre-processing, 

a relative protein quantity was derived for each sample.  This pre-processing corrects for the 

iTRAQ labeling effects.  

 

2.3.1 Case study 

Coronary plasma blood samples of eight ischemic patients before and after an angioplastic 

procedure were collected from the Greenlane Cardiovascular Service of Auckland City 

Hospital and analyzed by LC-MS/MS with iTRAQTm
 labeling at the Centre for Genomics 

and Proteomics, University of Auckland. Prior to the LC-MS/MS analysis, a depletion 
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process was used to exclude the ten most highly abundant proteins. The depletion process is 

to make sure the relative quantities of the low abundant proteins that are normally relevant to 

the disease of interest can be precisely measured during the LC-MS/MS analysis. 

For the purposes of demonstrating the proposed statistical method for the reproducibility 

evaluation, it is hypothesized that there are no changes in the proteomic expression before 

and after the angioplasty procedure, so the post-procedure samples are treated as the 

replications of the baseline sample for the demonstration. Peptide profiles from 4 different 

runs of ProteinPilotTM  were aligned and the areas under the peaks were log transformed and 

normalized by the median within each run.  One hundred and twelve common peptides from 

the 4 different runs were used to construct the relative intensity of proteins for the 

reproducibility assessment. Principal component analysis was performed on the quantities of 

the 24 proteins found in all four runs.  

Both the eigenvalue test and scree plot (Table 2.1 and figure 2.1) indicated that the first 

eigenvalue was significant, and the corresponding first eigenvectors explained 84% of the 

total variance.  The first Principal Component plot (FPC plot) in Figure 2.3(a) shows a 

significant difference in the relative protein quantities between the post- and pre-angioplasty 

samples; the PC of post- procedure samples tends to be lower than the pre-angioplasty 

samples overall. This trend is consistent with the pattern in the second plot, where the 

differences in the relative quantity of the pre- and post-procedure for all proteins are plotted. 

Details of the post-angioplasty expression change are reported in chapter 6.  
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Table 2.1 Results of the Eigenvalue test 

 

i 1 2 3 4 5 6 7 

i  12.7 0.93 0.48 0.42 0.26 0.12 0.06 

   i i 1 i 1 i 2/          26.2 7.5 0.4 1.1 2.3 1.0 

 K0=1 K0=2 K0=3 K0=4 K0=5 K0=6  

   
0K i  7 i i 1 i 1 i 2MAX /            

 

 

26.2 7.5 2.3 2.3 2.3 1.0 

critical value 8.3 8.0 7.5 7.0 6.5 5.7 

 

*This row provides the maximal values of    i i 1 i 1 i 2/         when i ranges between  

1-7, 2-7, 3-7 and up to 6-7. Severn is assumed to be the maximal number of eigenvalues.   

 

2.3.2 Simulation experiments 

A simulation experiment was used to investigate the sensitivity of the proposed method. 

Different types of noise, with different distributions and parameters were added to the 

relative peak quantities of 30 ovarian cancer patients to simulate different replicates from the 

MS experiment. The mass spectral intensity data is a random sample from a large ovarian 

proteomic experiment, downloaded from the proteomic databank of the Center for Cancer 

Research (http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp). Sixty-one common 

peaks were identified from these 30 subsamples using the PROcess bioconductor package. 

Preprocessing procedures, including baseline subtraction by Loess and normalization, were 

applied. A relative quantity was derived for each identified peak.  

Twelve distributions, with different parameters simulating systematic bias (parameterized by 

the mean,) and noise (parameterized by the standard deviation, σ), were generated and 

added into the relative quantity data. The distributions were normal distributions {(=0/2/4, σ 
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=2/4), (=0/2/4, σ =2/4)}, exponential distributions {(= σ =0.5), (=σ =1)} and bimodal 

distributions (mixture of two normal distributions with different means and standard 

deviations at different sections of m/z values). The FPC plots from two simulations are 

shown in Figure 2.2a and 2.2b. In the FPC plot of the normally distributed differences with 

(µ=0, σ=4), the differences in the first principal component scores between the sample and its 

simulated replicate are randomly scattered above or below 0.  In the FPC plot of the 

exponentially distributed differences with = σ =0.5, the differences in the first principal 

component scores tend to be significantly above 0.  

The eigenvalues of the sample matrices were tested before the permutation test basing on 

1000 Monte Carlo permutations were proceeded. In the principal component analysis, 

quantities were normalized. The permutation tests were applied to differing sizes of samples 

(8, 15 and 30 samples), and to different distributions with different parameters in the 

simulated replicates. The comparison results are shown in Tables 2.1a and 2.1b. 

 

2.3.2.1 Results of global permutation reproducibility testing (Tables 2.2a and 2.2b)  

Sample size and sensitivity of the test  

When the sample size was equal to 8, the permutation tests using maximum t statistics failed 

to detect the simulated bias; the permutation tests using the sign score statistics successfully 

identified bias for the normal distribution (µ=2, σ=4) and exponential distribution (=σ=1 

and =σ=0.5) but failed for the other simulated distributions.  

When the sample size was equal to 15, the permutation tests using maximum t statistics 

successfully detected the bias with the normal distribution (µ=2, σ=2), the exponential 

distribution with λ=1(=σ=1) and λ=2(=σ=0.5), and the bimodal distribution (µ=1, σ=1 

(m/z<1000) µ=2, σ=2 (m/z>1000)). However, it failed to detect the bias with the normal 

distribution (µ=2, σ=4), the bimodal distribution (µ=1, σ=2 (m/z<1000) µ=2, σ=4 

(m/z>1000)) and the bimodal distribution (µ=2, σ=4 (m/z<1000) µ=4, σ=8 (m/z>1000)). The 

tests using the sign score statistics successfully detected all of the simulated biases.  

When the sample size was equal to 30, both test statistics successfully identified all the 

simulated biases. The sensitivity of the reproducibility is affected by the sample size.  
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Variance and sensitivity  

When the variation of the sample increased, the sensitivities of both test statistics were 

weakened. In the simulations, when the coefficient of variation of a normally distributed 

difference was greater than 1, the permutation test using maximum t statistics was not 

sensitive with sample sizes < 30.  

 

Discordance index and median percentage change  

In the bias assessment, all 30 samples, including both replicates, were entered in a cluster 

analysis and 30 clusters were formed by the Ward method (Ward 1963) (Rencher, 2002). 

Table 2.3 summarizes sample details and grouping of replicates in the same cluster. The bias 

with distribution µ=2,σ=4 (m/z≤1000) µ=4,σ=8 (m/z>1000) resulted in the largest 

discordance index and % of differences between the simulated replicates and the original 

data.   

A high discordance index can be caused by a high degree of bias with high variation. The 

simulation results show that the discordance index is not sensitive to bias with small 

magnitude and large variation.  However, the discordance index is an interesting way to 

summarize the data and provides extra information about outlying samples.   

 

 

2.4. Discussion 

This chapter proposes a method to assess the global reproducibility of mass spectral data 

rather than focusing on the reproducibility of single selected candidate proteins or peptides.  

A multivariate reproducibility assessment is useful to assess overall performance and identify 

problematic candidate proteins or peaks. Using principal component analysis, high 

dimensional correlated spectral data are reduced to lower dimensions and projected into 

orthogonal principal component space.  Random matrix theory provides a basis for testing 

the underlying correlation pattern of proteins to eliminate non-significant principal 

components from further analysis. A permutation reproducibility test can be used to identify 

systematic bias and adjust for multiple testing.  If bias is identified, further analysis of the 

principal component scores can identify problematic proteins or peaks by using a maximum t 
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test statistic or sign score statistic.  The strategy of combining dimension reduction with 

permutation testing utilizes all the information effectively.       

From the simulation experiments, it was found that a sample size of 30 will have greater 

statistical power to detect simulated bias than a sample size of 15 or 8. The size and variation 

of samples have significant impacts on the sensitivity of the assessment.   

A large-scale reproducibility study using LC-MS/MS that assesses the real day-to-day 

operations and patient variations is needed. This study would be important before applying 

the proteomic technology in daily clinical laboratory practice. The reproducibility assessment 

in a clinical proteomic experiment is complex. It involves early phase assessment for 

reproducibility of laboratory technique and the late clinical phase assessment for 

reproducibility of patients’ day-to-day physiological conditions.  For the examples used in 

this study the reproducibility of quantification post-protein identification was assessed. 

However, the proposed method can be applied to specific sources of variation including 

intra/inter run reproducibility and day-to-day variability.   

A limitation of the current study is that the sensitivity of eigenvalue testing is affected by the 

sample size. When the sample size is small, the eigenvalue test combined with the traditional 

Scree Plot may be a better way to identify the main pattern of protein profiles. 

In conclusion, this chapter suggests extensions of reproducibility methods from the single-

dimension assessment to a higher-dimension assessment and demonstrates that this 

systematic approach to reproducibility is useful and workable.  

The proposed method was also applied in chapter 6- the immunology case study.  
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Table 2.2a Simulate replicates by adding bias and noise with different distributions 

Data presented are 
median (P25,P75)  Parametric version Non Parametric version 

Distribution of the 
systematic bias 

Size of the 
samples and its 

replicates 
Distribution of the 

permutated p values 
Distribution of the 

test statistics 
Distribution of the 

permutated p values 
Distribution of the 

test statistics 
      
Normal      
µ=2 σ=4 30 0.02(0.01,0.06) 3.76 (3.42,4.19) - - 
      
µ=0 σ=4 15 0.51 (0.30, 0.67) 2.18 (1.95, 2.57) 0.59 (0.41, 0.82) 0.00 (-0.08,0.08) 
µ=2 σ=2  0.02 (0.009, 0.04) 4.01 (3.63, 4.65) 0.001 (0.001,0.001) -0.84 (-0.96,-0.71) 
µ=2 σ=4  0.15 (0.06, 0.34) 2.94 (2.50, 3.47) 0.005 (0.001,0.03) -0.42 (-0.48,-0.32) 
      
µ=0 σ=4 8 0.36 (0.13, 0.57) 2.34 (1.92,3.17) 0.64 (0.42,0.90) 0.00 (-0.14,0.14) 
µ=2 σ=2  0.18 (0.10, 0.31) 2.97 (2.42,3.54) 0.02 (0.004, 0.08) -0.65 (-0.81, -0.50) 
µ=2 σ=4  0.32 (0.19,0.53) 2.50 (1.98,3.01) 0.50 (0.24,0.64) -0.21 (-0.35, -0.07) 
      
Exponential      
      
λ=1(µ=σ=1) 15 0.01 (0.005, 0.03) 4.48 (3.88, 4.98) 0.001 (0.001,0.001) -1.03 (-1.14, -0.89) 
λ=2(µ=σ=0.5)  0.007 (0.002,0.02) 4.70 (4.24, 5.37) 0.001 (0.001,0.001) -1.17 (-1.29, -1.01) 
      
λ=1(µ=σ=1) 8 0.12 (0.05,0.19) 3.21 (2.86,4.22) 0.01 (0.001,0.03) -0.73 (-1.01, -0.63) 
λ=2(µ=σ=0.5)  0.07 (0.04,0.13) 3.61 (3.16,4.56) 0.002 (0.001,0.005) -0.98 (-1.17, -0.81) 
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Table 2.2b Simulate replicates by adding bias and noise with different distributions 

Data presented are median 

(P25,P75)  Parametric version Non Parametric version 

Distribution of 
the systematic bias 

size of the samples 
and its replicates 

Distribution of the 
permutated p 

values 
Distribution of 

the test statistics 
Distribution of the 

permutated p values 
Distribution of the 

test statistics 
      

Bimodal      
µ=1, σ=2 (m/z≤1000) µ=2, 

σ=4 (m/z>1000) 30 0.03 (0.008,0.08) 3.68 (3.33, 4.27) - - 
µ=2,σ=4(m/z≤1000) µ=4, 

σ=8 (m/z>1000)  0.03 (0.01,0.08) 3.68 (3.28, 4.02) - - 
      

µ=1,σ=1 (m/z≤1000) µ=2, 
σ=2 (m/z>1000) 15 0.03 (0.01,0.08) 3.68 (3.28, 4.02) 0.001(0.001,0.001) -0.96 (-1.08,-0.80) 

µ=1,σ=2 (m/z≤1000) µ=2, 
σ=4 (m/z>1000)  0.12 (0.06,0.32) 3.07 (2.55, 3.51) 0.004(0.001,0.01) -0.42 (-0.52,-0.34) 

µ=2,σ=4 (m/z≤1000) µ=4, 
σ=8 (m/z>1000)  0.14 (0.06, 0.29) 3.00 (2.61, 3.48) 0.005(0.001,0.03) -0.40 (-0.50,-0.31) 

      

µ=1,σ=1 (m/z≤1000) µ=2,     
σ=2 (m/z>1000) 8 0.18 (0.08,0.37) 2.88 (2.39,3.56) 0.02 (0.003,0.14) -0.65 (-0.81, -0.43) 

µ=1,σ=2 (m/z≤1000) µ=2, 
σ=4 (m/z>1000)  0.26 (0.14, 0.55) 2.67 (1.95, 3.21) 0.48 (0.23,0.65) -0.21 (-0.35,-0.07) 

µ=2,σ=4 (m/z≤1000) µ=4, 
σ=8 (m/z>1000)  0.36 (0.19,0.54) 2.32 (2.03, 2.87) 0.32 (0.23,0.62) -0.28 (-0.35, -0.14) 
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Table 2.3 Summary of discordance index and median % change from simulated bias 

 

Distribution of 
bias with different 
parameter  

Number of 
samples-
replicates  
grouped in the 
same cluster  

Discordance index 
(% of samples-
replicates failed to 
group in the same 
cluster) 

 
Median 

% changes between 
simulated replicate 
and original data 

Among all features 
(peaks) 

Normal  n=30    

µ=0 σ=4 27 0.10 

 
0.4%  

[-24%, 21%] 

µ=2 σ=2 27 
 

0.10 

 
67%  

[16%,288%] 

µ=2 σ=4 23 0.23 

 
78.2% 

[17.1%, 313.2%] 
Exponential n=30     

λ=1( µ=σ=1) 30 0.0 

 
43% 

 [8.6%,137%] 

λ=2 (µ=σ=0.5) 30 
 

0.0 

 
 

21%  
[4.3%, 68%] 

Bimodal n=30    

µ=1,σ=2(m/z≤1000) 
µ=2,σ=4(m/z>1000) 26 0.13 

 
65% 

 [8.8%,191%] 

µ=2,σ=4(m/z≤1000) 
µ=4,σ=8(m/z>1000) 10 0.67 

 
 

130% 
 [18%, 381%] 
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Figure 2.1 Scree plot for the cardiac case 
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Figure 2.2a FPC plots of simulated systematic bias (exponential distributed). 
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Figure 2.2b FPC plots of simulated systematic bias (Normal distributed). 
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Figure 2.3 

(a) PC plot of first dimension (FPC plot) from the cardiac LC-MS/MS ITRAQTM data   

(b) Difference in log (area) between replicates from all proteins vs. average of all log (area) from cardiac patient’s LC-MS/MS 

ITRAQTM data. A unique plotting symbol is used for each patient.  
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 CHAPTER 3  

Two optimization strategies of multi-stage design in clinical 

proteomic studies 

 

ABSTRACT 

We evaluated statistical approaches to facilitate and improve multi-stage designs for clinical 

proteomic studies which plan to transit from laboratory discovery to clinical utility.  To find 

the design with the greatest expected number of true discoveries under constraints on cost 

and false discovery, the operating characteristics of the multi-stage study were optimized as a 

function of sample sizes and nominal Type-I error rates at each stage. A nested simulated 

annealing algorithm was used to find the best solution in the bounded spaces constructed by 

multiple design parameters. This approach is demonstrated to be feasible and lead to efficient 

designs.  The use of biological grouping information in the study design was also 

investigated using synthetic datasets based on a cardiac proteomic study, and an actual 

dataset from a clinical immunology proteomic study.  When different protein patterns 

presented, performance improved when the grouping was informative, with little loss in 

performance when the grouping was uninformative. 

 

 

3.1 Introduction and motivation 

Most laboratory-based biomarker discoveries do not reach clinical use.  One reason may be 

the lack of connection between laboratory and clinical proteomics studies, so that laboratory 

selections and the clinical validation of the protein markers are separate processes in study 

design (Patterson et al., 2010). In addition, there is a risk that false discoveries are introduced 

by technical artifacts with different proteomic platforms.  In 2007, the National Cancer 

Institute (NCI) suggested a three-stage workflow to link laboratory discovery to clinical 

utility in proteomic studies (National Cancer Institue, 2007). The stages are: (1) unbiased 
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discovery using tens of samples, followed by (2) targeted verification using hundreds of 

samples, and finally (3) clinical validation using thousands of samples. The whole process 

integrates knowledge on proteomic infrastructure, systematic study design and health 

economics. It thus requires a systematic design to optimize the number of discoveries under 

constraints of cost and false discovery.   

 

3.1.1 Multi-stage design in gene-association and proteomic studies 

In genetic association studies, Jaya M. Satagopan and Elston (2003) proposed a two-stage 

design excluding markers with little evidence of association in the first stage of the study and 

selecting only promising markers for the second stage. They used Monte Carlo grid search to 

obtain combinations of one-stage design parameters, i.e. power and type I error, and then 

applied numerical integration to find the solution of the two-stage design parameters that 

minimized the study cost subject to an overall type I error rate and a statistical power. Wang 

et al. (2006) expanded the two-stage approach from candidate-gene to genome-wide scale. 

Zuo et al. (2008) proposed an optimal resource allocation that maximized the overall power 

for a fixed total cost. They also investigated the impact of genotyping errors. They derived 

the joint distribution of the test statistic in the first and second stage, and converted the 

objective function to a mixed integer nonlinear programming problem (MINLP) with only 

two parameters under a series of constraints. Skol et al. (2007) described a similar approach 

to Zou et al. but using a different joint test statistic. Moerkerke and Goetghebeur (2008) 

added that genetic markers should be selected and ranked in order of evidence that balanced 

false positive rate and false negative rate at the first stage. At the second stage, more samples 

are selected and data from both stages combined. They proposed a gain function using the 

weighted sum of the false positive and false negative rates as the objective function for 

maximization. 

Originally multi-stage designs were suggested for gene association studies for which 

budgetary considerations needed to be balanced against statistical power. However, the 

falling cost of genotyping and the economies of scale available from off-the-shelf SNP chips 

made these designs less useful (Spencer et al., 2009).  In a study for genome-wide interaction 

analysis (GWIA), Steffens (2010) also argued against the adoption of a two-stage strategy 

and suggested that multi-stage screening will prevent the detection of pure epistatic effects. 
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In contrast, proteomic studies still have substantial per-protein marginal costs, especially in 

the final stage, so that a multistage design is substantially more affordable.  The multistage 

design also provides built-in technical validation, with protein abundance being measured 

using different assays at each stage. The multistage design may still be weak for assessing 

pure interaction without main effects, but this is not currently a major focus of proteomic 

research.  

 

3.1.2 Similarities and differences between multi-stage gene association studies and multi-

stage clinical proteomic studies 

A proteomic study using a systems biology approach to identify disease-related proteins has 

similarities to a multi-stage gene-disease association study.  It starts with systematic 

identification and screening of hundreds or thousands of proteins.  It then uses a targeted 

candidate quantification approach to verify and/or validate the findings in the same or a 

separate group of subjects.  The decision on the proteins selected at the identification stage 

for further study is as vital as that in the screening stage of a genome-wide association study 

(GWAS). The optimization problem in a multi-stage proteomic study also has similar 

parameters to a multi-stage GWAS.  A common problem in both gene and protein 

association studies is to search for a design that maximizes power with an acceptable false 

positive rate and cost, or which minimizes cost with fixed power and false positive rate.   

However, there are important differences between proteins and genes relevant to association 

studies: the number of proteins measurable with current technologies is much less than the 

number of genes. Proteins are highly changeable and have a wider dynamic range: their 

abundance in a cell ranges from less than 500 to 2×107 copy numbers (Beck et al., 2011).  

The most abundant plasma proteins such as albumin and IgE are usually not disease-specific, 

or of primary interest. Depletion of high-abundance proteins can reduce the problem, but 

large differences in abundance remain after the depletion. 

Current biotechnologies allow identification of thousands of proteins. To achieve an unbiased 

discovery, NCI advocated a second technical verification using a candidate-based platform. 

Thus, false discovery due to random error and/or technical artifacts needs to be considered in 
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the design. The statistical method used to adjust for multiple tests in gene association studies 

may not be the optimal solution for proteomic screening.  With the upcoming advances in the 

biotechnologies, tailor-made study design for large-scale protein research is, therefore, a 

timely objective.   

 

3.1.2 The potential value of using biological information in protein groups 

Bioinformatics profiling information is often used to enrich the design of proteomic studies.  

Proteins are commonly studied in groups defined by function, structure, and localization 

(Greenbaum et al., 2003).  For instance, a therapy or drug may target the proteins in the same 

disease related pathway. Hence, it is useful for biologists to study each molecule (protein, 

metabolite) with others that belong to the same signaling pathway (Meani et al., 2009) or 

biological function. For example, Hoorn et al. (2005) and Chornoguz et al. (2010) 

successfully identified proteins and their related pathways or networks that associated with 

disease or a physiological intervention. Hoorn suggested that the combination of pathway 

analysis and proteomic analysis both facilitated the interpretation of proteins’ relationships 

and made it possible to identify low abundant proteins which otherwise would escape from 

the proteomic analysis.  Meani et al. (2009) considered the understanding of protein signaling 

pathways in diseased and normal tissues to be the first step in cancer molecule 

characterization and personalized therapy.  An optimal design using pathway or protein 

network information may increase the likelihood of candidate proteins of an important group 

being selected from stage I, and thereby improve biologically and clinically relevant 

discoveries. 

 

3.1.4 Objectives of the proposed study 

We investigate optimal designs under the NCI three-stage workflow, and explore extra 

options that utilize biological information of proteins via bioinformatics approaches or 

pathway analysis to enrich the study design. The approaches proposed for genetic association 

studies are expanded, focusing on validation of the discovery via candidate-based platforms.  

A range of design problems is investigated, starting from the simplest scenario that proteins 



39 | P a g e  
 
 

are selected separately to the comprehensive option of utilizing protein grouping information, 

but without consideration of the correlation structure across groups. Our main intention is to 

provide different options with computing algorithms to achieve robust designs when research 

resources are constrained.  

 

3.2  Statistical strategies in the three-stage design 

This section describes optimization strategies for a three-stage study from discovery to 

verification, and validation using different or the same platforms for different independent 

samples.  In the discovery phase, peptides are identified systematically via mass spectrometry 

(MS) or 2D gel. The discovered peptides are used to identify and quantify proteins through 

reverse peptide sequence database and bioinformatics software (i.e. ProteinPilotTM).  

In the second verification stage, multiple-reaction monitoring (MRM) mass spectrometry is 

applied to verify the changes in abundance that were observed for multiple proteins in the 

discovery phase.  Since the 1990s, MRM-based assays have emerged as an alternative 

candidate approach to enzyme-linked immunosorbent assays (ELISAs). These mass 

spectrometry assays eliminate the cost of producing a large number of new immunoassays at 

an early stage of research, allowing the development of antibodies to be deferred until the 

final stage. 

In the third and final stage, new antibodies and immunoassays are developed and used in 

larger samples of patients for validation. Multiplex ELISA is one type commonly used in 

clinical laboratories.  A novel alternative is the new mass spectrometry-based quantification 

for candidate peptides smaller than 10kDa (L. Anderson, 2005).   

The proposed statistical methods for the optimization of multi-stage studies assume that a 

known set of p1 proteins are discovered from the stage I process from which a subset of p2 of 

these are then selected using a statistical significance threshold based on information from 

either individual proteins or both individual and groups of proteins. A subset p3 of these 

proteins is then selected based on a second selection criterion at the verification stage. 

Finally, these p3 candidate proteins are validated at the last stage. The sample sizes of the 
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second stage, n2, and the last stage, n3, and the stage-wise false positive rates (i.e. type I 

error) are selected to maximize the power of discovery under the constrained study cost and 

the overall number of false positives.  

Before any proof-of-concept pilot experiment, prediction of the number of discoveries at 

stage I is difficult because of its dependence on various uncontrollable factors, such as the 

performance of the mass spectrometer, types of biological tissues and other technical 

artifacts.  Given the limited prior information on stage I design parameters, the stage I sample 

size is not included in the objective function for optimization. We choose to start the 

optimization from the selection of p2 from p1 discovered proteins so that the optimal solution 

is not influenced by the number of discoveries at stage I. The stage I discoveries will also 

provide information (i.e. means and standard deviations) for the design parameters to be used 

in the optimization. 

We demonstrate the optimization in the context of studies involving paired samples at each 

stage, such as 1:1 matched case-control or before-after intervention studies. This method can 

be generalized to parallel group studies, with or without paired samples.  In the paired sample 

design, the analytical units will be the log-transformed relative intensities.  The detectable 

mean differences between paired samples are determined based on either prior information 

and/or clinically or biologically relevant differences. The prior information can be obtained 

from the literature or prior experiments; it is not limited to the stage I discovery study. The 

standard deviations can be estimated from the stage I discovery study and/or obtained from 

prior experiments. In the computations for seeking the optimal design solution, the means 

and standard deviations of the differences are assumed to be constant across stages.  

The optimization assumes the budget is fixed. The assay costs at stages II and III, the cost of 

recruitment and the stage I sample size are known. A solution of stage I/II nominal false 

positive rates (decision thresholds) and stage II/III sample sizes is derived to maximize the 

number of discoveries at the final stage. The following sections describe two algorithms for 

the optimization with and without biological grouping information. 
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3.2.1 The simplest scenario: proteins are selected individually 

In the simplest scenario, selection is carried out independently for each protein, based on 

single-protein test statistics. Student’s paired sample t-test is used to assess the differences in 

the log-transformed fold change between paired samples.  p2 proteins are selected from p1 

proteins based on p1 individual tests at stage I. p3 proteins are selected based on p2 individual 

tests at stage II and finally p3 protein candidates are validated at the final stage based on the 

individual tests.  

 

3.2.1.1 Using Simulated Annealing (SA) to seek optimized solution in the multi-stage design: 

the algorithm SA-a  

The proposed method maximizes the expected number of proteins with true effects 

discovered from a three-stage study under a cost constraint.  The expected number of true 

effects is derived from an objective function which has four design parameters:  the stage I 

type I error rate, α1, the stage II type I error rate, α2, the sample size at stage II, n2, and the 

sample size at stage III, n3. The values of these parameters were divided into small intervals 

within defined ranges (i.e. α1 ranged between 0.005-0.50 with interval size 0.025; α2 ranged 

between 0.005-0.25 with interval size 0.025; n2 ranged between 100-1000 with interval size 

10; n3 ranged between 100-5000 with interval size 100). The combinations of knots at these 

intervals form the solution space of the objective function in the optimization. 

Simulated annealing (SA) is used to determine the optimal design parameters in stages II and 

III for a specified sample size and number of proteins at the first stage.  It is a stochastic 

optimization method that does not require the objective function to be smooth, and is capable 

of finding global optima even in problems where many local optima exist (Nikolaev and 

Jacobson, 2010).  In the current problem, lack of smoothness and multiple optima result from 

the constraint and using Monte Carlo averages to approximate the expected number of 

discoveries.  In contrast to ‘hill-climbing’ approaches that attempt to find a higher value of 

the objective function at each iteration, and so cannot escape a local minimum, SA will 

sometimes step down. At each iteration, the current solution is compared to the next 

candidate solution.  A superior solution will be accepted with 100% probability; an inferior 
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solution will be accepted with a probability based on the current ‘temperature’ which is a 

predefined constant number decreasing as the algorithm progresses. 

 

3.2.1.2 Definition of the SA-a algorithm 

The solution space, Ω, bounded by the acceptable limit of each design parameter. Let the 

vector of design parameters ω = (n2, n3, α1, α2) be a solution in Ω, where n2 and n3 are the 

stage II and III sample sizes, respectively, and α1 and α2 are the stage I and II type I error 

rates, respectively.  Ω contains all the possible combinations of these parameters which are 

categorized by small intervals within their bounded ranges.  

Objective function. Let ƒ(ω): Ω   be the objective function of the solution space, where ƒ 

is the expected number of proteins that are discovered at stage III associating with the disease 

being investigated. It is in the range of 0, 1,…, p1, where p1 is the number of proteins 

discovered in stage I and being considered for inclusion in stages II and III of the study. 

The proposal neighborhood selection function. The proposed neighborhoods are constructed 

by M arbitrarily bounded and possibly overlapping solution subspaces, Ωi (i= 1, 2,…, M). 

The Ωi are formed by firstly selecting a point ωi (the centre of Ωi) according to either a 

uniform or Beta distributed jumping length from the previous centre point ωi-1, and secondly 

selecting a uniformly distributed radius Ri with probability 0.5 for each direction from the 

selected center ωi.  Each candidate point can then be assigned within each Ωi, according to a 

uniform distributed probability.  

This nested SA starts with a uniformly random assignment of a solution ω in the radius R1 

bounded neighborhood Ω1, and then a local SA with k iterations is used to seek the global 

minimum of Ω1.  After the first local SA, a new address is assigned as the centre of the next 

solution subset Ω2 and the second local SA is repeated.  This procedure repeats for up to M 

subsets; the solution from each local SA will be updated if it is better than the previous one.  

The temperature cooling schedule. The logarithmic cooling schedule is defined as, 
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where t is the current iteration, temp is the starting temperature for the cooling scheme and 

tmax is the number of function evaluations at each temperature (Belisle, 1992).  

The acceptance probability. The Metropolis function, i.e. 
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is used to derive the acceptance probability. 

The objective function for SA-a. Let pri be the probability of protein i being discovered at 

stage III (i = 1… p1, where p1 is the number of proteins selected from stage I). The objective 

function is then given by 
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where α1 and α2 are the significance levels at stages I and II, respectively, and n2 and n3 are 

the sample sizes at stages II and III, respectively. 

Now, let ),2/1( 11
1

1 dfPtc   , ),2/1( 22
1

2 dfPtc    and ),975.0( 3
1

3 dfPtc   be the t 

quantiles corresponding to the type I error rates at stage I, II and III respectively, where 1Pt  

is the quantile function for Student’s t-distribution, and df1, df2 and df3 are the corresponding 

degrees of freedom at stages I, II and III,  respectively. 

Let β1,i, β2,i and β3,i denote the paired t-test type II error rates at stages I, II and III, 

respectively, for protein i. It follows that (1 – βj,i) is the power at each corresponding stage, j 

(j = I, II, III). The expected number of true discoveries (power) is expressed as a function of 

the cumulative density of t-statistics for the ith protein at each stage, i.e. 

)1)(1)(1()( ,3,2,1 iiiiprE   , 
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i , where θi is the absolute difference between the matched 

diseased and normal groups under the alternative hypothesis for protein i and Pt is the 

cumulative paired sample Student’s t-distribution function. Analogously, the objective 

functions for i,21   and i,31   are given by 
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The cost function is defined as 2 2 2 3 3 3 2 3( )n p t n p t n n R        , where t2 and t3 are the 

assay costs and p2 and p3 are the numbers of proteins being tested at stages II and III 

respectively, and R is the recruiting cost. This cost function is used in the following 

simulation study; it may vary based on different cost structures.  

The actual objective function of SA-a computes the expected number of positive findings by 

using the Monte Carlo average of 1000 simulations.  Additionally, technical differences 

between the Stage I and Stage II assays can be simulated by multiplying each θi by a random 

‘technical artifact’ adjustment, λi, in the Stage I calculations.  Our simulations below 

incorporate this adjustment. 
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3.2.1.3 Comparison of nested neighborhood selection with single-step selection 

Instead of using single-step SA, algorithm SA-a employs a nested-search strategy on subsets 

of the solution space determined by both the jumping length from one centre to another and 

the radius of the search space. Comparing the single-step method with the nested-search 

method, the latter constructs a local structure of the global search surface. This strategy is 

shown to be more efficient with shorter computation time and without losing effectiveness in 

finding a good solution. In a case study to identify the global solution of a function with 

known maxima under inequality constraints, the computing time of using the single-step 

search was about twice of that using the nested search. The discovery rate for the known 

maximum from 100 experiments using 10000 iterations in the global search was 54%. 

Compared to an equivalent nested-search of 100 subsets x 100 iterations, the discovery rates 

were 64%, 58% and 97% for uniform, Beta(α=4, β=6)-, and Beta(α=4, β=20)-distributed 

jumping lengths, respectively. When the global search used 100000 iterations and, 

equivalently, 100 subsets of 1000 iterations in the nested-search, the discovery rate of the 

known global maximum from 100 experiments were all 100%.    

The convergence of SA-a can be proved by theorem 1 of both Belisle (1992) and Hajek 

(1988).  Belisle’s theorem 1 is a special case of Hajek’s result in which the state space is 

discrete and finite.  SA-a is defined over subsets of d, with a temperature scheme 

converging in probability to 0.  Its transition probability from one candidate to another is 

positive.  When M (the number of subsets) is sufficiently large, it can naturally deduce that 

SA-a converges in probability to the global minimum of the bounded space Ω.     

3.2.2 An enrichment design: using protein group information and protein selection by group 

and individual 

Under this more complex scenario, proteins are analyzed in biological groups. Selection of 

proteins at stages I and II is based on the combined criteria of group and individual 

hypothesis tests. A protein is selected if the single-protein test statistic exceeds the threshold 

of a corresponding type I error rate for the t-test or if the group test statistics exceeds the 

threshold of a corresponding type I error rate for the Hotelling’s T-test. The 
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validation/selection of proteins at the final stage is only based on t-tests for the individual 

protein.  

The following paragraph describes a simulated annealing algorithm SA-b, which is used to 

optimize and simulate the three-stage design when grouping information for each discovered 

protein is available in a paired sample study.  Utilizing the additional grouping information, 

nested simulated annealing with Beta-distributed jumping lengths is used to find the optimal 

design solution. The selection criteria combine decision thresholds of Hotelling’s T-squared 

statistics for the groups and the t-statistics for the individual proteins. 

Apart from using grouping information, compared to SA-a, several improvements have also 

been made in SA-b.  The first is to convert the inequality cost constraint into an equality cost 

constraint by using a series of slack terms (Nocedal and Wright, 1999).  The second is the 

reduction in the dimension of the design problem by using the fact that the cost constraint 

will always bind.  Instead of searching the entire interval of the stage III sample size, n3, now 

n3 is derived from the current cost constraint and other chosen design parameters from the 

early stages. Because the cost function is monotonic with all the design parameters, this 

change reduces the computing time used to search those n3s with inferior solutions. The third 

improvement is to add an overall false-positive constraint in the algorithm. 

 

3.2.2.1 Definition of the simulated annealing algorithm SA-b using grouping information 

The solution space Ω bounded by the acceptable limit of each design parameter. Let the 

vector of design parameters ω = (n2, n3, 
1t

 , 
2t

 , 
1f

 ,
2f

 ) be a solution in Ω, where n2 and n3 

are the Stage II and III sample sizes, 
1t

 and 
2t

 are the stage I and stage II type I error rates 

for the individual tests and 
1f

  and 
2f

  are the  type I error rates for the group tests.  Ω 

contains all the possible combinations of these parameters categorized into small intervals 

within the bounded ranges.   

Objective function. Let ƒ (ω): Ω →  be the objective function of the solution space, where ƒ 

is the expected number of proteins detected at stage III. The expected number of detected 
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proteins with true effects is subject to first- and second-stage type I error rates of the group 

Hotelling’s T-tests, the individual t-tests, second-stage sample size and third-stage sample 

size. In the optimization, this objective function is constrained by: 1) cost and 2) the number 

of false positives. The selection criteria of the multi-stage design are: 

 Stage I: (group test p-value < 
1f

 ) or (individual test p-value < 
1t

  & group test p-value 

< 0.05), i.e. 

   )95.0()2/1()1( )()(
121

)()(),(
12

111111111 pndfpdftndffpndfpdf FTPtTFT 



     

 Stage II: (group test p-value < 
2f  & individual test p-value < 0.05) or (individual test p-

value < 
2t

 ), i.e. 

   )2/1()975.0()1(
2222222

1
)(

1
)(

1
)(),(

2
tndfndffpndfpdf PtTPtFT   

   

 Stage III: )975.0(1
)( 2

 ndfPtT  

In the above, 
1t

  and 
2t

 are the significance levels of individual tests at stages I and II; 

1f
 and 

2f are the significance levels of the group tests at stages I and II; T2 is the F- 

distributed Hotelling’s T-squared statistic with degrees of freedom determined by the number 

of proteins and the sample size at each stage; T is the Student t-statistic; F–1 is the quantile 

function for the F-statistic.  

The configuration of the objective function is described in section 2.2.2.  

A similar cost function as described in 2.1.2 is defined as 

2 2 2 3 3 3 2 3( )n p t n p t n n R S         , where t2 and t3 denote the assay costs at stages II 

and III respectively, R is the recruiting cost, S is the slack term of the total budget, and p2 and 

p3 are the numbers of proteins being tested at stages II and III, respectively.  

The false-discovery constraint controls the expected number of false discoveries and is 

defined as )(2)(2)(2 321 cPtcPtcPtm  , where m represents the total number of proteins 

with true effects. 
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The actual objective function in SA-b computes the expected number of positives by using 

the Monte Carlo average of 1000 simulations with adjustment for technical artifacts.  To 

utilize the grouping information and according to requirements from the subject area, the 

first-stage criterion is set to select groups with a variable significance level that will be 

changed for different solutions in the optimization, and proteins with a variable significance 

level but belonging to a group significant at the fixed 0.05 level.  The second-stage criterion 

is set to select proteins with a variable significance level that will be changed in the 

optimization, and proteins significant at the fixed 0.05 levels but belonging to groups with a 

changeable significance level. The third-stage selection is based only on the individual tests 

being significant at the 0.05 levels.  

In SA-b, the proposal neighborhood selection function, temperature cooling schedule, and 

acceptance probability are set to be the same as those of SA-a. The algorithm of SA-a is 

summarized in table 3.1.  
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Table 3.1:  The SA-b algorithm 

Step 1. Assign study parameters: cost constraint, ‘technical artifact’ adjustment vector λ, 
mean difference and its standard deviation for each protein, and cost functions for 
stages II and III. 

Step 2. Initialize number of iterations, simulated annealing parameters and solution. The 
simulated annealing parameters include ranges of stage I t test p values , F test p 
values, stage II t test p values, stage II F test p values, stage II sample size and the 
slack term. The solution includes the stage I & II t test and F test p values thresholds, 
and stage II sample size. 

Step 3. Initialize the sequences of slack term, Si, for the cost constraint; i ranges from 1 to J. 

Step 4. While the number of iterations < M, repeat the following steps: 

4.1 Randomly select an address as the centre of the local search neighborhood using 
a uniformly or Beta distributed jumping length 

4.2 Activate simulated annealing for the local search with k iterations 

 The simulated annealing local search algorithm contains three functions: 1. the 
objective function, which uses Monte Carlo simulation to calculate the expected 
number of detected positives at the final stage; 2. the proposal neighborhood 
function, which determines the next searching subset of new candidate points; 
and 3. the cost-sample size function that calculates the stage III sample size 
according to the inequality cost constraint, slack term Si , cost functions and the 
currently chosen design parameters.  

4.3 Compare the local maximum with the best solution from the past. If the current 
solution is better, then replace the previous best solution with the current one. 

