

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

CHEMISTRY OF LOW-VALENT OSMIUM

A thesis presented to the University of Auckland for the degree of Doctor of Philosophy in Chemistry

Kevin Rodger Grundy

February 1975

ABSTRACT

This study concerns the synthesis, structure and reactivity of complexes of d⁶ and d⁸ osmium. The reactivity of certain ligands coordinated to low-valent osmium has also been investigated.

Various hydride complexes of osmium(II) were prepared as potential precursors of osmium(0). OsH4(PPh3)3 reacts with p-tolylisocyanide (TIC) and 4-ethyl=2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane (ETPO) to yield OsH2(L)(PPh3)3 from which were derived OsH2(L*)(L)(PPh3)2 (L, L' = CO, TIC, ETPO). Attempts to eliminate hydrogen from the dihydrides failed. OsHCl(CO)(PPh3)3 reacts with neutral ligands L (= TIC, ETPO, P(OMe)3, P(OPh)3, PPh2Me) to give OsHCl(CO)(L)(PPh3)2 which, with silver perchlorate (L = TIC, ETPO only) afford OsH(OC103)(CO)(L)(PPh3)2. The labile perchlorate ligand can be replaced by ligands L* affording $[OsH(CO)(L)(L*)(PPh_3)_2]ClO_4$ (L = TIC, L* = CO, TIC, PPh3; L = ETPO, L* = CO, ETPO). OsHCl(CO)(PPh3)3 reacts with silver perchlorate in acetonitrile to yield [OsH(CO)(CH3CN)2(PPh3)2]ClO4, which in turn reacts with neutral ligands to give [OsH(CO)(CH3CN)(L)(PPh3)2]ClO4 $(L = CO, TIC, ETPO, PPh_3)$. Cationic $[OSH(CO)_2(PPh_3)_3]^+$ and $[OSH(TIC)_2(PPh_3)_3]^+$ can be prepared from the action of PPh_3 on $[OsH(CO)_2(CH_3CN)(PPh_3)_2]^+$ and TIC on OsH(O2CCH3)(PPh3)3 respectively.

With base, $[OsH(CO)(CH_3CN)(PPh_3)_3]ClO_4$ affords $OsH(OH)(CO)(PPh_3)_3$ from which a series of hydroxide complexes $OsH(OH)(CO)(L)(PPh_3)_2$ (L = CO, TIC, ETPO) can be obtained. The hydroxide group in $OsH(OH)(CO)(PPh_3)_3$ is cleaved by acids HX to yield $OsHX(CO)(PPh_3)_3$ (X = F, Br, Cl, I, CH_3CO_2 , CF_3CO_2 SC_7H_7 , $OClO_3$). Those members of the series with X = CN, N₃, OCN, SCN were obtained from $OsH(OClO_3)(CO)(PPh_3)_3$ and the appropriate anion. From the values of vCO for this series can be gained some understanding of the bonding properties of the anionic ligands.

(i)

The neutral osmium(0) complexes Os(CO)2(TIC)(PPh3)2, $Os(CO)_2(ETPO)(PPh_3)_2$, $Os(CO)_2(PPh_3)_3$ and $Os(CO)(TIC)(PPh_3)_3$ were prepared by deprotonation of the corresponding cations [OsH(CO)₂(TIC)(PPh₃)₂]⁺, [OsH(CO)₂(ETPO)(PPh₃)₂]⁺, [OsH(CO)₂(PPh₃)₃]⁺ and [OsH(CO)(TIC)(PPh3)3]*. Oxidative addition reactions of these d⁸ complexes have been investigated. Those of Os(CO)₂(TIC)(PPh₃)₂ and Os(CO)2(ETPO)(PPh3)2 closely parallel the reactions of Os(CO)3(PPh3)2 with various oxidants. Protic acids regenerate the hydride cations as the trans isomers. Halogens and mercuric halides also produce cationic products. Dioxygen gives the chelated carbonate complexes Os(CO3)(CO)L(PPh3)2 (L = TIC, ETPO). Whereas non-coordinating acids with Os(CO)2(PPh3)3 and Os(CO)(TIC)(PPh3)3 regenerate the hydride cations, hydrohalic acids afford OsHX(CO)(PPh3)3, [OsX(CO)(TIC)(PPh3)3] (X = Cl, Br) and $OsI_2(CO)(TIC)(PPh_3)_2$. Halogens yield $OsX_2(CO)_2(PPh_3)_2$ (X = Cl, I), $[OsBr(CO)_2(PPh_3)_3]^+$, $[OsX(CO)(TIC)(PPh_3)_3]^+$ (X = Cl, Br) and OsI2(CO)(TIC)(PPh3)2. Three isomeric forms of OsI2(CO)2(PPh3)2 were isolated. In a novel reaction, sulphonyl chlorides react with all four complexes affording [OsCl(CO)(L)(L*)(PPh3)2]RSO3 (L = CO, L* = TIC, PPh3, ETPO; L = TIC, L * = PPh3; R = Me, p-tolyl).

