ResearchSpace@Auckland

Version

This is the Author's Original version (preprint) of the following article. This version is defined in the NISO recommended practice RP-8-2008
http://www.niso.org/publications/rp/

Suggested Reference

Uchiyama, T. (2015). Separability and complete reducibility of subgroups of the Weyl group of a simple algebraic group of type E_{7}. Journal of Algebra, 422, 357372. doi:10.1016/j.jalgebra.2014.09.021

Copyright

Items in ResearchSpace are protected by copyright, with all rights reserved, unless otherwise indicated. Previously published items are made available in accordance with the copyright policy of the publisher.

http://www.sherpa.ac.uk/romeo/issn/0021-8693/

https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm

Separability and complete reducibility of subgroups of the Weyl group of a simple algebraic group of type E_{7}

Tomohiro Uchiyama
Department of Mathematics, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
email:tuch540@aucklanduni.ac.nz

Abstract

Let G be a connected reductive algebraic group defined over an algebraically closed field k. The aim of this paper is to present a method to find triples (G, M, H) with the following three properties. Property 1: G is simple and k has characteristic 2. Property 2: H and M are closed reductive subgroups of G such that $H<M<G$, and (G, M) is a reductive pair. Property $3: H$ is G-completely reducible, but not M-completely reducible. We exhibit our method by presenting a new example of such a triple in $G=E_{7}$. Then we consider a rationality problem and a problem concerning conjugacy classes as important applications of our construction.

Keywords: algebraic groups, separable subgroups, complete reducibility

1 Introduction

Let G be a connected reductive algebraic group defined over an algebraically closed field k of characteristic p. In [15, Sec. 3], J.P. Serre defined that a closed subgroup H of G is G-completely reducible (G-cr for short) if whenever H is contained in a parabolic subgroup P of G, H is contained in a Levi subgroup L of P. This is a faithful generalization of the notion of semisimplicity in representation theory since if $G=G L_{n}(k)$, a subgroup H of G is G-cr if and only if H acts complete reducibly on k^{n} [15, Ex. 3.2.2(a)]. It is known that if a closed subgroup H of G is G-cr, then H is reductive [15, Prop. 4.1]. Moreover, if $p=0$, the converse holds [15, Prop. 4.2]. Therefore the notion of G-complete reducibility is not interesting if $p=0$. In this paper, we assume that $p>0$.

Completely reducible subgroups of connected reductive algebraic groups have been much studied (9, 10, 15. Recently, studies of complete reducibility via Geometric Invariant Theory (GIT for short) have been fruitful [1, 2, [3]. In this paper, we see another application of GIT to complete reducibility (Proposition 3.6).

Here is the main problem we consider. Let H and M be closed reductive subgroups of G such that $H \leq M \leq G$. It is natural to ask whether H being M-cr implies that H is G-cr and vice versa. It is not difficult to find a counterexample for the forward direction. For example, take $H=M=P G L_{2}(k)$ and $G=S L_{3}(k)$ where $p=2$ and H sits inside G via the adjoint representation. Another such example is [1, Ex. 3.45]. For many examples where H and M are connected with H being M-cr and M being G-cr, but not G-cr, even when each group is simple, see [18]. However, it is hard to get a counterexample for the reverse direction, and it necessarily involves a small p. In [3, Sec. 7], Bate et al. presented the only known counterexample for the
reverse direction where $p=2, H \cong S_{3}, M \cong A_{1} A_{1}$, and $G=G_{2}$, which we call "the G_{2} example". The aim of this paper is to prove the following.

Theorem 1.1. Let G be a simple algebraic group of type E_{7} defined over k of characteristic $p=2$. Then there exists a connected reductive subgroup M of type A_{7} of G and a reductive subgroup $H \cong D_{14}$ (the dihedral group of order 14) of M such that (G, M) is a reductive pair and H is G-cr but not M-cr.

Our work is motivated by [3]. We recall a few relevant definitions and results here. We denote the Lie algebra of G by Lie $G=\mathfrak{g}$. From now on, by a subgroup of G, we always mean a closed subgroup of G.

Definition 1.2. Let H be a subgroup of G acting on G by inner automorphisms. Let H act on \mathfrak{g} by the corresponding adjoint action. Then H is called separable if Lie $C_{G}(H)=\mathfrak{c}_{\mathfrak{g}}(H)$.