4.4 Start next neighborhood search and repeat Step 3.  

4.5 Repeat Step 2 using the next slack term Si+1. 
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3.2.2.2 Use of analytical approximation to compute the analytical objective function for SA-b   

In SA-b, using the Monte Carlo average to estimate the expected number of true discoveries 

prolongs the optimization process.  To simplify the optimization, we investigated using an 

approximated analytical function to replace the Monte Carlo average.  The expected number 

of true discoveries is given by 

)1)(1)(1( ,3,2
1

,1 ii

p

i
i  



, 

where i,1 , i,2  and i,3  represent the nominal type II error rates at stages I, II and III, 

respectively, for the ith protein. Under the selection criteria for this multi-stage design 

utilizing the protein group information, described in section 2.2.1, the analytical function for 

the type II error, i,1 , of the ith protein at stage I is equivalent to the probability that the 

group containing the ith protein is not selected at the current group test decision threshold 

(event A), and either the ith protein is not selected at the current individual test decision 

threshold (event B) or the group is not selected at the 0.05 level (event C). 

The probability of the ith protein not being selected at stage I is, therefore, be expressed as 

 )( CBApr  , and can be expanded to 

   )|)(()()()|()()( BCAprBprCAprBAprBprCABApr  . 

Analytically, i,1  is a function of the cumulative density function of the t-statistic and the 

cumulative density function of the group Hotelling’s T-squared statistic which is F 

distributed after the transformation and is conditional on the individual t-statistic for each 

protein. It can be decomposed as follows.  

Let ( )pr B  denote the probability that the ith protein is not selected at the current t-test 

threshold. It can be expressed as  itctPtBpr  1)( , described in 2.1.2, where c1 is the 

threshold for the corresponding type I error of the t-test; and ti is the t-statistic for the ith 

protein.  Now, let ( | )pr A B  denote the probability that the group containing the ith protein is 

not selected at the current group test decision threshold, given that the ith protein is not 
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selected at the current t-test threshold. This can be expressed 

as  2
1 1( | ) i ipr A B F T d t c t    , where 2

iT  represents the scaled F distributed Hotelling’s 

T-squared statistic of the group containing the ith protein; and d1 represents the F-statistic for 

p-value < the decision threshold of Hotelling’s T-test for the group.  

( )pr A C  is the probability that the group of ith protein is not being selected under the 

combination of the group test statistic thresholds (d0.05 and  d1) and can be expressed as  

  2
1 0.05( ) min ,ipr A C F T d d   ,where d0.05 represents the F statistic for p-value < 0.05 

in the group test. Finally, let (( ) | )pr A C B  denote the conditional probability of CA    

given the ith protein is not selected.  

The conditional cumulative F density, defined as  2
1 1( | ) i ipr A B F T d t c t    , is 

equivalent to the marginal distribution of the cumulative F density with respect to the t-

statistic for the ith protein, i.e. 

     





itc

iii dttptdTFtctdTF
1

1
2

11
2 | , (a) 

where ( )pt t  represents the density function of the t-statistic, and Hotelling’s T-squared 

statistic is given by 
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denotes the scale factor which transforms Hotelling’s T-squared statistic into an F-statistic; 

iX  and iu are the observed and null-hypothesis means for all proteins in the group containing 
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the ith protein; iS  is the variance-covariance matrix of this group, 1n  is the stage I sample 

size, and 1,ip  is number of proteins included in stage I for the group to which the ith protein 

belongs.  

The integrand in equation (a) is approximated by    tpttdTF ii  2
,11

2~
, i.e. 

     





itc
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2
,11

2
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2 ~
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where the group test,  Hotelling’s T-squared statistic 2
iT , is approximated by the sum of 2~

iT  

and the t-statistic for the ith protein (i.e. 222 ~
iiii tTT  ), and 2~

iT  is 2
iT  excluding the mean 

effect of the ith protein (i.e.    2 1 T

i i i i i iT S X u X u
      ). 

Finally, we approximate (( ) | )pr A C B  by ( )pr A C  , which would be exact if B were 

independent of A and C.  

A similar approximation is also applied to the stage II nominal type II 

error  )(Pr,2 DABi  , where D denotes the event that a protein is not selected at the 

0.05 significance level.  i,2  is expanded as  

  ))(|()()()|()()()(Pr DBAprDBprDBprBAprBprDBAB  . 

Table 3.2 summarized the algorithm of SA-b using the analytical approximation. The 

difference between Table 1a and Table 1b is notified by italicizing the texts. When using 

analytical approximation, the range of stage III sample size is included as a searching 

parameter.       

The approximated analytical objective function for SA-b was implemented in several 

synthetic datasets for comparing with its Monte Carlo simulated function. The computing 

times of using the analytical approximation were shown to be between 20-100 times faster 

than using the Monte Carlo average in SA-b. The design parameters and solutions were also 
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shown to be similar to the results utilizing the Monte Carlo simulated objective function.  

More discussions are provided in the following immunology case study. 

Table 3.2:  The SA-b algorithm, with analytical approximation 

Step 1. Assign study parameters: cost constraint, ‘technical artifact’ adjustment vector λ, 

mean difference and its standard deviation for each protein, and cost functions for 

stages II and III. 

Step 2. Initialize number of iterations, simulated annealing parameters and solution. The 
simulated annealing parameters include ranges of stage I t test p values , F test p 
values, stage II t test p values, stage II F test p values, stage II sample size and stage 
III sample size. The solution includes the stage I & II t test and F test p values 
thresholds, stage II and stage III sample size. 

Step 3. While the number of iterations < M, repeat the following steps: 

3.1 Randomly select an address as the centre of the local search neighborhood using 

a uniformly or Beta distributed jumping length 

3.2 Activate simulated annealing for the local search with k iterations 

 The simulated annealing local search algorithm contains three functions: 1. the 

objective function, which uses analytical approximation function to calculate the 

expected number of detected positives at the final stage; 2. the proposal 

neighborhood function, which determines the next searching subset of new 

candidate points; and 3. the cost calculating function that calculates the cost 

based on the currently chosen design parameters.  

3.3 Compare the local maximum with the best solution from the past. If the current 

solution is better, then replace the previous best solution with the current one. 

3.4 Start next neighborhood search and repeat Step 3.  
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 3.3. Case studies 

3.3.1 An immunology study 

The lymphocyte proteome was analyzed in 17 Common Variable Immunity Deficient 

(CVID) patients and 34 normal controls. Common Variable Immunodeficiency Disorder 

(CVID), also known as acquired hypogammaglobulinemia, is the most common primary 

immunodeficiency disorder encountered in clinical practice (M. A. Park et al., 2008).  CVID 

patients have low levels of immunoglobulin G, A and M; and also are susceptible to recurrent 

infections because of their inability to produce antibodies.  Much of the past research has 

focused on deciphering the genetic basis of CVID (M. A. Park et al., 2008). However, the 

genetic causes of this disease are complex and still not fully understood. We hypothesize that 

proteomic characterization of CVID cases (beyond the gross immunoglobulin deficiencies) 

will be an alternative approach to reveal genetic causes and mechanisms. This study aimed to 

identify proteins with differentiated expression in CVID patients compared to the matched 

controls. 

Patients and controls were matched by age group, ethnicity and gender. All patients and 

controls are Caucasian. Lymphocytes were isolated from blood using Ni-NTA agarose 

(Invitrogen) in an accredited lab (LabPLUS, Auckland City Hospital). The proteome of the 

lymphocytes cell lysates were then analyzed and quantified by liquid chromatography 

coupled with tandem mass spectrometry (LC-MS/MS) at the Center for Genomics and 

Proteomics, University of Auckland (MM). Samples were all analyzed using the tagged 

proteomics technique iTRAQ, where 8 samples were allocated as one batch of the multiplex 

assay. A reproducibility pilot study was performed before the main discovery study. Since 

the reproducibility of the experiments was shown to be satisfactory, the main study was 

performed.   

This mass spectrometry-based approach identified peptides from 289 proteins and provided 

the relative quantification for each peptide. The log-transformed relative quantity of the 

peptide was used to derive the natural log transformed protein ratio for patients and normal 

controls. The proteins were grouped into 20 rudimentary classes according to their biological 
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function by the Biochemist (Dr. Woon), while the overlapped functions of some proteins 

were not presented. 

 

Grouping of proteins 

The 289 proteins discovered were grouped according to their functions: namely immunity, 

metabolic, tumor, protein synthesis/degradation, nuclear metabolic, cell migration, ER 

membrane, protein structure, signaling function, mitochondrial, blood protein, DNA 

repair/structure, trafficking/secretory, inflammation, apoptosis, autoantibody, ER/membrane, 

angiogenesis, transcription, neuro protection and redox.  Nine groups were noted to contain 

protein candidates with significant fold changes between CVID patients and normal controls.  

Analyzing protein one by one, fifty-two proteins in total were considered initially for 

inclusion in the stage II verification study. We used the SA-a, SA-b, and the SA-b with 

analytical approximation to identify the optimal solutions for the second and third stages of 

this study.  

Demonstration of code and results for three-stage design using SA-a, SA-b and 

approximation for SA-b 

The cost structure used in this study is different to that described in 2.2.1. At stage II, the cost 

per protein for peptide synthesis is $280 and per biological sample for proteomic analysis is 

$1015. At stage III, the cost is assumed to be $200 per protein per biological sample for 

laboratory analysis. The recruitment cost is set to be $100 per biological sample. The assay 

cost functions in the R language for stages II and III are defined as 

assaycost2=function(n,p){280*p+1015*n}and assaycost3=function(p), respectively, where p  

is the number of proteins selected at the nominal stage and n is the sample size. 

The programs were run in the computer clusters of NeSI: http://www.nesi.org.nz/, where 

each program was assigned to 4GB memory within a cluster.    

The codes used in the R function to utilize group information and analytical approximations 

are:  
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> optim.two.stage.appr (budget=6e6, protein=protein, N1=30,  

artifact=rep(1,52),iter.number=10,assaycost2.function=assaycost2, 

assaycost3.function=assaycost3, recruit=100, a1.t.min=0.01, a1.t.max=0.25, 

a1.f.min=0.01, a1.f.max=0.25, a1.step=0.025, a2.t.min=0.01, a2.t.max=0.05, 

a2.f.min=0.05, a2.f.max=0.05, a2.step=0.025, n2.min=100, n2.max=1000, 

n2.step=100, n3.min=100, n3.max=1000, n3.step=100) , 

where artifact records the vector of artifact adjustment factors of 52 proteins; 

assaycost2.function records the cost function for assay used at stage II; 

assaycost3.function records the cost function for assay used in stage III; recruit records 

the cost for recruitment per sample; a1.t.min and a1.t.max records the range of p values 

for t test at stage I; a1.f.min and a1.f.max record the range of p values for f test at stage I; 

a1.step and a2.step record the step size of p values thresholds in the searching; n2.min 

and n2.max record the range of sample size at stage II; n2.step record the step size of 

sample size at stage II. The stage II p values and stage III sample size are also recorded 
accordingly.       
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Table 3.3 The optimal design parameters for a given budget using three different algorithms for the multi-stage CVID 

proteomic study 

 Method 

Objectives SA-a SA-b SA-b, with analytical approximation 

Full discovery of 52 
proteins 
Cost=$6×106 

n2 between 100-1000  

pt1,pt2, n2, n3: 
0.10,0.04,500,517 
cost stage II: 572,060 
cost stage III: 5,426,940  
time: 12.7  hours 

pt1,pf1, pt2, pf2, n2, n3: 
0.22,0.10,0.04,0.05,500,517 
cost stage II: 572,060 
cost stage III: 5,426,940 
time: 20.0 hours 

pt1,pf1, pt2, pf2, n2, n3’ (100-1000): 
0.22, 0.22, 0.01, 0.05,365,100 
Monte Carlo objective function used to derive n3: 532 
cost stage II:421,535; cost stage III: 5,577,465 
time: 56 min 

Full discovery of 52 
proteins 
Cost=$1.2×106 

n2 between 30-100 

pt1,pt2, n2, n3: 
0.18,0.01,86,104 
cost stage II: 110,450 
cost stage III: 1,088,550 
time: 11.7  hours 

pt1,pf1, pt2, pf2, n2, n3: 
 0.11, 0.18, 0.01, 0.05,86,104
cost stage II: 110,450  
cost stage III: 1,088,550 
time: 19.0 hours 

pt1,pf1, pt2, pf2, n2, n3’ (100-1000): 
0.04,0.15,0.01,0.05,90,100 
Monte Carlo objective function used to derive n3: 104 
cost stage II:114,910; cost stage III: 1,084,090 
time: 53 minutes 

Discovery of 5 most 
interesting proteins  
Cost=$5×105 

n2  between 100-1000 

pt1,pt2, n2, n3: 
0.20,0.01,330, 118 
cost stage II:  369,350 
cost stage III: 129,650 
time: 3.2 hours 

pt1,pf1, pt2, pf2, n2, n3: 
0.05,0.20,0.01,0.05,330,118 
cost stage II:  369,350 
cost stage III: 129,650 
time:7.0 hours 

pt1,pf1, pt2, pf2, n2, n3’ (100-1000): 
0.02,0.04,0.01,0.05,100,200 
Monte Carlo objective function used to derive n3: 351 
cost stage II: 112,900; cost stage III: 386,100 
time: 5 minutes 

Discovery of 5 most 
interesting proteins 
Cost=$5x105 

n2 between 30-100 

pt1,pt2, n2, n3: 
0.01,0.01,60,392 
cost stage II: 68,300 
cost stage III: 430,700 
time: 3.3 hours 

pt1,pf1, pt2, pf2, n2, n3: 
0.06,0.01,0.01,0.05, 60, 392 
cost stage II: 68,300 
cost stage III: 430,700 
time: 8.3 hours 

pt1,pf1, pt2, pf2, n2, n3’ (100-1000): 
0.04,0.01,0.01,0.05,74,100 
Monte Carlo objective function used to derive n3: 378 
cost stage II: 83,910; cost stage III: 415,090 
time: 7 minutes 
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Of note * pt1: stage I t-test p-value; pt2: stage II t-test p-value; pf1: stage I F test p-value; pf2: stage II F test p-value; n2: stage II 

sample size; n3: stage III sample size derived from using the Monte Carlo simulated objective fuction which assume the solution 

use the entire allocated budget minus a slack term; n3’ is the solution from the algorithm using the analytical approximating 

objective function and this n3’ did not assume used the entire allocated budget.   

*Stage III sample size, n3, was re-derived using the Monte Carlo simulated objective function, for the purpose of comparison. The 

solution from this Monte Carlo simulated function assumes the study used up the budget minus the slack term.  The stage I sample 

size equals to the number of controls in this study. It needs to be greater than the number of proteins in each group.  

The minimal stage II sample size also needs to be greater than the number of proteins in each group.  
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The approximation programs had run times within an hour. The group program SA-b had run 

times between 7-10 hours for the 5 proteins examples and between 20-30 hours for the 52 

proteins examples.  

Different budget ranges determined by the known health funding agents were tested for this 

case study.  Three different budgets with the solutions are presented for the 

verification/validations of the top 5 proteins of interest, and the targeted 52 proteins in Table 

3. Considering the relatively low prevalence of CVID, all budgets were assessed by different 

ranges of stage II sample size. To verify and validate the top 5 proteins, using ranges of 30-

100 and 100-1000 for the stage II sample size are demonstrated to be feasible.  The 1.2 

million dollar budget was shown to be insufficient for a sample size between 100-1000 at 

stage II, 1000-5000 at stage III, but is sufficient for a sample size in the range of 30-100 at 

stage II and 100-1000 at stage III.      

The solutions using the approximated analytical objective functions are shown to be in a 

similar range to the results from their Monte Carlo simulated objective functions, except for 

the first and third scenarios presented in Table 3.3. In these two scenarios, while both 

solutions from the analytical function achieve the same numbers of discoveries as their 

Monte Carlo simulation, they contain two smaller stage II sample sizes as the design 

parameters and thus results in different resource allocations. This discrepancy indicates the 

existences of multiple global optimal solutions for the objective function. 

Despite the similar results (sample sizes and costs) from using and not using grouping 

information in this study, due to the large fold changes for all included proteins, proteins’ 

functional group information is still considered essential for biologists to assess the 

discoveries and assist in the decision making in the protein selections from stage I.  

   

3.3.2 Using simulated protein datasets  

3.3.2.1 Data 

To assess the performance of the SA-b algorithm and to investigate the factors that are 

associated with the efficiency of the program, we simulated different protein patterns from 
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synthetic datasets that were generated from a cardiac proteomic study (I.S.L. Zeng et al., 

2009).  The cardiac proteomic study collected coronary plasma blood samples of eight 

ischemic patients before and after an angioplasty procedure, and used LC-MS/MS with 

iTRAQTM labeling to discover and quantify the proteins. The simulated datasets were created 

by using mean differences and ranges of variances in the relative quantity on the log scale 

between these two time points. Different patterns were simulated by setting the mean 

difference to zero or by doubling the variances of some proteins.  The factors being 

investigated included the grouping property of proteins, number of proteins with non-zero 

mean differences, variations in the protein effect, and budgets.  The grouping property 

focuses on the co-regulation of proteins in the same biological functional group, which are 

believed a priori to act in concert with one another.  

Each synthetic dataset comprises 50 proteins of which 44, 18 or 6 have non-zero mean 

difference, which we will refer to as ‘true effects’. These are either clustered in a few groups 

or scattered across different groups, with some proteins either in overlapping or non-

overlapping groups. 

The expected number of discovered true effects (true positives, power) is affected by 

multiple factors. These factors include cost, significance thresholds at stages I and II, sample 

sizes at stage II and III, and the effect size (mean difference/standard deviation) of each 

protein.  Results from some of these datasets are shown in Tables 4a, 4b and 4c.  

3.2.2.2 Results using SA-b for a multi-stage design in different simulated protein datasets 

Computation time and number of true effects.  The simulations were implemented using 

computer clusters with 16 CPUs of 1 GB per CPU. Computation time is shown to increase 

with the number of true effects.  

Budget, numbers of true effects and design parameters. In the simulated data of 44 true 

effects among 50 proteins (Table 3.4a), the budget of $10 million results in 90% discovery. 

In the simulation with 18 (Table 3.4b) or 6 (Table 3.4c) true effects among the 50 proteins of 

interest, $5 million is sufficient for 95% discovery in the 18 true-effects scenario and 100% 

discovery for the 6 true-effects scenario.  The budget of $1 million achieves 100% discovery 
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in the 6 true-effects scenario.  All simulations use the same stage I sample size of 60 and the 

same cost function as described in sections 2.2.1 and 2.2.2 and footnotes of Tables 4c.  

In scenarios where the $10 million budget cannot achieve 100% discovery of all true effects, 

we note that the optimal stage I F-test decision threshold for selection is close to the upper 

bound of the parameter space. This phenomenon indicates that, the default 0.05 threshold 

would be far from optimal given the small sample size at stage I and the budget constraint.  

Both of the decision thresholds for the stage I F- and t-test are greater than 0.05.  Conversely, 

in Table 4c, where a $1 million budget can achieve a 100% discovery for the 5 true effects, 

the optimal stage I t-test decision threshold is smaller than 0.05. 

The relations between the cost ratio of stage III-to-stage-II and the p-value of the stage I 

individual t-test, the cost ratio of stage III-to-stage-II and the p-value of the stage I group test 

were investigated using the 44 true effects data. The stage II sample size was fixed at 100, 

and the budget at $5 million. The p-values of the stage I t-tests were set between 0.001 and 

0.25, and the p-values of the stage I F-tests were set between 0.01 and 0.25.  When using SA-

a, the cost ratio is shown to decrease with a higher p-value threshold for the t-test (Figure 

3.1b).  When using SA-b, although a similar relation between the cost ratio and the p-value 

threshold for the groups’ F-tests is observed, the p-value of the t-test does not influence the 

cost ratio within the same band of the F-test p-values. 

Effect size and number of detectable true effects. In the synthesized datasets, there are several 

proteins with extremely small effect sizes that cannot be detected.  The detection of these 

proteins are hindered by the sample size and significance thresholds at stages I and II. Under 

the unconstrained optimization, 100% discovery was achieved for the case of 44 true effects 

with a second stage sample size of 670 and third stage sample size of 2800 when the stage I 

individual test p-value < 0.36 and the second stage individual test p-value < 0.16, given that 

the stage I sample size was 60.  When there are no multiple stage selections, a sample size of 

4751 can detect the protein with the smallest effect size (mean difference = 0.1, standard 

deviation= 2.3) with 85% statistical power and 5% type I error rate.  This indicates that the 

detection of proteins with small effect size may be restricted using the systematic approach 

due to the step-wise type I error rate control and the constrained monetary resource in a 

proteome-wide study.   
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Convergence. SA-b is restricted to a smaller solution space, in which only those n3 meeting 

the cost constraint are included. Thus, the convergence of both algorithm SA-b is better than 

SA-a when the same number of iterations is applied.  

Overlapping groupings. When utilizing biological information, a protein may belong to 

several functional groups (Whitford, 2005). It is known that there are overlapping protein 

complexes sharing several proteins within biological networks.  For example, in the 

TNF/NF-κB signaling pathway, proteins p100, 1KKa, 1KKb and 1KKc are shared  by 

several functional groups in  this pathway (Zotenko et al., 2006). When utilizing SA-b, the 

overlapping proteins can be included in the group statistic for every group to which they 

belong.  

 

3.4. A comparison between using grouping information and not using grouping 

information  

Simulations using different synthetic protein datasets were conducted and used to investigate 

the influence of different protein patterns in optimizations using SA-a (without group 

information) and SA-b (with group information).  When the budget is under a tight constraint 

and the grouping is informative, SA-b results in more proteins being selected from stage I 

given that the number of proteins in each group is less than the sample size.  SA-a results in 

fewer proteins being selected from stages I, but larger sample size in stage III.  

Comparison of protein discovery rates between  SA-a and SA-b within the same ranges of 

design parameters shows that, SA-b has more favorable results in the protein-wise discovery 

when there is informative grouping. Informative grouping information increases the 

individual protein discovery rate and the average number of true discoveries.  Uninformative 

grouping information does not make a meaningful difference to the discovery rate and cost 

allocation.  The benefit of using grouping information is greater when the budget is under a 

tight constraint for detecting a large number of true effects. Under this condition, SA-b tends 

to allocate more resources to verifying more proteins at stage II.  With respect to CPU 

running time, SA-b uses about twice to three times more system time than SA-a.  
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Table 3.5 provides scenarios of when to use SA-b and SA-a.  Since SA-b with the analytical 

approximation runs much faster than the other two methods, it should be used firstly to assess 

whether a fixed budget will yield a good design solution to verify/validate the proteins of 

interest.  

Table 3.5 Different scenarios to use SA-a and SA-b 

 

When to use SA-a When to use SA-b  

1. There is a small number of proteins that 
are of interest (i.e. <5). 

2. The fixed budget will be more than 

sufficient for the verification/validation 

of all proteins of interests.  

3. All proteins in the same group have a 
large effect size. 

4. All proteins belong to a single group.  

1. There is a large number of proteins 
that are of interest. 

2. There is informative group information 
(i.e. some proteins have a large effect 
size and are clustered in the same 
group). 

3. A number of proteins of interest have 
small effect size and cluster with 
proteins of large effect size in the same 
group. 

 

3.5 Discussion  

Proteomic techniques used to investigate large numbers of proteins simultaneously are 

comparable to genomic platforms used to investigate gene-disease associations, and have 

similar challenges in experimental design and data analysis (Greef et al., 2007). In this 

chapter, we used simulated annealing to simultaneously optimize the design for a multi-stage 

proteomic study comprising discovery, verification and clinical validation phases, taking into 

account the resource constraints for maximizing the number of true discoveries.  

We investigated two different strategies for the design of a multi-stage clinical proteomic 

study, and recommend considering biological grouping information in the optimization of the 

design. Multi-stage designs are cost-effective because non-promising candidates can be 

eliminated after the first stage, leaving only promising candidates to be validated in later 
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stages. While, with the falling cost of genotyping, multi-stage designs are no longer 

commonly used in genome-wide association studies, they remain appealing for proteomic 

studies given the substantial per-protein cost of clinical validation.  As suggested by the NCI, 

verification using a candidate-based platform and validation in large-scale clinical samples 

will improve the discoveries of disease related proteins and their final translation to 

utilization. A systematic approach to design optimization allows resources to be allocated 

efficiently across the different stages of the study. Further, using integrated biological 

information enriches the design for laboratory discovery and clinical application and thereby 

optimizes the solution.  From simulations of different protein datasets in the current study, 

we discovered that using protein grouping information improves the optimization results 

when the grouping information is informative.  

We also found that a structured two-step search was more efficient than a one-step global 

search and that using a Beta distribution for jump lengths in the two-step search further 

improved the speed.  

A design based only on individual-protein tests could be optimized more easily because the 

objective function is smooth and can be calculated analytically, but individual-protein tests 

do not make full use of available biological information. Using a combination of individual-

protein and group tests gives an objective function that has no simple analytical form, and for 

this reason Monte Carlo estimation and simulated annealing is necessary. 

An important limitation of the current group algorithm is that Monte Carlo estimation 

prolongs the computing time required for the optimization process.  However, the 

computations that form the main computing load can be easily parallelized, and the code 

made more efficient by using a faster programming language. Greater gains are also shown 

to be achievable from an analytical function to approximate the objective function.  The 

current algorithms are conditional on the stage I discovery design parameters (sample size 

and number of discoveries). This limitation reflects a common problem in the funding 

process that many biomedical researchers currently face.  Before significant funding can be 

sought for a multiple-phase study, pilot data from a stage I discovery is often needed as 

proof-of-concept; the stage I sample size is, therefore, determined by the available funds at 

this pilot stage. In general, the pilot study has a small available budget.  As recommended in 
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the current practice, the stage I sample size is in the range of 10-100. However, some of our 

simulations showed that a larger stage I sample size (>100) leads to a smaller cost allocation 

in the stage II verification, and increase the statistical power at stage I.  This suggests that a 

bigger range of sample size at stage I may need to be considered in some cases. This will be 

one topic of our future research.  

 

3.6 The software 

The R functions optim.two.stage.single (SA-a), optim.two.stage.group (SA-b) and 

optim.two.stage.app (SA-b using analytical approximation) performing the methods 

described in this paper are contained in the R package proteomicdesign 2.0. This package is 

available from the CRAN website:  http://www.r-project.org. The R functions have been 

assessed and tested on multiple synthetic datasets (parts of these results were shown in this 

chapter), and an actual case study dataset at the desktop and the computer cluster. The R 

package manual is provided as the appendix following the final page of the thesis.  
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Table 3.4a Optimal design for a given budget in scenario: dataset comprises of 50 identified proteins of interest, and of 
which 44 proteins with true effects distribute in 7 of the 10 protein groups (proteins with true effects are clustering within 

groups; each group has more than one protein with true effect-informative grouping). 

Budget $1 million $5 million $10 million 

 SA-b SA-a SA-b SA-a SA-b SA-a 

Expected number  
of true effects for the 

final optimized solution 

 
No acceptable 

solution for a full 
discovery 

 
40.8 

 
40.5 

 
41.4 

 
41.1 

 
Design parameters of the 

optimized solution 

 
NA 

pt1, pf1, pt2, pf2, n2, n3 
 

0.10,0.25,0.01,0.05,100, 
138 

pt1, pt2, n2, n3 
 

0.25,0.01,100,156 

pt1, pf1, pt2, pf2, n2, n3 
 

0.135,0.225,0.05,0.05,200, 
274 

pt1, pt2, n2, n3 
 

0.25,0.05,200,306 

Results (budget allocation, false negative rates, discovery rate, and computing time) for the current optimized solution 

 
 
 

False negative rates for 
different proteins of true 

effects  

 
 
 
 
 
 
 
 
 

NA 

 

Protein no. 100: 0.5% 

Protein no. 104: 0.2% 

Protein no. 137: 15.2% 

Protein no. 139: 9.3% 

Protein no. 142:  0.1% 

Protein no. 144: 0.6% 

Protein no. 146: 3% 

Protein no. 148: 0% 

Protein no. 149: 0.2% 

Protein no.s 

105,121,145: 100% 

 

Protein no. 100: 3.7% 

Protein no. 104: 1.7% 

Protein no.137: 26.3% 

Protein no. 139: 16.5% 

Protein no. 142:  0.1% 

Protein no. 144: 0.9% 

Protein no. 146: 4.3% 

Protein no. 148: 0% 

Protein no. 149: 0.3% 

Protein no.s 

105,121,145: 100% 

 

Protein no. 100: 0% 

Protein no. 104: 0% 

Protein no. 137: 0.1% 

Protein no. 139: 0.1% 

Protein no. 142: 0% 

Protein no. 144:0% 

Protein no. 146: 0% 

Protein no. 148: 0% 

Protein no. 149: 0% 

Protein no.s 

105,121,145: 100% 

 

Protein no. 100: 0.9% 

Protein no. 104: 0.2% 

Protein no. 137: 5.8% 

Protein no. 139: 4% 

Protein no. 142: 0% 

Protein no. 144: 0.2% 

Protein no. 146: 1.3% 

Protein no. 148: 0% 

Protein no. 149: 0.1% 

Protein no. 

105,121,145: 100% 
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 The above program used ranges of stage I t-test p-value (pt1) between 0.01 and 0.25 with step size 0.025; stage II t-test p-
value (pt2) between 0.01 and 0.05 with step size 0.025; stage I F test p-value (pf1) between 0.01 and 0.25 with step 0.025; 
stage II F test p-value (pf2) 0.01 and 0.05 with step 0.025; n2 from 100 to 1000 with step 100; False positive rate < 0.01. The 
final stage used t-test with >85% power at 0.05 significance level.   
 

 Table summarized results used 9x1000 Hybrid Simulated Annealing search; all results were verified by 19x1000 SA search. 
The technical artifact λ is set to be (1, 1, 0.8, repeat (1, for 45 times), 0.9, 0.8). The assay cost is set to (N$800, N$200) with 
recruitment cost of N$1000.00 and slack term cost of N$1000.00.  

 

 

 

Budget $1 million $5 million 

 SA-a SA-b SA-a SA-b SA-a SA-b 

 
 
 
 

Discovery rates for 
different  proteins of true 

effects 

 
 
 
 
 

NA 

 
 
 
 
 

100% for others (excluding proteins recorded above ) 

 
Costs at stage II and III 

 
NA 

 
NA 

 
Stage II: 3,727,840 

 
Stage III: 1,271,160 

 
Stage II: 3,585,760 
 
Stage III: 1,413,240 

 
Stage II: 7,437,120 

 
Stage III: 2,561,880 

 
Stage II: 7,171,520 

 
Stage III: 2,827,480 

 
Computation time 

 
172,87
6 sec 

 
69,787 

sec 

 
171,847 sec 

 
69,530 sec 

 
174,224 sec 

 
97,464 sec 
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Table 3.4b   Optimal design for a given budget in scenario: dataset comprises of 50 identified proteins of interest, and of 
which 18 proteins with true effects distribute in 18 of the 18 protein groups (only one protein has true effect in each group- 

non informative grouping). 

Budget $1 million $5 million $10 million 
 SA-b SA-a SA-b SA-a SA-b SA-a 

Expected number 
of true effects 

No acceptable 
solution 

 for a full discovery 

 
16.9 

 
16.8 16.9 17.0 

Design parameters of the 
optimized solution 

NA 
pt1, pf1, pt2, pf2, n2, n3 

 
0.25,0.25,0.05,0.05,100,411 

pt 1, pt2, n2, n3 
 

0.11,0.01,200,345 

pt1, pf1, pt2, pf2, n2, n3 
 

0.25,0.25,0.05,0.05,200,820 
 

pt1, pt2, n2, n3 
 

0.25,0.05,200,1288 

Results (budget allocation, false negative rates, discovery rate, and computing time) for the current optimized solution 
 

 
 

False negative rates for 
different proteins of true 

effects 

NA 

Protein no. 100: 4.1% 

Protein no. 137: 12.2% 

Protein no. 142: 0.1% 

Protein no. 105: 100% 

Protein no. 100: 4.5% 

Protein no. 137: 11.1% 

Protein no. 142 :0.1% 

Protein no. 105: 100% 

Protein no. 100: 3.3% 

Protein no. 137: 8.5% 

Protein no. 142 :0.1% 

Protein no. 105: 100% 

 

Protein no. 100: 1.2% 

Protein no. 137: 4.7% 

Protein no. 142: 0% 

Protein no. 105:100% 

Discovery rates for 
different  proteins of true 

effects 
NA 

 
100% for others (excluding proteins recorded above ) 

 
Costs at stage II and III 

NA NA 

 
Stage II: 3,124,000 

 
Stage III: 1,875,000 

 
Stage II: 3,492,000 

 
Stage III: 1,507,000 

 
Stage II: 6,248,000 

 
Stage III: 3,751,000 

 
Stage II: 4,242,880 

 
Stage III: 
5,756,120 

 
Computation time 

 
219,787 

sec 

 
54,065 

sec 

 
225,338 sec 

 
71,590 sec 

 
226,110 sec 

 
76,367 sec 

 The above program used ranges of stage I t-test p-value (pt1) between 0.01 and 0.25 with step size 0.025; stage II t-test p-value (pt2) between 0.01 and 
0.05 with step size 0.025; stage I F test p-value (pf1) between 0.01 and 0.25 with step 0.025; stage II F test p-value (pf2) 0.01 and 0.05 with step 0.025; 
n2 from 100 to 1000 with step 100; False positive rate < 0.01. The final stage used t-test with >85% power at 0.05 significance level.   

 Table summarized results used 9x1000 Hybrid Simulated Annealing search; all results were verified by 19x1000 SA search. The technical artifact λ is 
set to be (1, 1, 0.8, repeat (1, for 45 times), 0.9, 0.8). The assay cost is set to (N$800, N$200) with recruitment cost of N$1000.00 and slack term cost 
of N$1000.00.  
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Table 3.4c Optimal design for a given budget in scenario: dataset comprises of 50 identified proteins of interest, of which 6 

proteins with true effects distribute in 2 of the 10 protein groups (informative grouping). 

Budget  $1 million $5 million $10 million
  SA-b SA-a SA-b SA-a SA-b SA-a

 Expected number  
of true effects 

 
No acceptable 
solution for a 
full discovery 

 
5.9 

 
6.0 

 
6.0 

 
6.0 

 
6.0 

 
Design parameters of 

the 
optimized solution 

 
NA 

 

pt1, pt2, n2, n3 

0.01,0.01,100,176 

 

pt1, pf1, pt2, pf2, n2, n3 

0.10,0.25,0.01,0.05, 

100,1464 

 

pt 1, pt2, n2, n3 

0.20,0.01,200, 

1091 

 

pt1, pf1, pt2, pf2, n2, n3 

0.10,0.25,0.01,0.05, 

100,3687 

 

pt 1, pt2, n2, n3 

0.09,0.04,472, 

2585 

Results (budget allocation, false negative rates, discovery rate, and computing time) for the current optimized solution 
 

 
False negative rates for 

different proteins of 
true effects  

 
 
 

NA 

Protein no. 144: 1% 
Protein no. 145: 1% 
Protein no. 146: 1% 

Protein no. 147: 1.2% 
Protein no. 148: 10% 
Protein no. 149:0.3% 

 
 

Protein no. 149:  
 0.1% 

 
 

Protein no.149: 
0.1% 

 
 

Protein no. 149:   
0.1% 

 
 

Protein no. 
149:  
0.1% 

Discovery rates for 
different  proteins of 

true effects 

 
NA 

 
100% for others (excluding proteins recorded above ) 

 
Costs at stage II and III 

 
NA 

Stage II: $580,000 
Stage III: $385,349 

Stage II: $1,300,000 
Stage III: $3,220,114 

Stage II: 
$2,760,000 
Stage III: 

$2,398,333 

Stage II: $1,300,000 
Stage III: $8,109,918 

Stage II: 
$4,248,000 
Stage III: 

$5,686,083 

Computation time 111,288sec 39,585 sec 106,202sec 39,553sec 111,032sec 39,858 sec 

 The above program used ranges of stage I t-test p-value (pt1) between 0.01 and 0.25 with step size 0.025; stage II t-test p-value (pt2) between 0.01 and 
0.05 with step size 0.025; stage I F test p-value (pf1) between 0.01 and 0.25 with step 0.025; stage II F test p-value (pf2) 0.01 and 0.05 with step 0.025; 
n2 from 100 to 1000 with step 100; False positive rate < 0.01. The final stage used t-test with >85% power at 0.05 significance level.   

 Table summarized results used 9x1000 Hybrid Simulated Annealing search; all results were verified by 19x1000 SA search. The technical artifact λ is 
set to be (1, 1, 0.8, repeat (1, for 45 times), 0.9, 0.8). The assay cost is set to (N$800, N$200) with recruitment cost of N$1000.00 and slack term cost 
of N$1000.00.  
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Figures 3.1: The associations between cost ratios and test decision thresholds in 

scenarios of using vs. not using biological group information 

Legend for Figure 1a: The 6 graphs represent the associations between cost ratios and stage I 

t-test, when the group F test p-values are in different ranges.  The 6 graphs arrange in a 

descending order of the group test p-values, starting from the bottom left corner to the upper 

right corner. The protein dataset has 44 true effects among 50 proteins and is the same one to 

that used in table 4a. 

Legend for figure 1b: The graph represents the association between cost ratios and stage I t-

test p-values with a same range as that in figure 2a. The protein dataset has 44 true effects 

among 50 proteins discovered at stage I and is the same one to that used in table 4a.   
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Figure 3.1a Associations between cost-ratio-of-stage III-to-stage II, p-values of stage I 

individual t-test, and p-values of stage I group F-test 
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Figure 3.1b Associations between ratio-of-stage III-to-stage II-cost and stage I 

individual t-test 
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CHAPTER 4 

A multivariate multilevel model for analyzing clinical proteomics 

data with non-random missingness 

ABSTRACT 

Introduction  

Proteomics is emerging as a new stream in medical studies for investigating hundreds and 

thousands of molecular biomarkers simultaneously.  The high-throughput data from 

proteomic study brings challenges to data analysis. The challenges originate from the 

hierarchical levels of the protein abundance data, the complexity of the experiment, the large 

amount of information, and the non-random missingness of the peptide intensity.  

Method 

We use multivariate multilevel models to analyse the hierarchical protein expression data. 

This proposed method takes into account the different types of variations from the 

experimental factors such as the physical features of the quantitative Mass Spectrometer, 

labels of ITRAQ, and potential run effects. It is demonstrated to be reliable for deriving the 

study parameters at the protein level comparing to using unadjusted protein ratio. Under this 

multivariate philosophy, a Bayesian hierarchical approach was used to handle the abundance-

dependent missingness of the protein expression data and to provide shrinkage of overly-

variable estimates. Gibbs sampling and Hamiltonian MC/No U-Turn Sampling were 

compared for evaluating the posterior joint distributions of the study parameters.  

Results 

The proposed methods were assessed in a simulated proteomic study and two clinical 

proteomics studies.  The proposed multivariate multilevel model and the missing data 

approach enable us to cope with the large heterogeneity in the relative peptides intensity, 

from which the protein intensities are derived.  It is shown to be an improvement compared 

to the protein ratios approach. The multivariate protein model utilizes experimental 
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information across all proteins and this enabled those proteins with small number of peptide 

information to be derived while adjusting for experimental effects.  The HMC/NUTS 

sampler was substantially more efficient, as expected for a smooth, high-dimensional 

posterior distribution. 