 $Os(CO)_2(PPh_3)_3$ and $Os(CO)(TIC)(PPh_3)_3$ undergo substitution reactions and oxidatively add H₂, C₂H₄ and CS₂. These reactions appear to proceed <u>via</u> dissociation of a labile phosphine to form a transient 16 electron species: - a unique process in osmium(0) chemistry. Adducts with PhC₂H and PhC₂Ph were obtained only with $Os(CO)_2(PPh_3)_3$, which also reacts with dioxygen to form the first dioxygen adduct of osmium, $Os(O_2)(CO)_2(PPh_3)_2$. This complex reacts with SO_2 and N_2O_4 to give sulphate and dinitrate complexes of osmium(II).

To study the susceptibility towards nucleophilic attack of carbon monoxide and TIC coordinated to osmium(II) a series of complex cations

(ii)

was chosen. OsHCl(CO)(TIC)(PPh3)2 reacts with perchloric acid to give OsCl(OClO3)(CO)(TIC)(PPh3)2, of which two isomeric forms were isolated. With neutral ligands, the perchlorate group can be displaced to give $[OsCl(CO)(TIC)(L)(PPh_3)_2]Clo_4$ (L = CO, TIC). [OsCl(CO)2(TIC)(PPh3)2] + reacts with azide ions to give OsCl(NCO)(CO)(TIC)(PPh3)2, and reversibly with primary amines yielding OsCl(CONHR)(CO)(TIC)(PPh3)2. Basic alcohols afford OsCl(CO2R)(CO)(TIC)(PPh3)2 (R = Me, Et), and with 2-chloroethanol a heterocyclic carbene complex $[OsCl(CO)(TIC)(\overline{COC_2H_4O})(PPh_3)_2]^+ results. [OsCl(CO)(TIC)_2(PPh_3)_2]^+$ reacts only with methoxide ions to give [Os(OMe)(CO)(TIC)2(PPh3)2] + which, with perchloric acid, affords [Os(OC103)(CO)(TIC)2(PPh3)2]*. [OsCl(CO)2(TIC)(PPh3)2] + reacts with hydrosulphide ions at the isocyanide ligand affording a π -isothiocyanate complex $Os(\pi$ -SCNp-tolyl)(CO)₂(PPh₃)₂. This complex can be protonated and methylated at nitrogen to give bidentate thiocarboxamide complexes, [Os(h²-SCNRp-tolyl)(CO)₂(PPh₃)₂]⁺ (R = H, Me).

The ligand reactivity of certain π -complexes has been investigated. $Os(C_2H_4)(CO)_2(PPh_3)_2$ reacts with excess hydrochloric acid to produce the hydroxycarbene complex $OsCl_2(CO)(C[OH]C_2H_5)(PPh_3)_2$, which reacts reversibly with base to give $OsCl(C_2H_5)(CO)_2(PPh_3)_2$. With other acids, the ethyl complexes $Os(C_2H_5)X(CO)_2(PPh_3)_2$ (X = I, CF_3CO_2 , $OClO_3$) result. $Os(C_2H_5)(OClO_3)(CO)_2(PPh_3)_2$ reacts with neutral ligands and sodium diethyldithiocarbamate affording $[Os(C_2H_5CO)(CO)(L)_2(PPh_3)_2]ClO_4$ (L = CO, TIC) and $Os(C_2H_5CO)(S_2CNEt_2)(CO)(PPh_3)_2$ respectively.