Recall that we always have $\operatorname{Lie} C_{G}(H) \subseteq c_{\mathfrak{g}}(H)$. In [3], Bate et al. investigated the relationship between G-complete reducibility and separability, and showed the following [3, Thm. 1.2, Thm. 1.4].

Proposition 1.3. Suppose that p is very good for G. Then any subgroup of G is separable in G.

Proposition 1.4. Suppose that (G, M) is a reductive pair. Let H be a subgroup of M such that H is a separable subgroup of G. If H is G-cr, then it is also M-cr.

Recall that a pair of reductive groups G and M is called a reductive pair if Lie M is an M module direct summand of \mathfrak{g}. This is automatically satisfied if $p=0$. Propositions 1.3 and 1.4 imply that the subgroup H in Theorem 1.1 must be non-separable, which is possible for small p only.

Now, we introduce the key notion of separable action, which is a slight generalization of the notion of a separable subgroup.

Definition 1.5. Let H and N be subgroups of G where H acts on N by group automorphisms. The action of H is called separable in N if Lie $C_{N}(H)=\mathfrak{c}_{\text {Lie } N}(H)$. Note that the condition means that the fixed points of H acting on N, taken with their natural scheme structure, are smooth.

Here is a brief sketch of our method. Note that in our construction, p needs to be 2 .

1. Pick a parabolic subgroup P of G with a Levi subgroup L of P. Find a subgroup K of L such that K acts non-separably on the unipotent radical $R_{u}(P)$ of P. In our case, K is generated by elements corresponding to certain reflections in the Weyl group of G.
2. Conjugate K by a suitable element v of $R_{u}(P)$, and set $H=v K v^{-1}$. Then choose a connected reductive subgroup M of G such that H is not M-cr. Use a recent result from GIT (Proposition (2.4) to show that H is not M-cr. Note that K is M-cr in our case.
3. Prove that H is G-cr.

Remark 1.6. It can be shown using [17, Thm. 13.4.2] that K in Step 1 is a non-separable subgroup of G.

First of all, for Step $1, p$ cannot be very good for G by Proposition 1.3 and 1.4. It is known that 2 and 3 are bad for E_{7}. We explain the reason why we choose $p=2$, not $p=3$ (Remark 2.9). Remember that the non-separable action on $R_{u}(P)$ was the key ingredient for
the G_{2} example to work. Since K is isomorphic to a subgroup of the Weyl group of G, we are able to turn a problem of non-separability into a purely combinatorial problem involving the root system of G (Section 3.1). Regarding Step 2, we explain the reason of our choice of v and M explicitly (Remarks 3.4, 3.5). Our use of Proposition 2.4 gives an improved way for checking G-complete reducibility (Remark 3.7). Finally, Step 3 is easy.

In the G_{2} and E_{7} examples, the G-cr and non- M-cr subgroups H are finite. The following is the only known example of a triple (G, M, H) with positive dimensional H such that H is G-cr but not M-cr. It is obtained by modifying [1, Ex. 3.45].
Example 1.7. Let $p=2, m \geq 4$ be even, and $(G, M)=\left(G L_{2 m}(k), S p_{2 m}(k)\right)$. Let H be a copy of $S p_{m}(k)$ diagonally embedded in $S p_{m}(k) \times S p_{m}(k)$. Then H is not M-cr by the argument in [1, Ex. 3.45]. But H is G-cr since H is $G L_{m}(k) \times G L_{m}(k)$-cr by [1, Lem. 2.12]. Also note that any subgroup of $G L(k)$ is separable in $G L(k)$ (cf. [1, Ex. 3.28]), so (G, M) is not a reductive pair by Proposition 1.4

In view of this, it is natural to ask:
Open Problem 1.8. Is there a triple $H<M<G$ of connected reductive algebraic groups such that (G, M) is a reductive pair, H is non-separable in G, and H is G-cr but not M-cr?

Beyond its intrinsic interest, our E_{7} example has some important consequences and applications. For example, in Section 6, we consider a rationality problem concerning complete reducibility. We need a definition first to explain our result there.

Definition 1.9. Let k_{0} be a subfield of an algebraically closed field k. Let H be a k_{0}-defined closed subgroup of a k_{0}-defined reductive algebraic group G. Then H is called G-cr over k_{0} if whenever H is contained in a k_{0}-defined parabolic subgroup P of G, it is contained in some k_{0}-defined Levi subgroup of P.