 

4.1 Introduction 

Proteomics is emerging as a new stream in medical studies for investigating hundreds and 

thousands of molecular biomarkers simultaneously. It belongs to the family of system 

biology, including metabolomics, transcriptomics and genomics that study the interacting 

networks of different molecules using biochemical, mathematical, statistical and computer 

science methods inter-disciplinarily. Like aforementioned “omics”, proteomics utilizes 

biotechnology platforms that can systematically identify proteins and quantify their 

abundances. One of the popular platforms used for protein discovery is mass spectrometry, 

which can accurately determine the molecular mass of ions for peptide/protein sequencing 

and quantitation (Silva et al., 2005; Stephens et al., 2005; Vitzthum et al., 2005; Rodriguez et 

al., 2009). Through different ionization and detection processes, mass spectrometry(MS)  

coupled with other techniques (i.e. chromatography) (MacCoss and Matthews, 2005; 

Maddalo et al., 2005; Pelzing and Neususs, 2005; Shen and Smith, 2005; Palmblad, 2009; 

Kline and Sussman, 2010) enables the separation of different peptide species from the 

biological sample and produces large amounts of ions intensity data. These intensity data are 

used to inform the abundances of the peptides which are eventually used to construct the 

abundances of the proteins. The hierarchical structure of forming a protein’s abundance 

originates from the biochemical mechanism of the mass spectrometer proteomic experiment. 

In a mass spectrometer experiment, proteins of the tissues samples are tryptically digested 

into polypeptides before they are sent to the chromatography column for the initial 

separations when a chromatography device is used. These separated peptides are vaporized 

and ionized via different methods as introduced in chapter one (i.e. by electron spray or 

MALDI) in the mass spectrometry chamber, they are further broken into smaller charged 

molecules in the fragmentation chamber. The resultant charged molecules fly through the 

chamber, and hit on the ion detector which separates the molecule ions according to their 

mass-to-charge ratios (m/z), at last produces the ion intensity data. Since one peptide can be 
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fragmented into different combinations of smaller molecules, for the detection of peptides, 

the mass-to-charge ratios (m/z) of the constituent molecules will need to match against the 

protein library which has the known mass and charge information of different amino acids 

sequence. Finally, a further matching algorithm is used to derive the corresponding protein 

through the protein library.  

When a proteomic experiment involves more than one biological sample, utilizing the 

biochemical peptide labeling system will enable the simultaneous analysis of multiple 

biological samples in a single experiment, or run, of the mass spectrometer through assay 

batching, or multiplexing  (Kiyonami et al., 2005; Shadforth et al., 2005; Chong et al., 2006; 

D'Ascenzo et al., 2008). A multiplex comprises a batch of multiple samples for one single 

mass spectrometry experiment. Each sample is labeled in the multiplex for its identity in a 

mass spectrometry experiment. When multiple runs are involved, the biological samples will 

be allocated by labels and runs according to the experimental design.   

The statistical analysis of the high-throughput data resulting from multiple runs of these 

multiplex-assays is challenging to perform at the protein level, due to the abundance data 

being in the form of peptide, instead of protein. The proteins’ abundances must be derived 

from their observed constituent peptides’ abundances that are derived from the ions intensity 

data. More complexities add in the data analysis due to the fact that, 1) each protein is not 

being identified by the same set of peptides in each run, 2) the experimental factors could 

have different impacts across different peptides/proteins. The confounding effects from a 

mass spectrometry experiments hence are multileveled. These non-ignorable multilevel 

confounding effects on the hierarchical structure of a protein’s intensity become a significant 

cause of the challenges for data analysis. The other complexities include the sophisticated 

clinical study, unbalanced experimental design, large amount of information, and the non-

random missingness of the peptide abundance data. 

We use multivariate multilevel models to analyze the hierarchical protein abundance data in 

the clinical proteomics study, which takes into account different levels of variations in the 

study such as the experimental factors including physical features of the molecule, the labels 

of the multiplex, the biological features of proteins and the physiological features of the 

biological samples. Compared to the existing statistical methods in analyzing proteomic data, 

the novelty of our method is introducing the multilevel framework to the proteomic data 
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analysis so that the covariates can be distinguished and defined at the peptide, protein and 

biological sample levels, and the variance-covariance structures of protein, biological sample 

can also be defined accordingly. The multilevel framework also allows the clinical study 

design and experimental design be taken into account simultaneously for studies with 

multiple runs. Furthermore, we also used Bayesian hierarchical methods to handle the non-

random missing intensity data, and made further improvements in modeling the non-random 

missingness by adding the mass-to-charge ratio (m/z) dependency and by separating the 

censoring missing from the other missing. 

 

4.1.1. Quantification methods in Mass Spectrometers (MS) using iTRAQ labeling 

4.1.1.1 Data structure and sources of variation of an iTRAQ experiment 

The protein expression data generated from the mass spectrometer (MS) in proteomics 

experiments can either be the relative or absolute abundance of proteins. The relative 

abundances of proteins are measured by the intensity of the ions from the mass spectrometry, 

as opposed to absolute abundance of the protein which is measured by the concentration 

(Corthals and Rose, 2007).  The relative quantitation of protein abundance utilizes different 

types of biochemical labeling techniques, including chemical, biological, metabolic and 

enzymatic incorporation, in a multi-samples proteomics experiment  (Kiyonami et al., 2005; 

Shadforth et al., 2005; Corthals and Rose, 2007). Both of our case studies used iTRAQ, an 

enzymatic approach that is widely adopted in proteomics laboratories.  iTRAQ is a 

biochemical reagent comprising a reactive group, a tag  (label) with a mass balance group 

and a reporter group (figure 4.1)(Shadforth et al., 2005). In iTRAQ experiments, proteins 

from the multiple mixed biological tissue samples are digested into their constituent peptides 

by  enzymatic reagents (i.e. trypsin) at the targeted c-termini in sample preparations  (i.e. 

arginine or lysine in the case of trypsin) (Hamdan and Righetti, 2002; Sechi and Oda, 2003; 

Kiyonami et al., 2005; Boehm et al., 2007; Corthals and Rose, 2007; Wiese et al., 2007; 

D'Ascenzo et al., 2008). The cleaved peptides of each biological tissue sample are tagged by 

the peptide reactive group which connects to one of the label group in the 4-plex iTRAQ 

reagent assay (or an 8-plex assay). The tagged samples of a multiplex assay will also be 

purified and fractionated in order that the unbounded regents are cleaned up. The purification 

is to make sure each peptide has a label. The purified multiple samples will then be mixed for 

the MS analysis simultaneously in a single experiment. The reporter groups of the iTRAQ 
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reagent, which have different molecular mass-to-charge ratios (m/z) ranging from 114.1-

117.1 in the 4-plex assay and 113.1-121.1 in the 8-plex assay, are used to distinguish the 

multiple samples in the same assay. When the sample mixtures are ionized and charged, the 

reporter groups are knocked off in the fragmentation chamber. The molecular ions of the 

different reporter groups hit to the ions detector in different regions corresponding to their 

mass-to-charge ratios (m/z) which is the x axis in the diagram of intensity vs. mass-to-charge 

ratios. The abundance of the tagged peptide of a labeled sample can thus be measured by the 

intensities of these reporter group ions in the iTRAQ mass spectrometry analysis, and are 

used to inform the relative abundance  for the protein  (Leitner and Lindner, 2004).  The 

current study focuses on the relative protein quantities from iTRAQ experiments, but the 

model can be generalized to other MS experiments.  

   

4.1.1.2 Protein Ratios as the quantitation method (pros and cons) 

In a single multiplex iTRAQ run, up to 4 or 8 samples can be analyzed simultaneously. For a 

1:1 case-control experiment, a common approach is to place equal numbers of diseased cases 

and normal controls in one single run. One analytical method is to derive the distributions of 

the ratios for the relative abundances of the peptides between the cases and controls. The 

distribution of the peptide ratios informs the ratio of the protein abundance between cases 

and controls. The central tendency statistics (mean or median) of the peptides’ ratios, which 

is a summary for the protein ratio, will indicate if the protein is deregulated when it 

significantly deviates from 1.  

The advantages of using ratios are:  

1) In a single run experiment, there is no need to control for between-run variation because 

the cases and controls are placed in the same run.  

2) It is a relative measure of the magnitudes of interest (i.e. the difference between treatment 

and control) which eliminate potential label bias to some degree.  

The disadvantages of using ratios are:  

1) It only compares one single case with one single control in the same assay; different 

selections of the pairs of case and control will result in different distributions of the ratios.  

2) It cannot take into account the variations from the experiment and the biological samples.  

3) It is hard to use in clinical proteomic studies that consist of multiple runs  (Oberg and 

Mahoney, 2012).  
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4) The threshold of protein ratios that is considered as being biological significant varies 

between studies (Hill et al., 2008), Seshi (2006)  used > 1.2 or < 0.8, Ross et al. (2004) used 

± 1 standard deviation of the global ratios.  

Instead of using a directly derived protein ratio, statisticians started using an analysis of 

variance model to derive the protein ratios from the model and account for the experimental 

variation across multiple runs (Hill et al., 2008). Whereas, a recent study by Breitwieser et al. 

(2011) proposed a method to derive protein ratios while taking into account usage of 

different pairs of biological samples in a single-run study under different experimental 

conditions (i.e. patient vs. control). They applied the multiplicative model to derive the 

variance of the relative peptide quantities and summarized the protein ratios weighted by 

their inverse-variances. The random protein ratios derived from their constituent peptides in 

the single run follow a Cauchy distribution; they are used to derive the p-values in 

experiments with biological replicates of different experimental conditions. They showed 

that this method outperforms the ANOVA model in handling the heteroscedasticity of the 

relative peptide quantity data in single-run experiments. Although there are other methods to 

derive protein ratios, Breitweiser’s method is the only one that takes into account the 

biological variation in a single-run study. 

In the proteomic literature, concerns have been raised that the ratios are shrunken towards 1 

and leads to underestimation when using ratios in experiments of multiple runs (Zhanhua et 

al., 2005; Boehm et al., 2007; Corthals and Rose, 2007) (Boehm et al., 2007; Corthals and 

Rose, 2007; Karp et al., 2010). In multiple runs experiments, within-run normalization is 

inadequate for correcting run-to-run variation as the normalization does not adjust for 

between runs variation, and the most advanced pooled ratios approach cannot account for 

variations from different levels. By using an analysis of variance model, when the intensity 

measures are logarithm-transformed, the ratio estimate of each protein can be derived 

indirectly in the model. The precision of the derived ratio will also be adjusted for different 

sources of variation (i.e. from the experiments and biological variations) in the model. In a 

clinical proteomic study that needs to use advanced clinical study design and experimental 

design due to coexisting confounders between the biological samples, to decompose different 

sources of variations contributing to the intensity measures in a model is an essential 

approach. The model needs to cope with multiple experimental and biological factors, the 

hierarchical data structure, and the various structures of experimental and study design 
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simultaneously. It is also used to assess how influential each confounding factor is on the 

intensity measurement.  

  

4.1.2 The instrumental feature of the mass spectrometer and the quantification 

Apart from the hierarchical structure of the protein abundance data, it is observed that the 

physical instrumental features originating from the mass spectrometer influence the variation 

in the ions intensity. We discovered from the two proteomic iTRAQ studies that, the 

logarithmic intensity decreases with the mass-to-charge ratio (m/z) and the molecular mass 

(chapters 5 and 6). This indicates that the heavy molecules more likely miss the hits on the 

ion detector than light molecules. The identified variations in the intensity measurements 

caused by the physical nature of the mass spectrometer in our case studies are also consistent 

with the other studies  (Breitwieser et al., 2011; Hrydziuszko and Viant, 2012).  Breitwieser 

et al. (2011) observed more variability for the lower level signals and illuminated a funnel 

shaped association between the peptide ratio and the logarithmic intensity measurement.  

These evidences indicate that the relative abundance of proteins is likely to be 

underestimated by their heavy peptide components. The quantification of the protein needs to 

take the instrumental variations into account. The proposed multilevel model includes the 

mass-to-charge ratios (m/z) as one source of instrumental variations that contributes to 

measurements of the ion intensity, and is shown to increase the precision of the estimations 

for the unknown parameters including the protein ratios.   

 

4.1.3 The missing mechanism in data from mass spectrometers   

Missing data is commonly observed in medical studies. The missing mechanisms for 

abundance data from mass spectrometry are complex, comprising both random and non-

random missingness components. The non-random missingness mechanism of proteins is 

driven by their peptides’ abundances, masses, electrical charges, and ionization channel 

(Wells et al., 2011; Hrydziuszko and Viant, 2012); the likelihood of non-random missingness 

thus is associated with the protein abundance measured by the intensity value, the observable 

mass-to-charge ratio, and the reporter ion labels.  

In an iTRAQ experiment, a peptide species observed in one labeled sample may not in any of 

the other samples within the same run, and/or it may be observed in only some runs but not 

others. The observed peptides with low signals have a greater number of missing intensity 
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values (Hrydziuszko and Viant, 2012). The intensity values of heavy peptides are more likely 

to be missed because their constituent molecular ions prone to failures of reaching the ion 

detector. The sensitivity of the mass spectrometer, which relates to the detectable level of the 

intensity in the device, will also have an impact on the data’s completeness. A recent 

publication (Hrydziuszko and Viant, 2012) in metabolomics coincided with my postulation 

that the probability of having missing intensity value is a function of the signal level and the 

mass-to-charge ratio. Their data showed that higher probabilities of missingness were 

associated with the observed lower abundance peptides with lower peaks on the 

chromatogram and, furthermore that there is a curvilinear relationship between the 

probability of missingness and the mass-to-charge ratio. The probability is about 1 when the 

mass-to-charge ratio is less than 50 Th; it decreases with the mass-to-charge ratio in the mid-

range of 200-300 Th, and then increases with the mass-to-charge ratios exceeding 300 Th. 

Luo et al. (2009) also reported that the efficiencies of  peptide ionization and fragmentation 

affected the peptide intensity.  

 

We propose a mixture model approach to take into account missingness mechanisms utilizing 

the physical properties of the peptides and the mass spectrometers; where logistic regression 

is used to estimate the effect of missing from m/z and intensity values.. We model the non-

random missingness as either censoring below a threshold or completely missing. Censoring 

occurs when there are insufficient ions for a mass to be centroid to give a meaningful 

intensity value(Wells et al., 2011). In this situation, a peptide’s intensity is below the 

instrument’s detectable limit resulting in a zero intensity being recorded. Completely missing 

data correspond to those peptides without an intensity value (Wells et al., 2011). The 

probability of missingness (either by censoring or completely missing) is predicted by the 

observed peptides’ abundances and mass-to-charge ratios. The regression coefficient 

parameters of the model for predicting missingness are treated as unknown in the proposed 

model, and are jointly estimated with the other parameters of the multilevel model under the 

Bayesian framework. The Bayesian approach enables us to utilize the prior information 

learned from the other studies (Hrydziuszko and Viant, 2012) and enrich the missing value 

imputation. Details of how the Bayesian multilevel model enhances the missing values 

imputation are explained in section 4.3.   
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4.2 The analytical  methods  

    

4.2.1 The multilevel framework for the iTRAQ data  

Hill et al. (2008) proposed an ANOVA model including peptide as a categorical factor and 

peptides are nested within proteins and within a same run. Their multiplicative ANOVA 

model includes eleven variables to describe the variations of the observed peptide intensities. 

Through logarithmic transformation of the intensities, the multiplicative model simplifies to 

an additive model. 

We proposed two sets of multilevel models that belong to the same statistical school as 

Hill’s, and on the peptide intensity scale. One set of mixed models analyzes proteins 

individually, named as single protein model. The second set of mixed models analyzes a 

functional group or all of the proteins simultaneously, named as multiple proteins model. 

Both sets of models assume that peptides be nested within proteins and include the peptide as 

a covariate using its corresponding m/z ratio. The association between a peptide’s m/z ratio 

and its relative abundance, which is the reporter ions peak area from the iTRAQ experiment, 

is taken into account in these models. In the multiple proteins model, proteins are treated as 

the secondary level units, peptides are treated as the first level unit. The response of the 

multivariate multilevel model is the logarithmic reporter ion peak area. The protein level 

estimates are derived from the information provided at the peptide level and allow the same 

peptide sequence to be used to identify different proteins. The protein level estimates of the 

regression coefficients are derived by their best linear unbiased predicted (BLUP) values in 

the mixed effect models. For proteins with a small number of biological and/or peptide 

samples, when the experiment has uniform influences on the peptide intensity, the multiple 

protein model will utilize the information available for all proteins and obtain better precision 

in their protein level estimates. . However, these two sets of models cannot distinguish the 

variance caused by post-translational modifications due to the absent information. An 

expanded model could be used when information on post-translational modification are 

available. Details of the single protein and multiple protein models are described in the 

following paragraphs.  
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4.2.2 The single protein model  

The single-protein hierarchical multi-level model is defined using a two-level structure.  

Peptides nest within protein and are the level one unit. Since protein is analyzed one by one, 

the protein unit does not exist; we can equivalently treat peptides as if they nest within 

biological samples (subjects), which are the level two units. The level one of the model 

describes the relationship between the relative abundance of the peptide which is represented 

by the reporter ion peak area (intensity) and the experimental factors. The level two of the 

model describes the relationship between the random intercepts of subjects and those effects 

at the subject level such as demographics and condition (diseased or normal).   

Define level one of the 2-level model: 

In the following equations, fixed effect coefficients use the Greek letters, and random 

coefficients use the Roma letters.  
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1 1 1 1
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   


,

            (1) 

 where  

,i ly  denotes the logarithmic transformed reporter ion peak area for peptide i and subject l , i 

has a range of 1 and n, l has a range of 1 and m; 

0,lb  denotes the random intercept for subject l;  

,i lmz  denotes the m/z ratio for peptide i and subject l; 

1  denotes the regression coefficient for m/z ratio; 

 , .h i llabel  is a dummy variable (0,1) for iTRAQ label h of the response ,i ly  for peptide i 

subject l,;, h is an integer number ranged between 1 and w;    
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2,h denotes the regression coefficient for label h;  

 , ,r i lrun  is a dummy variable (0,1) for the identity of run r that peptide i is identified for 

subject l; r is an integer number with range between 1 to v; 

4, 5, 6,, ,h r k    denote the regression coefficients for the interactions terms of m/z ratio & 

label, m/z ratio & run, and label &run;  

,i le  denotes the unexplained residual error for peptide i and subject l.  

Of note, although the same peptide sequence can be used for different subjects, the sequence 

itself is not included in the model but its m/z ratio is, as such the response ,i ly  represents the 

intensity value of a unique reporter ion in the model. The aforementioned Peptide i in essence 

is referred to the observed reporter ion i.   

At level one of the model, the response is the logarithmic transformed reporter ion peak 

area ,i ly . The explanatory variables include the experimental factors as fixed effects, namely 

the iTRAQ .i llabel , .i lrun , ,i lmz , and their two-way interaction terms , ,i l i lmz label , 

, ,i l i lmz run , , ,i l i llabel run  . It also includes a random effect, a random intercept 0,lb  for 

different subject l.  Equation (1) defines an intercept term that is different across subjects, 

other terms such as run, label, m/z ratio and their two-way interactions that are the same for 

all subjects. 

Define the level two of the 2-level model:  

The level two of the model defines the effects of variations at the subject level through the 

random intercept 0,lb  at level one. The response is the random intercept 0,lb .  The explanatory 

variables of this level include the condition (i.e. diseased vs. normal) and other subject level 

variables such as demographics.   
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1 1
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l b l b c l c l
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(2) 

where,  

0,0  represents the fixed intercept term; 

,l bz  denotes the covariate b of the subject l;  

1,b   represents the regression coefficient for the subject level covariates ,l bz ;  

,l ccondition  is a dummy variable denoting the biological or psychological conditions (i.e. 

different interventions, disease vs. normal state) for the condition c and subject l;  

2,c  represents the regression coefficient for the condition c; 

0,lu  represents the random residual term of subject l.  

Substituting equation (2) into equation (1) yields 
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             (3) 

where, 

Random variable 2
0, 0,0~ (0, )lu N   represents the between-subject variation, which is normal 

distributed with mean 0 and variance 2
0,0 , and random variable 2

, (0, )i le N   represents the 

conventional residual error term of reporter ion intensity and is also normal distributed with 

mean 0 and 2 .  

The fixed and random effects are grouped by separate square [·] brackets. The model defined 

in equation (3) assumes the regression coefficients 1 6,,..., w v    of experimental factors at the 
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peptide level are constant across subjects. The run effects can be treated as a random variable 

when it is hypothesized that there are variations introduced by different runs.  

The variance-covariance matrix for the random effect at level two can be represented as G , 

and the variance covariance matrix for the level one random residual is defined as R . Since 

model defined in equation (3) only has one random residual variable at level two and one 

random residual at level one. The level two variance-covariance matrix G  only has one 

variance term 2
0,0 . The level one variance-covariance matrix R for level one residual also 

only has one variance term 2 .  

The variance-covariance matrix for the response ,i ly  is different from the variance-

covariance matrix for the random effects.  

When we assume that the level one error terms are independent, the variance and covariance 

for the response are derived as follows: 
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2 2
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
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 

   

    , 

             (4) 

where ,i j le   and ,i k le  are the error term for peptide j and k respectively. The covariance in 

equation (4) only has one term.  

When the covariance term for the paired residual term within a subject is not zero, in another 

word, when the level one error terms are not independent, the covariance term for the 

response as defined in equation (4) will become 

      2
0, , 0, , 0, 0, , , 0,0 ,cov , cov , cov ,l i j l l i k l l l i j l i k l j ku e u e u u e e           , Where ,j k is the 

covariance between the paired residuals of the reporter ion intensities.  

The block diagonal matrix for the variances-covariance matrix n nV  of the response ,i ly  is  



86 | P a g e  

1 0 0

0 0

0 0

l

l m

A

A





 
 
 
  

 , where 2
l s sA I J   B  , s is the number of peptide observations of 

subject l,  sI represents the s s  identity matrix, and sJ represents the s s matrix of 

ones. B is the s s matrix of  2
0,0 ,j k  , ,j k equals to 2  when j=k.  

 V expands to a full matrix as 
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where all diagonal terms are 2 2
0,0   and off diagonal terms within the block sub-matrices 

are 2
0,0 ,j k  , all the other off diagonal terms outside the block sub-matrices are zeros. For 

estimating the covariance term, V can be further decomposed as n q q q q n n n   V Z G Z + R , 

Where Z denotes the design matrix for the random effects excluding level one error term and 

q denotes the number of random effects at the subject level. 

A sub-matrix of the block diagonal variance-covariance matrix of response, for example, for 

a subject with 3 peptide observations can be defined as   

2 2 2 2
0,0 0,0 1,2 0,0 1,3

2 2 2 2
0,0 1,2 0,0 0,0 2,3

2 2 2 2
0,0 1,3 0,0 2,3 0,0

     

     

     

   
 

   
 

    

 ,which has three extra unknown covariance terms. 

There are various covariance structures for the estimation of the unknown covariance 

terms 1,2 , 1,3 and 2,3 . Each kind of structure is determined by the assumptions of the 

within subject errors.  

  



87 | P a g e  

4.2.3 Group of protein mode  

In comparison to the single protein model, the multiple protein models analyze multiple 

proteins in a multivariate model. Through the use of a multilevel model, the multivariate 

model can be analyzed as a univariate model where the different proteins are treated as a 

level 2 unit in the data hierarchy. Similar to the single protein model, the multiple protein 

model has two levels.  Reporter ions representing peptides are the level one unit nested 

within proteins and subjects.  Since the same protein is expected to be observed across 

different subjects, proteins and subjects are defined as cross factors and both are the level 2 

units. Although in the real experiment, one protein may not be observed in every subject, the 

multilevel model allows unbalanced design and random missing because it does not require 

equal number of observations across the second level units. The level one of the model is 

similar as that is defined in equation (1). It defines the relation between the reporter ion 

intensity and the experimental factors. The level two of the model for the subject is also 

similar to equation (2) to describe the relation between the random intercept for subjects and 

the subject level variables. In addition, the level two of the model at the protein level selects 

regression coefficients that vary across different proteins as the random variables, and 

describes the relation between the selected protein level random coefficients and the 

explanatory variables.    

Define level one of the 2-level model: 

A full model with interactions at level one is defined as:  

, , 0, 0, , , 1, , , 2, , , , , 3, , , , ,
1 1

4, , , , , , 5, , , , , , 6, , , , , , , , ,
1 1 1

w v

i l p l p i l p p i l p p h h i l p p r r i l p
h r

w v wv

h i l p h i l p r i l p r i l p k h i l p r i l p i l p
h r k

y protein mz label run

mz label mz run label run e

    

  

 

  

     

      

 

  
, 

(5) 

where 
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, ,i l py  denotes the logarithmic transformed reporter ion peak area for peptide i, subject l and 

protein p, i has a range between 1 and n, l has a range between 1 and m, and p has a range 

between 1 and z;  

0,l  denotes the random intercept for subject l;  

, ,i l pprotein  denotes the protein identity for , ,i l py  specifying that it is an intensity value for 

peptide i, subject l and protein p; 

0, p  denotes the random coefficient (intercept) for protein p;   

, ,i l pmz  denotes the m/z ratio for peptide i , subject l and protein p; 

1, p  denotes the random regression coefficient of m/z ratio for protein p; 

, , ,h i l plabel  is a dummy variable (0,1) for iTRAQ label h of  response , ,i l py  ,h is an integer 

ranged between 1 and w;    

2, ,p h denotes the regression coefficient for label h and protein p; 

, , ,r i l prun  is a dummy variable (0,1) for the identity of run r that peptide i of protein p is 

identified from subject l, r is an integer with range between 1and v; 

3, ,p r  denotes the regression coefficient for run r and protein p; 

4, 5, 6,, ,h r k    denote the regression coefficients for the interactions terms of m/z ratio & 

label, m/z ratio & run, and label &run respectively, it is not assumed to vary across proteins;  

, ,i l pe  denotes the unexplained residual error for peptide i , protein p and subject l.  

At this level of the model, it hypothesizes that intercept may vary across different proteins, 

the m/z ratio, runs and labels may have different effects on the peptide relative abundance 

(reporter ion intensity) across different proteins, and intercept may vary across different 

biological samples. The interactions term are assumed to be constant across proteins.  
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Define the level two of the 2-level model:  

The random regression coefficients at the protein level can be described as the second level 

of the model,  

 

, 

 

(6) 

where 

ccondition  represents a dummy variable (0,1) indicating the physiological condition c (i.e. 

different interventions, disease vs. normal states) for subject l; 

0, pb represents a random residual of protein p for the random intercept varied across proteins; 

1, ,p cb represents a random residual of protein p and condition c for the random condition 

effect varied across proteins; 

1
   represents the fixed intercept for m/z ratio, it is constant across proteins; 

2, pb  represents the random residual of protein p for the random slope of m/z varied across 

proteins; 

2, 3,
,

h r
  represent the fixed intercepts for label h and run r respectively, they are constant 

across proteins; 

3, , 4, ,,p h p rb b  represent the random residuals of protein p for the label and run respectively, they 

are  varied across proteins.  

The level 2 protein level model defines the random regression coefficients of intercept, m/z 

ratio, label run and subject’s physiological condition, it is assumed that they are different 

across proteins. There are no fixed terms for the physiological conditions at the protein level 

as they are separately defined at the subject level in equation (7) shown below.  

1 2,

0, 1, , , 0,
1

1, 2, 2, , 3, , 3, , 3, 4, ,h

g

p p c l c p
c

p p p h p h p r r p r

b condition b

b b b



     


  

     


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The random intercepts at the subject level can be described separately as  

0, 0,0 1, , 2, , 0,
1 1

q g

l b l b c l c l
b c

z condition c   
 

       , 

(7) 

 

where, 

Covariates of the subjects, namely total-amount of proteins in the tissue, age, gender, etc., are 

represented by 1,..., qz z ;  

0,0  represents the fixed intercept; 

1, 2,,b c   represents the fixed effect coefficients for the covariates b and the physiological 

condition c respectively, they are constant across subjects and proteins. 0,lc  represents the 

residual terms for subject l.    

Of note, the 2,c is the fixed effect term for physiological condition c and 1, ,p cb is the random 

effect term for condition c varied across proteins.  

The level 2 subject level model defines the random intercept 0,l  for each subject sample 

which is estimated by the combination of the fixed subject level covariates, 1,..., qz z , the fixed    

,l ccondition of  l , and the unexplained random error term 0,lc . 

Substituting equations (6)-(7) into equation (5) and grouping the random effects and fixed 

effects by separate square [·] brackets, we have the following equation (8),   
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1 2,

0,0 1, , 2, ,
1 1

, , , , , , , 3, , , ,
1 1

4, , , , , , 5, , , , , , 6, , , , , , ,
1 1 1

h

q g

b l b c l c
b c

w v

i l p i l p h i l p r r i l p
h r

w v wv

h i l p h i l p r i l p r i l p k h i l p r i l p
h r k

z condition

y mz label run

mz label mz run label run

  

  

  

 

 

  

 
     

 
 

  

     

 

 

 

1, , , , 2, , , 3, , , , , , 4, , , , ,
1 1 1

0, , , 0, , ,

g w v

c l c i l p p i l p p h h i l p h p h r i l p
c h r

p i l p l i l p

b condition protein b mz b label b run

b protein c e

  

 
 
 
 
 
 
 
 
 
 
 
  
        
     
     



  

             (8) 

 

Let B  be the vector of random effects for proteins, C  be the vector of random residuals for 

subjects, and e  be the vector of the random errors. We define the distribution of these 

random effect vectors as follows: 

0, 1, 2, ,1 2, , 3, ,1 3, , 4,( , , ,... , ,..., , ) ~ (0, )p p p p w p p v pb b b b b b b MVN B ,

 0,1 0, 0,,..., ,..., ~ (0, )l nc c c MVNC G , (0, )MVNe R , 

where Φ  be the variance-covariance matrix for parameters at the protein level and G be the 

variance-covariance matrix for parameters at the subject level, and R is the variance-

covariance matrix for the random residual errors at the peptide level; 

The variance-covariance matrix for all the random terms is a block diagonal matrix 

0 0

0 0

0 0

Var

  
      
     

ΦB

GC

Re

, since B and C are the crossed random effects in the model. We 

further define the symmetric matrixΦas follows, to simplify the illustration assuming there 

are two physiological conditions, two runs and two labels:  
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2
,0 ,0 ,1 ,0 ,2 ,0 ,3 ,0 ,4

2
,0 ,1 ,1 ,1 ,2 ,1 ,3 ,1 ,4

2
,0 ,2 ,1 ,2 ,2 ,2 ,3 ,2 ,4

2
,0 ,3 ,1 ,3 ,2 ,3 ,3 ,3 ,4

2
,0 ,4 ,1 ,4 ,2 ,4 ,3 ,4 ,4

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

        
        
        
        
        

 
 
 
 


 

Φ




, 

where the diagonal terms 2
,0b ,…, 2

,4b represent variance of the protein intercept, 

physiological condition, slope of m/z, label and run of protein p respectively, the off diagonal 

terms represent their pair-wised covariance.  

G  and R will be the same as defined in the simple protein model. We assume the random 

effects for subjects are independent of the random effects for the proteins, and are 

independent of the random errors at the peptide level.  The variance-covariance matrix V of 

response , ,i l py  can be decomposed as 0, 5 5 5 0,5 1, 1,n n n q q q q n n n         V Z Z Z G Z + R . The 

random effect matrix 0, 5nZ  for protein has n rows and 5 columns, and the random effect 

matrix 1,n qZ for subjects has n rows and q columns, n is the total number of reporter ion 

intensities of all proteins. The diagonal term of V is the sum of variances term of protein 

level parameters, subject level parameters and the random error residuals. The off diagonal 

term of V can be derived from the aforementioned decomposition equation.    

 

4.3 The missing mechanism for the iTRAQ data- a Bayesian approach 

4.3.1 A Bayesian approach 

In the iTRAQ experiment, two types of missing peptide data from mass spectrometers are 

observed; one is identified as zero and the other is identified as blank. The zeros intensities 

are reported when there are not enough ions for the mass of the reporter ion to be centroid. 

The blanks are reported when the signal statistics are missing (Wells et al., 2011). The zeros 

can be defined as censored missing with values lower than a detectable threshold, and the 

blank missing are missed intensity due to a weak signal. Both types of missing values are 

considered to be related to the abundance of the proteins (Hrydziuszko and Viant, 2012).  

Through the Bayesian framework, we can learn the missing data information from the other 

studies and incorporate them through the priors for the models. For example, the missing 
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probability of the ions intensity can be estimated using its associations with the instrumental 

features of the mass spectrometer reported in the other studies. We now propose a 

multivariate multilevel Bayesian model that can estimate the missing probability and missing 

values as the unknown variables, using the observed data and prior information learned from 

the other studies. We describe a hierarchical two-level model that includes a dummy variable 

for one physiology condition without interaction terms assuming that the interactions 

between the label and run, m/z and run, and m/z and label are not significant in equation (9). 

Equation (9) below defines the joint distribution of the observed and the missing logarithmic 

intensity values of the peptides conditional on the observed explanatory variables. It also 

outlines the relation between the peptide intensity and the explanatory variables including 

m/z ratio, run, label, and condition. 

 

 

 1 2

obs miss
, , , , , , , , , , , , , , 0, 1, 2, 0 1 2 ,

, 0, 1, , 2, , 0 , 1 2

, | , , , , , , , , , ~ ( , )i l p i l p i l p r i l p h i l p i l p p p p i p

T T T T T
i p p p i p p i p i l i i

mz run label condition MVN  

     

U U U β β β γ

γ U U mz U condition β subject β label β run

, 

            (9) 

where 

1, ,
obs

i l p  represents the observed logarithmic intensity values, and 
2

miss
, ,i l p  represents the 

missing logarithmic intensity values of protein p and the biological sample l;  

1 2
, ,

0,p ,p ,p
U U U  are regression coefficients for the p protein, 

0,p
U is the vector of intercept, 

1,p
U is the vector of regression coefficients for the m/z ratio, and 

2 ,p
U is the vector of 

regression coefficients for the condition;   

0, 1 2β β ,β  represent vectors of regression coefficients for different subjects, different iTRAQ 

labels and different runs respectively, They are assumed to be the same across different 

proteins; 
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  is a diagonal variance-covariance matrix for 
1, ,

obs
i l p  with a common unknown variance 

term 2 across diagonal terms; 

,i pγ  denotes the mean intensity for subject l, ,i pγ is predicted by the covariates at the protein 

level, the subject level and the peptide level; 

,
T

i pmz ,
T

i pcondition , ,
T

i lsubject , Tlabel and Trun represent the row vectors for m/z, 

physiological condition, subject, label and run respectively.   

The variable  
1 2

obs miss
, , , ,,i l p i l p   denoting the completed data of peptide’s intensity on the 

logarithmic scale is assumed to be multivariate normal distributed with mean ,i pγ and 

variance-covariance matrix . For the purpose of explanation, equation (9) only includes 

intercept term as the random variable at the subject level.  It can be easily extended to a 

model with other covariates at the subject level.    

Let the matrix of regression coefficients be 0( , )
0,p 1,p 2,p 1 2B U , U , U ,β β ,β , the following 

equation (10) sets up prior distributions of the regression coefficients at the protein level, 

0, 0, 11 12 13

1, 1, 21 22 23

31 32 332, 2,

~ ,
p p

p p

p p

U

U MVN

U

   
   

  

      
            

           

Σ , 

(10) 

where  

 1 2
, ,

0,p ,p ,p
U U U  is multivariate normal distributed with mean 0, 1, 2,( , , )p p pa α and 

variance-covariance Σ , assuming Σ  is the same for all subjects l; 

The hyper-prior of α  is multivariate normal distributed with mean f and variance-

covarianceG ,  0, 1, 2,( , , ) ~ MVN ,p p pa α f G ; 
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The hyper-prior forΣ is inversed Wishart distributed 1
0Wish ( , 3, )art d  Σ R , and R is a 

d d positive scaled definite matrix, 0 1d   . We can assign non-informative or 

informative hyper-priors for vector f , matricesG and R .  

Priors for the residual variance 2  and the random intercept for subject 0β and regression 

coefficients 1 2β ,β are set up as follows:  

2
1 2 3( , ), ~ (0, ), ~ (0, ), ~ (0, )IG a b d d N d  1 2 0β β β , 

where 2 is inversed Gamma distributed with shape a and scaleb , 0, 1 2β β ,β  are normal 

distributed with means 0 and variance 1d , 2d and 3d respectively, non-informative priors can 

be assigned to a , b , 1 3,...d d if no prior information is available.  

After defining the model for the completed peptide intensity, the parameters involved for 

estimating the missing components (missing values and probability of missing) needs to be 

incorporated in the model. Let miss be a binary indicator variable denoting if the intensity 

has a missing value (1: missing, 0: non-missing). Based on the prior knowledge, we know 

that the probability of missing associated with the intensity and the m/z ratio. If we assume 

that the probability of intensity value being missed , ,{ }i l ppmpm  (for , , 1i l pmiss  ) is 

Bernoulli distributed, the joint distribution of the data and the unknown parameters including 

parameters for estimating the missing components can be constructed as equation (11),   

 
   
   

2

2 2
1 1

2
1 1

, , , , , , ,

, , , | , , , , , ,

, , , | , , , , , ,

obs miss

obs miss

obs miss obs miss

f

f g

g f



 



 

 

γ γ X miss B α Σ

γ γ X miss B α Σ B α Σ

B α Σ γ γ X miss γ γ X miss

, 

(11) 

where  

 , ,
obs obs

i l pγ ,  , ,
miss miss

i l pγ ; 
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 ,obs missX X X is the data matrix that has the number of rows equivalent to the total number 

of observed and missing peptide quantities, and the number of columns equivalent to the total 

number of explanatory variables, the other variables have already been defined in equation 

(9) and (10);  

 2
1 , , , ,, , , | , , ,obs miss

i l p i l pf   X miss B α Σ  represents the likelihood function conditional on the 

unknown parameters;  

 2
1 , , ,g B α Σ  represents the joint density function for the priors of all unknown parameters;  

 2
1 , , , ,, , , | , , ,obs miss

i l p i l pg   B α Σ X miss  represents the conditional posterior density of the 

unknown parameters given the observations;  

 1 , , , ,, , ,obs miss
i l p i l pf   X miss  represents the marginal likelihood function for the observed and 

missing intensity values, and it is equivalent to  1 , ,obs missf γ γ X  because miss  is an indicator 

variable derived from , ,
miss

i l p . 

The marginal distribution  1 , ,obs missf γ γ X is subject to the regression likelihood, it can also be 

denoted as  2
1 , ,obs missf γ γ XB , where the design matrix X is defined as  

 

1 1

1, , 1, , 1, , 1, , 1, , 1, , 1, ,

, , , , , , , , , ,

... ...

... ...
,

... ... ... ... ... ... ... ... ...

... ...

v w

i l p i l p i l p i l p i l p i l p i l p
obs miss

i n l p i n l p i n l p i n l p i n l p i

subjects proteins run run label label condition

x x x x x x x
X X

x x x x x x

      

     



, , , ,n l p i n l px 

 
 
 
 
  
 

, 

where v is an integer for the identity of the last run, w is an integer for the identity of the last 

label, run1-v and label1-w are dummy variables to record the corresponding label and run for 

the response –the peptide intensity.  

(of note: in the following sections, functions related to the unknown parameters will be 

denoted as g with different subscripts, and functions related to the likelihood function for the 

observations will be denoted as f  with different subscripts).  
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Based on equation (11), we can derive the conditional posterior distribution of the unknown 

parameters  2
1 , , , | , , ,obs missg B α Σ γ γ X miss as follows, 

 
   

 

2
1

2 2
1 1

1

, , , | , , ,

, , , | , , , , , ,

, , ,

obs miss

obs miss

obs miss

g

f g

f



 


B α Σ γ γ X miss

γ γ X miss B α Σ B α Σ

γ γ X miss
. 