 $Os(\pi-CS_2)(CO)_2(PPh_3)_2$ reacts with methyl iodide to give $OsI(CS_2Me)(CO)_2(PPh_3)_2$. MeI. The methyldithioester ligand of this complex chelates in polar media affording $[Os(h^2-C[S]SMe)(CO)_2(PPh_3)_2]^+$. With acids HX, $Os(\pi-CS_2)(CO)_2(PPh_3)_2$ yields the first osmium thiocarbonyl complexes, $OsX_2(CO)(CS)(PPh_3)_2$ (X = Cl, I).

(iii)

Dibromoalkanes, $Br(CH_2)_n Br$, react with $Os(\pi-CS_2)(CO)_2(PPh_3)_2$ affording complexes of new heterocyclic carbenes, $[OsBr(CO)_2(CS[CH_2]_nS)(PPh_3)_2]^+$ (n = 1,2,3), from which can be derived $OsBr_2(CO)(CS[CH_2]_nS)(PPh_3)_2$ (n = 2,3). $Os(\pi-CS_2)(CO)(TIC)(PPh_3)_2$ behaves similarly in giving $[Os(h^2-C[S]SMe)(CO)(TIC)(PPh_3)_2]^+$, $OsCl_2(CS)(TIC)(PPh_3)_2$ and $[OsBr(CO)(TIC)(CSC_2H_4S)(PPh_3)_2]^+$.

To investigate the reactivity of a complexed functional isocyanide, various complexes of tosylmethylisocyanide (TMIC) were synthesized. Whereas deprotonation of $[OsH(CO)_2(TMIC)(PPh_3)_2]^+$ gives $Os(CO)_2(TMIC)(PPh_3)_2$, attempted deprotonation of $[OsH(CO)(TMIC)(PPh_3)_3]^+$ results in the dealkylation of TMIC to yield $OsH(CN)(CO)(PPh_3)_3$.

 $OsHCl(CO)(TMIC)(PPh_3)_2 \text{ reacts with base and carbonyl compounds to}$ give heterocyclic carbene complexes $OsHCl(CO)(CNHXYO)(PPh_3)_2$, XY= $CH=C(Ar), (Ar = Ph, p-tolyl); CH(OR_1)CR_2R_3, (R_1 = Me, R_2 = R_3 = H;$ $R_1 = Me, Et, R_2 = H, R_3 = Me; R_1 = R_2 = R_3 = Me). \text{ Under similar}$ conditions, $[OsCl(CO)_2(TMIC)(PPh_3)_2]^+$ yields $OsCl(C=NCH[Tos]CH[R]O)(CO)_2(PPh_3)_2$ (R = Me, Ph), which can be protonated at nitrogen (R = Me) to give a
cationic carbene complex. Base and acetaldehyde with $[OsH(CO)_2(TMIC)(PPh_3)_2]^+$ gives $\underline{trans}=[OsH(CO)_2(CNHCH[OMe]CH[Me]O)(PPh_3)_2]^+.$

The action of silver perchlorate and carbon monoxide on $OSHCl(CO)(CNHXYO)(PPh_3)_2$ produces $[OSH(CO)_2(CNHXYO)(PPh_3)_2]^+$ (XY = CH(OMe)CH(Me), $CH(OMe)C(Me)_2$, CH=C(Ph)) from which can be obtained $OSH(C=NXYO)(CO)_2(PPh_3)_2$ (XY = CH(OMe)CH(Me), $CH(OMe)C(Me)_2$) by reversible deprotonation at the ligand. Methyl iodide and $OSH(C=NXYO)(CO)_2(PPh_3)_2$ react to give $[OSH(CO)_2(CN[Me]XYO)(PPh_3)_2]^+$ which do not deprotonate at the metal. $OSHCl(CO)(CNHCH[OMe]C[Me]_2O)(PPh_3)_2$ reacts with perchloric acid affording $OSCl(OClo_3)(CO)(CNHCH[OMe]C[Me]_2O)(PPh_3)_2$ which has been used to prepare $[OSCl(CO)_2(CNHCH[OMe]C[Me]_2O)(PPh_3)_2]^+$, $OSCl(C=NCH[OMe]C[Me]_2O)(CO)_2(PPh_3)_2$ and $[OSCl(CO)_2(CN[Me]CH[OMe]C[Me]_2O)(PPh_3)_2]^+$. Infrared and ¹H n.m.r. spectroscopy, conductivity and elemental analysis have been used in formulation and structural assignment.