Note that if k_{0} is algebraically closed then G-cr over k_{0} means G-cr in the usual sense. Here is the main result of Section 6.

Theorem 1.10. Let k_{0} be a nonperfect field of charecteristic $p=2$, and let G be a k_{0}-defined split simple algebraic group of type E_{7}. Then there exists a k_{0}-defined subgroup H of G such that H is G-cr over k, but not G-cr over k_{0}.

As another application of the E_{7} example, we consider a problem concerning conjugacy classes. Given $n \in \mathbb{N}$, we let G act on G^{n} by simultaneous conjugation:

$$
g \cdot\left(g_{1}, g_{2}, \ldots, g_{n}\right)=\left(g g_{1} g^{-1}, g g_{2} g^{-1}, \ldots, g g_{n} g^{-1}\right)
$$

In [16], Slodowy proved the following fundamental result applying Richardson's tangent space argument, [12, Sec. 3], [13, Lem. 3.1].

Proposition 1.11. Let M be a reductive subgroup of a reductive algebraic group G defined over k. Let $n \in \mathbb{N}$, let $\left(m_{1}, \ldots, m_{n}\right) \in M^{n}$ and let H be the subgroup of M generated by m_{1}, \ldots, m_{n}. Suppose that (G, M) is a reductive pair and that H is separable in G. Then the intersection $G \cdot\left(m_{1}, \ldots, m_{n}\right) \cap M^{n}$ is a finite union of M-conjugacy classes.

Proposition 1.11 has many consequences. See [1], [16], and [19, Sec. 3] for example. In [3. Ex. 7.15], Bate et al. found a counterexample for $G=G_{2}$ showing that Proposition 1.11 fails without the separability hypothesis. In Section 7, we present a new counterexample to Proposition 1.11 without the separability hypothesis. Here is the main result of Section 7.

Theorem 1.12. Let G be a simple algebraic group of type E_{7} defined over an algebraically closed k of characteristic $p=2$. Let M be the connected reductive subsystem subgroup of type A_{7}. Then there exists $n \in \mathbb{N}$ and a tuple $\mathbf{m} \in M^{n}$ such that $G \cdot \mathbf{m} \cap M^{n}$ is an infinite union of M-conjugacy classes. Note that (G, M) is a reductive pair in this case.

Now, we give an outline of the paper. In Section 2, we fix our notation which follows 4, [8], and [17]. Also, we recall some preliminary results, in particular, Proposition 2.4 from GIT. After that, in Section 3, we prove our main result, Theorem 1.1. Then in Section 4, we consider a rationality problem, and prove Theorem 1.10, Finally, in Section 5, we discuss a problem concerning conjugacy classes, and prove Theorem 1.12

2 Preliminaries

2.1 Notation

Throughout the paper, we denote by k an algebraically closed field of positive characteristic p. We denote the multiplicative group of k by k^{*}. We use a capital roman letter, G, H, K, etc., to represent an algebraic group, and the corresponding lowercase gothic letter, $\mathfrak{g}, \mathfrak{h}, \mathfrak{k}$, etc., to represent its Lie algebra. We sometimes use another notation for Lie algebras: Lie G, Lie H, and Lie K are the Lie algebras of G, H, and K respectively.

We denote the identity component of G by G°. We write $[G, G]$ for the derived group of G. The unipotent radical of G is denoted by $R_{u}(G)$. An algebraic group G is reductive if $R_{u}(G)=\{1\}$. In particular, G is simple as an algebraic group if G is connected and all proper normal subgroups of G are finite.

In this paper, when a subgroup H of G acts on G, H always acts on G by inner automorphisms. The adjoint representation of G is denoted by $\operatorname{Ad}_{\mathfrak{g}}$ or just Ad if no confusion arises. We write $C_{G}(H)$ and $\mathfrak{c}_{\mathfrak{g}}(H)$ for the global and the infinitesimal centralizers of H in G and \mathfrak{g} respectively. We write $X(G)$ and $Y(G)$ for the set of characters and cocharacters of G respectively.

2.2 Complete reducibility and GIT

Let G be a connected reductive algebraic group. We recall Richardson's formalism [14, Sec. 2.1-2.3] for the characterization of a parabolic subgroup P of G, a Levi subgroup L of P, and the unipotent radical $R_{u}(P)$ of P in terms of a cocharacter of G and state a result from GIT (Proposition 2.4).