The marginal distribution  1 , , ,obs missf γ γ X miss with respect to all the possible values of the 

unknown parameters is considered to be constant, therefore the joint conditional posterior 

distribution of the unknown parameters is proportional to the product of the priors of the 

unknown parameters and the likelihood for the data observed:   

 
   
     

2
1

2 2
1 1

2 2 2
1 2 1

, , , | , , ,

, , , | , , , , , ,

, | , , , , , , | , , , , , ,

obs miss

obs miss

obs miss

g

f g

f f g



 

  

 

  

B α Σ γ γ X miss

γ γ X miss B α Σ B α Σ

γ γ X miss B α Σ X miss B α Σ B α Σ

. 

(12a) 

Since the probability of missing is independent of 2, , ,B α Σ , the right hand side of (12a) is 

simplified to 

     2 2
1 2 1, | , , , , , , ,obs missf f g  γ γ X B α Σ miss X B α Σ , 

with further factorization for the first term   2
1 , | , , , ,obs missf γ γ X B α Σ as shown below,  

 
   

2
1

2 2
1 1 3

, | , , , ,

| , , , , , | , , , , ( )

obs miss

obs miss miss miss miss

f

f f g



   

γ γ X B α Σ

γ γ X B α Σ γ X B α Σ γ
, 

Then substitute the above in the right hand side of equation (12a), (12a) finally becomes 

 
       

2
1

2 2 2
1 1 3 2 1

, , , | , , ,

| , , , , , | , , , , ( ) , , ,

obs miss

obs miss miss miss miss

g

f f g f g



      

B α Σ γ γ X miss

γ γ X B α Σ γ X B α Σ γ miss X B α Σ
, 
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(12b) 

where,  

 2
1 | , , , , ,obs missf γ γ X B α Σ represents the regression likelihood for the observed intensity 

values and their corresponding obsX ; 

 2
1 | , , , ,miss missf γ X B α Σ  represents the regression likelihood for the missing intensity 

values and their corresponding missX ; 

3( )missg γ represents the density function of the prior for the missing intensity values; 

 2
2 , , ,g B α Σ represents the density function of the priors for the unknown parameters; 

  2f miss X represents the probability density function of miss conditional on the 

observations. 

According to observations from our case studies and the published study (Hrydziuszko and 

Viant, 2012), we assumed , ,i l ppm has a relation with m/z ratio and the intensity,  

, , 0 1 , , 2 , ,logit( )i l p i l p i l ppm mz        . 

(13a) 

 The conditional posterior distribution of 0 2,...,  can be postulated as follows: 

       
2 2

4 0 1 2 4, 2 0 1 2 4,
0 0

, , , , , , , , , ,g g f g       
 

   mz γ miss mz γ miss miss mz γ   
 

, 

(13b) 

where  , ,i l pmzmz represents the vector of m/z ratios, and    , ,,obs miss
i l p γ γ γ represents 

the vector of intensity values including the missing ones. 4,g  is the density function for the 

priors of   .  2 ,f miss mz γ is the logistic regression likelihood function of (13a)..  
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As the missing peptide intensity is not observable in the data, no information can be attained 

from the observations, 2  needs informative prior. Let  0 2,..., θ , the joint posterior 

distribution for all unknown parameters including θ  with the factorized terms is as followed:   

     

     
   

2 2
1 4

2 2 2
1 1 3 1

2

2 4,
0

, , , , | , , , , , | , | , ,

| , , , , , | , , , , ( ) , , ,

, ,

obs miss miss miss miss

l

g X g X g X

f f g g

f g

 

  




 

   

 

B θ α Σ γ miss B α Σ γ θ γ miss

γ γ X B α Σ γ X B α Σ γ B α Σ

miss mz γ θ 


. 

           (14) 

The joint posterior distribution  2, , , , | , ,g XB θ α Σ γ miss  is not straightforward in this model 

and cannot be derived directly using the numerical integration, but it can be approximated by 

the conditional posterior distributions using an empirical Bayesian approach i.e. Gibb 

sampling. In the computation,  , ,i l p  will not be available for the missing, but its value is 

computed conditional upon the other unknown parameters from the posterior sampler.  
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The doodle graph for the Bayesian model is shown as follows,   

for(pep IN 1 : ns)

beta0

alpha2

alpha1

alpha0
pmiss[pep]

miss[pep]

mu[pep]

beta2 u[1:3,]

AUC[pep]

precR mn

T

beta1

eta[pep]

gamma

 

Figure legend: R is the inverse wishart hyper prior for T, prec is the inverse wishart 

distributed hyper-prior and mn is the multivariate normal distributed hyper prior for gamma.  

T and gamma are the precision and mean priors for the random parameter U of protein 

respectively. beta0, beta1 and beta2 are the coefficients for subject intercepts, runs and labels 

respectively. Pmiss is the probability of missing intensity data, and miss is the binary 

indicator for missing. alpha0, alpha1, and alpha2 are the regression coefficients for intercept, 

m/z and intensity value respectively in the logistic regression predicting pmiss. AUC is the 

intensity value for each peptide with mean mu and variance eta.   

 

The derivations for the joint conditional posterior distribution of the unknown parameters are 

further explained in the following paragraphs. The derivations focus on the parameters at the 

protein level and assume the error variance 2 and the variance covariance matrix is either 

known or unknown. 
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In the following section,  
1 2

obs miss
, , , ,,i l p i l p γ denotes the vector for completed peptide 

intensities including missing values that has defined in equations (9), and X is the design 

matrix for explanatory variables. For the posterior sampling programming, the joint posterior 

of unknowns in (14) can also be factorized step-wisely as follows:  

     
     
       

2 2
4 6

2 2
4 7 8

2 2 2
4 7 9 10

, , , , | , , , , , , , | , ,

, , , , , , , , , | , ,

, , , , , , , , , , , , ,

g g g

g g g

g g g g

 

 

  

 

  

   

B θ α Σ X γ miss θmz γ miss B α Σ X γ miss

θmz γ miss B α Σ X γ miss α Σ X γ miss

θmz γ miss B α Σ X γ miss α Σ X γ miss X γ miss
, 

           (15) 

where 

 4 , ,g θ mz γ miss ,  2
7 , , , , ,g B α Σ X γ miss , and  2

9 , , , ,g α Σ X γ miss are the conditional 

posteriors upon the likelihood and the posteriors of the other parameters.  

The marginal posterior  2
10 , ,g  X γ miss is independent of miss ,  2

10 , ,g  X γ miss will be 

simplified as  2
10 ,g  X γ ; it is proportional to the product of the prior for 2 and the 

likelihood of the observations,   

     
   
       

2 2 2
10 10 1

2 2
10 1 ,

2 2 2
10 3 1 1

, ,

,

, ,

miss obs

miss miss obs

g g f

g f

g g f f

  

 

   

 

 

   miss obs

X γ X γ

X γ γ

γ X γ X

, 

(16) 

where 

B in the multivariate setting can be expressed as a univariate regression vector β and can be 

derived through the conventional regression method via the likelihood function (Gelman et 

al., 1995); 
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And  

 

 

2 2
1 , ,

1

2 2
1 1, ,

1

| , , , ( , , , );

| , , , ( , , , );

obs

miss

n
obs

i l p
i

n
miss

i l p
i

f N

f N

  

  














obs obs

miss miss

γ βX α Σ βX α Σ

γ βX α Σ βX α Σ
 

Where, 2, , α Σ are used to construct the variance-covariance matrix for γ . 

A conjugate prior for the missγ is the normal distribution:  3 (0, )missg N γ .  

The posterior ofθ is further defined as follows: 

         
2 2

4 2 4, , , 4,
0 1 0

, , , , , ,
n

i l p
i

g f g bin pm g 
  

     θ mz γ miss miss mz γ θ mz γ θ   
 

. 

If normal priors are assigned to  0 1 2, ,β β β ,  0 1 2, ,   and multivariate normal prior is 

assigned to  0,p 1,p 2,p
U , U , U , since γ is multivariate normal distributed, the joint conditional 

posteriors of all the unknowns will be multivariate normal distributed given known 2, , α Σ .  

When 2, , α Σ  are unknown, a conjugate prior for 2  is the inversed gamma distribution, 

denoted as  2
10 ( , )g InvGamma a b  ; a conjugate prior for Σwill be the inversed-Wishart 

distribution (Gelman et al., 1995).  1( , )α  use the four parameters of inversed-Wishart-

normal density for the multivariate normal distribution parameters as defined by (Gelman et 

al., 1995), 

 1 1
0 0

0 0

~ Wish , ,

| ~ ( , / )

d

N





 Σ

α Σ α Σ
, 

where 0 , 0 are positive numbers, 0 is a d d  positive definite matrix, where 0 1d   .  

The joint prior density for 1( , )α  is defined as  
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 

        
10

1
2 021 11

0 0 02 2| | exp tr | | exp
d


              

 
Σ Σ Σ α α Σ α α . 

           (17) 

The product of  2
9g  and  10 ,g α Σ will be shown as below:  

 
 

 

  
     

10
2

1
02

2 1 11
022

1
0 02

exp | | exp tr

| | exp

da
ab b

a








      

  

       

    
 

Σ Σ

Σ α α Σ α α
. 

(18) 

Let    0 0 0
   α α α α , using the trace to replace the inner terms of the second 

exponential function of (17) gives us a gamma like the format for (18):  

 
 

 

       

 
 

 

   

 
   

  

10
1

2 2

20
2

20
2

2 1 1 11 1
0 0 02 22

2 1 11
0 0 022

2 1 11
0 0 022

exp | | exp tr | | exp tr

exp | | exp tr

exp tr

d

d

d

a
a

a
a

a
a

b b

a

b b

a

b b

a







 


 


 


 

 

 

       

     

      

            

           

            

Σ Σ Σ Σ

Σ Σ

Σ Σ 


. 

The joint posterior distribution of unknown parameters can be computed from the conditional 

posterior distribution using the Gibb sampler, or using the Non U turn sampler of 

Hamiltonian Monte Carlo.  

4.3.2 The missing mechanism for the iTRAQ data- a Bayesian approach using Hamiltonian 

Monte Carlo and Non U Turn posterior sampling 

 

4.3.2.1 The mechanism of HMC and non U turn sampling 

Hamiltonian Monte Carlo (HMC) originated from a physics phenomenon Hamiltonian 

dynamics. Hamiltonian dynamics describes the movement of a puck sliding from a random 

starting point to other points of a surface with various highs. This approach was introduced 
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by Alder and Wainwrigh (Alder and Wainwright, 1959) to simulate the molecular motions, 

six years after the Markov Chain Monte Carlo (MCMC) was introduced in the same area. 

The HMC method has an elegant formation comprising a pair of variables to describe the 

momentum and position of each state in the molecular movement; it has been coined as 

Hamiltonian dynamic since then.  The statistical application of the HMC is attributed to 

Radford Neal who started to use it in his neural network model in 1993 (Neal, 2011).  In the 

MCMC framework using HMC, the position variable p is set up to describe the unknown 

variables, the fictitious momentum q describes the kinetics of the molecules. The potential 

energy U(p), which is a function of the position variable, is used to describe the proposed 

joint probability distribution that needs sampling from. In the statistical application of HMC, 

the potential energy U(p) equals to minus log of the joint probability density. The kinetic 

energy K(q) is equivalent to 2| | /(2 )p m , Where m is the mass of the puck.  The pair of 

potential and kinetic energy is described by the Hamiltonian function 

( , ) ( ) ( )H p q U p K q   for a case using the HMC.  H(p,q) needs to be operated on its partial 

derivative space with relation to time t, ;i i

i i

dq H dp H

dt p dt q

 
  
 

. These paired partial 

equations define a mapping Ts from any state of s to t+s.  When the paired differential 

equations of the H(p,q)are in simple forms, the analytical format for the trajectory on t can be 

achieved. When they are complex, the computation of trajectories can be approximated on 

the discrete time interval due to the property of invariant volume of Hamiltonian dynamics. 

As suggested in Neal’s first chapter of the MCMC hand book, the “leap frog” method is an 

optimal way to update the auxiliary momentum variable q and the position variable p with 

the metropolis acceptance probability. The leap frog method creates a set of discrete steps ɛ, 

2ɛ, 3ɛ…… on the time interval, and the potential energy and kinetic energy take their 

trajectory through these steps. The updates from one step to another follow the scheme 

described in Neal (Neal, 2011): 
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        

     

        
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 




 

  


  




  


    



, 

where pi and qi represent the position and momentum at the і step respectively.  The leap frog 

scheme, which gives a longer distance to the next state and has a higher acceptance 

probability compared to the random walk, provides a better proposal than a random walk in 

the simulation for a probability distribution in a high dimensional continuous space. It is 

reported by (Creutz, 1988; Neal, 2011) that the cost of HMC is about D5/4 of which D is 

equivalent to the number of dimensions. This will give us an approximate number of 

iterations required for using HMC. 

In the Bayesian data analysis, HMC provides a mean to sample the posterior joint conditional 

probability U (p). Although the HMC is much more efficient than the random walk or Gibbs 

sampling, it comes at a price. HMC requires the derivation of the gradient of the log posterior 

density, and also needs manual tuning for the leap frog step and number of steps. If the step ɛ 

is too large, the simulation will not be accurate and the acceptance rate will be low; if the 

step   ɛ is too small, the simulation will waste lots of computing steps. If the number of steps 

is set too large, the trajectory will start U turns and retrace back to original samples. If the 

number of steps is set to be too small, the HMC will be similar to a random walk MC 

(Hoffman and Gelman, 2011).      

Rstan is a new software recently developed by Gelman’s team to implement HMC modelling 

for Bayesian data analysis. In Rstan, the posterior sampling can choose the No-U-turn 

Sampling method (NUTS)-an extension of HMC. NUTS (Hoffman and Gelman, 2011) 

implements a recursive algorithm that will enable auto-tuning of the numbers of leap frog 

steps and ɛ. The main outstanding feature of the No-U-turn Sampling is that once the new 

updated state starts to double back and retrace, the sampling will automatically stop.  NUTS 

uses the leap frog integrator to double the position-momentum states forwardly or 

backwardly at each step in the fictitious time. A binary tree with nodes of the position-

momentum states is generated in this recursive manner. It stops whenever a sub tree from the 
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left most to the right most has a node that makes a U turn. As defined in Hoffman’s paper, 

the simulation will stop whenever the following states occurred,  

   0p p q      or   0p p q     , Where p represents the positions generated 

forwardly and p  represents the position state generated backwardly.  No-U-turn sampling 

provides an alternative for sampling from a high dimensional correlated joint posterior 

distribution.  

 

4.3.2.2 The HMC/NUTS Rstan computing method for our current proposed method 

Based on the joint posterior function configured in 2.3, the potential energy function which 

represents minus log of the posterior function can be shown as:    

   
   
     

2
1 , , 4

2 2
7 9

2 2
10 3 1

| , , , , , , ,

( ) log , , , , , , , , ,

,

obs
i l p

miss miss miss

f g

U p g X g X

g g f X

 

 

  

  
 

     
 
   
 

X θ B α Σ θ mz γ miss

B α Σ γ miss α Σ γ miss

γ

. 

In Rstan, the missing values cannot be mixed with the non-missing values. In the Rstan 

program for the proposed model (15), the relationship of missing values of , ,i l p and the 

explanatory variables are separately coded for censored and completely missing.   

The Hamiltonian function ( )H p,q used in HMC for the proposed model (15) according to  

suggestions from (Neal, 2011) is further described as follows:  

  1
2( ) ( ) ( )H U K U   p,q p q p q × q , where ( )U p is the minus of log of the product of 

priors and likelihood given the data; and p represents the vector of all the unknown 

parameters in the model  2
0 1 2 0 1 2, , , , , , , , , miss   p β β β α Σ γ .  The fictitious function is given 

as 1
2( )K q q × q , where q represents the momentum of the fictitious particle in the 

Hamiltonian dynamics.   
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A Rstan program for the model described in equation (15) is summarized in the following 

table 4.1 with a separate section for setting up censoring and completely missing values. In 

this program, priors and hyper priors are all re-parameterized in the transformed parameter 

section.     

Table 4.1 The algorithm of the Rstan HMC/NUTS computing method 

data  

step1: Assign records of all the known peptide intensities obsγ and their corresponding 

explanatory variables obsX  to parameters in the data block, excluding records with 

censored and missing intensities missγ  and their corresponding observations of explanatory 

variables missX ; 

step2: Assign records of all the known explanatory variable missX  that link to the censored 

and missing peptide quantities missγ  to parameters in the data block; 

step3: Assign priors and hyper priors for the covariance matrix 0 and other known values 

(i.e. number of subjects) to parameters in the data block.  

transformed data 

Any data needing to be transformed is assigned in the transformed data block. For 

instance, to derive a prior for the covariance matrix if the prior is given as precision matrix 

will be defined in this block.  

parameters  

Any unknown variables including the missing and censored intensities and variables that 

will be used to re-parameterize the unknown variables are defined in the parameter block. 

Variables used for re-parameterizations are called latent variables. For example, in the 

NUTS program given in appendix 4.2, the latent parameters defined in this section are 

named by adding extension _latent to the unknown parameters. For example, beta4_latent 

is the latent variable for beta4.  

transformed parameters 
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Any unknown variables with re-parameterization or comprising known values and 

unknown variables can be defined in the transformed parameters block. In the given 

NUTS program (appendix 4.2), the unknown parameters 0 1 2, , ,β β β θ , the missing and 

censored peptide quantities
missγ  and the probability of missing are defined in this block. 

For example, the probability of missing are defined in the following statements: 

          pmiss[pep]<-inv_logit(alpha+alpha1*m_z_centered[pep]+alpha2*logofAUC[pep]);

          pmiss_m[pep]<- 

          inv_logit(alpha+alpha1*m_z_centered_m[pep]+alpha2*logofAUC_m[pep]); 

Where alpha, alpha1 and alpha2 denote the regression coefficients for intercept, m/z and 

abundance respectively, m_z_centered and m_z_centered_m denote the m/z ratio in the 

obsX and missX respectively, and logofAUC and logofAUC_m denote the response obsγ and 

missγ respectively.  

Model  

Step 1: Define priors and hyper priors: distributions of all priors or hyper priors for 

unknowns are defined firstly in the model block.  

Step 2: Re-parameterization: The re-parameterization is equivalent to a two-steps sampling 

which firstly samples the paired latent location and scale parameters according to their 

hypothesized distributions in the model block and secondly derives the unknown 

parameters using the latent parameters in the transformed parameters block.  

 For example, the following statements are used to sample the latent parameters for re-

parameterization of the regression coefficients for subject intercept 0β , 

           for (sub in 1:64) 

    {beta2_latent[sub]~normal(0,1); 

       beta2_mu[sub]~normal(0,1);} 

 , where beta2_latent is the latent location variable and beta_mu is the latent scale variable 



109 | P a g e  

of 0β . This pair of variables is used to simulate variable 0β (named as beta2 in the 

program) which is normal distributed with mean beta_latent and standard deviation 

beta2_mu defined in the transformed parameters block.  

Another re-parameterization example in this model would be, 

             g~multi_normal(mn,T); 

       pVAR~inv_wishart(3,invprec); 

              for (prot in 1:nprotein) 

      U_latent[prot]~multi_normal(mn,R); //standard multinormal distributed   

where g denotes the latent location variable, pVAR denotes the latent scale parameters for 

the protein level parameters U.  U_latent is a unit multivariate normal distributed variable. 

In the transformed parameters section, the following statements are used to generate the 

protein level parameter U that has location variable g and scale parameters pVAR.   

             for (prot in 1:nprotein) 

  U[prot]<-g+pVAR*U_latent[prot]; 

Step 3: Missing and censored data parameters 

The missing values are treated as unknown variable. Logistic regression is used to model 

the missing probability and is defined in the transformed parameter section. The 

distributions of the latent variables for the missing values logofAUC_m_latent[ ] and the 

distribution of the probability of missing are codes as follows:      

for (pep in 1:nobs) 

miss[pep]~bernoulli(pmiss[pep]); 

for (pep in 1:nmiss)  

{miss_m[pep]~bernoulli(pmiss_m[pep]); 

  logofAUC_m_latent[pep]~normal(0,1);} 
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where miss[pep] and miss_m[pep] denotes the dummy variables indicating if the peptide 

intensity is missing for the observed peptides and completely missing peptides intensities 

respectively, pmiss[pep] and pmiss_m[pep] are the probabilities of missing that can be 

predicted by the m/z and peptide abundance for the observed and completely missing 

intensities.   

The probability of censored values is estimated by integrating out its marginal probability 

under the censored limit:  

   for (pep in 1:ncensor) 

               increment_log_prob(log1m(1-normal_cdf(censor_lim,mu_cen[pep],eta))); 

where increment_log_prob is the system variable for user-defined joint probability 

likelihood, censor_lim defines the censored limit, mu_cen denotes the imputed censored 

data from the last iteration and eta denotes the standard deviation.  

 

There are differences in the BUGS program compared to the NUTS program.  BUGS allows 

missing values being included in the observations for the analysis, Rstan requires missing 

values being defined as the unknown parameters and their relationships with the other 

variables being separately coded. In the BUGS program, the missing probability for 

censoring is assigned to be 1. In the Hamiltonian MC/NUTS program, the observations with 

missing intensities are separately coded. The probability of missing for observations with 

censored intensities is estimated as the cumulative probability of a value below a known 

detectable limit from the normal distribution, which is derived from using the numerical 

integration. More details of the BUGS and HMC/NUTS computing approaches are 

demonstrated in the simulation study and the case studies in chapter 5 and chapter 6. 
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4.4. A simulation study 

 4.4.1 The simulated experiment 

 An iTRAQ proteomic experiment was simulated with a balanced row and column design for 

8 runs (row), 8 labels (column) and two classes that comprised 32 subjects from the normal 

control population and 32 subjects from the diseased population. The first set of data assumes 

that peptides were clustered within proteins and proteins are all observed by the subjects. A 

Poisson distribution (λ=5) was used to generate the number of peptides of 200 proteins. The 

intensity of the peptide was simulated by a function of run, label, total amount of protein, 

subject class, protein intercept, and mass-to-charge ratio (m/z). The regression coefficients of 

the run, label, total amount of protein and subject are normal distributed; and the regression 

coefficient of the protein intercept, mass-to-charge ratio (m/z) are normal distributed with the 

same mean and variance for the 200 proteins, abundance differences between subject class 

are normal distributed with different means and variances across different proteins.  

A second set of data is simulated to capture the non-random missingness pattern based on the 

first simulated completed dataset. The two case studies and the literature (Wells et al., 2011) 

suggest that the peptide intensity data is left censored at a threshold where the signal is too 

weak to be detected, and the value of the censored peptide intensity is reported as zero in the 

raw data from the LC-MS/MS.  The simulated probability of missingness is a function of the 

peptide intensity and the mass-to-charge ratio (m/z). The censoring threshold is set to 0.1 

which is the minima logarithmic intensity of the current immunology study, and any 

simulated intensity values below this value is set to zero.  The simulated data of 78400 

records has 928 (1.2%) observations with censored peptide intensities and 14287 (18.2%) 

observations with completely missing peptide intensities. 

  

 4.4.2 The analytical methods 

Three sets of analytical methods are used for the evaluations. The first set is the single 

protein model in which the protein is analyzed one-by-one as defined in (3). The second sets 

of models are three multivariate multilevel models in which proteins are analyzed 

simultaneously and each of which is the special case as defined in (8). The third set is the 
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Bayesian version multivariate multilevel model as defined in (9), of which the missingness 

values are also estimated as the unknown parameters of the joint posterior distribution 

through Markov Chain Monte Carlo (MCMC).  Gibbs posterior sampling and Hamiltonian 

Monte Carlo using No U turn sampling of the posterior distributions are compared for the 

Bayesian model.   

Method 1 (single protein model): Each protein was analysed separately using a mixed model 

with a random intercept for subject. The R lmer function of R package lme4 (Pinheiro et al., 

2014) used for this model is:  

fit<-lmer(proteinsub$logofAUC~factor(proteinsub$run)+factor(proteinsub$tlabel) 

+factor(proteinsub$class)+proteinsub$mzcentered+(1|proteinsub$subject),data=proteinsub), 

where logofAUC is the response variable of the intensity, run, tlabel, class and mzcentered 

represent the run, label, physiological condition and the centralized m/z ratio respectively.      

Method 2 (multiple proteins model): Using a multivariate multilevel model for all proteins 

that include random intercepts, random slopes of mass-to-charge ratio (m/z) and random 

coefficients for abundance differences between subject classes across different proteins, and 

random intercepts for different subjects. 

The three R lmer functions used for this model are:  

fit1<-lmer(mockdata$logofAUC~factor(run)+factor(tlabel)+(1+mzcentered+factor(class)|protein)+ 
(1|subject),data=mockdata) 

fit2<-lmer(mockdata$logofAUC~factor(run)+factor(tlabel)+mzcentered+(1+mzcentered+factor(class)|protein) 
+ (1|subject),data=mockdata) 

fit3<-
lmer(mockdata$logofAUC~factor(run)+factor(tlabel)+mzcentered+factor(class)+(1+mzcentered+factor(class)|protein) 
+ (1|subject), data=mockdata) 

, 

where  

Fit 1 defines the model with three protein random effects (intercept, m/z, and physiological 

conditions) and a random intercept for subject, with two fixed effects (run and label);   
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Fit 2 defines the model with three protein random effects (intercept, m/z, and physiological 

conditions) and a random intercept for subject, with three fixed effects (run, label and m/z);     

Fit 3 defines the model with three protein random effects (intercept, m/z, and physiological 

conditions) and a random intercept for subject, with four fixed effects (run, label, m/z and 

class).     

Method three is the Bayesian version of multivariate multilevel model (multiple proteins 

model) with parameters for the missing components as defined in (9). Uninformative normal 

distributed priors were chosen for the regression coefficients of run, label, and subject 

intercepts noted as beta3_*, beta4_* and beta2 respectively. An uninformative gamma 

distributed prior was chosen for the variance of the peptide intensity noted as auc[pep].  The 

protein level parameters  1 2
, ,

0,p ,p ,p
U U U  as defined in equation (9) is multivariate normal 

distributed. A hyper inverse-Wishart distributed prior was chosen for the covariance matrix 

of the protein level parameters. Informative normal priors were chosen for the missing 

parameters alpha0-alpha2.  
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The BUGs program for using software win-BUGS (Spiegelhalter et al., 2003) is set up as 

below: 

model  

{ for (pep in 1:78400) 

     { auc[pep]~dnorm(mu[pep],eta[pep]) 

mu[pep]<-
beta2[subject[pep]]+U[proteinid[pep],1]+U[proteinid[pep],2]*m_z_centered[pep]+U[proteinid[pep],3]*class[pep]+ 
beta3_1*run1[pep]+beta3_2*run2[pep]+beta3_3*run3[pep]+beta3_4*run4[pep]+beta3_5*run5[pep]+beta3_6*run6[pep]
+beta3_7*run7[pep]+beta3_8*run8[pep]+beta4_113*tlab113[pep]+beta4_114*tlab114[pep]+beta4_115*tlab115[pep]+be
ta4_116*tlab116[pep]+beta4_117*tlab117[pep]+beta4_118*tlab118[pep]+beta4_119*tlab119[pep]+beta4_121*tlab121[
pep] 
  eta[pep]~dgamma(0.1,0.1)     
  miss[pep]~dbin(pmiss[pep],1)      
  pmiss.lim[pep]<-alph0+alph1*m_z_centered[pep]+alph2*auc[pep] 
  pmiss[pep]<-(1-censor[pep])*(max(0.001,min(0.99,pmiss.lim[pep])))+censor[pep]*0.99 
   }  
 #prior for random coefficients  
 for (protein in 1:200) 
 {U[protein,1:3]~dmnorm(gamma[1:3],T[1:3,1:3])} 
 for (sub in 1:64) 
 {beta2[sub]~dnorm(0,1)} 
 #prior for fixed coefficient 
 #use informative prior           
 alph0~dnorm(1,0.01) 
   alph1~dnorm(0.0085,2.5E7)        
 alph2~dnorm(-0.45,4)      #use informative prior    
 beta3_1~dnorm(0,0.1) 
 beta3_2~dnorm(0,0.1) 
 beta3_3~dnorm(0,0.1) 
 beta3_4~dnorm(0,0.1) 
 beta3_5~dnorm(0,0.1) 
 beta3_6~dnorm(0,0.1) 
 beta3_7~dnorm(0,0.1) 
       beta3_8~dnorm(0,0.1) 
 beta4_113~dnorm(0,0.1) 
 beta4_114~dnorm(0,0.1) 
 beta4_115~dnorm(0,0.1) 
 beta4_116~dnorm(0,0.1) 
 beta4_117~dnorm(0,0.1) 
 beta4_118~dnorm(0,0.1) 
 beta4_119~dnorm(0,0.1) 
 beta4_121~dnorm(0,0.1) 
 #hyper prior 
 gamma[1:3]~dmnorm(mn[1:3],prec[1:3,1:3]) 
  T[1:3,1:3]~dwish(R[1:3,1:3],3) 
   } 

, 
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where, 

The []mu   statement assigns the relation between the explanatory variables and the 

response-the mean peptide intensity values;  

The      pmiss.lim pep alph0 alph1*m _ z _ centered pep alph2*auc pep   statement assigns the 

relation between the probability of missing and the explanatory variables including m/z 

ratio(m_z_centered[pep]) and the abundance (auc[pep]); 

The      [] 1 [ ] max 0.001,min 0.99, .lim[ ] [ ] 0.99pmiss censor pep pmiss pep censor pep      

statement assigns the probability of missing incorporating the probability for censored 

values, where [ ]censor pep is a dummy variable with value 0 or 1; if the value is censored, the 

missing probability is assigned to be 0.99;  

The ~ assign the distributions for priors and hyper priors, and also the distribution for the 

intensity values.  

The Rstan Hamiltonian/NUTS program for using software package Rstan (Stan 

Development Team, 2013) can be downloaded from: 

https://github.com/ireneslzeng/proteomics.   

In the Rstan program, the data is separated into three parts according to the completeness of 

the peptide intensity:  observed, completely missing and censored. The regression 

likelihoods are also defined in three different statements. 

The      mu pep ,mu _ m pep ,mu _ cen pep   statements in the transformed parameter block 

define the relations between the observed, completely missing and censored peptide 

intensity as the response and the explanatory variables respectively. The samplings for 

priors, known and unknown parameters (including the latent variables) are defined in the 

model block.  
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4.4.3 The results  

The estimated differences in proteins’ abundances between normal and diseased subjects are 

used to compare across different models. These differences are referred to as the class 

differences across the whole section below. Since the parameters used to simulate the two 

sets of data are known, they are included as the “gold standard” for the evaluation of the 

different methods described in 4.2 and are referred to as the actual values in the following 

section.     

 

4.4.3.1 Simulated study with no missing values 

Mean class differences: 

As demonstrated in the scatter plot (figure 4.2.), estimates of the mean class differences 

from the multiple proteins model have better linear agreements with the actual values 

compared to estimates from the single protein model. In the linear regression model that 

includes actual values of the class differences as dependents and estimates from the single 

protein model as independent, the R2 is 0.99 and the slope is 0.94 (standard error: 0.01) 

(figure 4.2 (a)). In a similar linear regression model that includes actual values of the class 

differences as dependents and estimates from the multiple protein model as independent, the 

R2 is 0.99 and the slope is 0.99 (standard error: 0.01) (figure 4.2 (b)).  

 

4.4.3.2 Simulated study with missing values 

Among the three R lmer models, fit2 has the smallest REML convergence criteria value 

(REML deviance) 253015.7, fit1 and fit3 have the REML convergence criteria value of 

253500.7 and 253029.7 respectively. The results of fit2 are demonstrated in table 4.2, the 

variances of protein random intercept, m/z ratio and class are 2.32, 1.89e-06, and 0.624 

respectively; the variance of subject intercept is 0.73 and variance of residual error is 3.11. 

The significant fixed effects include coefficients for run 6, run 7, label 115, label 117, label 

119 and m/z.      



117 | P a g e  

Estimates from the multiple proteins model using the simulated data with missing values 

also demonstrated a better agreement with the actual values than estimates from the single 

protein model, as shown in the scatter plots figure 4.3a and 4.3b. In two sets of similar linear 

regressions of which the actual values are included as dependants and estimates of single or 

multiple protein models as independents, the R2 is 0.87 with a slope of 1.21 (standard error: 

0.034) for the single protein model and R2 is 0.91 with a slope of 1.27 (standard error: 

0.028) for the multiple protein model. The R2 is bigger and standard error of the slope is 

slightly smaller in the multiple proteins model when compared with the single protein 

model. 

When the non-random missingness components are modelled using the Bayesian method, 

the estimates of the mean class difference are closer to the actual values, and this is 

demonstrated in the scatter plot (figure 4.2b). The R2 is 0.95 and the slope is 0.996 (standard 

error: 0.016) when using the actual values to regress on estimates from the BUGS model. 

The R2 is bigger and standard error of the slope is smaller than those of the multiple and 

single protein lmre models. The HMC/NUTS results achieve a similar better agreement with 

the actual values for the class difference. In the linear regression including the actual values 

as dependent and the HMC/NUTS estimates as independent, the R2 is 0.95 and the slope is 

1.07 (standard error: 0.018). 

Apart from the estimates for class differences, protein intercept, slope for m/z ratio of each 

protein, as well as subject intercepts from the 60000 BUGS and 3000 NUTS posterior 

samples are also compared to the actual values used for the simulation, they are shown to be 

similar.  

The missing components parameters from the 3000 posterior HMC/NUTS samples are -7.55 

(95% credible interval: -8.49,-6.31), 0.0085 (95% credible interval: 0.0085-0.0085) and 0.86 

(95% credible interval: 0.72-0.97) for alpha0, alpha1 and alpha 2 respectively. Comparing to 

the actual values of -5.2, 0.0084 and 0.60 for alpha0, alpha1 and alpha 2 respectively, the 

intercept and regression coefficient for abundance are bigger in their magnitudes.   

The variances of protein intercept, protein m/z, and class difference are 3.03 (95% credible 

interval: 1.82, 5.08), 0.49 (95% credible interval: 0.28, 1.02) and 0.81 (95% credible 

interval: -0.40, 1.38) respectively. Comparing to the lmer fit2 variances for random 
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intercept, m/z and class difference which are 2.32, 1.89e-06, and 0.624 respectively, the 

median variance of protein intercept and class difference from NUTS are slightly higher. 

Nevertheless, their credible intervals contain those values from fit2. The residual variance of 

NUTS is 1.87 (95% credible interval: 1.81, 1.93) which is similar to the actual value of 2.0 

and smaller than the fit2 result of 3.11.  

The proposed multilevel multiple proteins model incorporating the non-missing method is 

workable and an improvement when compared to the protein ratio and single protein model 

method.      

Table 4.2 The multivariate multilevel model using R (using data with missing values) 

Multiple protein model FIT TWO: with protein level slope of mass/charge ratio as fixed effect 
Linear mixed model fit by REML ['lmerMod'] 
Formula: mockdata$logofAUC ~ factor(run) + factor(tlable) + mzcentered + (1 + mzcentered + factor(class) | 
protein) + (1 | subject)  
Data: mockdata  
REML criterion at convergence: 253015.7  
Random effects: 
 Groups   Name           Variance     Std.Dev.     Corr        
 protein  (Intercept)     2.324e+00  1.524550             
          mzcentered       1.892e-06    0.001376    -0.99       
          factor(class)1    6.238e-01    0.789779   -0.02 -0.13 
 subject  (Intercept)    7.265e-01    0.852372             
 Residual                    3.111e+00    1.763940             
Number of obs: 63185, groups: protein, 200; subject, 64 
Fixed effects: 
                                Estimate     Std. Error t value 
(Intercept)               6.0760910   0.4281569   14.19 
factor(run)2            -0.3662296  0.4271577   -0.86 
factor(run)3            -0.1860670  0.4271329   -0.44 
factor(run)4            -0.1455336  0.4271275   -0.34 
factor(run)5            -0.1483655  0.4271364   -0.35 
factor(run)6            -1.3837084  0.4270851   -3.24 
factor(run)7             0.4142777  0.4271996    0.97 
factor(run)8            -0.9391780  0.4271184   -2.20 
factor(tlable)114    -0.4886118  0.4271843   -1.14 
factor(tlable)115    -2.2501244  0.4271403   -5.27 
factor(tlable)116    -0.7965655  0.4271765   -1.86 
factor(tlable)117    -1.1618414  0.4271655   -2.72 
factor(tlable)118    -0.8214152  0.4271788   -1.92 
factor(tlable)119    -1.4473531  0.4271432   -3.39 
factor(tlable)121    -0.2230853  0.4272183   -0.52 
mzcentered            -0.0051850  0.0001114  -46.53
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 Figure 4.1 : The structure of the iTRAQ label.  
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Figure 4.2 Data without missing: the class differences from multiple protein models  

compared to single model and actual values 

Figure Legend: The comparisons of the estimates for the class differences (a) between single protein model and the actual values, 

(b) between multiple protein model and the actual values, and (c) between the single protein and the multiple protein model. 
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Figure 4.3a Data with missing values: the estimates of class differences from multiple protein models  

compared to single model and actual values. 

Figure Legend: The comparisons of the estimates for the class differences from R/lmer (a) between single protein model and the 

actual values, (b) between multiple protein model and the actual values, and (c) between the single protein model and the multiple 

protein model. 