ABBREVIATIONS:

	PPh ₃		triphenylphosphine				
	TIC	:	p=tolylisocyanide				
	ETPO	:	4-ethyl=2,6,7-trioxa=1-phosphabicyclo[2,2,2]octane				
	TMIC	5	tosylmethylisocyanide				
	dppe	80	1,2-bis(diphenylphosphino)ethane				
	dmpe	0	1,2-bis(dimethylphosphino)ethane				
	depe	:	1,2-bis(diethylphosphino)ethane				
	dppm	:	bis(diphenylphosphino)methane				
	diars	:	o-phenylenebis(dimethylarsine)				
	PCy 3	:	tricyclohexylphosphine				
	1,3-COD	:	1,3-cyclooctadiene				
	1,5-COD	:	1,5-cyclooctadiene				
	COT	:	cyclooctatetraene	NBD	:	norbornadiene	
	Me	:	methyl	n Bu	:	n-butyl	
	Et	:	ethyl	t _{Bu}		t-butyl	
	R	:	unspecified organic group				
	L	:	unspecified neutral ligand				
	Х	:	unspecified anionic ligand				
	DMF	:	dimethylformamide				
	THF	:	tetrahydrofuran				
	DMSO	:	dimethylsulphoxide				
	conc.	:	concentrated				

- E

(vii)

CONTENTS

				PAGE
ABS	FRACT			(i)
ABB	REVIAT	IONS		(vi)
1.	INTR	ODUCTIC	DN	1
	(A)	The Ch	memistry of Low-Valent Osmium	1
		(I)	Binary Carbonyls	2
.*		(11)	Carbonyl Hydrides, Alkyls and Halides	5
		(III)	Cluster Complexes	10
,		(IV)	Carbonyl Compounds with GpIV Ligands	36
		(v)	GpV and GpVI Donor Compounds	41
		(VI)	Arene, Acetylene and Olefin Complexes	62
	ž	(VII)	Nitrosyl Complexes	66
		(VIII)	Isocyanide Complexes	72
	(B)	Some R	ecent Aspects of Ligand Reactions	75
		(I)	Metal-Carbon σ -bonds	75
		(11)	Carbon Monoxide	86
		(III)	Isocyanides	90
	19	(IV)	π-Complexes	95
		(v)	Carbenes	111
2	NTI 3 T 11	DAT AND		119
2.	NEUI	RAL AND	CATIONIC HYDRIDES OF OSMIUM(II)	112
	Neut	ral Dih	ydrides of Osmium(II)	120
			Infrared Data for Dihydride Complexes	125
	Tabl	e 2.2	¹ H n.m.r. Data for Dihydride Complexes	126
	Cati	onic Hy	drides of Osmium(II)	128
	Tabl	e 2.3	Infrared Data for Cationic Hydrides and Precursors	132

(viii)

2.	CONTD.
60	COUTD.

3.

	Table 2.4 ¹ H n.m.r. Data for Cationic Hydrides and Precursors	133
	Table 2.5 Infrared Data for Acetonitrile Cations and Derivatives	137
	Table 2.6 ¹ H n.m.r. Data for Acetonitrile Cations and Derivatives	138
	Hydroxide Complexes of Osmium(II)	139
	Table 2.7 Infrared Data for Hydroxide Complexes	142
	Table 2.8 ¹ H n.m.r. Data for Hydroxide Complexes	142
	Members of the Series OsHX(CO)(PPh3)3	143
	Table 2.9 Infrared Data for Complexes OsHX(CO)(PPh3)3	144
	Scheme 2.1 Cationic Osmium(II) Hydrides	147
•	Scheme 2.2 $[OSH(CO)(CH_3CN)_2(PPh_3)_2]ClO_4$ and its Derivatives	148
	General Experimental (for all chapters)	149
	Experimental	151
	d ⁸ COMPLEXES OF OSMIUM	168
	Syntheses of d ⁸ Complexes of Osmium	168
	Table 3.1 Infrared Data for Osmium(0) Complexes	172
	Oxidative Addition Reactions	173
	Results and Discussion:	
	1. Protic Acids	178
	2. Halogens	184
	Table 3.2 Raman Data for $OsI_2(CO)_2(PPh_3)_2$ Isomers	187
	3. Mercuric Halides	187
	4. Sulphonyl Chlorides	188
	Table 3.3 Infrared Data for Coordinated Sulphonates	191
	5. Dioxygen	193
	Table 3.4 Infrared Data for Carbonate Complexes	194
	Table 3.5 Infrared Data for Bidentate Sulphate Complexes	198