Definition 2.1. Let X be an affine variety. Let $\phi: k^{*} \rightarrow X$ be a morphism of algebraic varieties. We say that $\lim _{a \rightarrow 0} \phi(a)$ exists if there exists a morphism $\hat{\phi}: k \rightarrow X$ (necessarily unique) whose restriction to k^{*} is ϕ. If this limit exists, we set $\lim _{a \rightarrow 0} \phi(a)=\hat{\phi}(0)$.

Definition 2.2. Let λ be a cocharacter of G. Define $P_{\lambda}:=\left\{g \in G \mid \lim _{a \rightarrow 0} \lambda(a) g \lambda(a)^{-1}\right.$ exists $\}$, $L_{\lambda}:=\left\{g \in G \mid \lim _{a \rightarrow 0} \lambda(a) g \lambda(a)^{-1}=g\right\}, R_{u}\left(P_{\lambda}\right):=\left\{g \in G \mid \lim _{a \rightarrow 0} \lambda(a) g \lambda(a)^{-1}=1\right\}$.

Note that P_{λ} is a parabolic subgroup of G, L_{λ} is a Levi subgroup of P_{λ}, and $R_{u}\left(P_{\lambda}\right)$ is a unipotent radical of P_{λ} [14, Sec. 2.1-2.3]. By [17, Prop. 8.4.5], any parabolic subgroup P of G, any Levi subgroup L of P, and any unipotent radical $R_{u}(P)$ of P can be expressed in this form. It is well known that $L_{\lambda}=C_{G}\left(\lambda\left(k^{*}\right)\right)$.

Let M be a reductive subgroup of G. Then, there is a natural inclusion $Y(M) \subseteq Y(G)$ of cocharacter groups. Let $\lambda \in Y(M)$. We write $P_{\lambda}(G)$ or just P_{λ} for the parabolic subgroup of G corresponding to λ, and $P_{\lambda}(M)$ for the parabolic subgroup of M corresponding to λ. It is obvious that $P_{\lambda}(M)=P_{\lambda}(G) \cap M$ and $R_{u}\left(P_{\lambda}(M)\right)=R_{u}\left(P_{\lambda}(G)\right) \cap M$.

Definition 2.3. Let $\lambda \in Y(G)$. Define a map $c_{\lambda}: P_{\lambda} \rightarrow L_{\lambda}$ by $c_{\lambda}(g):=\lim _{a \rightarrow 0} \lambda(a) g \lambda(a)^{-1}$.
Note that the map c_{λ} is the usual canonical projection from P_{λ} to $L_{\lambda} \cong P_{\lambda} / R_{u}\left(P_{\lambda}\right)$. Now, we state a result from GIT (see [1, Lem. 2.17, Thm. 3.1], [2, Thm. 3.3]).

Proposition 2.4. Let H be a subgroup of G. Let λ be a cocharacter of G with $H \subseteq P_{\lambda}$. If H is G-cr, there exists $v \in R_{u}\left(P_{\lambda}\right)$ such that $c_{\lambda}(h)=v h v^{-1}$ for every $h \in H$.

2.3 Root subgroups and root subspaces

Let G be a connected reductive algebraic group. Fix a maximal torus T of G. Let $\Psi(G, T)$ denote the set of roots of G with respect to T. We sometimes write $\Psi(G)$ for $\Psi(G, T)$. Fix a Borel subgroup B containing T. Then $\Psi(B, T)=\Psi^{+}(G)$ is the set of positive roots of G defined by B. Let $\Sigma(G, B)=\Sigma$ denote the set of simple roots of G defined by B. Let $\zeta \in \Psi(G)$. We write U_{ζ} for the corresponding root subgroup of G and \mathfrak{u}_{ζ} for the Lie algebra of U_{ζ}. We define $G_{\zeta}:=\left\langle U_{\zeta}, U_{-\zeta}\right\rangle$.

Let H be a subgroup of G normalized by some maximal torus T of G. Consider the adjoint representation of T on \mathfrak{h}. The root spaces of \mathfrak{h} with respect to T are also root spaces of \mathfrak{g} with respect to T, and the set of roots of H relative to $T, \Psi(H, T)=\Psi(H)=\left\{\zeta \in \Psi(G) \mid \mathfrak{g}_{\zeta} \subseteq \mathfrak{h}\right\}$, is a subset of $\Psi(G)$.