-2 -1 0 1 2 3

-2
-1

0
1

2
3

R/lmer single protein model vs. Actual values

Estimates of class difference from single protein model

A
ct

ua
l v

al
ue

s 
of

 c
la

ss
 d

iff
er

en
ce

s

-2 -1 0 1 2 3

-2
-1

0
1

2
3

R/lmer multiple proteins model vs. Actual values

Estimates of class difference from Multiple proteins model

A
ct

ua
l v

al
ue

s 
of

 c
la

ss
 d

iff
er

en
ce

s

 

(a)                                      (b) 



123 | P a g e  

 

 

 

-2 -1 0 1 2 3

-2
-1

0
1

2
3

R/lmer Single protein model vs. Multiple proteins model

Estimates of class difference from single model

E
st

im
at

es
 o

f 
cl

as
s 

di
ff
er

en
ce

 f
ro

m
 M

ul
tip

le
 p

ro
te

in
s 

m
od

el

 

        (c) 

 



124 | P a g e  

 

Figure 4.3b Data with missing: the class differences from BUGS and HMC/NUTS multiple protein models  

compared to the actual values 

Figure Legend: The comparisons of the estimates for the class differences (a) between BUGS/Gibbs model and the actual values, 

(b) between HMC/NUTs model and the actual values. 
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Figure 4.3c: data with missing: the estimates of class difference from the multiple protein BUGS  

vs. the multiple protein NUTS algorithm 
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Appendix 4.1 The results from winbugs for the simulated study 

Results of class differences from BUGS/Gibb sampling model 

node  mean  sd 
 MC 
error 

2.50% median 97.50% start sample 
Actual 
values 

U[1,3] -0.3563 0.3069 0.00856 -0.9588 -0.3556 0.243 10000 60002 -0.3999 

U[2,3] -0.08514 0.3001 0.00859 -0.6705 -0.08414 0.5023 10000 60002 -0.1001 

U[3,3] -1.187 0.4287 0.00867 -2.031 -1.186 -0.3532 10000 60002 -0.8907 

U[4,3] -0.1159 0.3547 0.00868 -0.8083 -0.117 0.5773 10000 60002 -0.1238 

U[5,3] -0.1742 0.3115 0.00861 -0.7852 -0.1745 0.4338 10000 60002 -0.1884 

U[6,3] -0.5338 0.379 0.00879 -1.279 -0.5307 0.2041 10000 60002 -0.4139 

U[7,3] -0.5056 0.2997 0.00859 -1.096 -0.5053 0.08082 10000 60002 -0.3858 

U[8,3] -0.5911 0.3104 0.00863 -1.202 -0.5896 0.01122 10000 60002 -0.3807 

U[9,3] -0.2628 0.3522 0.00863 -0.9516 -0.263 0.4247 10000 60002 -0.1976 

U[10,3] -0.1253 0.2945 0.00856 -0.7046 -0.1225 0.4499 10000 60002 -0.0492 

U[11,3] 0.1764 0.3358 0.00868 -0.4858 0.1787 0.8287 10000 60002 0.5038 

U[12,3] 0.3658 0.305 0.00859 -0.2302 0.3672 0.9583 10000 60002 0.4025 

U[13,3] 0.3403 0.38 0.00860 -0.3981 0.3396 1.083 10000 60002 0.9923 

U[14,3] 0.2646 0.3189 0.00868 -0.3597 0.2652 0.8846 10000 60002 0.3205 

U[15,3] 0.602 0.3861 0.00877 -0.1584 0.6002 1.361 10000 60002 0.1709 

U[16,3] 0.5071 0.3228 0.00863 -0.1285 0.5077 1.137 10000 60002 0.6712 

U[17,3] 0.3695 0.3007 0.00860 -0.2224 0.3694 0.9576 10000 60002 0.3899 

U[18,3] 0.09318 0.3147 0.00866 -0.5217 0.09103 0.7084 10000 60002 -0.0388 

U[19,3] 0.191 0.3533 0.00862 -0.5079 0.1919 0.8854 10000 60002 0.1166 

U[20,3] -0.01149 0.3185 0.00857 -0.6363 -0.01076 0.6131 10000 60002 0.2436 

U[21,3] -1.663 0.3477 0.00857 -2.348 -1.661 -0.9874 10000 60002 -1.3456 

U[22,3] 0.2539 0.3241 0.00873 -0.3823 0.2557 0.8922 10000 60002 -0.2069 

U[23,3] 2.229 0.3045 0.00861 1.633 2.23 2.823 10000 60002 2.4402 

U[24,3] -1.475 0.3211 0.00858 -2.105 -1.477 -0.8473 10000 60002 -1.5304 

U[25,3] -0.8535 0.3197 0.00860 -1.483 -0.8543 -0.2264 10000 60002 -1.3245 

U[26,3] 0.898 0.3183 0.00859 0.2737 0.8978 1.52 10000 60002 0.5599 

U[27,3] -0.06493 0.3205 0.00857 -0.6842 -0.06685 0.5626 10000 60002 0.0575 

U[28,3] -0.7983 0.3038 0.00863 -1.394 -0.7974 -0.2017 10000 60002 -0.4889 

U[29,3] -1.537 0.3588 0.00894 -2.243 -1.536 -0.8311 10000 60002 -1.6972 

U[30,3] 1.196 0.3726 0.00860 0.47 1.198 1.922 10000 60002 1.0424 

U[31,3] -0.8398 0.3129 0.00859 -1.458 -0.8395 -0.2287 10000 60002 -0.8875 

U[32,3] 1.474 0.3377 0.00864 0.8109 1.475 2.135 10000 60002 1.4641 

U[33,3] 0.9895 0.3201 0.00859 0.3588 0.9889 1.617 10000 60002 1.0529 

U[34,3] -2.923 0.2995 0.00858 -3.517 -2.924 -2.335 10000 60002 -2.5599 

U[35,3] 1.199 0.319 0.00853 0.5773 1.198 1.818 10000 60002 1.2860 

U[36,3] -0.09446 0.3486 0.00864 -0.7784 -0.09311 0.586 10000 60002 -0.0621 

U[37,3] 2.246 0.3138 0.00863 1.628 2.248 2.86 10000 60002 1.8068 

U[38,3] 0.121 0.3076 0.00860 -0.4902 0.1229 0.7196 10000 60002 -0.0787 

U[39,3] -0.7534 0.3198 0.00858 -1.385 -0.7522 -0.1305 10000 60002 -0.4890 

U[40,3] -1.238 0.3058 0.00859 -1.835 -1.239 -0.6409 10000 60002 -1.1132 

U[41,3] -1.61 0.3746 0.00864 -2.351 -1.607 -0.8812 10000 60002 

 
-2.0841 
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node  mean  sd 
 MC 
error 

2.50% median 97.50% start sample 
Actual 
values 

U[43,3] -0.2689 0.3295 0.00860 -0.915 -0.267 0.3732 10000 60002 -0.4643 

U[44,3] 0.1575 0.3117 0.00859 -0.4513 0.1597 0.7638 10000 60002 -0.1981 

U[45,3] -2.657 0.3471 0.00859 -3.334 -2.655 -1.976 10000 60002 -2.4399 

U[46,3] 1.185 0.3787 0.00869 0.444 1.183 1.928 10000 60002 0.8543 

U[47,3] -1.289 0.3484 0.00861 -1.969 -1.29 -0.6036 10000 60002 -1.4409 

U[48,3] -0.1438 0.3587 0.00860 -0.8536 -0.1433 0.556 10000 60002 -0.2016 

U[49,3] -1.286 0.3297 0.00872 -1.936 -1.285 -0.6379 10000 60002 -1.1397 

U[50,3] 0.2539 0.422 0.00856 -0.5707 0.254 1.081 10000 60002 0.5303 

U[51,3] -0.4893 0.3704 0.00859 -1.216 -0.4899 0.238 10000 60002 -0.1762 

U[52,3] 0.4877 0.3116 0.00859 -0.1241 0.4897 1.102 10000 60002 0.5272 

U[53,3] -0.6573 0.4166 0.00864 -1.473 -0.6574 0.1549 10000 60002 -0.9355 

U[54,3] -0.08731 0.3225 0.00860 -0.7164 -0.08673 0.5433 10000 60002 -0.2024 

U[55,3] -0.6134 0.3191 0.00858 -1.241 -0.6113 0.01037 10000 60002 -0.5191 

U[56,3] 0.06914 0.3222 0.00859 -0.5673 0.07102 0.7019 10000 60002 0.0861 

U[57,3] 0.2395 0.2894 0.00857 -0.33 0.2413 0.8041 10000 60002 0.3132 

U[58,3] -0.5553 0.312 0.00860 -1.16 -0.5545 0.05745 10000 60002 -0.4501 

U[59,3] 0.3046 0.3071 0.00862 -0.2975 0.3032 0.9029 10000 60002 0.1566 

U[60,3] -1.07 0.321 0.00863 -1.695 -1.071 -0.4422 10000 60002 -0.7320 

U[61,3] 1.025 0.3345 0.00873 0.3685 1.026 1.677 10000 60002 1.1896 

U[62,3] 0.4074 0.3156 0.00859 -0.2109 0.4083 1.025 10000 60002 0.4717 

U[63,3] -0.2497 0.3119 0.00857 -0.8638 -0.2491 0.358 10000 60002 0.1348 

U[64,3] -0.2644 0.316 0.00859 -0.8823 -0.2656 0.3607 10000 60002 -0.6039 

U[65,3] -0.3185 0.3063 0.00865 -0.918 -0.318 0.2809 10000 60002 -0.4141 

U[66,3] -1.019 0.3485 0.00853 -1.705 -1.019 -0.3375 10000 60002 -0.9945 

U[67,3] 2.062 0.3478 0.00858 1.381 2.063 2.744 10000 60002 2.0498 

U[68,3] -1.3 0.3205 0.00860 -1.929 -1.301 -0.6736 10000 60002 -1.4650 

U[69,3] 0.6726 0.3224 0.00854 0.04381 0.6738 1.302 10000 60002 0.5855 

U[70,3] 0.1716 0.2948 0.00859 -0.407 0.1719 0.7452 10000 60002 0.0183 

U[71,3] 2.406 0.3107 0.00862 1.796 2.407 3.012 10000 60002 2.3590 

U[72,3] 0.7609 0.3235 0.00856 0.129 0.7614 1.394 10000 60002 0.8880 

U[73,3] -1.75 0.3272 0.00860 -2.387 -1.751 -1.106 10000 60002 -1.4180 

U[74,3] 0.1757 0.3505 0.00862 -0.5084 0.1753 0.8646 10000 60002 0.4820 

U[75,3] -0.4358 0.3461 0.00859 -1.111 -0.4358 0.2403 10000 60002 -0.3600 

U[76,3] 1.946 0.3558 0.00861 1.248 1.945 2.649 10000 60002 1.6929 

U[77,3] 1.73 0.3029 0.00861 1.139 1.733 2.317 10000 60002 1.7721 

U[78,3] 0.3072 0.3318 0.00855 -0.3464 0.3084 0.951 10000 60002 0.3943 

U[79,3] 0.8985 0.2988 0.00857 0.3134 0.8992 1.483 10000 60002 0.8308 

U[80,3] 0.915 0.3228 0.00858 0.2812 0.9155 1.547 10000 60002 1.1303 

U[81,3] -0.6303 0.3035 0.00858 -1.224 -0.6304 -0.02838 10000 60002 -0.7234 

U[82,3] 1.001 0.3348 0.00872 0.3426 1.001 1.658 10000 60002 0.7147 

U[83,3] -0.8603 0.3238 0.00865 -1.492 -0.8616 -0.2231 10000 60002 -1.3631 

U[84,3] 1.643 0.4229 0.00865 0.8218 1.643 2.472 10000 60002 1.5779 

U[85,3] -0.04467 0.3049 0.00860 -0.6432 -0.04488 0.5507 10000 60002 0.2232 

U[86,3] 0.08859 0.3013 0.00861 -0.5036 0.08996 0.673 10000 60002 0.0755 

U[87,3] 0.5075 0.3126 0.00855 -0.1052 0.5093 1.118 10000 60002 0.4859 

U[88,3] -0.227 0.3209 0.00857 -0.8584 -0.2281 0.399 10000 60002 

 
-0.4449 
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node  mean  sd 
 MC 
error 

2.50% median 97.50% start sample 
Actual 
values 

U[90,3] 0.03107 0.3241 0.00865 -0.6055 0.03308 0.6681 10000 60002 0.0664 

U[91,3] 0.06002 0.3311 0.00856 -0.5854 0.0584 0.712 10000 60002 0.3512 

U[92,3] -1.742 0.3193 0.00858 -2.364 -1.741 -1.12 10000 60002 -1.9964 

U[93,3] 1.008 0.3365 0.00855 0.3458 1.01 1.668 10000 60002 1.2492 

U[94,3] 1.005 0.3463 0.00875 0.328 1.006 1.682 10000 60002 1.2948 

U[95,3] -0.8937 0.3242 0.00860 -1.533 -0.8922 -0.2643 10000 60002 -0.7213 

U[96,3] 0.4998 0.406 0.00870 -0.3013 0.5003 1.298 10000 60002 0.8072 

U[97,3] 0.8011 0.3295 0.00870 0.1527 0.8021 1.447 10000 60002 0.8228 

U[98,3] 0.3959 0.301 0.00855 -0.1937 0.3961 0.9888 10000 60002 0.2562 

U[99,3] 1.14 0.3128 0.00857 0.5275 1.14 1.754 10000 60002 1.1956 

U[100,3] -1.358 0.3322 0.00858 -2.008 -1.355 -0.7119 10000 60002 -1.4010 

U[101,3] 1.861 0.4836 0.01043 0.9223 1.861 2.812 10000 60002 1.5428 

U[102,3] -1.902 0.3578 0.00866 -2.599 -1.903 -1.199 10000 60002 -2.0535 

U[103,3] -0.765 0.2885 0.00859 -1.328 -0.765 -0.1998 10000 60002 -0.7086 

U[104,3] -1.799 0.2997 0.00859 -2.384 -1.798 -1.214 10000 60002 -2.0401 

U[105,3] -0.7171 0.3048 0.00859 -1.308 -0.7187 -0.1181 10000 60002 -0.9866 

U[106,3] 0.3936 0.3289 0.00866 -0.2482 0.3928 1.043 10000 60002 0.3256 

U[107,3] 0.3953 0.3345 0.00863 -0.2654 0.396 1.048 10000 60002 0.8028 

U[108,3] -0.8683 0.3324 0.00860 -1.516 -0.8688 -0.2163 10000 60002 -1.3338 

U[109,3] 0.6742 0.3097 0.00856 0.0642 0.6761 1.277 10000 60002 0.6806 

U[110,3] 1.479 0.3394 0.00865 0.8112 1.48 2.146 10000 60002 1.4519 

U[111,3] -0.07207 0.3629 0.00857 -0.7825 -0.07315 0.6421 10000 60002 -0.1312 

U[112,3] 0.8818 0.3025 0.00862 0.2902 0.8823 1.476 10000 60002 1.1946 

U[113,3] -0.9431 0.3002 0.00860 -1.532 -0.943 -0.3584 10000 60002 -0.8810 

U[114,3] 0.5877 0.3539 0.00855 -0.1101 0.5876 1.283 10000 60002 0.7319 

U[115,3] 0.9821 0.3401 0.00857 0.3184 0.9834 1.643 10000 60002 0.6719 

U[116,3] -0.05857 0.3575 0.00869 -0.7641 -0.05925 0.6435 10000 60002 -0.4504 

U[117,3] 1.051 0.3084 0.00864 0.4504 1.052 1.659 10000 60002 1.2376 

U[118,3] 0.5985 0.3702 0.00853 -0.1177 0.5995 1.323 10000 60002 0.4839 

U[119,3] 0.5479 0.3144 0.00858 -0.06697 0.55 1.159 10000 60002 0.7038 

U[120,3] -0.1591 0.3082 0.00858 -0.7592 -0.159 0.4419 10000 60002 0.1484 

U[121,3] -1.746 0.3361 0.00856 -2.408 -1.744 -1.086 10000 60002 -2.0053 

U[122,3] 0.3349 0.3151 0.00860 -0.2814 0.3341 0.956 10000 60002 0.1560 

U[123,3] -0.02037 0.3186 0.00865 -0.6451 -0.01756 0.6008 10000 60002 0.0157 

U[124,3] -0.04692 0.3633 0.00885 -0.7643 -0.04637 0.6602 10000 60002 -0.2022 

U[125,3] 0.8883 0.3474 0.00860 0.209 0.8892 1.564 10000 60002 0.9316 

U[126,3] 0.3268 0.3503 0.00860 -0.3627 0.3263 1.01 10000 60002 -0.0451 

U[127,3] -0.2429 0.3189 0.00857 -0.8688 -0.2426 0.3822 10000 60002 -0.4150 

U[128,3] 1.028 0.3128 0.00861 0.4121 1.029 1.636 10000 60002 1.3100 

U[129,3] -2.191 0.305 0.00859 -2.791 -2.19 -1.59 10000 60002 -2.1579 

U[130,3] -0.6776 0.326 0.00856 -1.319 -0.6776 -0.03479 10000 60002 -0.7702 

U[131,3] 0.08465 0.3213 0.00860 -0.5444 0.08594 0.7153 10000 60002 0.2215 

U[132,3] 0.06586 0.3112 0.00856 -0.5393 0.06518 0.6763 10000 60002 -0.0762 

U[133,3] 0.942 0.3108 0.00861 0.3322 0.9415 1.552 10000 60002 0.7201 

U[134,3] 1.161 0.3353 0.00860 0.4995 1.161 1.816 10000 60002 0.6829 

U[135,3] -1.166 0.3129 0.00858 -1.783 -1.165 -0.5588 10000 60002 -1.4675 

U[136,3] 0.3326 0.2901 0.00858 -0.2381 0.3329 0.8968 10000 60002 
0.4364 
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2.50% median 97.50% start sample 
Actual 
values 

U[137,3] 1.664 0.3359 0.00864 1.001 1.662 2.327 10000 60002 1.7755 

U[138,3] -0.8133 0.3106 0.00856 -1.424 -0.8124 -0.2071 10000 60002 -0.4908 

U[139,3] 0.5963 0.408 0.00877 -0.211 0.5991 1.395 10000 60002 0.6981 

U[140,3] 1.239 0.3118 0.00859 0.6259 1.241 1.842 10000 60002 1.5655 

U[141,3] -2.172 0.3148 0.00866 -2.792 -2.17 -1.557 10000 60002 -2.2697 

U[142,3] -0.3042 0.3234 0.00863 -0.938 -0.3036 0.3303 10000 60002 -0.2860 

U[143,3] -0.458 0.3487 0.00860 -1.143 -0.4578 0.2293 10000 60002 -0.7136 

U[144,3] 1.922 0.3347 0.00859 1.264 1.92 2.582 10000 60002 1.6020 

U[145,3] -0.937 0.3352 0.00860 -1.593 -0.9381 -0.2795 10000 60002 -0.9479 

U[146,3] -0.388 0.3488 0.00861 -1.063 -0.3877 0.2995 10000 60002 -0.6285 

U[147,3] -1.087 0.3044 0.00865 -1.683 -1.086 -0.4941 10000 60002 -1.1145 

U[148,3] 0.1641 0.3315 0.00861 -0.4869 0.1633 0.813 10000 60002 0.1950 

U[149,3] -0.7269 0.3357 0.00861 -1.379 -0.7264 -0.06781 10000 60002 -0.8448 

U[150,3] 0.5596 0.307 0.00862 -0.0448 0.5593 1.16 10000 60002 0.4434 

U[151,3] 0.7939 0.3088 0.00854 0.1868 0.7938 1.399 10000 60002 0.6832 

U[152,3] -1.013 0.3326 0.00860 -1.659 -1.013 -0.3589 10000 60002 -1.0407 

U[153,3] 0.7141 0.292 0.00855 0.141 0.7152 1.284 10000 60002 0.3856 

U[154,3] 0.7426 0.3204 0.00860 0.1103 0.7425 1.369 10000 60002 0.5698 

U[155,3] 1.766 0.347 0.00856 1.087 1.763 2.442 10000 60002 1.3641 

U[156,3] -0.09278 0.3485 0.00860 -0.7747 -0.09247 0.5922 10000 60002 -0.4570 

U[157,3] -1.519 0.333 0.00868 -2.177 -1.519 -0.8727 10000 60002 -1.6470 

U[158,3] 0.2044 0.2976 0.00862 -0.3825 0.2059 0.7828 10000 60002 0.1129 

U[159,3] 1.687 0.4269 0.00880 0.8595 1.689 2.521 10000 60002 1.6094 

U[160,3] 0.5652 0.3049 0.00859 -0.03138 0.5654 1.165 10000 60002 0.4380 

U[161,3] 0.3629 0.3229 0.00858 -0.2711 0.3643 0.9959 10000 60002 0.3205 

U[162,3] -1.275 0.3231 0.00860 -1.911 -1.273 -0.6413 10000 60002 -1.2842 

U[163,3] 0.05481 0.326 0.00866 -0.5836 0.05476 0.6938 10000 60002 0.1020 

U[164,3] -0.4461 0.3353 0.00859 -1.105 -0.4459 0.2089 10000 60002 -0.4548 

U[165,3] -0.8538 0.2992 0.00858 -1.436 -0.854 -0.2676 10000 60002 -0.7972 

U[166,3] -1.114 0.3278 0.00855 -1.755 -1.114 -0.4721 10000 60002 -1.0535 

U[167,3] -0.9286 0.2987 0.00858 -1.515 -0.9283 -0.3411 10000 60002 -0.8223 

U[168,3] 1.056 0.3495 0.00863 0.37 1.055 1.741 10000 60002 1.0021 
 
U[169,3] 

0.8766 0.3219 0.00869 0.2438 0.8775 1.508 10000 60002 1.1623 

U[170,3] -0.8343 0.3346 0.00866 -1.492 -0.835 -0.178 10000 60002 -1.0329 

U[171,3] -0.3383 0.3468 0.00856 -1.022 -0.3383 0.3379 10000 60002 -0.5538 

U[172,3] 0.941 0.3739 0.00861 0.206 0.9421 1.671 10000 60002 0.8997 

U[173,3] 0.407 0.3127 0.00860 -0.2067 0.4081 1.022 10000 60002 0.5937 

U[174,3] -1.401 0.3124 0.00856 -2.014 -1.401 -0.7888 10000 60002 -1.5762 

U[175,3] -1.81 0.3309 0.00857 -2.455 -1.811 -1.162 10000 60002 -1.6044 

U[176,3] 1.124 0.3338 0.00856 0.4744 1.124 1.781 10000 60002 1.1324 

U[177,3] 0.2677 0.3331 0.00863 -0.3856 0.2677 0.9236 10000 60002 0.4848 

U[178,3] 0.5283 0.435 0.00880 -0.3235 0.5284 1.385 10000 60002 1.2640 

U[179,3] 0.4271 0.3204 0.00854 -0.1999 0.4282 1.051 10000 60002 0.4474 

U[180,3] 0.6268 0.32 0.00858 -0.00146 0.6273 1.249 10000 60002 0.5572 

U[181,3] 0.6374 0.3492 0.00857 -0.04196 0.6358 1.321 10000 60002 0.6805 

U[182,3] 0.1783 0.3834 0.00865 -0.5763 0.1792 0.9299 10000 60002 0.3966 
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U[183,3] -0.2847 0.3777 0.00866 -1.027 -0.2835 0.4535 10000 60002 -0.6381 

U[184,3] -1.124 0.3067 0.00861 -1.731 -1.124 -0.5273 10000 60002 -1.0281 

U[185,3] -0.8432 0.3468 0.00853 -1.527 -0.8419 -0.1612 10000 60002 -0.8735 

U[186,3] 0.5686 0.3644 0.00896 -0.1412 0.5684 1.284 10000 60002 0.1583 

U[187,3] 0.7006 0.3206 0.00857 0.06725 0.7016 1.328 10000 60002 0.6154 

U[188,3] -2.258 0.3205 0.00858 -2.889 -2.256 -1.631 10000 60002 -2.5297 

U[189,3] 1.196 0.3017 0.00856 0.6071 1.197 1.787 10000 60002 1.0499 

U[190,3] -0.1481 0.3162 0.00856 -0.7654 -0.151 0.4745 10000 60002 0.0000 

U[191,3] 0.19 0.3512 0.00872 -0.4949 0.1887 0.8833 10000 60002 0.0000 

U[192,3] 0.288 0.3424 0.00868 -0.3788 0.2872 0.963 10000 60002 0.0000 

U[193,3] -0.1345 0.3316 0.00860 -0.7891 -0.1335 0.5149 10000 60002 0.0000 

U[194,3] 0.04397 0.3348 0.00859 -0.6149 0.04408 0.7041 10000 60002 0.0000 

U[195,3] 0.1714 0.3326 0.00857 -0.4738 0.172 0.819 10000 60002 0.0000 

U[196,3] -0.0949 0.339 0.00869 -0.7584 -0.0957 0.5696 10000 60002 0.0000 

U[197,3] 0.1637 0.3157 0.00862 -0.4549 0.163 0.7849 10000 60002 0.0000 

U[198,3] -0.05965 0.2993 0.00858 -0.6475 -0.0598 0.5202 10000 60002 0.0000 

U[199,3] 0.06 0.3463 0.00862 -0.6159 0.06056 0.7398 10000 60002 0.0000 

U[200,3] -0.1525 0.3786 0.00863 -0.8988 -0.1535 0.5875 10000 60002 0.0000 
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Appendix 4.2 

Gelman Rubin statistics for Protein level class differences (Winbugs results for the first 1-

15 proteins, the rest of the proteins have similar ranges in the Gelman Rubin statistics (< 

1.2) as these first 15 proteins. Due to the limitation of pages, they are not all included.) 
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CHAPTER 5   

 A cardiac proteomics study-case study I 

5.1 Description of the study  

The cardiac proteomic study is one part of Dr. Ralph Stewart’s (Department of medicine, 

University of Auckland, and Green Lane Cardiovascular Service, Auckland City 

Hospital) double blinded randomized control trial that investigated how the intra-coronary 

metoprolol (beta blocker) changed the myocardial metabolism of peptides, proteins and 

metabolites profiles in patients admitted to hospital with a first myocardial infarction, 

who had serum troponin T > 0.1mmol/l and needed coronary angioplasty/stenting. In the 

main study, only several candidate markers were selected in the biochemical analysis. 

The selected peptides, proteins and metabolites included Brain Natriuretic Peptide, free 

fatty acids, glucose and lactic acid. Brain Natriuretic Peptide (BNP) is a peptide secreted 

from the myocardial tissue cells which is proved to be a useful marker for the diagnosis of 

heart failure and other heart diseases (Beck et al., 2011; Lin and R.A.H.Stewart, 2011). 

Free fatty acids is one of the fatty acids molecules which can be transported into blood 

stream without aids of other carriers and it can be used in any part of the body where 

needed ("Free Fatty Acids in the Blood,").  Glucose is a metabolite for energy. Lactic acid 

is produced in the muscle tissue during hard exercise.   These candidate molecules are 

hypothesized to change during the coronary intervention.    

In the proteomic section of the study, we investigated how the whole plasma proteome 

profile changed after coronary angioplasty intervention; it involved eight patients from 

the placebo arm. The main study collected five plasma samples at different time points of 

each patient during their percutaneous coronary intervention, two of these plasma samples 

were selected in the proteomic study. 

 

5.2 The laboratory methods (a brief summary of the clinical laboratory sample 

preparation and the iTRAQ experiment in the University lab) 

5.2.1 The clinical laboratory processing for biological samples 

Blood for proteomic analysis was collected in EDTA tubes spiked with 8µM Pepstatin 

and 16µM Bestatin (Protease inhibitors). Plasma was extracted after centrifugation at 
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3,350 xg for 5 mins. The resulting plasma was snap frozen with dry ice/methanol slurry, 

before storage at minus 70 degrees centigrade. This process was performed in the cardiac 

catheterization laboratory within 60 seconds of collection by Dr. Patrick Gladding (North 

Shore Hospital). 

 

5.2.2 The MS/MS iTRAQ experiments for coronary sinus plasma tissue samples 

The processed plasma tissue samples were transformed to the Center for Proteomic and 

Genomic, University of Auckland for proteomic analysis. Each tissue sample was 

independently dissolved and digested by trypsin and mixed with iTRAQ reagents for the 

preparation of the 4-plex MS/MS assays in the Proteomic lab.  The top 12 abundant 

plasma proteins (Table 5.1) were depleted with IgY-12 SC Spin Column (Beckman) with 

10 salt-steps for the fractionations. 

The depletion is a process to exclude the high abundant proteins from the final mass 

spectrometric analysis. The high sensitive mass spectrometer can detect proteins with low 

or very low abundance when excluding those high abundant ones.    

 

Protein database (The Swiss-Prot human protein sequence database) was used in the 

Protein Pilot Software to match observed peptides with their corresponding proteins for 

the identification. In an effort to screen out low scoring protein-hits from a large scale 

analysis, a reversed database search was applied to assess how accurate the protein-hits 

are. Any protein-hits with a confidence score below a criterion as an unsatisfactory (false) 

reversed database matches have been excluded. In this study, according to the 

recommendation from the biochemist in the Center for Proteomic and Genomic, only 

those peptides with confidence score >10 were included for protein quantitation. 

 

5.2.3 Clinical study design and experimental design  

The main study is a randomization control trial with parallel groups of placebo and intra-

coronary metoprolol.  In the placebo arm, a pair of blood samples (one taken before and 

one taken 20 minutes after the percutaneous coronary intervention (PCI)) was selected 

from the series of measurements for each patient.  A total of six right coronary artery 

lesion patients, and two left anterior descending lesion patients were included in this sub-

study.   
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Sixteen blood tissues in total were allocated across 4 runs and 4 iTRAQ™ isobaric tags. 

In each run, a 4-plex MS/MS assay was used to randomly allocate paired samples from 2 

patients. The randomization occurred separately for each run.  Four 4-plex assays were 

used to allocate the 16 samples from 8 patients. This design, Randomized Complete 

Block Design with paired samples, achieves the orthogonality between label and time of 

sample collection (before or after PCI).   

Tryptic peptides were labeled by the iTRAQ™ isobaric tags, followed by fractionation 

and separation of 2d of LC, and analyzed by tandem mass spectrometry (MS/MS).  

Numbers of 535, 254, 242, and 237 proteins were discovered from the 4 ITRAQ runs 

respectively.  

 

Table 5.1  List of the top 12 high abundant proteins in plasma 

 

 Albumin                                                              

 IgG 

 α1-Acid Glycoprotein 

 α1-Antitrypsin 

 Apolipoprotein A-I 

 Apolipoprotein A-II 

 Fibrinogen 

 Haptoglobin 

 IgA 

 IgM 

 Transferrin 

 α1-Acid Glycoprotein 

 α1-Antitrypsin 

 α2-Macroglobulin 
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5.3. The analytical methods  

5.3.1 A single protein multilevel model  

When proteins are analyzed one by one in a multilevel mixed model, the intensities of the 

peptides for a given protein will be modeled as the response variable; the variations of the 

intensities of peptides are expected to be composed of the variations from experiments, 

from the instrumental features of the mass spectrometer, and from subject’s physiological 

conditions.  

In this case study, the experimental factors that potentially contribute to the variances of 

the peptide intensities includes the iTRAQ labels and runs effects. The value of the mass-

to-charge ratio (m/z) is one type of the instrumental features. The subject’s physiological 

conditions include different subject’s baseline peptide intensity level which can be 

defined as subject intercepts and the sampling time of the peptide intensity level. The 

sampling time records if the sample is collected either before or after the coronary 

intervention. A single protein model similar as equation (3) defined in chapter 4 is 

constructed below,   

4 8

, 0, 1 , 2, , , 3, , , ,
1 1

i l l i l h h i l r r i l i l
h r

y b mz label run e  
 

      , 

(1) 

0, 0,0 1 , 0,_l i l lb sampling time u     , 

(2) 

where,  

,i ly  represents the intensity on the natural log scale for the ith observed peptide and lth 

subject, i ranges between 1 and the total number of peptides included in the analysis,  l 

=1,…8;  

The symbol 0,lb  represents the intercept for the lth subject; 
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The symbol imz  represents the centralized m/z ratio for the ith peptide observation; and 

1 is its regression coefficient; 

The symbol , ,h i llabel  and , ,r i lrun defines the label and run that ,i ly are observed, 2,h and 

3,r are regression coefficients for label h and run r respectively;   

0,0  represents the subject level regression coefficients for intercept and sampling time; 

,_ i lsampling time  is a binary variable that indicates if the blood sample was collected 

before or after the coronary intervention; its coefficient 1 represents the abundance 

difference between the two sampling time which is the effect caused by the coronary 

intervention;   

0,lu  represents the random residual term at the subject level.  

Equation (1) of level 1 includes imz , , ,h i llabel  and , ,r i lrun  as fixed effects and a random 

residual error term ,i le . Equation (2) of level 2 includes the different sampling time 

,_ i lsampling time  as a fixed effect. Since every biological subject has multiple peptide 

records, and we hypothesized that each subject may have a different level of abundance 

for a protein, equation (2) includes a random residual term 0,lu  for the subjects. 

Substituting (2) to (1) gives us   

4 8

, 0,0 1 , 1 , 2, , , 3, , ,
1 1

0, ,

_i l i l i l h h i l r r i l
h r

l i l

y sampling time mz label run

u e

    
 

        
   

 

, 

(3) 

, where 1 3,,..., r   are the fixed effects regression coefficients for the experimental factors 

and  0,0 1,   are the fixed effect coefficients for intercepts and sampling time respectively; 

0,lu , ,i le  are the random effects for subjects and unexplained errors respectively.   
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The results of model described in (3) showed that, Eighty-four of the 151 proteins have 

sufficient peptide information to achieve the convergence in the algorithm of the mixed 

models for estimating both random and fixed effects. The variance of subjects’ intercepts 

range from 0.07 to 8.88 among these 84 single protein models. The differences in the 

relative quantities between two sampling times on the log-scale ranged between -3.52 - 

0.57, which is equivalent to fold changes ranging between 0.03-1.77.  

 

5.3.2 Multiple protein multivariate model with random effects at protein and subject 

levels ignoring missing values  

For the data structure described in chapter 4, peptides are nested within proteins and 

proteins are crossed over subjects. A hierarchical multivariate approach will enable us to 

analyze all proteins using one model. This model estimates the intervention and the slope 

of the m/z ratio as random effects at the protein level and includes a random intercept 

representing the observed abundance of various proteins. iTRAQ Label and run are 

included as fixed effects, assuming that their effects are the same across different 

proteins. The slopes of m/z within different combinations of run and label were not 

shown to vary (figure 5.1) and the interactions of m/z and run or label were therefore not 

included in the model.  Subject is included as a random effect.   

The two-level model is defined as follows: 

4 8

, , 0, 0, , , 1, , , 2, , , , 3, , , ,
1 1

4, , , , ,_

i l p l p i l p p i l p h h i l p r r i l p
h r

p i l p i l p

protein mz label run

sampling time e

     


 

    

 

 
, 

(4) 

0, 0 0,

1, 1 1,

4, 2 2,

p p

p p

p p

b

b

b

 

 

 

 

 

 
, 

(5) 
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0, 0,0 0,l lc   ,        (6) 

Equation (4) defines the level 1 relation between the peptide intensity , ,i l p  of protein p 

subject l and independents m/z, label, run, and sampling time;  2, 3,,h r    are the 

regression coefficients for label h and run r, they are the same across all proteins. 0, p , 

1, p and 4,p represents the protein intercept, coefficients for m/z and sampling time 

respectively.  0,p , 1, p and 4,p  vary across different proteins. 

Equation (5) assigns the relation between protein level random coefficients and their 

explanatory variables. In this case study, only an intercept 0 2,...,  and a random residual 

0, 2,,...p pb b for each protein are included as the explanatory variables for each random 

coefficient.  

Equation (6) assigns the relation between subject level random coefficients and their 

explanatory variables. Only an intercept 0,0 and a random residual 0,lc for each subject 

are included as the explanatory variables.  

Substituting (5)-(6) into (4) gives us the following mixed effected model: 

4 8

0,0 0 , , 1 , , 2, , , , 3, , , ,
1 1, ,

2 , ,

1, , , 2, , , 0, , , 0, , ,

_

_

i l p i l p h h i l p r r i l p
h ri l p

i l p

p i l p p i l p p i l p l i l p

protein mz label run

sampling time

b mz b sampling time b protein c e

    



 

 
       

  
         

 

, 

(7) 

where,  

 0, 1, 2,, , ~ ( , )p p pb b b MVN 0 Φ ;  2
0, 0~ 0,lc N  ;  2

, , 0,i l pe N  ; 

2
,0 ,0 ,1 ,0 ,2

2
,0 ,1 ,1 ,1 ,2

2
,0 ,2 ,1 ,2 ,2

b b b b b

b b b b b

b b b b b

    
    
    

 
   
  

Φ . 
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Based on the model defined in equation (7), three multivariate multilevel proteins models 

were used for the cardiac proteomic study and their results are shown in Table 5.2.  

As shown in Table 5.2, Model 1 and Model 2 do not include a fixed effect for the 

intervention as Model 3 does. In model 3, the fixed effect for the intervention is shown to 

be significant as are the centralized mass-to-charge ratio (m/z), label 116 and 117. Model 

3 has the smallest AIC, BIC, deviance and REML deviance, and is chosen as the best 

model for this dataset.  

In model 3, the variance of random effects for proteins parameters is 0.09 (std: 0.29), 

7.0e-07 (std: 0.0009), and 0.52 (std: 0.72) for 2
,0b (intercept), 2

,1b (m/z) and 2
,2b  

intervention respectively. The variance of subject intercept 2
0 is 1.5 (std: 1.23). The 

variance of residual errors 2  is 2.57. The variance of protein intercepts is relatively 

smaller compared to the variance of subject intercepts. The intra-class correlation 

coefficient (ICC) is a measure of variance for the estimated random effect compared to 

the unexplained variance.  ICC for intervention effect at the protein level 
2

,2
2 2

,2

b

b



   is 0.20, 

and the ICC for the subjects
2

0
2 2

0


   is 0.58.  

The fixed effects of centralized m/z and intervention are -0.0015 and -1.42, respectively, 

and both are shown to be significant (t= -10.25 and -19.25 respectively).  Label 116 and 

label 117 are also significantly different from the reference label 113.  The significant 

fixed effect of intervention reveals a systematic change of -1.42 on the log-scale in all 

protein expressions, which can be explained by a possible dilution impact on the 

molecules in the bloodstream caused at the time when they flow through the coronary 

sinus from the aorta.  The predicted random effects of intervention for different proteins 

indicate the magnitudes of fold changes in the protein abundances introduced by the 

intervention. The predicted random effects of intervention for each protein can be 

equivalently treated as the adjusted protein ratios derived from the model.     

 

 

 



140 | P a g e  
 

 

Table 5.2 The multivariate multilevel models 

Model 1: intensity~ factor(run)+factor(label)+ (1+m/z+  factor(intervention) | protein) + 

(1 | subject) 

 

Random effects: 

 Groups     Name                      Variance        Std. Dev.         Corr           

 protein    (Intercept)                   0.29               0.54                

                centralized m/z           2.98e-06         0.0017             -0.74         

                intervention)     2.54                1.60                 -0.90   0.82  

 subject    (Intercept)                  1.50                1.23                

 Residual                                    2.57                1.60               

 

Number of obs: 15895, groups: protein, 151; subject, 8 

Fixed effects: 

Estimate         Std. Error      t value 

(Intercept)                           3.46  0.87  3.99 

run2                          -0.0080 1.22  -0.006 

run3                         -0.0067 1.22  -0.005 

run4                          -1.50  1.22  -1.22 

label115                   -0.085  0.043  -1.99 

label116                   0.43  0.052  8.24 

label117                   -0.23  0.047  -4.90 

AIC              BIC          log Likelihood      deviance     REMLdev 

60812  60927  -30391                   60775          60782 
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Model 2: intensity~ factor (run)+ factor(label)+ m/z +(1+m/z+  factor(intervention) | 

protein) + (1 | subject) 

 

Random effects: 

 Groups     Name                      Variance          Std.Dev.         Corr           

 protein   (Intercept)                   0.09                 0.29                

                centralized m/z          7.0e-07            0.0009             -0.053         

                intervention     0.52                 0.72                 -0.640  0.205  

 subject    (Intercept)                  1.50                 1.23                

 Residual                                    2.57                 1.60               

 

Number of obs: 15895, groups: protein, 151; subject, 8 

Fixed effects: 

                                            Estimate         Std. Error      t value 

run2     -0.01  1.22                -0.008 

run3                          -0.0079 1.22                -0.006 

run4                         -1.50  1.22                -1.23 

label115                  -0.088  0.0423            -2.07 

label116                  0.4296  0.0521            8.24 

label117                  -0.2334 0.0471            -4.96 

centralized m/z            -0.0012 0.0001  -8.65 

AIC          BIC      log likelihood     deviance     REMLdev 

 60813     60935    -30390               60757           60781 
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Model 3: intensity~ factor (run)+ factor(label)+ m/z + factor(intervention)+(1+m/z+  

factor(intervention) | protein) + (1 | subject) 

 

Random effects: 

 Groups     Name                      Variance          Std.Dev.         Corr           

 protein   (Intercept)                   0.09                 0.29                

                centralized m/z          7.0e-07            0.0009             -0.053         

                intervention     0.52                 0.72                 -0.640  0.205  

 subject    (Intercept)                  1.50                1.23                

 Residual                                    2.57                1.60               

 

Number of obs: 15895, groups: protein, 151; subject, 8 

Fixed effects: 

                                           Estimate         Std. Error      t value 

run2                        -0.012             1.22  0.010 

run3                        -0.0087           1.22  -0.007 

run4                        -1.50               1.23  -1.23 

label115                  -0.07               0.04  -1.66 

label116                   0.43                0.05  8.22 

label117                   -0.22               0.047  -4.68 

centralized m/z                   -0.0015           0.0001  -10.15 

intervention             -1.42               0.074  -19.25 

AIC          BIC       logLik     deviance     REMLdev 

 60625     60756     -30296    60564         60591 
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5.3.3 Multiple protein multivariate model with random effects at protein and subject 

levels and with the missing mechanisms modeled by a Bayesian approach.    