PAGE

			PAGE
3.	CONTD.	ж	
	6. Subst	tution Reactions and Dihydrogen	200
	7. Olefin	as and Acetylenes	202
	8. Carbon	n Disulphide and Others	206
	Conclusion.		210
	Table 3.6 Infra	ared Data for Osmium(II) Oxidative Adducts	212
	Scheme 3.1 Oxida	ative Additions to Os(CO)2L(PPh3)2	217
	Scheme 3.2 Oxida	ative Additions to Os(CO)2(PPh3)3	218
	Scheme 3.3 Oxida	ative Additions to Os(CO)(TIC)(PPh3)3	219
	Experimental		220
4.	NUCLEOPHILIC AD	DITIONS TO d ⁶ CATIONS OF OSMIUM	249
	Covalent Perchlo	orate Complexes	250
	Table 4.1 Infra	ared Data for Perchlorate Complexes	254
	Reactions of Ca	tions with Nucleophiles:	255
	(a) Azide	ion and Amine Additions	255
	(b) Alkox:	de ion Additions	255
	(c) Hydros	sulphide ion Addition	260
	Conclusion		266
	Table 4.2 Infra	ared Data	267
	Table 4.3 ¹ H n.	m.r. Data	269
	Scheme 4.1 Nucl	eophilic Additions to [OsCl(CO)2(TIC)(PPh3)2]* 270
	Experimental	*	271
5.	LIGAND REACTION	S OF T-COMPLEXES OF OSMIUM	278
	(I) Os(C ₂ H ₄)(C) ₂ (PPh ₃) ₂	278
	Table 5.1 Infra	ared Data for Os(C2H4)(CO)2(PPh3)2 Derivativ	es 287
	(II) Os(π-CS ₂)(0	:0) ₂ (PPh ₃) ₂	287
	(i) Methy	vl iodide	289
	(ii) Hydre	ogen halides	291

(ix)

	PAGE
5. CONTD.	
Table 5.2 Infrared Data for Thiocarbonyl Complexes	294
(iii) Difunctional Alkyl Halides	297
$(III)Os(\pi-CS_2)(CO)(TIC)(PPh_3)_2$	300
Conclusion	302
Table 5.3 Infrared Data	304
Table 5.4 ¹ H n.m.r. Data	306
Scheme 5.1 Reactions of Os(C2H4)(CO)2(PPh3)2	307
Scheme 5.2 Reaction of $Os(\pi-CS_2)(CO)_2(PPh_3)_2$ and	308
$Os(\pi-CS_2)(CO)(TIC)(PPh_3)_2$	
Experimental	309
6. LIGAND REACTIONS OF TOSYLMETHYLISOCYANIDE	318
	320
Tosylmethylisocyanide Complexes	
Table 6.1 Infrared Data for IMIC Complexes	321
Table 6.2 ¹ H n.m.r. Data for TMIC Complexes	322
Ligand Reactions of TMIC Complexes	324
Table 6.3 Infrared Data for Oxazole Derivatives	330
Table 6.4 ¹ H n.m.r. Data for Oxazole Derivatives	331
Further Carbene Complexes	333
Conclusion	336
Table 6.5 Further Infrared Data for Oxazole Derivatives	337
Table 6.6 Further ¹ H n.m.r. Data for Oxazole Derivatives	338
Scheme 6.1 Preparation of Tosylmethylisocyanide Complexes	340
Scheme 6.2 Carbene Complexes Derived from OsHCl(CO)(TMIC)(PPh	3 ⁾ 2 341
Scheme 6.3 Further Carbene Complexes	342
Experimental	343

REFERENCES

ACKNOWLEDGEMENTS

381

357