Let $\zeta, \xi \in \Psi(G)$. Let ξ^{\vee} be the coroot corresponding to ξ. Then $\zeta \circ \xi^{\vee}: k^{*} \rightarrow k^{*}$ is a homomorphism such that $\left(\zeta \circ \xi^{\vee}\right)(a)=a^{n}$ for some $n \in \mathbb{Z}$. We define $\left\langle\zeta, \xi^{\vee}\right\rangle:=n$. Let s_{ξ} denote the reflection corresponding to ξ in the Weyl group of G. Each s_{ξ} acts on the set of roots $\Psi(G)$ by the following formula [17, Lem. 7.1.8]: $s_{\xi} \cdot \zeta=\zeta-\left\langle\zeta, \xi^{\vee}\right\rangle \xi$. By [5, Prop. 6.4.2, Lem. 7.2.1], we can choose homomorphisms $\epsilon_{\zeta}: k \rightarrow U_{\zeta}$ so that

$$
\begin{equation*}
n_{\xi} \epsilon_{\zeta}(a) n_{\xi}^{-1}=\epsilon_{s_{\xi} \cdot \zeta}(\pm a), \text { where } n_{\xi}=\epsilon_{\xi}(1) \epsilon_{-\xi}(-1) \epsilon_{\xi}(1) \tag{2.1}
\end{equation*}
$$

We define $e_{\zeta}:=\epsilon_{\zeta}^{\prime}(0)$. Then we have

$$
\begin{equation*}
\operatorname{Ad}\left(n_{\xi}\right) e_{\zeta}= \pm e_{s_{\xi} \cdot \zeta} \tag{2.2}
\end{equation*}
$$

Now, we list four lemmas which we need in our calculations. The first one is [17, Prop. 8.2.1].
Lemma 2.5. Let P be a parabolic subgroup of G. Any element u in $R_{u}(P)$ can be expressed uniquely as

$$
u=\prod_{i \in \Psi\left(R_{u}(P)\right)} \epsilon_{i}\left(a_{i}\right), \text { for some } a_{i} \in k
$$

where the product is taken with respect to a fixed ordering of $\Psi\left(R_{u}(P)\right)$.
The next two lemmas [8, Lem. 32.5 and Lem. 33.3] are used to calculate $C_{R_{u}(P)}(K)$.
Lemma 2.6. Let $\xi, \zeta \in \Psi(G)$. If no positive integral linear combination of ξ and ζ is a root of G, then

$$
\epsilon_{\xi}(a) \epsilon_{\zeta}(b)=\epsilon_{\zeta}(b) \epsilon_{\xi}(a)
$$

Lemma 2.7. Let Ψ be the root system of type A_{2} spanned by roots ξ and ζ. Then

$$
\epsilon_{\xi}(a) \epsilon_{\zeta}(b)=\epsilon_{\zeta}(b) \epsilon_{\xi}(a) \epsilon_{\xi+\zeta}(\pm a b)
$$

The last result is used to calculate $\mathfrak{c}_{\operatorname{Lie}\left(R_{u}(P)\right)}(K)$.
Lemma 2.8. Suppose that $p=2$. Let W be a subgroup of G generated by all the n_{ξ} where $\xi \in \Psi(G)$ (the group W is isomorphic to the Weyl group of G). Let K be a subgroup of W. Let $\left\{O_{i} \mid i=1 \cdots m\right\}$ be the set of orbits of the action of K on $\Psi\left(R_{u}(P)\right)$. Then,

$$
\mathfrak{c}_{\operatorname{Lie}\left(R_{u}(P)\right)}(K)=\left\{\sum_{i=1}^{m} a_{i} \sum_{\zeta \in O_{i}} e_{\zeta} \mid a_{i} \in k\right\} .
$$

Proof. When $p=2$, (2.2) yields $\operatorname{Ad}\left(n_{\xi}\right) e_{\zeta}=e_{n_{\xi} \cdot \zeta}$. Then an easy calculation gives the desired result.

Remark 2.9. Lemma 2.8 holds in $p=2$ but fails in $p=3$.