This case study has 17780 peptide observations of which 1667 (9.4%) had censored and 

218 (1.2%) had completely missing values in the peptide intensities.    

In the Bayesian model, the same linear multilevel mixed regression model as defined in 

(7) were used to define the relation between the peptide intensities and explanatory 

variables.  The explanatory variables include protein level parameters (intercept, m/z ratio 

and sampling time), peptide level parameters (m/z ratio, run and label), and subject level 

intercepts. Logistic regression was used to model the missing probability as a function of 

m/z ratio and quantities (observed or unobserved).  

The Bayesian model: 

 

, , 0, , , 0, , , 1, , , , ,

4 8

4, , , , , 2, , , , 3, , , ,
1 1

, , 0 1 , , 2 , ,

_

logit Pr(missed )

i l p l i l p p i l p p i l p i l p

p i l p i l p h h i l p r r i l p
h r

i l p i l p i l p

subject protein protein mz

protein sampling time label run

pm mz

   

  

    
 

   

   

   

 
, 

(8) 

where 

, ,i l p  defines the mean for the peptide intensity including completed, completely missing 

and censored values,  2
, , , ,~ ,i l p i l pN   ; 

, ,i l psubject defines the subject identity and 0,l defines the intercepts for each subject; 

0, 1, 4,, ,p p p   define the protein level parameters: intercept, m/z ratio and sampling time 

and , ,i l pprotein is a variable recording the identity of protein; 

2,h and 3,r are regression coefficients for label h and run r respectively; 
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pm defines the probability of having a missing intensity value, 0 1,...,  define the 

regression coefficients in the logistic regression for pm .  

 Priors:  

As described in chapter 4, the missingness is modeled for the censoring and completely 

missing using logistic regression. The coefficients of logistic regression α1 and α2 are part 

of the joint unknown parameters with a pair of chosen normally distributed informative 

priors (0.0085,4 8), ( 0.45,0.25)N e N   for m/z ratio and peptide abundance respectively 

(Hrydziuszko and Viant, 2012). The protein level parameters 0, 1, 4,, ,p p p    used a 

multivariate normal distributed prior (γ, T) where,    

 

1 1( , ), ( ,3)

0.5,0.5,0.5 ,

0.01 0.01 0.01 0.01 0.001 0.001

0.01 0.01 0.01 , 0.001 0.01 0.001

0.01 0.01 0.01 0.001 0.001 0.01

MVN invWISHART 


   



   
         
   
   

 
. 

The non-informative priors for the peptide level parameters 2,h  and 3,r are normally 

distributed and denoted as (0,10)N  with mean 0 and precision 0.1, and the non-

informative prior for the subject level parameters 0,l is normal distributed and denoted as 

(0,1)N  with mean 0 and precision 1.  

Computing programs: 

In the program for Gibbs sampling, the missing probability for censored peptide intensity 

is fixed to be 1; In the HMC/NUTs program, the missing probability for the censoring is 

the cumulative probability of an intensity value lower than the detectable limit and it is 

derived by integrating a standard normal density function between the negative infinite 

and the standardized detectable limit c  0,1
c

N x dx

 , where c is standardized by the mean 

intensity values , ,i l p  and the variance 2 .  

The Rstan HMC/NUTS program uses the same priors as the BUGS program; except for 

the scaled matrix of the inversed Wishart distribution that 0.1 is set as the diagonal 



145 | P a g e  
 

value and 0.05 as the off-diagonal value. Both the BUGS and the Rstan program utilize 

the m/z ratio information from the censored and missing peptide observations for deriving 

the posterior estimates of the unknown parameters.  

Comparison of the results of posteriors of the unknown parameters across R/lmer, BUGs 

and HMC/NUTs program   

Posterior median, 2.5% and 97.5% for the interventional effect for different proteins from 

both BUGs and HMC/NUTS program are listed in the appendix. Nineteen proteins are 

elevated and 17 proteins are suppressed post the coronary intervention shown in both the 

BUGs and NUTs results. Amongst the proteins with elevated abundance, the biggest fold 

change 4.5 is from Apolipoprotein A1 (APOA1 Apoli) protein, and 19 proteins have 

folder changes > 1.5.  Among proteins with suppressed abundances, the biggest fold 

reduction of 0.70 is from A2M Alpha-2 protein, and 5 proteins have folder reduction > 

0.50.  

The Monte Carlo sampling error is smaller in the NUTs results.  The point estimates of 

the R/lmer single model that are in the range of -2 and -4 are shown to shrink towards the 

ranges of 0 and -2, between which the grand mean lies (figure 5.2). There are more 

disagreements in the point estimates of the interventional effects from the results of 

NUTS than results from BUGS when compared to results of R/lmer (figure 5.3). The 

disagreements in the estimated interventional effects for proteins are plausibly due to the 

large proportion of censoring values in this case study. Figure 5.4(b) demonstrated the 

comparison between NUTS and BUGS result when the censored values were excluded, 

we observed a better agreement under this circumstance.  

As shown in table 5.3, the cross proteins variances for intercept, m/z ratio and 

intervention from NUTS program are 0.34, 0.034 and 0.70 respectively; and these values 

are 0.05, 8.3e-5 and 0.03 from BUGS respectively.  Compared to the variance 

components in model 3 of R/lmer, which are 0.09, 7.0e-07 and 0.52 respectively, NUTS 

has a similar intervention variance but a much bigger m/z ratio variance.  BUGS has a 

similar protein intercept variance, a bigger m/z variance but smaller intervention variance.   

The unexplained residuals variance in the NUTS and BUGS models are 1.62 and 0.37 

respectively; both are smaller than 2.57 in the R/lmer multiple protein models. The 
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missing parameters for peptide abundance of BUGS are different from the NUTS 

estimates, but the missing parameters for m/z of these two different models are similar.   

 

 

5.4. Discussion 

The multiple proteins model which utilized the information across runs and labels for 

different proteins improved the accuracies for the estimates of intervention effect and 

slope of m/z ratio predicting the peptide intensity for different proteins, in particular for 

proteins with small number of observations. The multiple protein model also enable us to 

identify the systematic post-coronary intervention reduction in the intensities for all 

proteins; while gives us the prediction of the change for every protein. Adding the 

unknown parameters of the missing components using the Bayesian approach reduced the 

variance in the unexplained random errors and the across protein variance in the 

interventional effects, but it also introduces more variances in the coefficients of m/z ratio 

across proteins.   
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Table 5.3 The posterior parameters derived from T in the multivariate multilevel model from Gibbs sampling  

and HMC/Non U Turn Sampling 

Gibbs: 

Posterior of the protein level variance components   

Groups     Name                  Variance(median(IQR))             

 Protein   (Intercept)                 0.053 (0.081,0.034)                

                centralized m/z         8.3e-5 (6.6e-5,1.1e-4)             

                intervention              0.032 (0.021,0.049) 

 Residual                                  0.37 (0.36, 0.38)          

 

Posterior distribution of the logistic regression coefficients 

for  the missing model 

Groups     Name Coefficient (median (2.5%-97.5%))     

Missing     Intercept                -8.20 (-10.14,-7.25) 

                  m/z                        0.0084 (0.0084, 0.0088) 

                 peptide abundance -2.89 (-2.29,-1.97)    

NUTS: 

 Posterior of the protein level variance components   

 Groups     Name                  Variance(median(IQR))            

 Protein   (Intercept)                0.34 (0.30, 0.35)               

                centralized m/z        0.034 (0.031,0.037)                 

                intervention             0.70 (0.66, 0.75)  

 Residual                                 1.62 (1.609,1.63)                       

  

Posterior distribution of the logistic regression 

 coefficients for  the missing model 

 Groups     Name              Coefficient (median(IQR))     

 Missing     Intercept               -4.18 (-4.20, -4.07)        

                   m/z                        0.0085 (0.00849, 0.0085) 

              peptide abundance    -0.77 (-0.90,-0.75) 
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Figure 5.1 The associations between mass-to-charge ratios (m/z) and the relative intensities (on log scale)  

by different combinations of runs and labels 
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Figure 5.2 The comparison in the estimates of the interventional effect between single protein model and multiple proteins model 
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Figure 5.3 The comparison in the estimates of intervention effect between R/lmer, Gibbs and HMC/NUTs methods 
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Figure 5.4 Comparison of intervention effect between HMC/NUTS and Gibbs methods  

using all data and data without censored intensities 

Figure Legends: (a) Comparison of estimates of the changes in intensities after the intervention from NUTS vs. BUGS using all data;  

(b) Comparison of estimates of the changes in intensities after the intervention from NUTS vs. BUGS using data excluding the observations 
with censored intensity. 
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   WinBUGS/Gibb Sampling Results    
Rstan/N 

NUT Sampling results 

Protein 
12.5 

percent
ile 

median 
97.5 

percentile 
Direction 
of changes 

12.5 
percentile 

median 
97.5 

percentile

‐ 104 kDa p  ‐0.875  ‐0.477  ‐0.085  downward  ‐0.422  ‐0.407  ‐0.352

‐ Hypotheti  0.127  0.605  1.081  upward  0.085  0.197  0.406

‐ Ig kappa  ‐1.611  ‐0.502  0.575  ‐0.467  0.629  0.677

‐ Lambda‐ch  ‐0.199  0.426  1.049  ‐0.451  0.187  0.248

‐ Rheumatoi  ‐1.455  ‐0.293  0.855  ‐0.132  0.386  0.539

A1BG alpha  0.283  0.74  1.195  upward  0.404  0.475  0.749

A2M Alpha‐2  ‐1.47  ‐1.177  ‐0.884  downward  ‐1.219  ‐1.154  ‐1.108

ACTG1 Actin  ‐1.308  ‐0.127  1.047  ‐0.562  ‐0.284  1.048

AFM Afamin  0.038  0.411  0.785  upward  0.312  0.328  0.462

AGT Angiote  ‐0.657  0.046  0.75  ‐0.064  0.528  0.685

AHSG Alpha‐  0.534  0.941  1.349  upward  0.747  0.796  1.159

ALB Isoform  1.112  1.378  1.647  upward  0.893  1.013  1.219

AMBP AMBP p  0.175  0.747  1.326  upward  0.265  0.282  0.569

APOA1 Apoli  0.965  1.504  2.046  upward  0.646  0.709  1.327

APOA2 Apoli  ‐1.077  ‐0.298  0.473  /upward  0.223  0.303  0.572

APOA4 Apoli  0.286  0.609  0.933  upward  0.381  0.804  1.001

APOB Apolip  ‐0.701  ‐0.321  0.064  /downward  ‐0.451  ‐0.431  ‐0.403

APOC2;APOC4  ‐0.995  0.085  1.159  ‐0.364  0.429  0.795

APOC3 13 kD  ‐0.509  0.312  1.135  ‐0.434  ‐0.343  0.305

APOE Apolip  ‐2.114  ‐1.026  0.033  /downward  ‐1.517  ‐0.547  ‐0.033

APOH Beta‐2  0.792  1.176  1.556  upward  0.957  1.24  1.37

APOM Apolip  ‐1.058  ‐0.023  1.023  /upward  0.02  0.287  0.973

ATRN 152 kD  ‐1.061  0.115  1.266  ‐0.303  0.132  0.949

AZGP1 alpha  ‐0.631  ‐0.038  0.554  ‐0.72  ‐0.048  0.812

B2M B2M pro  ‐0.507  0.344  1.211  ‐0.841  ‐0.179  0.093

BCHE Cholin  ‐1.291  ‐0.246  0.803  ‐0.546  ‐0.144  0.366

BTD biotini  ‐1.032  0.071  1.178  ‐0.855  ‐0.407  0.718

C1QB comple  ‐0.773  0.157  1.086  ‐0.484  ‐0.307  ‐0.155

C1QC Comple  ‐1.146  0.053  1.266  ‐1.302  ‐0.024  1.163

C1R Complem  ‐1.085  ‐0.41  0.255  ‐0.342  ‐0.15  0.228

C1RL Comple  ‐0.893  0.058  1.017  ‐0.065  ‐0.023  0.144

C1S Complem  ‐0.114  0.409  0.934  ‐0.009  0.192  0.315

C2 Compleme  ‐0.332  0.173  0.68  /upward  0.148  0.32  0.464

C3 Compleme  ‐0.008  0.188  0.385  /upward  0.174  0.291  0.299

C4A Complem  ‐1.914  ‐0.715  0.455  ‐0.521  ‐0.287  0.416

C4B complem  0.496  0.815  1.138  upward  0.012  0.609  0.667

C4BPA C4b‐b  ‐0.783  ‐0.305  0.178  ‐0.626  ‐0.222  0.018

C4BPB Isofo  ‐1.019  ‐0.172  0.673  ‐0.97  ‐0.541  0.602

C5 Compleme  ‐1.277  ‐0.73  ‐0.177  downward  ‐0.882  ‐0.675  ‐0.618
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   WinBUGS/Gibb Sampling Results     Rstan/NUT Sampling results 

Protein  12.5 
percentile 

median 
97.5 

percentile 
Direction 
of changes 

12.5 
percentile 

median 
97.5 

percenti
le 

C6 Compleme  ‐0.231  0.186  0.606  ‐0.108  0.203  0.665

C7 Compleme  ‐0.793  ‐0.204  0.374  ‐0.399  ‐0.345  ‐0.063

C8A 65 kDa  ‐0.701  0.08  0.855  /upward  0.111  0.23  0.267

C8B Complem  ‐1.841  ‐1.017  ‐0.195  downward  ‐0.97  ‐0.945  ‐0.062

C8G Complem  ‐0.711  0.197  1.117  /upward  0.09  0.473  1.06

C9 Compleme  ‐0.981  ‐0.419  0.136  /downward  ‐0.298  ‐0.098  ‐0.028

CA1 Carboni  ‐1.173  0.065  1.324  /upward  0.489  0.575  0.713

CD14 Monocy  ‐1.22  ‐0.191  0.835  ‐0.56  0.005  0.392

CD44 Isofor  ‐0.308  0.77  1.87  ‐0.915  0.108  0.752

CD5L CD5 an  ‐0.603  0.168  0.934  /downward  ‐0.795  ‐0.465  ‐0.048

CFB Isoform  0.586  0.886  1.19  upward  0.413  0.661  0.942

CFD complem  ‐1.22  ‐0.147  0.923  ‐0.442  0.593  0.958

CFH Isoform  ‐0.096  0.194  0.482  /upward  0.04  0.131  0.763

CFHR2 Isofo  ‐1.247  ‐0.289  0.664  ‐0.324  ‐0.178  0.108

CFI Complem  0.06  0.567  1.081  upward  0.484  0.511  0.664

CFP 50 kDa  ‐0.566  0.245  1.067  ‐0.66  ‐0.637  0.175

CLEC3B Hypo  ‐1.31  ‐0.208  0.885  ‐0.016  0.14  1.23

CLU 52 kDa  ‐0.966  ‐0.148  0.67  ‐0.213  0.023  0.404

CLU 54 kDa  ‐0.417  0.412  1.248  ‐0.579  ‐0.23  0.317

CNDP1 Beta‐  ‐1.321  0.005  1.339  /downward  ‐0.961  ‐0.525  ‐0.011

CP Cerulopl  ‐0.743  ‐0.437  ‐0.13  downward  ‐0.522  ‐0.366  ‐0.047

CPB2 Isofor  ‐1.001  ‐0.031  0.945  ‐0.197  0.631  0.902

CPN1 Carbox  ‐1.425  ‐0.19  1.003  ‐1.017  ‐0.803  0.538

CPN2 simila  ‐1.097  ‐0.301  0.488  ‐1.072  0.344  0.514

CRP Isoform  ‐1.469  ‐0.265  0.93  ‐0.246  0.005  0.798

DBH dopamin  ‐1.448  ‐0.191  1.063  ‐0.481  0.202  0.468

ECM1 Extrac  ‐0.3  0.549  1.403  0.14  0.163  0.194

F10 Coagula  ‐0.961  0.072  1.104  ‐0.842  0.158  0.476

F11 Isoform  ‐1.462  ‐0.445  0.556  ‐0.059  0.355  0.661

F12 Coagula  ‐0.047  0.544  1.14  ‐0.077  0.485  0.542

F2 Prothrom  ‐0.451  ‐0.089  0.269  ‐0.738  ‐0.357  0.123

F5 Coagulat  ‐1.157  ‐0.212  0.741  ‐1.002  0.183  0.301

F9 Coagulat  ‐1.621  ‐0.437  0.723  /upward  0.051  0.109  0.278

FCN3 Isofor  ‐1.375  ‐0.487  0.38  /upward  0.295  0.321  0.528

FETUB 42 kD  ‐1.323  ‐0.301  0.721  /downward  ‐0.761  ‐0.411  ‐0.302

FGA Isoform  0.65  0.931  1.21  upward  0.536  0.804  0.816

FGB Fibrino  ‐0.904  ‐0.618  ‐0.326  downward  ‐0.968  ‐0.626  ‐0.252
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   WinBUGS/Gibb Sampling Results     Rstan/NUT Sampling results 

Protein  12.5 
percentile 

median 
97.5 

percentile 
Direction of 
changes 

12.5 
percentile 

median 
97.5 

percentile

FGG Isoform  ‐1.473  ‐1.109  ‐0.748  downward  ‐1.065  ‐0.869 ‐0.429

FN1 Isoform  ‐0.572  0.139  0.854  ‐0.187  ‐0.047 0.017

FN1 fibrone  ‐0.587  ‐0.183  0.211  ‐0.231  ‐0.049 0.055

GC vitamin  ‐0.293  0.311  0.918  /upward  0.264  0.33 0.361

GPLD1 Isofo  ‐1.634  ‐0.397  0.813  ‐0.664  0.622 0.886

GPX3 Glutat  ‐1.859  ‐0.714  0.413  /downward  ‐0.498  ‐0.456 ‐0.228

GSN Isoform  0.321  0.714  1.101  upward  0.023  0.667 0.821

HABP2 Hyalu  ‐1.715  ‐0.69  0.316  /downward  ‐0.599  ‐0.529 ‐0.012

HBA1;HBA2 H  ‐0.407  0.267  0.949  ‐0.328  0.867 1.008

HBB Hemoglo  ‐0.707  ‐0.063  0.577  ‐0.601  ‐0.274 0.661

HGFAC Hepat  ‐1.963  ‐0.758  0.389  /upward  0.21  0.288 0.331

HP Haptoglo  0.934  1.28  1.624  upward  0.122  1.048 1.215

HPR Isoform  ‐1.518  ‐0.251  1.007  ‐0.313  ‐0.016 0.374

HPX Hemopex  ‐0.53  ‐0.208  0.114  ‐0.288  ‐0.052 ‐0.04

HRG Histidi  ‐0.272  0.183  0.635  ‐0.066  ‐0.001 0.16

IGF2 Isofor  ‐0.712  0.301  1.315  ‐0.368  0.029 1

IGFALS Insu  ‐1.708  ‐1.006  ‐0.31  downward  ‐1.088  ‐0.53 ‐0.317

IGFBP3 CDNA  0.019  0.869  1.714  upward  ‐0.622  ‐0.18 0.276

IGHA1 CDNA  0.239  1.232  2.272  upward  ‐0.419  0.031 0.319

IGHA1 Hypot  ‐0.792  0.355  1.523  ‐0.169  ‐0.07 0.296

IGHA1 IGHA1  ‐0.08  0.739  1.58  ‐0.037  0.03 0.092

IGHG2 Hypot  ‐0.065  0.622  1.317  /upward  0.097  0.387 0.52

IGHG3 IGHG3  ‐0.63  0.291  1.217  /downward  ‐0.409  ‐0.363 ‐0.102

IGHG4 IGHG4  ‐0.404  0.616  1.649  /upward  0.522  0.53 0.715

IGHM IGHM p  ‐0.328  0.093  0.525  ‐0.423  ‐0.111 ‐0.013

IGHV4‐31 Hy  ‐1.597  ‐0.392  0.782  ‐0.51  ‐0.214 0.053

IGJ immunog  ‐0.429  0.536  1.52  ‐0.319  0.272 0.423

IGKC IGKC p  0.188  1.072  1.965  upward/  ‐0.034  0.247 1.392

IGKV3D‐11 S  ‐0.96  0.203  1.383  ‐1.144  0.557 0.65

IGL@ IGL@ p  ‐1.373  ‐0.348  0.677  ‐1.029  0.247 0.322

ITIH1 Inter  ‐1.186  ‐0.714  ‐0.252  downward  ‐0.7  ‐0.615 ‐0.337

ITIH2 Inter  ‐0.864  ‐0.438  ‐0.01  downward  ‐0.613  ‐0.401 0.205

ITIH3 Inter  ‐0.401  0.246  0.901  /downward  ‐0.303  ‐0.243 ‐0.084

KLKB1 Plasm  ‐1.031  ‐0.286  0.442  /upward  0.32  0.414 0.429

KNG1 Isofor  0.018  0.791  1.577  upward  ‐0.132  0.456 2.131

KNG1 Kinino  ‐0.445  0.057  0.555  ‐0.29  ‐0.101 0.325

KRT1 Kerati  ‐1.474  ‐0.145  1.153  ‐0.608  ‐0.24 0.913

LCAT Phosph  ‐1.402  ‐0.142  1.103  /upward  0.055  0.065 0.643

LGALS3BP Ga  ‐1.048  0.021  1.089  ‐0.748  ‐0.687 0.378

LPA Lipopro  0.095  0.971  1.875  upward  0.245  0.52 0.817

LRG1 Leucin  ‐0.92  ‐0.333  0.253  /downward  ‐0.54  ‐0.389 ‐0.352

LUM Lumican  ‐1.39  ‐0.699  ‐0.012  downward  ‐1.003  ‐0.071 ‐0.018

MBL2 Mannos  ‐1.403  ‐0.306  0.767  ‐0.883  ‐0.344 0.575

MST1 Hepato  ‐0.854  0.12  1.101  ‐0.252  0.063 0.287

ORM1 Alpha‐  ‐0.489  0.306  1.112  0.149  0.26 0.5

ORM2 Alpha‐  ‐0.572  0.279  1.131     ‐0.195  0.734 0.887
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*The mean difference on log scale has adjusted by adding the dilution factor of 1.4

   WinBUGS/Gibb Sampling Results     Rstan/NUT Sampling results 

Protein  12.5 
percentile 

median
97.5 

percentile 
Direction 
of changes 

12.5 
percentile 

median 
97.5 

percentile

PGLYRP2 Iso  ‐0.54  0.05  0.647  ‐0.431  0.367  0.778

PI16 protea  ‐0.871  0.175  1.219  ‐0.435  0.104  0.14

PLG Plasmin  ‐0.3  0.021  0.342  ‐0.035  0.073  0.472

PON1 Serum  ‐1.51  ‐0.422  0.644  ‐0.517  0.165  0.202

PRG4 Isofor  ‐1.315  ‐0.243  0.818  ‐0.85  ‐0.444  ‐0.258

PROS1 Vitam  ‐0.806  ‐0.217  0.37  downward  ‐0.49  ‐0.478  ‐0.182

PTGDS Prost  ‐1.254  ‐0.094  1.055  ‐0.248  ‐0.031  0.309

RBP4 Retino  ‐1.491  ‐0.74  0.004  /downward  ‐0.654  ‐0.108  ‐0.035

SELL L‐sele  ‐0.817  0.273  1.367  ‐0.526  ‐0.322  0.394

SEPP1 Selen  ‐0.98  0.101  1.174  ‐0.21  ‐0.048  0.367

SERPINA1 Al  ‐1.002  ‐0.42  0.156  /downward  ‐0.682  ‐0.389  ‐0.083

SERPINA10 P  ‐1.297  ‐0.306  0.672  ‐0.642  ‐0.398  0.192

SERPINA3 Is  ‐1.796  ‐1.301  ‐0.804  downward  ‐1.344  ‐0.776  ‐0.355

SERPINA4 Ka  ‐1.664  ‐0.913  ‐0.17  Downward/  ‐0.716  0.269  1.096

SERPINA5 Pl  ‐1.51  ‐0.388  0.719  /downward  ‐0.695  ‐0.59  ‐0.365

SERPINA6 Co  ‐1.978  ‐0.73  0.47  ‐0.112  0.133  0.461

SERPINA7 Th  ‐1.945  ‐1.169  ‐0.4  downward  ‐0.931  ‐0.634  0.126

SERPINC1 An  ‐0.002  0.387  0.779  /upward  0.231  0.256  0.3

SERPIND1 He  ‐2.065  ‐1.269  ‐0.488  downward  ‐0.8  ‐0.018  0.018

SERPINF1 Pi  ‐0.418  0.127  0.674  ‐0.328  0.114  0.257

SERPINF2 Al  ‐0.877  ‐0.37  0.135  ‐0.27  0.233  0.261

SERPING1 Pl  ‐1.247  ‐0.819  ‐0.392  downward  ‐0.892  ‐0.731  ‐0.153

SOD3 Extrac  ‐1.182  ‐0.084  1.031  ‐1.021  ‐0.433  0.762

TF Transfer  ‐0.216  0.118  0.452  ‐0.011  0.339  0.486

TTR Transth  ‐0.754  ‐0.034  0.687  ‐0.324  ‐0.024  0.099

VTN Vitrone  ‐0.316  0.246  0.798  ‐0.01  0.196  0.215

VWF 309 kDa  ‐1.489  ‐0.498  0.47    ‐0.818  ‐0.321  0.208
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CHAPTER 6  

An immunology proteomic study-Case study II 

6.1 Description of the study  

Common Variable Immunodeficiency Disorder (CVID) is the most common primary 

immunodeficiency disorder encountered in clinical practice. CVID is also known as 

acquired hypogammaglobulinemia, where patients have low levels of immunoglobulin G, 

A and M. CVID patients are susceptible to recurrent infections. Currently, there is no cure 

for this disease. Patients are given frequent immunotherapy which consists of transfusing 

human antibodies harvested from donated plasma, to maintain a normal level of immunity 

(M. A. Park et al., 2008; J. H. Park et al., 2012). 

According to the prevalence estimation from J. H. Park et al. (2012), 1:25,000 of the 

population suffer from this disorder. These patients have low titer of immunoglobulin and 

are usually prone to frequent infection. In 2008, an immunology proteomic CVID study 

was set up at LabPLUS by Drs Rohan Ameratunga and See-Tarn Woon. This project 

aims to identify potential cellular protein markers for differentiating CVID subgroups and 

predicting clinical phenotypes. CVID patients and healthy normal controls were planned 

to be recruited in the study so that the comparison of their protein profile of the 

lymphocyte cells can be made.  

Participants had discussed participation in this study with their immunologist (Dr. Rohan 

Ameratunga, LabPLUS) prior to giving their consents. Once the consent was given, blood 

samples were obtained and transported to LabPLUS for processing and analysis. 

 

 

6.2. The laboratory method (short summary of the clinical laboratory sample 

preparation and the iTRAQ experiment in the University lab) 

 

6.2.1 The clinical laboratory processing for biological samples 

Peripheral blood mononuclear cells (PBMC) from 17 CVID patients and 42 normal 

donors were isolated from whole blood and the whole cell lysate from PBMC were 

prepared. The PMBC were then incubated in lysis buffer (0.2% SurfactAmps, 50 mM 
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phosphate buffer, pH 7.0, 100 mM NaCl, 0.5 mM EDTA, protease inhibitor) on ice for 30 

min, followed by pelleting the cell debris at 15,000 x g for 30 min. The haemoglobulin 

presenting in the clarified cell lysate were removed by adding 50% Ni-NTA agarose (Life 

Technologies Invitrogen, Carlsbad, CA, USA) and the agarose was removed by low speed 

centrifugation. The sample preparation was performed by Dr. See-tarn Woon at LabPLUS.  

 

6.2.2 The MS/MS iTRAQ experiments for blood lymphocytes tissue samples 

 

The processed cell lysate tissue samples were transformed to the Center for Proteomics 

and Genomics, University of Auckland for proteomic analysis.  The proteins were 

dissolved and digested by trypsin and mixed with iTRAQ reagents for the preparation of 

the 8-plex (CVID case) MS/MS assays. The most abundant serum proteins were depleted 

with IgY-12 SC Spin Column (Beckman) with one salt-step for the fractionation. 

The labeled samples were combined and fractionated by nanoLC and analyzed by tandem 

mass spectrometry. The observed labeled peptide results were used for matching with the 

protein database for the identification of their corresponding proteins.  In the reverse 

database search, unused scores greater than 0 to 0.47 were used for protein quantitation.   

 

6.2.3 Clinical study design and experimental design 

This is the first time that lymphocyte tissues are analyzed systematically through LC-

MS/MS at the university lab. A reproducibility assessment is considered to be essential 

before conducting the mass spectrometry analysis for the discovery. The clinical 

proteomic study thus has two sections: 1) reproducibility assessment; 2) protein 

marker discovery. There were patient recruitment difficulties in the study, as a result, 

the total number of patients and controls deviated slightly from the original plan; 17 

CVID patients and 42 normal controls from Auckland clinical centers participated in 

the study. A frequency matching scheme was assigned to make sure the normal 

controls were well matched with CVID patients in the proportion of gender and 

ethnicity and were restricted within the same age band. The ratio of patient-to-control 

was set to 2:1. The gender and ethnicity distribution of the cases were updated 

periodically for the matching.    
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In the reproducibility section, blood samples of the first 4 patients and 4 normal 

controls were analyzed four times within a week for the reproducibility evaluation in 

the proteomics analysis.  

Row and column design is used for the LC-MS/MS reproducibility evaluation of 

which two Latin squares were used for the 4 runs (row) x 8 plex (column) assay 

layouts for the reproducibility assessment (Table 6.1).  This design achieved the 

orthogonality between label and the participant’s class (patient vs. control). Four 

patients and four matched controls were selected and four samples of their blood 

proteins were analyzed in the four mass spectrometry runs. Each run contains one 

blood proteins sample for the replicated biological samples (P4, P6, P9, P17, N10, 

N25, N34 and N41). 

Table 6.1 The experimental design layout for the reproducibility assessment 

Run 113 114 115 116 117 118 119 121 

1 P4 N10 P9 N25 P6 N34 P17 N41

2 N25 P4 N10 P9 N41 P6 N34 P17

3 P9 N25 P4 N10 P17 N41 P6 N34

4 N10 P9 N25 P4 N34 P17 N41 P6 

 Patients P4, P6, P9, and P17 were selected as the cases for the evaluations. 

 Normal controls N10, N25, N34, and N41 were selected as the matched 

control for the evaluations.   

 

The discovery section is a case-control study. For the LC/MS-MS analysis, 13 CVID 

patients and 37 normal controls were allocated in a 7 runs (row) x 8 plex (column) 

assay layout. An unbalanced row and column layout was used instead of a balanced 

one because of the unbalanced recruiting; the layout of the experimental design (Table 

6.2) aimed to achieve orthogonality for the label, run in respect to the participant’s 

class (i.e. patients vs. controls).     
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Table 6.2 The experimental design layout for the discovery section 

 

Run 113 114 115 116 117 118 119 121 

1 N1 P1 N2 N3 P2 N4 N5 P3 

2 N6 N7 P5 N8 N9 P7 N11 N12 

3 P13 N13 N14 P8 N15 N16 P10 N17 

4 N18 P14 N19 N20 P11 N21 N22 P12 

5 N23 N41 P15 N26 N27 P16 N28 N29 

6 P8 N30 N31 P5 N32 N33 P16 N35 

7 N36 N37 N38 N39 N40 P2 P11 P10 

 Patients : P1-P17 were selected as the cases for the discovery analysis,  

excluding patient cases P4,P6,P9, and P17 who were included in the 

reproducibility evaluations; 

 Normal controls: N1-42 were selected as the  normal controls for the discovery 

analysis, excluding normal controls N10, N25, N34, and N41 who were included 

in the reproducibility and N24 who is missing. 

 

 

6.3. The reproducibility assessment  

Permutation based assessment for the reproducibility as described in Chapter two was 

used for the CVID study. Since 8 biological samples are allocated by 8-plex in each run 

and repeatedly analyzed for 4 runs, the permutation test assesses the results from each run 

against the results from the averages of all 4 runs.  The assessment identified two plasma 

contaminated lymphocytes tissues (Figure 6.1 A). Excluding these two samples (P6 and 

N43) and run 2 which had a bad yield, the final reproducibility assessment used the three 

biological replicates from the 3 runs. The permutation tests results for Tmax statistic and 

rank test statistic are demonstrated in Table 6.3. As described in Chapter 2, the Tmax 

statistic is the parametric statistics proposed for the reproducibility assessment, it is the 

maximum t statistic (Max 1<i<m Ti) of the m paired differences of the principal 

components (PC). Set
 0i

i
i

T
std

 
 , where µi is the mean difference and stdi is the 

standard deviation of the difference in the ith PC. The non-parametric statistic is a two-
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dimensional sign score equivalent to log
P

P




 
 
 

, where P+ is the total number of positive 

differences and P- is the total number of negative differences in m principal components 

of n samples.  For three runs of the experiments that achieved a good discovery, the 

permutation tests did not detect significant disagreements between the repeated tests from 

all proteins. The first principal component and second component graphs also show that 

there are no systematic patterns between the repeated analyses for the same biological 

subject (FPC plot in figure 6.1B and SPC plot 6.1C); and there is no linear or polynomial 

trends in the differences between replicates and the averaged results (y axis) against the 

averaged principal component scores (x axis). These results indicate that the analysis 

results are reproducible so long as the lymphocyte samples are without contamination 

from the plasmas cells and the experiment has optimal discovery. 

    

Table 6.3 The reproducibility permutation test for the CVID proteomic studies: 

results from each replicated run vs. the average of three runs 

  

Permutation test p 

values for Tmax 

Permutation test p values 

for Rank test statistic 

Run 1:  0.46 0.58 

Run 3:  0.15 0.39 

Run 4:  0.21 >0.90 

 

 

6.4. The analytical methods for the discovery section 

6.4.1 A single protein multilevel model 

A single protein multilevel model with subject as a random effect has set up similarly as 

defined in equation (3) in Chapter 4. In this single protein model, the peptide intensity is 

the response. The explanatory variables include peptide level variables (label, m/z, and 

run) and subject level variables (total amount of protein, subject class [normal vs. 

control], age and gender).  
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8 7

, 0, 1 , ,2 , , ,3 , , ,
1 1

i l l i l h h i l r r i l i l
h r

y b mz label run e  
 

      , 

(1) 

Equation (1) defines the level 1 of the model where,  

,i ly  denotes the peptide intensity for peptide i and subject l, i ranges between 1 and the 

total number of peptides observed for the protein being analyzed, and l ranges between 1 

and the total number of subjects;  

,i lmz  denotes the centralized m/z ratio for the peptide i, and 1  is the regression 

coefficient for m/z ratio; 

, ,h i llabel  and , ,r i lrun  denote the label h and run r respectively, ,2h  and ,3r  are their 

regression coefficients respectively;  

0,lb  denotes the intercept for the subject l, it varies across different subjects. 

Level 2 of the model defines the relation between the subject intercept 0,lb and the 

explanatory variables  

0, 0,0 1 , 2 , 3 , 4 , 0,_l i l i l i l i l lb class total protein age gender u              , 

(2) 

where  

0,0  denotes the grand intercept; 

,i lclass  is a binary variable indicates if the subject belongs to the patient group or the 

normal control group, 1 denotes the regression coefficient for class; 

,_ i ltotal protein  denotes the total amount of protein from the sample of subject l, 

2 denotes the regression coefficient for the total amount of protein;  

,i lage  denotes the age of subject l, 3 is the regression coefficient of the age; 
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,i lgender denotes the gender of subject l, 4 denotes the regression coefficient of the 

gender; 

0,lu  denotes the subject level random residual term.  

  

 Substituting (2) to (1) gives us   

0,0 1 , 2 , 3 ,

8 7
,

4 , 1 , ,2 , , ,3 , ,
1 1

0, ,

_i l i l i l

i l
i l i l h h i l r r i l

h r

l i l

class total protein age

y
gender mz label run

u e

   

   
 

      
       
  
   

 
 

, where 1 3,...,   are the fixed effects coefficients for the experimental factors run and 

label, and 1 3,...,   are the fixed effect for the total amount of proteins, age and gender 

respectively; 0,lu , ,i le  are the random effects for subjects and unexplained errors 

respectively.   

 

6.4.2 Multiple proteins multivariate model with random effects at protein and subject 

levels ignoring missing  

Under the multivariate multilevel framework as defined in (8) of Chapter 4, hierarchical 

multivariate models were set up to analyze the functional group of proteins, i.e. immunity 

group. This model includes fixed effects at the peptide level such as run, label, and m/z; 

and fixed effects at the subject level such as age and gender. Protein level factors, which 

include the intercept, slopes of m/z and the class effect, are modeled as random effects 

assumed to vary across proteins. A random intercept is also included at the subject level 

assumed that there are potential variations in the intensities introduced by subjects.  The 

multilevel multivariate model is defined as follows, 
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8 7

, , 0, 0, , , ,2 , , , ,3 , , ,
1 1

3, , , 4, , , , ,

i l p l p i l p h h i l p r r i l p
h r

p i l p p i l p i l p

protein label run

class mz e

    

 
 

   

  

 
, 

(3) 

0, 0 0,

3, 1 1,

4, 2 2,

p p

p p

p p

b

b

b

 

 

 

 

 

 
, 

(4) 

0, 0,0 2 , , 3 , , 4 , , 0,_l i l p i l p i l p ltotal protein age gender c            , 

(5) 

where ,2h and ,3r  are the fixed effects coefficients, same for all proteins; 0,p , 3,p and 

4, p  are the random effect coefficients for proteins; 0,0 , 2 4,...,   are the fixed effects 

coefficients for the grand intercept, total proteins, age and gender respectively. The 

random residuals terms include the random error residual term , ,i l pe , the subject level 

residual 0,lc , and the three protein level residual terms 0, pb , 1, pb  and 2, pb  for protein 

intercept, m/z and class differences respectively.  

Substituting (4)-(5) into (3) results in the following mixed effect model  

 

8 7

0,0 0 2 , , ,2 , , , ,3 , , , 1 , ,
1 1, ,

2 , , 3 , , 4 , ,

2, , , 1, , , 0, , , 0, , ,

_

i l p h h i l p r r i l p i l p
h ri l p

i l p i l p i l p

p i l p p i l p p i l p l i l p

mz label run class

total protein age gender

b mz b class b protein c e

     


  
 

 
        
      

        

 


, 

(6) 
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where 

 0, 1, 2,, , ~ ( , )p p pb b b MVN 0 Φ ;  2
0, 0~ 0,lc N  ;  2

, , 0,i l pe N  ; 

2
,0 ,0 ,1 ,0 ,2

2
,0 ,1 ,1 ,1 ,2

2
,0 ,2 ,1 ,2 ,2

b b b b b

b b b b b

b b b b b

    
    
    

 
   
  

Φ . 

 0, 1, 2,, ,p p pb b b is multivariate normal distributed with variance-covariance matrix Φ , 

subject level residual 0,lc is normal distributed with variance 2
0 , error residual  , ,i l pe is 

normal distributed with variance 2 .   

Equation (6) defines a generic model for this case study; five special cases of equation (6) 

including different combinations of fixed effects are compared and summarized in Table 

6.4.   

 

6.4.3 A multiple protein multivariate model with random effects at protein and subject 

levels and with the missing mechanisms modeled by Bayesian approach.    