3 The E_{7} example

3.1 Step 1

Let G be a simple algebraic group of type E_{7} defined over k of characteristic 2. Fix a maximal torus T of G. Fix a Borel subgroup B of G containing T. Let $\Sigma=\{\alpha, \beta, \gamma, \delta, \epsilon, \eta, \sigma\}$ be the set of simple roots of G. Figure 1 defines how each simple root of G corresponds to each node in the Dynkin diagram of E_{7}.

Figure 1: Dynkin diagram of E_{7}
From [6, Appendix, Table B], one knows the coefficients of all positive roots of G. We label all positive roots of G in Table 1 in the Appendix. Our ordering of roots is different from [6, Appendix, Table B], which will be convenient later on.

The set of positive roots is $\Psi^{+}(G)=\{1,2, \cdots, 63\}$. Note that $\{1, \cdots, 35\}$ and $\{36, \cdots, 42\}$ are precisely the roots of G such that the coefficient of σ is 1 and 2 respectively. We call the roots of the first type weight-1 roots, and the second type weight-2 roots. Define

$$
L_{\alpha \beta \gamma \delta \epsilon \eta}:=\left\langle T, G_{43}, \cdots, G_{63}\right\rangle, P_{\alpha \beta \gamma \delta \epsilon \eta}:=\left\langle L_{\alpha \beta \gamma \delta \epsilon \eta}, U_{1}, \cdots, U_{42}\right\rangle
$$

Then $P_{\alpha \beta \gamma \delta \epsilon \eta}$ is a parabolic subgroup of G, and $L_{\alpha \beta \gamma \delta \epsilon \eta}$ is a Levi subgroup of $P_{\alpha \beta \gamma \delta \epsilon \eta}$. Note that $L_{\alpha \beta \gamma \delta \epsilon \eta}$ is of type A_{6}. We have $\Psi\left(R_{u}\left(P_{\alpha \beta \gamma \delta \epsilon \eta}\right)\right)=\{1, \cdots, 42\}$. Define

$$
q_{1}:=n_{\epsilon} n_{\beta} n_{\gamma} n_{\alpha} n_{\beta}, q_{2}:=n_{\epsilon} n_{\beta} n_{\gamma} n_{\alpha} n_{\beta} n_{\eta} n_{\delta} n_{\beta}, K:=\left\langle q_{1}, q_{2}\right\rangle
$$

Let ζ_{1}, ζ_{2} be simple roots of G. From the Cartan matrix of E_{7} [7, Sec. 11.4] we have

$$
\left\langle\zeta_{1}, \zeta_{2}\right\rangle= \begin{cases}2, & \text { if } \zeta_{1}=\zeta_{2} \\ -1, & \text { if } \zeta_{1} \text { is adjacent to } \zeta_{2} \text { in the Dynkin diagram. } \\ 0, & \text { otherwise }\end{cases}
$$

From this, it is not difficult to calculate $\left\langle\xi, \zeta^{\vee}\right\rangle$ for all $\xi \in \Psi\left(R_{u}\left(P_{\alpha \beta \gamma \delta \epsilon \eta}\right)\right)$ and for all $\zeta \in$ Σ. These calculations show how $n_{\alpha}, n_{\beta}, n_{\gamma}, n_{\delta}, n_{\epsilon}$, and n_{η} act on $\Psi\left(R_{u}\left(P_{\alpha \beta \gamma \delta \epsilon \eta}\right)\right)$. Let π : $\left\langle n_{\alpha}, n_{\beta}, n_{\gamma}, n_{\delta}, n_{\epsilon}, n_{\eta}\right\rangle \rightarrow \operatorname{Sym}\left(\Psi\left(R_{u}\left(P_{\alpha \beta \gamma \delta \epsilon \eta}\right)\right)\right) \cong S_{42}$ be the corresponding homomorphism. Then we have

$$
\begin{aligned}
\pi\left(q_{1}\right)= & (12)(36)(47)(910)(1112)(1314)(1520)(1617)(1821)(1923)(2225)(2426) \\
& (2728)(2932)(3133)(3435)(3638)(3739)(4041), \\
\pi\left(q_{2}\right)= & (1675432)(810121413119)(15162123262722)(17202528241918)
\end{aligned}
$$

$$
\text { (29 } 303233353431 \text {)(36 } 383941424037) \text {. }
$$

It is easy to see that $K \cong D_{14}$. The orbits of K in $\Psi\left(R_{u}\left(P_{\alpha \beta \gamma \delta \epsilon \eta}\right)\right)$ are

$$
\begin{aligned}
O_{1} & =\{1, \cdots, 7\}, O_{8}=\{8, \cdots, 14\}, O_{15}=\{15, \cdots, 28\}, O_{29}=\{29, \cdots, 35\}, \\
O_{36} & =\{36, \cdots, 42\} .
\end{aligned}
$$