In the Bayesian model, the same linear multilevel mixed regression model as defined in 

(6), which includes independents of protein level parameters, peptide level parameters 

and subject level parameters, are used to predict the response-the logarithmic peptide 

intensities.   Logistic regression was used to model the probability of missing as a 

function of m/z and peptide intensity (predicted and observed).  

The Bayesian model 

 

, , 0, , , 0, , , 1, , , , ,

8 7

4, , , , , ,2 , , , ,3 , , ,
1 1

2 , , 3 , , 4 , , , ,_

i l p l i l p p i l p p i l p i l p

p i l p i l p h h i l p r r i l p
h r

i l p i l p i l p i l p

subject protein protein mz

protein class label run

total protein age gender e

   

  

  
 

   

    

     

 
,  

(7) 
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 , , , , 0 1 , , 2 , ,logit Pr(missed )i l p i l p i l p i l ppm mz        , 

(8) 

where 

 the equation (7) defines the relation between the mean intensities , ,i l p  and the 

independents; 0,l  denotes the subject intercept varied across different subjects; 

0, p , 1, p , 4, p are the protein level regression coefficients for the intercept, m/z slope and 

class respectively that vary across different proteins;  

The label and run regression coefficients ,2h and ,3r  are constant across all the proteins, 

and the grand intercept, total protein, age and gender coefficients 0,0 , 2 4,...,  are 

constant across all the proteins; 

 , ,i l pe denotes the residual error term.  

Equation (8) defines the relation between the probability of missing , ,i l ppm and the 

independents;  0 1 2, ,    are the logistic regression coefficients for the intercept, m/z and 

abundance respectively.  

Definition for the prior distributions:   

The observational data fitted by the model described in (6) showed that most of the 

proteins do not demonstrate any differences in their abundances between normal and 

CVID patients. That is, the 4, p  estimated from the observations are mostly zero.   

Two different distributions were thus assigned to the priors of the class coefficients 

4, p for the evaluation. One is the normal distribution; the other one is the double 

exponential distribution.  
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1) Normal prior for 4, p  and multivariate normal prior for  0, 1,,p p   

 
   

 

2
4,

0, 1,

1 1

0, , (1,1);

, ~ , ;

~ ( , ), ( ,2);

0,0 ,

0.01 0.001 0.01 0.01
, ;

0.001 0.01 0.01 0.01

p

p p

N invGamma

MVN T

MVN invWISHART

  

  

 


   



   
      

   

 

  

  
0 1 2

2
, ,

~ (0,1), ~ (0.0085,4 8), ~ ( 0.45,0.25);

0, , (1,1),i l p

N N e N

e N invGamma

  

 

 

 
 

where 4, p uses a non-informative normal distributed prior with inversed Gamma 

distributed hyper prior , the couple protein level parameters of intercept and 

m/z  0, 1,,p p  use non-informative multivariate distributed prior with a pair of hyper 

priors  ,T that is multivariate and inverse Wishart distributed respectively.  

As described in Chapter 4, the probability of missing is modeled for the censoring and 

completely missing using logistic regression. The coefficients of logistic regression 

0 2,...,   are part of the joint unknown parameters, and they are given normal distributed 

informative priors learning from the cardiac case. The missing values of the peptide 

quantities are also treated as unknown parameters in the Bayesian models of which are 

sampled from the conditional posterior distribution.   

The scale parameter for the residual term , ,i l pe uses an inversed gamma distribution.  

2) Double exponential (DE) priors for 4, p and multivariate normal prior for 

 0, 1,,p p   

 4, 0, , (1,1);p doubleExp invGamma     

The second prior for 4, p is a double exponential distribution with location parameter 0 

and an inversed gamma distributed scale parameter , other priors are kept the same as 

defined in 1).  
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Computing programs: 

In the Gibbs sampling program, the probability for having censored intensity is fixed to 

be 1; In the HMC/NUTs program, the probability for having censored intensity are 

estimated from the normal cumulative probability density between the negative infinity 

and the known lowest detectable limit.  

The Rstan HMC/NUTS program uses the same priors as the BUGS program; except for 

the scaled matrix of the inversed Wishart distribution where 0.1 is set as the diagonal 

value and 0.05 as the off-diagonal value. Both the BUGS and the Rstan programs utilize 

the m/z ratio information from the censored and missing peptide observations for deriving 

the posterior estimates of the unknown parameters.  

The codes for the BUGs and HMC models are listed in the appendix.     

 

6.5. Results   

6.5.1 Analysis of proteins in the immunity group 

The immunity function group classified by Dr. See-Tarn Woon has 35 proteins consisting 

of 6000 peptide observations of which 56 (0.9%) had censored and 174 (2.9%) had 

completely missing values in the peptide intensities. Results from multiple protein models 

and the Bayesian models with missing data parameters included are discussed in the 

following sections 5.1.1-5.1.3.     

 

6.5.1.1 Results from the multiple protein models (Table 6.4) 

Comparing the AIC, BIC, and REML deviance across different models as demonstrated 

in Table 6.4, model 2 is a simple model with the smallest AIC, the second smallest BIC 

and REML deviance. Model 2 includes fixed effects of the run, label, gender, age, total 

amount of protein and m/z; it includes random effects of protein intercept, m/z, class, and 

subject intercept.  Model 3 is similar to model 2 but includes class as an additional fixed 

effect; the class effect -0.28 (std error: 0.23) is not shown to be significant.  The non-

significant result for the fixed class effect indicates that there is no systematic difference 

in the protein abundances between normal and controls among all discovered proteins.  

Model 2 is selected as the final model for the interpretation in the following sections.  
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In model 2, centralized m/z is the only fixed effect significant with an estimate of -3.6e-

03 (std error: 0.001; t statistic:-3.4). The other fixed effects such as label, run, m/z, age 

and gender are not significant. The Best Linear Unbiased Predicted values of random 

class effects of the 35 proteins are ranged between -0.12 and 0.28, compared to the range 

of -0.64 and 1.11 from single protein models.  The multiple protein model demonstrated 

that eight proteins are irregulated; they are PSME1, RPS6 40S, SAMHD1, MPO, 

S100A9, CAP1 ADERYL,  PD1A3, and PSME2 with class differences in the logarithmic 

intensities  -0.85, 0.15, -0.12, -0.07, -0.07, -0.09, 0.28, and -0.12 respectively (Figure 

6.4); These are equivalent to a folder change of 0.43, 1.16, 0.89, 0.93, 0.93, 0.91, 1.32, 

and 0.89 respectively.  

The variance for the protein intercept is 5.26 and the variance for the residual is 1.17. 

These values are used to derive the ICC for the protein intercept of 0.82. The variance for 

the class difference is 0.02, and, similarly, the ICC for protein class difference can be 

derived as 0.017. 

The variance of m/z slope across proteins is 3.38e-05. Including m/z ratio as a random 

effect achieves a better fit as shown in models 2 and 3. ICC for m/z slope across proteins 

is 2.9e-05.  The variance for the subject intercept is 2.21 and leads to an ICC of 0.65.  

In the model 2 version excluding fixed effect age and gender, the variance components 

for protein intercept, m/z slope and class are 1.26, 2.37e-5 and 0.01 respectively. The 

variance for subject intercept is 0.35 and the residual variance is 1.19.  

 

6.5.1.2 Results from the Bayesian model -Mean effects 4, p  

The NUTS program gives the medians of the posterior class difference 4, p between -0.02 

and 0.04 when a normal distributed prior is used; and gives the medians of the posterior 

4, p between -0.06 and 0.03 when a DE prior is used. None of the proteins was shown to 

be irregulated in the NUTS results.  

The Bugs program gives the median of the posterior 4, p between -0.27 and 0.14 when a 

normal distributed prior is used; and gives the medians of the posterior 4, p between -0.10 

and 0.08 when a DE prior is used. None of the protein was shown to be irregulated in the 

BUGS result too, except that DEFA1 and MYH9 have a plausible trend of down 

regulation when a narrower credible interval is used.  
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6.5.1.3 Result comparison in variance components 

Inter proteins variances – 2 of 4, p the class difference 

As defined in 2) of the prior section, when the double exponential (DE) distributed prior 

is given to 4, p and the hyper prior   is inverse Gamma distributed, the posterior of the 

variances 2 has median 0.13 (95% credible interval: 0.08, 0.22) from the BUGS 

program. It has median 0.64 (95% credible interval: 6.8e-04, 1.90) from the HMC/NUTS 

program (Figure 6.4a). When the normal prior is given to 4, p as defined in 1) of the prior 

section, the posterior of variance has median 0.12 (95% credible interval: 0.07, 0.21) from 

the BUGS program, and has median 0.41 (95% credible interval: 0.07, 1.63) from the 

HMC/NUTS program (Figure 6.4b). Using these two different priors of 4, p produced 

similar results in the variance components from either the BUGS or the NUTS program. 

NUTS produced greater variance of the class difference across proteins. 

The inter proteins variance of 4, p is 0.02 from the R/lmer model and are much smaller 

compared to the results from the Bayesian models. 

Inter proteins variances-slope of mass to charge ratio (m/z) 

Figure 6.2 demonstrated that the m/z has a negative association with the peptide intensity, 

and the associations represented by the slopes in Figure 6.3b are similar across runs. 

Although the ICC indicated that the variation in slope across proteins is very small 

compared to the unexplained error variance, Figure 6.3a demonstrates that the slopes 

between intensity and m/z vary across different proteins. In particular, those proteins 

with small numbers of peptides will not have a reliable estimate for the slope of m/z if 

they are analyzed separately; it will be an advantage to include groups of proteins in one 

model.    

When double exponential prior for 4, p is used, BUGS results in an inter protein variance 

0.003 (95% credible interval: 0.002, 0.005) for the slope of m/z; NUTS results in a 

variance of 0.85 (95% credible interval: 0.49, 1.48) for the slope of m/z. Using BUGS has 

a larger variation in the m/z slope across proteins.    

Inter proteins variances-intercepts for proteins  

In the BUGS program with double exponential prior for 4, p , the variance for the protein 

intercept is 0.52 (95% credible interval: 0.32, 0.92), with normal prior results in a similar 

variance of 0.52 (95% credible interval: 0.32, 0.91).  In the NUTS program, the variance 

of the protein intercept term is 26.5 (95% credible interval: 13.0, 48.6) and 24.9 (95% 
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credible interval: 13.2, 44.8) for using the double exponential and normal prior of 4, p  

respectively.  Compared to the R/lmer REML(MODE) method, NUTS has a greater 

variance. Both BUGS and NUTS show that, the posterior estimates of the inter protein 

variances of intercepts are not dissimilar when using two different priors for 4, p .  

 

Table 6.4 The comparison of different R: lmre Models including  

35 immunity proteins 

Models: 

Fixed effect 

Models: 

Random 

effects 

AIC BIC REML deviance 

Run, label 
,gender, age, 
total amount of 
protein 

Protein 
intercept, m/z , 
class;  

Subject 
intercept 

17834 18001 17784 

Run, label, 
gender, age, total 
amount of 
protein, m/z 

Protein 
intercept, m/z , 
class; 

Subject 
intercept 

17833 18006 17781 

Run, label, 
gender, age, total 
amount of 
protein, m/z, 
class 

Protein 
intercept, m/z , 
class; 

Subject 
intercept 

17834 18014 17780 

Run, label, 
gender, age, total 
amount of 
protein, m/z 

Protein 
intercept, 
class; 

Subject 
intercept 

18180 18333 18134 

 

Run, label, m/z, 
gender, age, total 
amount of 
protein, m/z, 
protein 

Protein level 
intercept with 
with class; 
subject 
intercept 

18174 18554 18060 
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Table 6.5 The selected final model for proteins in immunity group  

(listed as the second model in Table 6.4- nlme version 3.1-108) 

Linear mixed model fit by REML ['lmerMod'] 
Random effects: 
 Groups Name                      Variance         Std. Dev. Corr.           
 Subject (Intercept)  2.21  1.49                
 Protein (Intercept)                   5.26                 2.29                
   centralized m/z 3.38e-05 0.0058  0.66         
   factor(class)P  0.02       0.0063  0.88  0.76  
   Residual  1.17                 1.08                
 Number of obs: 5770, groups: subject, 49; protein, 35 

Fixed effects:  

                                    Estimate         Std. Error      t value 

(Intercept)   3.98  1.86  2.14 
Log of total protein  -1.74e-02 0.51  -0.03 
factor(run)2   0.19  0.64  0.30 
factor(run)3   0.39  0.78  0.50 
factor(run)4   9.60e-02 0.72  0.13 
factor(run)5   -0.10  0.66  -0.14 
factor(run)6   -0.35  0.63  -0.56 
factor(run)7   0.16  0.65  0.25 
factor(tlable)114  -0.24  0.77  -0.32 
factor(tlable)115  -0.08      0.71  -0.11 
factor(tlable)116  0.25  0.48  0.52 
factor(tlable)117  -0.24  0.72  -0.34 
factor(tlable)118  -0.11  0.74  -0.15 
factor(tlable)119  0.32  0.68  0.47 
factor(tlable)121  -0.40  0.69  -0.58 
factor(gender)M  0.31  0.54  0.59 
age    -1.78e-04 0.02      -0.01 
centralized m/z  -3.64e-03 0.001    -3.43 

Random components in model 2 excluding age and gender   

Random effects: 

Groups   Name             Variance   Std.Dev.  Corr      

subject  (Intercept)       3.48e-01 0.59 
protein  (Intercept)       1.26e+00  1.12 
prec_m_z_center   2.37e-05  0.005   0.34 
factor(class)P     9.27e-03  0.096   0.02  0.88 
Residual                   1.19   1.088         

Number of obs: 5770, groups: subject, 49; protein, 35 
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6.5.1.3 Missing data modeling parameters  

The posterior estimates of missing data parameters have overlapping 95% credible 

intervals from BUGS compared to HMC/NUTS program. Using BUGS, the regression 

coefficients for intercept 0 , m/z 1 and abundances 2 are -4.6, 0.0084, and -2.5 

respectively. Using NUTS, the posterior estimates for regression coefficients 0 1 2, ,    

are -6.5, 0.0085, and -1.5 respectively (Table 6.6a). In both programs, the different prior 

for 4, p  does not result in different posteriors for 0 1 2, ,   . 

Table 6.6a The posterior estimates of the variance components  

(double exponential prior for 4, p ) 

Gibbs: 
Posterior of the protein level variance 
components   
Groups     Name                  Variance 
                        (median(95% credible interval))   
 Protein (Intercept)                 0.52 (0.32, 0.92) 
              centralized m/z         0.003 (0.002,0.005) 
              factor(intervention)   0.13 (0.08,0.22)   
              Residual                    1.19 (1.14, 1.23)  
                               
Posterior distribution of the logistic regression 
coefficients for  the missing model 
Groups     Name                          Coefficient  
                       (median(95% credible interval))    
Missing     Intercept                -4.6 (-6.2, -3.3) 
                  m/z              0.0084 (0.0080,0.0088)  
                  peptide abundance -2.5 (-3.1, -2.0) 

NUTS: 
 Posterior of the protein level variance 
components   
 Groups     Name            Variance 
                        (median(95% credible interval)) 
 Protein   (Intercept)               26.5 (13.0,48.6)       
                centralized m/z       0.85 (0.49,1.48) 
                factor(intervention) 0.64 (6.8e-04,19.0)
                Residual                  1.09 (1.07, 1.11) 
                                  
 Posterior distribution of the logistic regression 
 coefficients for  the missing model 
 Groups     Name                Coefficient 
                    (median(95% credible interval))    
 Missing     Intercept               -6.5 (-8.7, -5.2)      
                   m/z                0.0085 (0.0085,0.0085)
                   peptide abundance       -1.8 (-2.3,-1.4) 
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Table 6.6b The posterior estimates of the variance components 

(normal prior for 4, p ) 

Gibbs: 
Posterior of the protein level variance 
components   
Groups     Name                  Variance 
                     median(95% credible interval)) 
 Protein   (Intercept)             0.52 (0.32,0.91) 
               centralized m/z      0.003 (0.002,0.005) 
               factor(class)           0.12 (0.07, 0.21)      
               Residual                 1.19 (1.14,1.23) 
                               
Posterior distribution of the logistic regression 
coefficients for  the missing model 
Groups     Name                      Coefficient            
                        median(95% credible interval)) 
Missing     Intercept                -4.7 (-6.4, -3.3) 
                  m/z                0.0084 (0.0080,0.0088) 
                  peptide abundance -2.5 (-3.2, -2.0) 

NUTS: 
 Posterior of the protein level variance components 
 Groups     Name            Variance 
                           (median(95% credible interval))
  
Protein   (Intercept)                  24.9 (13.2,44.8)        
                centralized m/z          0.78 (0.48,1.32) 
                factor(intervention)    0.64 (0.02,3.71) 
                Residual                     1.09 (1.07, 1.11) 
                                  
 Posterior distribution of the logistic regression 
 coefficients for  the missing model 
 Groups     Name            Coefficient 
                          median(95% credible interval)) 
Missing     Intercept         -6.5 (-8.4, -5.2)       
                  m/z                 0.0085 (0.0085,0.0085) 
                  peptide abundance  -1.8 (-2.2,-1.4)     

  

 

6.5.2 Analysis of 76 proteins in one model  

Among the discovered proteins, 76 of them had > 5 peptides observations. Attempts to 

including these 76 proteins in one model were made using both BUGS and HMC/NUTS 

programs.  

All proteins’ 95% credible intervals from the NUTS program contained zero. Narrower 

intervals produced four candidates with trends in irregulated abundance in CVID patients. 

The HMC/NUTS algorithm achieved convergence in the protein level estimates, while 

the Gibbs algorithm did not achieve convergence within 120000 iterations.  

 

 

6.6 Discussion 

In this case study, both the estimates for central tendency and variance of the protein level 

class difference are shrunk towards the grand estimates in the multiple protein models. 

Compared to the simulated study and the cardiac case study, the CVID proteomic 

discovered more proteins but many more proteins had smaller numbers of observations. 

The resultant unbalanced design, and having sparse numbers of observations in the 
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combined cells of protein by subjects, adds challenges in the multiple protein model 

analysis. The posterior inter-protein variance in the class difference has mode closing to 

zero in the Immunity proteins (shown in Figure 6.4). The posterior inter-protein variance 

is similar to those shown in Figure 6.4 in the model including 76 proteins. The violation 

of multivariate normal distribution in the protein level estimates makes it difficult to 

analyse all proteins in one model, but analysing them by different functional groups has 

been shown to be a solution from this case study. Intensities of proteins belonging to a 

same functional group would be more likely to be multivariate normal distributed and 

correlated; when correlated responses are analysed in a multiple responses model, the 

efficiency will be higher than analysing them via single response models (Goldstain, 

1999).      

In all the trials, we found that NUTS achieved better convergence than Gibbs, and need 

fewer numbers of iterations for convergence. Analysing a group of proteins made it easier 

to achieve convergence in the program than analysing a larger number of proteins.  We 

also found that, the BUGS and NUTS programs are not sensitive to the two different prior 

distributions for class difference. NUTS produced larger variance components compared 

to BUGS due to the censoring missing mechanism. Both BUGS and NUTS indicated that 

when missing data are taken into account, proteins of the immunology function group 

may not be irregulated in CVID patients, although a couple proteins need further 

investigation. The R/lmer model 2 gives different candidates, perhaps caused by the 

uncertainty introduced by the non-random missingness. A larger number of missing 

observations, treated as unknown parameters in the Bayesian model, reduced the 

statistical power of the data. Since no informative priors for the class difference are 

available, the advantage of using the Bayesian method is to provide estimates for the non-

random missingness, thus preventing the potential bias caused by missing values and to 

reducing the false discoveries.  

In the computation for the multivariate multilevel model, the variance-covariance matrix 

V of the response , ,i l p is derived from equation of the variance-covariance matrix of the 

protein level estimates Φ  and the variance-covariance matrix of the subject level 

estimates G  as defined in section 2.3 of Chapter 4.  When the data comprises large 

numbers of proteins and subjects, the computation for V will become a challenging task.  

The sparse and unbalanced numbers of peptide observations in the combination of 
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subjects and proteins also slows down the MCMC computing and makes convergence 

hard.  

In the future work, the variance component estimates can be considered to be different for 

different protein groups. The correlations information between different proteins in the 

same functional group from the current case can also be useful as the prior information 

for the future study.  
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Figure 6.1 First principal component (FPC) plots for the reproducibility assessment 

Legend: A) FPC with all 8 samples. B) FPC excluding the two contaminated samples. C) 

Second principal component plot excluding the two contaminated samples.  
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Figure 6.2 The mass to charge ratio and relative intensity by runs 
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Figure 6.3 The mass to charge ratio and relative intensity by proteins 
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Figure 6.3b The mass to charge ratio and relative intensity by label and runs 
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Figure 6.4  The caterpillar plots for multiple protein model (model 2) 

MIR1244-3;M
PSMA2 Prote
HSPD1 cDNA

YBX1 Protei
CD9 25 kDa

PSME2 Uncha
PSMA5 Prote
PDIA3 cDNA

CORO1A Coro
LTF Unchara
MYH9 Isofor
FERMT3 Isof
CAP1 Adenyl
S100A9 Prot
VIM Vimenti
CALR Calret

PRDX2 cDNA
LCP1 Plasti

PSMA6 28 kD
MPO Isofor

CTSG Cathep
SAMHD1 Isof
MNDA Myeloi

IL4R IL4R n
EZR cDNA FL

MSN Moesi
PPIB Peptid

MIF Macroph
RPS6 40S ri

PSME1 Prote
DSG2 Desmog
DEFA1;DEFA1

S100A8 Prot
PPIA Peptid

EZR Ezri

-1 0 1

(Intercept)

-0.1 0.0 0.1 0.2

prec_m_z_center

MIR1244-3;M
PSMA2 Prote
HSPD1 cDNA

YBX1 Protei
CD9 25 kDa

PSME2 Uncha
PSMA5 Prote
PDIA3 cDNA

CORO1A Coro
LTF Unchara
MYH9 Isofor
FERMT3 Isof
CAP1 Adenyl
S100A9 Prot
VIM Vimenti
CALR Calret

PRDX2 cDNA
LCP1 Plasti

PSMA6 28 kD
MPO Isofor

CTSG Cathep
SAMHD1 Isof
MNDA Myeloi

IL4R IL4R n
EZR cDNA FL

MSN Moesi
PPIB Peptid

MIF Macroph
RPS6 40S ri

PSME1 Prote
DSG2 Desmog
DEFA1;DEFA1

S100A8 Prot
PPIA Peptid

EZR Ezri

-0.2 -0.1 0.0 0.1 0.2 0.3

factor(class)P

 

 

 

 

 

 



183 | P a g e  
 

 

Figure 6.5a The posterior distribution of the protein level variance for class mean –

DE prior for 4, p  
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(A)- From BUGS,Of note: numta is the precision: 1/variance.  
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(B)-From NUTS.  
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Figure 6.5b The posterior distribution of the protein level variance for class mean-

normal prior 4, p  
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(A)- From BUGS,Of note: numta is the precision: 1/variance.  
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(B)-From NUTS.  



185 | P a g e  
 

Appendix 6.1: The RSTAND and Bugs programs 

 The RSTAN program 

proteincv_code <-' 
 
data { 
 int nobs; 
 int ncensor; 
 int nmiss; 
 int nprotein; 
 real censor_lim;                                              //number of records 
 int<lower=0> subject_obs[nobs]; 
 int<lower=0> subject_m[nmiss]; 
 int<lower=0> subject_cen[ncensor]; 
                                                                 
 int<lower=0> proteinid_obs[nobs]; 
 int<lower=0> proteinid_m[nmiss]; 
 int<lower=0> proteinid_cen[ncensor]; 
                  int<lower=0,upper=1> classno_obs[nobs];                                            
 int<lower=0,upper=1> classno_m[nmiss];  
 int<lower=0,upper=1> classno_cen[ncensor];  
 
 int<lower=0,upper=1> run1[nobs];                                              
 int<lower=0,upper=1> run2[nobs]; 
 int<lower=0,upper=1> run3[nobs]; 
 int<lower=0,upper=1> run4[nobs]; 
 int<lower=0,upper=1> run5[nobs]; 
 int<lower=0,upper=1> run6[nobs]; 
 
 int<lower=0,upper=1> tlab113[nobs];                                            
 int<lower=0,upper=1> tlab114[nobs]; 
 int<lower=0,upper=1> tlab115[nobs]; 
 int<lower=0,upper=1> tlab116[nobs]; 
 int<lower=0,upper=1> tlab117[nobs]; 
 int<lower=0,upper=1> tlab118[nobs]; 
 int<lower=0,upper=1> tlab119[nobs]; 
 
 int<lower=0,upper=1> miss_obs[nobs]; 
 int<lower=0,upper=1> miss_m[nmiss]; 
 
   real logofAUC[nobs];  
   real m_z_centered[nobs];  
   real m_z_centered_cen[ncensor]; 
   real m_z_centered_m[nmiss]; 
                                                           
   real totalprotein[nobs]; 
 
   cov_matrix[2] prec; 
   cov_matrix[2] R2; 
   vector[2]  mn2; 
  } 
 
transformed data 
   {  
 cov_matrix[2] invprec; 
 invprec<-inverse(prec); 
   } 
   
parameters { 
     vector[2] U_latent[nprotein];        
     vector[nprotein] s; 
     vector[2] gsub[nprotein];  
     
     cov_matrix[2] pVAR; 
     real<lower=0> ita; 
     real numta; 
 
     real alpha_latent; 
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     real alpha_mu; 
     real alpha_theta; 
  
     real alpha1_latent; 
     real alpha2_latent; 
 
     real beta2_latent[50]; 
     real beta2_theta; 
     real beta2_mu[50]; 
 
     real beta3_latent[6]; 
     real beta3_theta; 
     real beta3_mu[6]; 
 
     real beta4_latent[7]; 
     real beta4_theta; 
     real beta4_mu[7]; 
 
     real beta5_latent; 
     real beta5_theta; 
     real beta5_mu; 
   
     real logofAUC_m_latent[nmiss]; 
    } 
  
transformed parameters 
 { 
     vector[2] U[nprotein];  
     vector[nprotein] g3sub; 
      real beta3[6]; 
      real beta4[7]; 
      real beta5; 
      real beta2[50]; 
      real alpha; 
      real alpha1; 
      real alpha2; 
      matrix[2,2] L;  
 
     for ( run in 1:6) 
     beta3[run]<-beta3_mu[run]+beta3_theta*beta3_latent[run]; 
      
     for (label in 1:7) 
     beta4[label]<-beta4_mu[label]+beta4_theta*beta4_latent[label]; 
      
     for (sub in 1:50) 
     beta2[sub]<-beta2_mu[sub]+beta2_theta*beta2_latent[sub]; 
       
     beta5<-beta5_mu+beta5_theta*beta5_latent; 
     L<-cholesky_decompose(pVAR); 
      
     g3sub<-0+numta*s; 
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     for (prot in 1:nprotein) 
     { U[prot]<-gsub[prot]+L*U_latent[prot];} 
     alpha<-alpha_mu+alpha_theta*alpha_latent; 
     alpha1<-0.0085+2.5e-7*alpha1_latent;//mass ratio dependant,the standard error can change 
      alpha2<--0.45+0.4*alpha2_latent;//abundant dependant 
   } 
   
model  
  {    
   real mu[nobs];  
   real mu_m[nmiss]; 
   real mu_cen[ncensor]; 
   real logofAUC_m[nmiss]; 
   real pmiss[nobs]; 
   real pmiss_m[nmiss]; 
 
 
    for (pep in 1:nobs) 
    {mu[pep]<-beta2[subject_obs[pep]]+U[proteinid_obs[pep]][1]+U[proteinid_obs[pep]][2]*m_z_centered[pep] 
+g3sub[proteinid_obs[pep]]*classno_obs[pep]+beta3[1]*run1[pep]+beta3[2]*run2[pep]+beta3[3]*run3[pep]+beta3[4]*run4[pep
]+beta3[5]*run5[pep]+beta3[6]*run6[pep]+beta4[1]*tlab113[pep]+beta4[2]*tlab114[pep]+beta4[3]*tlab115[pep]+beta4[4]*tlab
116[pep]+beta4[5]*tlab117[pep]+beta4[6]*tlab118[pep]+beta4[7]*tlab119[pep]+beta5*totalprotein[pep]; 
 pmiss[pep]<-inv_logit(alpha+alpha1*m_z_centered[pep]+alpha2*logofAUC[pep]); 
     }   
 
    for (pep in 1:nmiss)    
     {mu_m[pep]<- 
      
beta2[subject_m[pep]]+U[proteinid_m[pep],1]+U[proteinid_m[pep],2]*m_z_centered_m[pep]+g3sub[proteinid_obs[pep]]*class
no_m[pep]; 
      logofAUC_m[pep]<-mu_m[pep]+logofAUC_m_latent[pep]*ita; 
      pmiss_m[pep]<-inv_logit(alpha+alpha1*m_z_centered_m[pep]+alpha2*logofAUC_m[pep]); 
     } 
 
    for (pep in 1:ncensor) 
     {mu_cen[pep]<- 
      
beta2[subject_cen[pep]]+U[proteinid_cen[pep],1]+U[proteinid_cen[pep],2]*m_z_centered_cen[pep]+g3sub[proteinid_obs[pep]]
*classno_cen[pep]; 
       if (mu_cen[pep]> censor_lim) mu_cen[pep]<-censor_lim; 
      } 
    
     for (sub in 1:50) 
     {beta2_latent[sub]~normal(0,1); 
      beta2_mu[sub]~normal(0,1); 
       } 
      beta2_theta~gamma(1,1); 
    
   for ( run in 1:6) 
   {beta3_latent[run]~normal(0,1); 
     beta3_mu[run]~normal(0,1); 
    } 
     beta3_theta~gamma(1,1); 
      
    for (label in 1:7) 
   {beta4_latent[label]~normal(0,1); 
     beta4_mu[label]~normal(0,1); 
     } 
      beta4_theta~gamma(1,1); 
 
      beta5_latent~normal(0,1); 
      beta5_mu~normal(0,1); 
       
      for (prot in 1:nprotein)  
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      gsub[prot]~multi_normal(mn2,R2);      
                                 
       s~double_exponential(0,1); 
       numta~gamma(1,1); 
 
       pVAR~inv_wishart(2,invprec);           
       for (prot in 1:nprotein) 
       U_latent[prot]~multi_normal(mn2,R2);      //standard multinormal distributed   
    
       ita~gamma(1,1);  
       logofAUC~normal(mu,ita); 
  
      alpha_latent~normal(0,1); 
      alpha_mu~normal(0,1); 
      alpha_theta~gamma(1,1); 
 
      alpha1_latent~normal(0,1); 
      alpha2_latent~normal(0,1); 
  
      for (pep in 1:nobs) 
       miss_obs[pep]~bernoulli(pmiss[pep]); 
  
      for (pep in 1:nmiss)  
      {miss_m[pep]~bernoulli(pmiss_m[pep]); 
       logofAUC_m_latent[pep]~normal(0,1);} 
      
      for (pep in 1:ncensor) 
      lp__ <- lp__ + log(Phi((censor_lim-mu_cen[pep])/ita)+0.001);//the difference between censored limit and mu_cen can ne negative 
 } 

' 
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The BUGS program 

model  
{ 
 for (pep in 1: ns) 
     {  
 auc[pep]~dnorm(mu[pep],ita) 
 mu[pep]<-beta2[subject[pep]]+U[proteinid[pep],1]+U[proteinid[pep],2]*m_z_centered[pep]+U[proteinid[pep],3]*class[pep] 
 +beta3_1*run1[pep]+beta3_2*run2[pep]+beta3_3*run3[pep]+beta3_4*run4[pep]+beta3_5*run5[pep]+beta3_6*run6[pep] 
 + beta4_113*tlab113[pep]+beta4_114*tlab114[pep]+beta4_115*tlab115[pep]+beta4_116*tlab116[pep]+beta4_117*tlab117[pep] 
 +beta4_118*tlab118[pep]+beta4_119*tlab119[pep]+beta5*totalprotein[pep] 
  pmiss.lim[pep]<-alph0+alph1*m_z_centered[pep]+alph2*auc[pep] 
  pmiss[pep]<-(1-censor[pep])*(max(0.001,min(0.99,pmiss.lim[pep])))+censor[pep]*1 
  missp[pep]~dbin(pmiss[pep],1)     
  #the missing included censor in bug program, but not in NUTS program 
      }  
 ita~dgamma(1,1)    
 
 #prior for random coefficients  
 for (protein in 1:35) 
 {U[protein,1:2]~dmnorm(gamma[1:2],T[1:2,1:2])} 
  
 for (protein in 1:35) 
 {U[protein,3]~ddexp(0,numta)}    # need to assign the prior assume the class effect is independant from the slope,proteins abundance. 
  
 for (sub in 1:50) 
 {beta2[sub]~dnorm(0,1)} 
 #prior for fixed coefficient 
 #use informative prior           
 alph0~dnorm(1,0.01) 
 alph1~dnorm(0.0085,2.5E7)        
 alph2~dnorm(-0.45,4)  #use informative prior    
 beta3_1~dnorm(0,0.1) 
 beta3_2~dnorm(0,0.1) 
 beta3_3~dnorm(0,0.1) 
 beta3_4~dnorm(0,0.1) 
 beta3_5~dnorm(0,0.1) 
 beta3_6~dnorm(0,0.1) 
  
 beta4_113~dnorm(0,0.1) 
 beta4_114~dnorm(0,0.1) 
 beta4_115~dnorm(0,0.1) 
 beta4_116~dnorm(0,0.1) 
 beta4_117~dnorm(0,0.1) 
 beta4_118~dnorm(0,0.1) 
 beta4_119~dnorm(0,0.1) 
  beta5~dnorm(0,0.1) 
 #hyper prior 

  #hyper prior 
                 gamma[1:2]~dmnorm(mn[1:2],prec[1:2,1:2]) 
                 T[1:2,1:2]~dwish(R[1:2,1:2],2) 

  numta~dgamma(1,1)   } 
 
Data 

list(ns=6000,R=structure(.Data=c(0.01,0.001,0.001,0.1),.Dim=c(2,2)),prec=structure(.Data=c(0.01,0.01,0.01,0.01),.Dim=c(2,2)),mn=c(0,0)) 
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Appendix 6.2: BUGS and NUTS results for protein level parameter of class-immunity 

group proteins 

   Using normal prior      Using Double EXP prior 

protein  2.5% 
percentile  median 

97.5% 
percentile 

2.5% 
percentile  median 

97.5% 
percentile 

CALR Calret   ‐0.13  0.08  0.38  ‐0.20  0.14  0.47 

CAP1 Adenyl    ‐0.21  0.00  0.22  ‐0.35  ‐0.04  0.26 

CD9 25 kDa  ‐0.40  ‐0.02  0.26  ‐0.63  ‐0.13  0.35 

CORO1A Coro   ‐0.13  0.06  0.37  ‐0.23  0.11  0.44 

CTSG Cathep  ‐0.37  0.00  0.37  ‐0.60  ‐0.02  0.56 

DEFA1;DEFA1   ‐0.38  ‐0.10  0.09  ‐0.54  ‐0.24  0.05 

DSG2 Desmog   ‐0.30  0.02  0.44  ‐0.47  0.10  0.69 

EZR cDNA FL    ‐0.34  0.00  0.35  ‐0.54  ‐0.02  0.50 

EZR Ezri   ‐0.21  0.04  0.42  ‐0.33  0.12  0.58 

FERMT3 Isof   ‐0.25  0.01  0.31  ‐0.41  0.01  0.42 

HSPD1 cDNA   ‐0.24  0.01  0.32  ‐0.40  0.01  0.41 

IL4R IL4R n   ‐0.41  0.00  0.37  ‐0.67  ‐0.03  0.60 

LCP1 Plasti  ‐0.23  ‐0.05  0.10  ‐0.36  ‐0.14  0.08 

LTF Unchara  ‐0.37  ‐0.03  0.21  ‐0.57  ‐0.15  0.26 

MIF Macroph  ‐0.30  0.02  0.43  ‐0.50  0.07  0.66 

MIR1244‐3;M  ‐0.31  0.00  0.32  ‐0.50  ‐0.02  0.45 

MNDA Myeloi  ‐0.34  0.01  0.40  ‐0.55  0.03  0.61 

MPO Isofor  ‐0.32  ‐0.03  0.17  ‐0.49  ‐0.14  0.20 

MSN Moesi   ‐0.17  ‐0.01  0.14  ‐0.30  ‐0.08  0.14 

MYH9 Isofor  ‐0.23  ‐0.07  0.05  ‐0.35  ‐0.16  0.03 

PDIA3 cDNA  ‐0.22  0.05  0.47  ‐0.36  0.14  0.65 

PPIA Peptid  ‐0.17  0.01  0.20  ‐0.30  ‐0.03  0.22 

PPIB Peptid  ‐0.21  0.03  0.36  ‐0.34  0.07  0.49 

PRDX2 cDNA  ‐0.20  0.01  0.25  ‐0.34  ‐0.02  0.30 

PSMA2 Prote  ‐0.60  ‐0.06  0.23  ‐0.87  ‐0.27  0.29 

PSMA5 Prote  ‐0.34  0.01  0.37  ‐0.56  0.01  0.59 

PSMA6 28 kD  ‐0.35  0.00  0.38  ‐0.57  0.01  0.58 

PSME1 Prote  ‐0.25  0.03  0.39  ‐0.39  0.08  0.56 

PSME2 Uncha  ‐0.24  ‐0.01  0.22  ‐0.39  ‐0.07  0.26 

RPS6 40S ri   ‐0.34  0.01  0.39  ‐0.56  0.02  0.59 

S100A8 Prot  ‐0.36  ‐0.04  0.17  ‐0.56  ‐0.18  0.20 

S100A9 Prot  ‐0.30  ‐0.05  0.12  ‐0.46  ‐0.17  0.11 

SAMHD1 Isof   ‐0.37  ‐0.01  0.30  ‐0.59  ‐0.07  0.44 

VIM Vimenti  ‐0.26  ‐0.05  0.12  ‐0.40  ‐0.15  0.11 

YBX1 Protei  ‐0.48  ‐0.02  0.31  ‐0.76  ‐0.14  0.45 

 

 

 

 

 

 



191 | P a g e  
 

 

 

HMC/NUTS results for protein level parameter of class-immunity group proteins 

 

   Using normal prior      Using Double Exp prior  

protein 
2.5% 

percentile 
median 

97.5% 
percentile    

2.5% 
percentile 

median 
97.5% 

percentile 

CALR Calret   ‐3.68  0.01 2.78 ‐6.07  ‐0.01 5.49

CAP1 Adenyl    ‐2.97  ‐0.01 2.33 ‐5.94  ‐0.01 5.01

CD9 25 kDa  ‐3.02  0.01 3.78 ‐3.43  ‐0.01 4.64

CORO1A Coro   ‐2.98  ‐0.01 2.50 ‐4.00  0.00 4.92

CTSG Cathep  ‐3.42  ‐0.01 2.59 ‐4.21  0.00 5.29

DEFA1;DEFA1   ‐3.25  ‐0.01 2.65 ‐6.02  ‐0.06 3.36

DSG2 Desmog   ‐2.19  0.03 3.80 ‐7.42  ‐0.01 7.02

EZR cDNA FL    ‐2.84  ‐0.01 2.81 ‐5.46  ‐0.01 4.76

EZR Ezri   ‐2.90  0.00 3.06 ‐3.85  0.01 4.53

FERMT3 Isof   ‐3.16  ‐0.01 2.34 ‐4.05  ‐0.03 4.71

HSPD1 cDNA   ‐2.65  0.01 2.90 ‐4.40  0.02 5.14

IL4R IL4R n   ‐3.29  ‐0.01 2.53 ‐4.61  0.00 5.86

LCP1 Plasti  ‐2.84  0.00 2.31 ‐3.32  ‐0.02 4.39

LTF Unchara  ‐2.49  0.04 2.88 ‐5.15  0.00 3.86

MIF Macroph  ‐2.77  0.01 3.03 ‐2.85  0.02 4.70

MIR1244‐3;M  ‐4.15  ‐0.01 2.59 ‐5.38  0.00 3.67

MNDA Myeloi  ‐2.08  0.00 3.60 ‐5.09  0.00 5.12

MPO Isofor  ‐2.79  0.01 2.98 ‐4.38  ‐0.01 5.04

MSN Moesi   ‐2.92  0.03 3.12 ‐6.18  ‐0.02 3.19

MYH9 Isofor  ‐2.54  0.02 2.95 ‐3.32  ‐0.01 4.88

PDIA3 cDNA  ‐2.86  0.01 3.03 ‐3.82  0.00 5.23

PPIA Peptid  ‐3.23  ‐0.01 2.21 ‐4.49  0.02 4.83

PPIB Peptid  ‐2.81  0.00 2.31 ‐3.48  0.00 4.60

PRDX2 cDNA  ‐2.70  0.00 2.73 ‐4.99  ‐0.03 2.80

PSMA2 Prote  ‐2.77  0.00 3.30 ‐4.98  ‐0.01 5.41

PSMA5 Prote  ‐3.30  0.02 2.93 ‐3.31  0.01 4.57

PSMA6 28 kD  ‐2.73  0.00 2.81 ‐4.94  0.00 5.08

PSME1 Prote  ‐2.65  0.00 2.86 ‐3.31  0.01 3.81

PSME2 Uncha  ‐2.95  0.02 2.71 ‐3.53  0.03 5.32

RPS6 40S ri   ‐3.54  0.00 2.75 ‐5.66  ‐0.01 2.75

S100A8 Prot  ‐2.93  ‐0.01 2.76 ‐3.86  0.00 4.63

S100A9 Prot  ‐2.83  0.00 3.15 ‐3.18  0.00 5.61

SAMHD1 Isof   ‐2.91  0.00 3.13 ‐3.92  ‐0.01 4.58

VIM Vimenti  ‐3.15  ‐0.02 2.69 ‐3.53  0.01 4.14

YBX1 Protei  ‐2.89  0.01 2.87    ‐4.82  ‐0.03 5.11

 

# Bugs using Normal priors has a better convergence in the posterior samples of 

class difference.  
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Appendix 6.3: NUTs results for protein level parameter of class difference -76  

proteins

protein name  class.de.p2.5  class.de.median  class.de.p97.5  class.de.p12.5  class.de.p87.5 

ACTB cDNA F  ‐0.005  ‐0.004  ‐0.003 ‐0.005  ‐0.003

ACTBL2 Beta  ‐0.911  1.529  1.581 ‐0.055  1.571

ACTG1 cDNA  ‐1.626  0.368  1.089 ‐0.244  0.377

ACTG1 Uncha  ‐1.734  ‐1.551  1.779 ‐1.624  0.034

ACTN1 Actin  ‐1.845  ‐0.429  1.454 ‐0.440  0.045

ACTN1 cDNA  ‐0.941  0.213  1.421 ‐0.041  0.224

ALB Isofor  ‐1.288  0.989  1.477 ‐0.095  1.016

ANXA1 Uncha  ‐1.758  0.043  0.893 ‐0.282  0.047

ANXA6 annex  ‐1.027  2.298  2.381 0.012  2.367

CALR Calret  ‐2.319  6.494  6.720 ‐0.399  6.684

CAP1 Adenyl  ‐1.555  2.003  2.078 ‐0.060  2.063

cDNA FLJ5  ‐1.246  ‐1.206  1.242 ‐1.239  0.016

CFL1 Unchar  ‐0.838  ‐0.425  7.810 ‐0.440  0.148

CLIC1 Chlor  ‐1.755  ‐1.575  1.444 ‐1.619  0.040

CORO1A Coro  ‐2.711  ‐0.369  4.687 ‐0.407  0.314

DEFA1;DEFA1  ‐1.267  8.628  8.928 ‐0.225  8.878

ENO1 Isofor  ‐1.374  0.048  1.547 ‐0.047  0.121

EZR Ezri  ‐2.050  3.537  3.644 ‐0.179  3.628

F13A1 Coagu  ‐1.750  ‐0.368  0.407 ‐0.393  ‐0.015

FGA Isofor  ‐4.091  2.373  2.459 ‐0.104  2.444

FGG Unchara  ‐2.550  ‐2.463  1.879 ‐2.537  0.223

FLNA Isofor  ‐2.115  2.252  2.362 ‐0.137  2.335

FLNA Unchar  ‐2.364  ‐0.823  0.688 ‐0.847  0.036

GSN Unchara  ‐3.090  ‐2.990  0.956 ‐3.071  0.045

HBA2;HBA1 H  ‐0.610  0.260  5.333 ‐0.020  0.265

HBB Hemoglo  ‐0.730  ‐0.472  2.227 ‐0.479  0.121
HBD 
Hemoglo  ‐1.450  6.806  7.040 ‐0.181  7.000

HNRNPK cDN  ‐1.117  0.217  1.067 ‐0.080  0.220

HSP90AA1 Is  ‐1.017  ‐0.982  0.417 ‐1.010  0.034

HSPA1B;HSPA  ‐0.962  4.227  4.375 ‐0.028  4.350

HSPA8 Uncha  ‐1.097  ‐0.020  1.580 ‐0.050  0.184

ITGA2B Isof  ‐1.734  ‐0.874  1.469 ‐0.906  0.012

KRT1 Kerati  ‐1.331  0.383  1.493 ‐0.048  0.393

LCP1 Plasti  ‐0.636  ‐0.092  2.329 ‐0.095  0.213

LDHA L‐lact  ‐1.845  1.796  1.864 ‐0.046  1.853

LDHB L‐lact  ‐1.434  0.471  1.690 ‐0.041  0.484

MPO Isofor  ‐0.373  ‐0.134  3.566 ‐0.138  0.338

MSN Moesi  ‐2.355  3.743  3.874 ‐0.083  3.854

MYH9 Isofor  ‐2.148  ‐2.076  2.353 ‐2.135  0.092

MYL6 17 kD  ‐1.264  1.530  1.581 ‐0.106  1.571

MYL6 cDNA F  ‐0.830  0.579  1.129 ‐0.092  0.595

PARK7 Prote  ‐0.671  3.800  4.877 0.000  3.901

PF4 Platele  ‐2.024  2.179  2.255 ‐0.508  2.242

PFN1 Profil  ‐1.268  2.371  2.453 ‐0.255  2.439

PGK1 Phosph  ‐5.919  3.727  3.859 ‐0.088  3.841

PKM2 pyruva  ‐1.184  0.341  2.577 ‐0.113  0.348

PKM2 Pyruva  ‐1.516  2.006  2.075 ‐0.027  2.064

PLEK Plecks  ‐2.323  ‐2.180  1.154 ‐2.298  0.085

POTEE Isofo  ‐4.562  ‐4.415  1.757 ‐4.537  0.356  
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PPBP Platel  ‐0.958  2.049  2.126 ‐0.094  2.114

PPIA Peptid  ‐0.847  0.622  1.852 ‐0.014  0.638

PRDX2 cDNA  ‐1.916  2.425  2.873 ‐0.033  2.492

S100A8 Prot  ‐2.206  1.665  1.721 ‐0.065  1.708

S100A9 Prot  ‐0.780  3.886  4.020 ‐0.029  3.998

SOD1 Supero  ‐1.604  4.692  4.854 ‐0.114  4.827

TAGLN2 24 k  ‐1.600  ‐0.096  1.020 ‐0.176  0.018

TALDO1 Tran  ‐1.513  1.335  1.455 ‐0.117  1.371
THBS1 
Throm  ‐1.619  1.258  1.301 ‐0.143  1.292

TLN1 Talin‐  ‐0.486  1.313  1.539 ‐0.015  1.347
TMSB4X 
TMSB  ‐2.105  ‐2.036  1.111 ‐2.091  0.083

TMSL3 8 kD  ‐1.292  1.394  1.439 ‐0.108  1.433

TPI1;TPI1P  ‐1.352  0.311  1.339 ‐0.150  0.323

TPM1 Isofor  ‐1.007  0.195  1.576 ‐0.023  0.214
TPM1 
Unchar  ‐1.468  ‐0.001  0.983 ‐0.090  0.052

TPM3 Isofor  ‐1.277  ‐1.232  1.707 ‐1.257  0.166

TPM4 Isofor  ‐3.517  1.240  1.272 ‐0.489  1.264
TUBA1B 
Tubu  ‐1.072  0.170  1.022 ‐0.103  0.175

TUBA4A cDN  ‐1.224  ‐1.060  1.490 ‐1.086  0.102

TXN Unchara  ‐1.871  ‐0.064  0.367 ‐0.170  ‐0.011

VCL Isofor  ‐1.202  1.253  1.458 ‐0.060  1.288

VIM Vimenti  ‐0.658  1.120  1.161 ‐0.033  1.154

YWHAB Isofo  ‐0.711  1.486  2.084 ‐0.042  1.525
YWHAQ 14‐
3‐  ‐0.697  2.263  2.343 ‐0.034  2.330
YWHAQ 
Uncha  ‐1.800  0.443  1.743 ‐0.083  0.452
YWHAZ 
Uncha  ‐6.623  ‐2.510  0.425 ‐2.580  ‐0.096

ZYX Zyxi  ‐2.102  0.955  0.996 ‐0.270  0.992

 

 

*Data presented are 2.5 percentile, median, 97.5 percentile, 12.5 percentile and 

87.5 percentile of the posterior estimates of class differences, from left to right 

respectively. 
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CHAPTER 7  

Discussion 

7.1 Overall review 

By the time this PhD research was close to its finish, several notable changes had occurred in 

the proteomics world. The first was the announcement of a free data portal of clinical 

proteomic studies supplied by the National Cancer Institution. The release of the free data 

portal was the results of the 2008 international summit on proteomics data released and 

sharing policy (aka, the Amsterdam principles) (Rodriguez et al., 2009), and the 2010 follow-

on workshop that the National Cancer Institute convened to address quality metrics for 

proteomics with an emphasis on mass spectrometry. The second exciting change was the 

most recently released landmark editorial article “Assays Without Borders” in the December 

2013 issue of the journal Nature Methods (Kennedy et al., 2014). It reported research of the 

Clinical Proteomic Tumor Analysis Consortium (CPTAC) partnered with 3 international labs 

to demonstrate the reproducibly quantifiable Human proteins using targeted mass 

spectrometry-based assay across three labs, two countries, and two continents.  This research 

developed a multiplex of 645 assays representing 319 proteins expressed in human breast 

cancer. The third remarkable change is the increasing amount of integrated research in 

“omics” including proteomics and genomics. Using the SCOPUS database and searching the 

terms “integrating proteomics and genomics” and limiting to the published years between 

2007 to present, 145 research articles were identified, of which 18 are published in 

computing and mathematical journals (SCOPUS classified statistical journals as 

mathematical journals). Using the same search terms and limiting publication years to 2000 

to 2006 identified 83 research articles, of which 6 are from computing and mathematical 

journals. An approximately 75% increase of published research was seen in the studies 

integrating “omics” in the same period as this PhD research when compared to that in the 

years 2000 to 2006, and there was a three-fold increase for studies with computing and 

mathematical methodologies.    
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These changes support the relevance of this PhD research which was initiated in 2006-2007. 

The following sections summarize the learning, improvements and future areas of expansions 

for each section of this PhD study.  

 

7.2. Reproducibility assessment for high throughput devices 

7.2.1 Another literature review for the methodology of reproducibility assessment in the same 

period as the current PhD research 

A recent search of articles from the SCOPUS database using the term “reproducibility in 

proteomics” identified 8 publications published between 2007 and the present. Of these, two 

are related to the statistical methodology. One of these studies (Merciera et al., 2009) was 

published at the same time as the multi-feature reproducibility paper (I.S.L. Zeng et al., 

2009). They applied the standard exploratory principal component analysis and a single level 

mixed model analysis for the reproducibility measurement. Both analyses were applied to the 

peptide (peak) intensity level. The second study (Dazard et al., 2012) introduced a 

reproducibility index and confidence scores (ROCS) for a protein interaction proteomics 

study using Affinity-Purification mass spectrometry. This ROCS reproducibility assessment 

was invented for use in the protein identification phase. Until today, there is still little 

research on multi-feature reproducibility assessments, as proposed in chapter 2.   

 

7.2.2 The theoretical review and interpretation of the methodologies related to the proposed 

method  

7.2.2.1 Principal component, big random matrix and Tracey-Widom distribution for the 

largest Eigenvalues 

Principal component analysis has been used as an exploratory data analysis (EDA) and a 

multivariate analysis tool to reduce the number of dimensions of a high dimensional data 

matrix(Kshirsagar, 1972). The principal components are the best linear combinations of the 

original variables, that explain the maximal proportion of the variances from the original 
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n p data matrix, where n is the number of observations and p is the number of variables. 

They are derived by minimizing the sum of squared perpendicular distances between the 

original coordinates of data points and the proposed new axes of the principal component 

subspaces. Computationally, this can be realized by minimizing the trace of the product of 

residual matrix E and its transpose E’ from the equation Y XB E  , where Y represents the 

centralized data matrix, X represents the principal component scores and B represents the 

eigenvectors  of the correlation or covariance matrix of the original data (Rao, 1964; SAS 

Institute Inc., 2010).  The properties of the principal components are:  

1) The resultant eigenvalues from the principal components analysis are in descending order.  

The first jth eigenvalue is equal to the proportion of variance of the centralized data 

explained by the jth principal component, if eigenvalues are normalized to sum to 1 (scaled 

eigenvalues). The first eigenvalue is the largest value of the eigenvalues and the first 

principal component explains most of the variances of the centralized data. 

2) The eigenvectors are orthogonal vectors and the principal components are the 

perpendicular projection from the original data matrix. 

3) The resultant principal components scores are uncorrelated. 

When the number of variables p exceeds the number of samples n, PCA utilize the sample 

covariance matrix and enable the reduction in the dimension of the data.   

PCA used the sample covariance matrix often referred to as the Wishart matrix, to derive the 

sample ordered eigenvalues. As for any other sample statistics, the sample ordered 

eigenvalues are estimates of the population eigenvalues. Among the sample ordered 

eigenvalues, the largest sample eigenvalue followed the Tracey-Widom distribution of order 

one under the random matrix theory (RMT) framework.  

Random matrix theory has emerged as a mathematical framework applied in multivariate 

statistical analysis in the last decade. Its most common application is in the well-known 

method PCA and factor analysis, which is popularly used for high dimensional data produced 

from “omics”, imaging field, or the macroeconomic data from the stock market. Among 

these high dimensional data, the underlying structures are usually believed to be buried by 



197 | P a g e  
 

the noise (Berry et al., 2011). However, the earliest application of RMT in multivaritate data 

analysis can be traced back to (Pearson, 1901) who introduced the reduction of data 

dimension through PCA (SAS Institute Inc., 2010). Studying the property of the sample 

covariance matrix of a high dimensional rectangular data matrix can be replaced by the study 

of the distribution of its eigenvalues. This is because the empirical distribution of the 

eigenvalues of the population covariance matrix   and its estimate from the sample variance 

S  can be both decomposed. For the population covariance, it can be decomposed 

as k k k     , and analogously the sample variance S can be used to derive the sample 

Eigenvalues k̂  as in ˆ
k k k   S  through PCA.  

Tracy and Widom (1996) proved that the largest eigenvalue of a Wishart matrix which has 

standard Gaussian distributed complex values as the matrix entries, asymptotically converged 

to the Tracy-Widom law.   Johnstone (2001) proved that the largest eigenvalue of the Wishart 

matrix  jk n p
X X


 , with i.i.d standardized Gaussian entries also converged to the Tracy-

Widom law of order one asymptotically. According to the theory 1.1 in his paper, let n be the 

sample size and p be the number of variables (dimension), if 

 1 1, , 0,1
n p

n or
p n

      , then  
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1 1
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



 W  , where 1l denotes the largest eigenvalue for X, np and np define the 

centre and scaling constants respectively, and 

   
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1 ; 1
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np npn p n p
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 

 
         

.  

1F is the Tracy-Widom distribution for order one defined as  

        21
1 2exp ,

s
F s q x x s q x dx s


      , where q solve the nonlinear Painlevé II 

differential equation,          32 ,q x xq x q x q x Ai x    as x   and  Ai x denotes 

the airy function.   Johnstone’s theory works well even when n and p are as small as 5. It can 
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be applied to data when n < p and both are large, simply by reversing the role in the centre 

and scale definition.   Karoui (2007) extended Johnstone’s theorem 1.1 to / 0,p n  as 

,n p  .  Onatski (2008) further extending the work of Karoui (2007) to establish the joint 

distribution of the several largest eigenvalues of a singular complex Wishart  matrix (when n 

< p). Onatski’s work provides a framework to test the first m largest eigenvalues which has a 

similar functionality to the scree plot in PCA. It provides inferential information such as the 

confidence limit for the test statistics - a function of the ordered eigenvalue for a complex 

singular matrix. This test not only provides the information for the underlying population 

structure, it also takes into account the uncertainty from the sample.  

 

7.2.2.2 Multivariate permutation  

In 1934, Fisher (Berry et al., 2011) proposed the exact probability of guessing right in the 

“lady tasting tea” experiment, by permuting all possible arrangements of the tea (tea with 

milk added first  vs. tea with milk added second) to calculate the probability of a right guess 

in his design of experiment text book (Fisher, 1935). 

Since 1980, the permutation method has gained attention in many areas after the booming in 

computing techniques. It is widely used to simulate the empirical distributions of test 

statistics for comparing quantities between two groups or pair groups. In addition, the 

multiple comparison consequence can be addressed using permutation method when the 

sample size is less than the number of variables in the observed data. 

In the last decade, many works have also achieved by using permutation method in 

multivariate data analysis (M. J. Anderson and Legendre, 1999). It has been used when the 

assumption for the asymptotic test is violated, such as the multivariate normality assumption, 

and the sphericity assumption of the sample variance.  It has also been commonly used in 

genome-wide association studies, in which the sample sizes are far less than the number of 

variables, to adjust for the false positive rate.  
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7.2.3 The improvement in the current reproducibility method and how this method works  

As the traditional clinical reproducibility assessment only works for a single measure, a 

multidimensional approach will be necessary for the assessment of multiple measures from 

the proteomic platform. In particular, when the high dimensional data are formed by low 

dimensional signals embedded in isotropic noise, such as the data from mass spectrometer, 

reduction of the dimension will improve the efficiency in the reproducibility assessment.   

The proposed method in this study provides a new approach to assess the repeatability at the 

proteome-wide scale. It uses principal component analysis to identify the underlying 

correlated pattern of the multiple features. The features which vary across different types of 

mass spectrometry experiments (i.e. SELDI-MS, iTRAQ MALDI-MS) are defined as either 

the discovered peaks or the summarized proteins expression. Principal component analysis is 

applied to the averaged quantities from those common features discovered from the 

replicated MS analysis. The first principal component scores derived from the PCA, which 

take up the most variance from the original data, provide a global quantity for the 

reproducibility assessment.    

The by-product of this analysis, the First Principal Component (FPC) plot, provides a simple 

tool to visualize the agreement between replicated samples at the projected principle 

component subspace. Since the first principal component explains the largest variance of the 

original data, the FPC plot preserves the proteome-wise information. It has an analogue idea 

as the MA plot in a micro array study. The advantage of this method is that, it does not 

include the noise data, only operating on the common features.  

The eigenvalues analysis is based on the property of the m largest eigenvalues of a sample 

covariance Wishart matrix. This property describes that the largest eigenvalue followed the 

Tracey-Widom limit law asymptotically. The Tracey-Widom distributed statistics in the 

eigenvalue analysis provide an inferential approach to identify the underlying dimensions of 

the data matrix.  

In order to test the hypothesis that there is no difference across the replicates on the principal 

component space, the four classical multivariate test statistics (Wilks’s Lambda, Pillai’s 

trace, Hotelling–Lawley trace, and Roy’s maximum root) have been considered. However, 
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with data n<p, the asymptotic multivariate test statistics are not appropriate. Two alternative 

multivariate test statistics are proposed for the inferential analysis. The permutation method 

is applied to these two test statistics to assess the hypothesis of no significant difference 

between the technical replicates. It operates on the global scale but in the projected principal 

component space. For these two test statistics, Max t stat uses the actual coordinates of the 

transformed data point, and the sign rank statistics only uses the sign of the difference 

between the paired data. The theoretical distribution of the test statistics is not available; 

using an alternative multivariate permutation test becomes necessary.      

The current research provides a permutation method for testing the reproducibility for tests 

with multivariate responses. It can be extended in medical statistics to imaging, proteomics, 

metabolomics, and other areas.  

 

7.2.4 The limitation of this method and what next to consider   

The limitation of this method is that, it operates on the post-identification stage, which 

assumes that the peak has been well identified and it is only applied to the common features 

across the replications.  

The eigenvalue test relies on the asymptotic assumption where the n and p approach to 

infinity, but this may not work well for data with a small sample size. 

The two proposed multivariate test statistics are a parametric and a non-parametric version 

for the testing, both of them work well when sample size is larger than 15.   

With the further development of random matrix theory, the asymptotic assumption for 

analysis take the infinity for both sample size and dimensionality (Paul and Aue, 2013). The 

increased computer efficiency in the 20th Century would make it common to perform 

permutation even used the enumeration method, instead of the Monte Carlo method.   

The n< p problem will always exist, especially when the discovery technology improve and p 

is getting bigger. The current method needs to expand to the condition when p is much bigger 

and p/n >>1, and the empirical distribution of m largest Eigenvalues test statistics needs to 
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extend to when m > 100.  The new development of RMT, such as joint distribution of the 

eigenvalue, and the convergence rate of the empirical spectral distribution of the big random 

matrix will be the new mathematical theory for us to look at (Tao and Vu, 2010b; O'Rourke 

et al., 2011; Tao and Vu, 2011).   

 

7.3. Multi-stage design is the necessary strategy in clinical proteomic study 

7.3.1 Review of what has happened since this PhD research started, and focus on any new 

research that has emerged 

A recent literature search using the term “multi-stage design in proteomics studies” identified 

two relevant studies. One is the paper (I.S.L Zeng et al., 2013) presented as chapter 3 in this 

thesis, while the other paper is a study utilizing multi-stage experimental design to validate a 

systematic antibody-screening tool of protein antibodies and immunohistochemistry 

(Williams et al., 2010). The latter paper introduced a systematic approach to validate an 

antibody-screening tool and provide a new strategy in exploration of human proteomes. This 

study showed a high successful rate of 93% of the discovered antibody protein array. Multi-

stage design is shown to be a promising strategy in discovering next generation clinical 

biomarkers for the diagnosis, and prognosis of a disease and for predicting the response of a 

therapy for the disease.  

Using the term “false discovery rate, family wise error rate, number of type I errors”, 10 

articles were found in the SCOPUS related to the multiple hypothesis testing problem, and 

three of them proposed new methods for this statistical problem using numbers of type I 

errors.   

  

7.3.2 The theoretical review and interpretation of the methodologies related to the proposed 

method  

In multiple hypothesis testing literature, many works focused on how to control type I error 

rates when a single hypothesis test was performed many times and the conventional type I 
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error rate of 0.05 was not appropriate. The multiple tests phenomenon is especially 

ubiquitous in genomic studies when millions of tests are required for million genes. Several  

measures had been proposed for the overall type I error rate across multiple comparisons,  

including the widely used False discovery rate (FDA) (Soric, 1989; Benjamini and Hochberg, 

1995) and Family wise error rate (FWER) (Shaffer, 1995). False discovery rate (FDR) is the 

expected proportion of the false positives from the significance findings, while Family wise 

error rate is the expected probability of having at least one false positive from the 

significance findings.  Correspondingly, many control procedures had been invented to 

minimize these global type I error rates (Holm, 1979; Hochberg, 1988; Benjamini and 

Hochberg, 1995; Hwang et al.).   

While a few works in the past focused on maximizing the power of multiple test, Storey 

(2007)‘s development of a new theory using an optimal discovery procedure (ODP) to 

maximize number-of-true-positives with a fixed number-of-false-positives is gaining 

attention. His works are also of the most relevance to our study, and the following section 

will discuss our method under his proposed ODP framework.  

Storey’s multiple test procedure theory was proposed as a comparison to Neyman-Pearson’s 

optimality lemma for a single test. An optimal discovery procedure (ODP) is defined as a 

multiple test procedure that maximizes the Expected number of True Positives (ETP) at a 

fixed Expected number of False Positives (EFP) for all Single Threshold Procedures (STP). 

A Single Threshold Procedure (STP) is a multiple test procedure that uses a single threshold 

as test significance for all tests. Storey (2007) proved that every multiple testing procedure 

that is invariant to the labelling of the test is a STP in the lemma 1 of his paper. In his ODP, 

firstly the tests were ranked in an order by the threshold function and secondly a threshold 

would be selected as the cut-off to define a test being significant. His proposed ODP 

borrowed the information from other tests of the multiple tests to determine the relative 

significance of each single one.  

In a multi-stage clinical proteomic study, the multiple hypothesis testing error rate controls is 

less important than the statistical power. This is because the number of proteins being tested 

is much less than the number of genes tested in a genome association study. The sample size 

is expected to be small in the first discovery stage. As such, power is more of concerns than 



203 | P a g e  
 

controlling for overall type I errors because the false discoveries will be ruled out in the 

following verification and validation stages. However, if any false negative occur in the first 

stage, it will be more difficult to identify the missed protein candidates which could be of 

real value in comparison with making a false positive discovery. On the other hand, costs of 

proteomic assay and studies impose large constraints on the number of proteins to be selected 

at stages I and II. To maximize the statistical power under constraints of cost and a fixed 

overall type I error thus becomes the most appropriate optimal procedure for the current 

clinical proteomic studies.   

 

7.3.3 The improvement in the current multi-stage design method and how this method works  

In the development of a rigorous optimal procedure in multiple-testing, three components 

should be involved. The first is the optimal goal, which is the final result to be achieved; the 

second is the constraints under which the optimality to be found; the third is the procedure, 

which is the objective function and the optimization method, that achieves this optimality 

(Storey, 2007). These three components for our proposed method are described in detail 

below.  

The optimality proposed in our study includes two different algorithms SA-a and SA-b. Both 

of the algorithms assumed that we have known information for stage I sample size, a cost 

function with fixed costs for assay, recruitment and other items.  Algorithm SA-a selects 

proteins based on the t test of each protein. Algorithm SA-b selects proteins based on the t 

test of each protein and the F test for the biological group. The optimal goal is to find the 

design solution to maximize the expected number of true discoveries.  The design solution is 

a vector of design parameters for a multi-stage proteomic study. The design parameters 

include significance thresholds for the p values based on the statistical tests used at stages I 

and II, and the sample size used at stages II and III. For SA-a, the constraints are the overall 

cost.  For SA-b, the constraints are the expected number of false positives (EFP) and cost. 

Since we know that the false discovery rate (FDR) can be approximated by EFP and 

expected number of true positives (ETP), 
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EFP

FDR
EFP ETP




 (Storey, 2007)  

Using EFP as a constraint will be approximated as the constraint of FDR. The expected 

number-of-true-positives (ETP) can be approximated by p which is the total number of 

discovered proteins. The procedure for the optimality of this multiple-test problem is the 

characteristics function built by the simulation or the analytical approximation for a three 

stage design proteomic study. The objective functions use the nominal type I error and the 

sample size at each stage to derive the expected number of true discoveries.  Hybrid 

simulated annealing is used as the optimization method in this multiple procedure. In 

comparison to the conventional simulated annealing, which does not have a structure, the 

nested simulated annealing builds a structure for the searching space. Subsets of the solution 

spaces are constructed by using a beta-distributed jumping length and a uniformly distributed 

radius. The jumping length determines the size of the jump from one centre to another, and 

the radius provides the size of each searching sub-space. 

Our proposed algorithms are also equivalent to Single Threshold Procedures (STP) defined 

by Storey. The single protein selection algorithm SA-a is a STP. At each stage, a single 

threshold (i.e. c1, c2 and c3) is used for p values of all the single protein tests. The group 

protein selection algorithm SA-b is also a STP, as it used single threshold for tests at each 

stage. At stage I, the single threshold is a combination of p value (significance levels) of the 

F test for the group a protein belonging to and p value of t test for each protein. These 

combinations of p values thresholds are denoted as 
1t

  and 
1f

  for the protein test and group 

test at stage I respectively. These paired p value thresholds vary in different solutions given 

by the proposal function in the simulated annealing search according to the following 

criterion,    
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
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where T2 is the F- distributed Hotelling’s T-squared statistics with degrees of freedom 

determined by the number of proteins and the sample size at each stage; T is the Student t-

statistics; and F–1 is the quantile function for the F-statistics. The criterion is set to select 

groups with a changeable significance level and proteins with a changeable significance level 
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from a group significant at the fixed 0.05 level during the optimization. This setting will pick 

all proteins of a group if this group is of high significance at stage I.  

Similarly, at stage II, the single threshold is also a pair of p values (significance levels) of the 

F test for the group and the T test for the single protein  2 2,t f  : 
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2222222
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   

The second-stage criterion is set to select proteins with a changeable significance level, and 

proteins significant at 0.05 levels but belonging to groups with a changeable significance 

level. This setting will pick a protein if it is of high significance, or if it is significant at the 

0.05 significance level and in a highly significant group at stage II.  

The proposed methods of multi-stage design for a clinical proteomic study have the 

completed components of a rigorous optimal multiple test procedure as defined by Storey. 

SA-b utilizes the biological group function which may ultimately improve the biological and 

clinical relevant discovery, when the grouping information is informative. The SA-a only 

using a single protein test also provide a tool for the sample size estimations for a multistage 

design when grouping information is not required, or is not informative. 

Both the SA-a and SA-b utilize the nice property of the expected values for a summed 

probability. We know that it is also equivalent to the sum of the expected value of a 

probability. Since the probability of each protein being selected at the final stage is estimable, 

the sum of this probability across all proteins will be an estimate of the expected total number 

of true discoveries. This initiates the essential idea of the SA-a and SA-b. 

The analytical approximation procedure for estimating the expected number of true 

discoveries of a three stage design in SA-b is proved to yield a similar solution as using the 

simulation function. The approximation decomposed the components of the probability of a 

protein being discovered in the three stage study. This approximation approach is an 

improvement for an optimization problem when the exact analytical function is not easily 

obtained and the simulation function takes a longer time to run. The nested simulated 

annealing method is also shown to speed up the optimization process.    
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The proposed method for a multi-stage clinical proteomic study can be generalized and used 

for any multi-stage studies that involve screening hundreds and thousands of candidates at 

early stages, and verification and validation at later stages.  

 

7.3.4 The limitation of this method and future development   

The proposed method for the multiple stage clinical proteomic design is suitable to use when 

the discovery study of the first stage has already been conducted. In the future, when the 

discovery technology becomes more stable, the multiple-stage design can include stage I 

sample size as one of the unknown design parameters with an approximated total number of 

proteins discovered at the first stage. Another future development will be to consider the 

correlation and hierarchical structure of the protein groups, and incorporate these structures 

in the objective functions.  

Recently, Nomaa and Matsuib (2011) developed the ODP using Bayesian estimate under the 

same conceptual framework as storey. Future optimality for the similar problem can also 

consider using the threshold function proposed by Storey (2007) in lemma 1, and adding 

known prior information for the mean of each protein and known weights according to their 

biological functions under the Bayesian framework.  

 

7.4. Using Bayesian methods will be an advance for analysing proteomics studies 

7.4.1 Review of what has happened since this PhD research started, and focusing on any new 

research that has emerged  

A recent search using the term ” ’statistical method’ AND ’proteomics’ ”, and ” ’statistical 

method’ AND ‘Mass spectrometry’ ” in SCOPUS produced 4 papers and two books. Oberg 

and Mahoney (2012) described a model for explaining the variations of the abundance data 

from protein, peptide, and experimental factors. Cox and Mann (2012) proposed an 

annotation enrichment method to integrate the proteomic data and other complementary high 

throughput devices.   Two other papers are about reviewing the method for protein 

identification. Two books provided a general framework for quantitative proteomics and 
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basic statistical analytical methods for proteomic data. Utilizing Bayesian method to 

incorporate the missingness remains an advancing method for analysing proteomics studies.  

 

7.4.2 The theoretical review and interpretation of the methodologies related to the proposed 

method  

7.4.2.1 Multivariate multilevel mixed model 

Multilevel models have been used in many disciplines and mostly in social science and 

public health studies in recent decades. An early advocate of multivariate multilevel model 

was Goldstain (Goldstain, 1995) who described a simple two-level multivariate multilevel 

model for students’ examination results of writing and coursework. This formulation allows 

the multivariate normal distributed response even in unbalanced design for repeated 

measures and with random missing data. Since then some extensions of multivariate 

Gaussian responses to other mixed types of order, unordered distributed responses were also 

emerged under the multilevel framework. A number of different approaches have been 

explored for the estimations of parameters in these mixed type responses multilevel models, 

such as maximal likelihood estimate (ML), Expectation-Maximization (EM), and Markov 

Chain Monte Carlo(MCMC)(Goldstein et al., 2009). 

Accompanying with these works, Goldstein et al. (2009) defined a unified framework which 

extended the univariate multilevel model to a multivariate model with mixed type responses 

of continuous Gaussian distributed, ordered or un-ordered categorical variables. This model 

is named as GCKL model in their study and is aimed to generalize to roughen data including 

missing values. Under the GCKL model framework, MCMC was the main approach for the 

derivations of the posterior distribution of unknown parameters. The MCMC algorithm is 

shown to be computationally efficient when there are a large number of unknown parameters 

involved, and feasible when there are non-random missing data with informative prior 

information (such as the probabilistic data linkage problem described in Goldstein’s paper). 

Coincidentally, our approach described in chapter 4 is a special case in the GCKL 

framework, but has used different components for handling non-random missing data. Our 

multivariate multilevel model has peptide abundance as the response at level one and protein 
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abundance as the latent response at level two. The responses at both levels are multivariate 

Gaussian distributed. The GCKL framework used standard Gibb sampling to derive the 

posterior distribution for the unknown parameters, including fixed coefficients, random 

coefficients, and the covariance matrix at both levels. Fixed and random parameters were 

sampled from a multivariate Gaussian distribution with uniform priors and the covariance 

matrices at both levels are sampled from Wishart distributions. When the response has 

missing values, the missing values were sampled from a multivariate Gaussian distribution 

based on the model parameters at each sampling iteration.  

      

7.4.2.2 MCMC using Gibb sampling and Hamiltonian using Non U Turn Sampling 

Our proposed method uses MCMC and utilizing Gibb sampling and Hamiltonian MC/Non U 

Turn Sampling.  Compared to the standard Gibb sampling, Hamiltonian MC avoids the 

random walk by introducing the leap frog function. It provides an alternative to 

approximating the solution on the continuous time scale from the solutions on the discrete 

time scale with a specified step size. The logarithmic posterior probability function was 

simulated by one of the paired partial differentiated equations, namely the Hamiltonian.  

Larger moving steps are generated from the leap frog scheme and this helps to improve the 

convergence compared to the random walk. It has been shown to have higher efficiency in 

sampling high dimensional correlated multivariate distributions.  

 

7.4.3 The improvement in the current proposed method and how this method works  

The multilevel model described in chapter 4 provided a new approach to analysing a group or 

all groups of proteins when the data has non-random missing values.  The multivariate 

responses are the abundance for the multiple proteins and treated as the second level in the 

hierarchy, and are nested within individual subjects.  The multivariate multi-level model 

allows the unbalanced design structure among the responses. This is an advantage in a 

proteomic study when the numbers of peptides are unequal across the protein. The 

experimental factors can be utilized altogether in the multiple proteins model for deriving the 
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results of a single protein. This improves the estimation for the variations across proteins and 

results in shrunk estimates for a single protein when it does not have many abundance 

observations. This multiple protein approach is considered to be more reliable than a single 

protein model when there is a lack of information for the single protein. It also enables us to 

identify the proteome wide difference, such as a systematic difference in the protein 

abundance between the two sampling times as described in the cardiac case of Chapter 5, 

while providing a separated predicted estimate for each protein at the mean time. In these 

specified models in the case studies, utilizing the relationship between the mass-to-charge 

ration (m/z) and the intensity values has improved the discovery. A further relationship of the 

m/z ratio and the missingness also improved the reliability of the analysis.      

When the non-random missingness needs to be considered and modelled, using numerical 

integration or EM will not be feasible. MCMC will still be considered as an efficient 

approach to derive the solutions for the unknown parameters in this proposed multivariate 

multilevel model. Using Hamiltonian NUTS is an improvement, especially in the case of 

utilizing non-standard distribution for handling the missing data. Compared to BUGS, 

RSTAN has more flexibility for handling missing data via the censored or truncated 

distribution function. In the “advanced use of BUGS language” section in the BUGS manual, 

it briefly introduces how the censoring and truncation being handled. The truncated 

distribution is dealt with by using the “zeros” and “ones” trick, but it is less efficient (as 

stated in the manual), as it produces high auto-correlation, poor convergence and high MC 

errors. The NUTS algorithm is more efficient in dealing with the truncated distribution and 

non-standard distribution. The user can define the censored distribution by integration for a 

normal distributed variable; the user can also define a non-standard distribution by specifying 

the probability density function.   

The philosophy of the proposed multilevel multivariate method can be generalized to other 

proteomics or “omic” study with different experimental structures. Through separately 

defining the factors and covariates related to the experimental subjects and the experimental 

outputs such as the intensity of the molecule, the variations of the experimental structure can 

be clearly defined. The current method has been assessed in model with hundreds of proteins. 

It can be generalized to larger number of proteins but requires larger computing capacity.  
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When the protein number is large, analysing proteins in functional groups will reduce the 

total numbers of proteins.  

 

7.4.4 The limitation of this method and future development    

Using the proposed model, the protein level covariance matrix is assumed to be the same 

across proteins. The parameters for estimating protein to protein association also have not 

been incorporated yet. But the multilevel structure newly defined in Chapter 4 will enable us 

to make future improvements, such as 1) considering different covariance matrices for the 

protein level variables, and 2) adding known factors as the explanatory variables to estimate 

the components of the covariance matrices. When the number of proteins is large, the 

multiplicity adjustment will also need to be considered under the Bayesian framework.       

Using the current algorithm, censoring data is different from missing; the way NUTS deals 

with missing will cause some difference in the final results when compared to the results of 

BUGS. The future version RHMC of RSTAN may improve the computing efficiency for 

high dimensional correlated proteomic data.   

Sparse observations for some proteins and unbalanced design are shown to have their adverse 

impacts in the final estimation for the variance components in one of the case study. 

Currently, how these unfavourable factors influence the results is still unknown. A model 

with flexibility to cope with sparseness in the estimation will also be desirable.  

 

7.5 Conclusion  

This PhD research firstly proposed a new method to assess the reproducibility in clinical 

proteomic studies when a new device or new tissue is being used for a proteomic experiment. 

The reproducibility assessment utilizes a dimensional reduction technique and permutation 

approach to make the assessment extend to a proteome-wise scale. It secondly proposed two 

optimal design algorithms and realized them via a R package to assist the multiple stage 

study design through biomarker discovery to clinical utility. Finally, a multivariate multilevel 
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model has been proposed for the analysis of proteomic data when non-missing data is 

presented, and the method was tested and used in two real life clinical proteomic studies. The 

analytical method is shown to have large improvements and to gain statistical powers for 

assisting the discovery in a clinical proteomic study. 
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