Thus Lemma 2.8 yields

Proposition 3.1.

$$
\begin{aligned}
\mathfrak{c}_{\operatorname{Lie}\left(R_{u}\left(P_{\alpha \beta \gamma \delta \epsilon \eta}\right)\right)}(K)= & \left\{a\left(\sum_{\lambda \in O_{1}} e_{\lambda}\right)+b\left(\sum_{\lambda \in O_{8}} e_{\lambda}\right)+c\left(\sum_{\lambda \in O_{15}} e_{\lambda}\right)+d\left(\sum_{\lambda \in O_{29}} e_{\lambda}\right)\right. \\
& \left.+m\left(\sum_{\lambda \in O_{36}} e_{\lambda}\right) \mid a, b, c, d, m \in k\right\} .
\end{aligned}
$$

The following is the most important technical result in this paper.
Proposition 3.2. Let $u \in C_{R_{u}\left(P_{\alpha \beta \gamma \delta \epsilon \eta}\right)}(K)$. Then u must have the form,

$$
u=\prod_{i=1}^{7} \epsilon_{i}(a) \prod_{i=8}^{14} \epsilon_{i}(b) \prod_{i=15}^{28} \epsilon_{i}(c) \prod_{i=29}^{35} \epsilon_{i}(a+b+c) \prod_{i=36}^{42} \epsilon_{i}\left(a_{i}\right) \text { for some } a, b, c, a_{i} \in k
$$

Proof. By Lemma 2.5 u can be expressed uniquely as $u=\prod_{i=1}^{42} \epsilon_{i}\left(b_{i}\right)$ for some $b_{i} \in k$. By (2.1), we have $n_{\xi} \epsilon_{\zeta}(a) n_{\xi}^{-1}=\epsilon_{s_{\xi} \cdot \zeta}(a)$ for any $a \in k$ and $\xi, \zeta \in \Psi(G)$. Thus we have

$$
\begin{align*}
q_{1} u q_{1}^{-1}= & q_{1}\left(\prod_{i=1}^{42} \epsilon_{i}\left(b_{i}\right)\right) q_{1}^{-1} \\
= & \left(\prod_{i=1}^{7} \epsilon_{q_{1} \cdot i}\left(b_{i}\right)\right)\left(\prod_{i=8}^{14} \epsilon_{q_{1} \cdot i}\left(b_{i}\right)\right)\left(\prod_{i=15}^{28} \epsilon_{q_{1} \cdot i}\left(b_{i}\right)\right)\left(\prod_{i=29}^{35} \epsilon_{q_{1} \cdot i}\left(b_{i}\right)\right) \\
& \left(\prod_{i=36}^{42} \epsilon_{q_{1} \cdot i}\left(b_{i}\right)\right) \tag{3.1}
\end{align*}
$$

A calculation using the commutator relations (Lemma 2.6 and Lemma 2.7) shows that

$$
\begin{align*}
q_{1} u q_{1}^{-1}= & \epsilon_{1}\left(b_{2}\right) \epsilon_{2}\left(b_{1}\right) \epsilon_{3}\left(b_{6}\right) \epsilon_{4}\left(b_{7}\right) \epsilon_{5}\left(b_{5}\right) \epsilon_{6}\left(b_{3}\right) \epsilon_{7}\left(b_{4}\right) \epsilon_{8}\left(b_{8}\right) \epsilon_{9}\left(b_{10}\right) \epsilon_{10}\left(b_{9}\right) \epsilon_{11}\left(b_{12}\right) \epsilon_{12}\left(b_{11}\right) \epsilon_{13}\left(b_{14}\right) \\
& \epsilon_{14}\left(b_{13}\right) \epsilon_{15}\left(b_{20}\right) \epsilon_{16}\left(b_{17}\right) \epsilon_{17}\left(b_{16}\right) \epsilon_{18}\left(b_{21}\right) \epsilon_{19}\left(b_{23}\right) \epsilon_{20}\left(b_{15}\right) \epsilon_{21}\left(b_{18}\right) \epsilon_{22}\left(b_{25}\right) \epsilon_{23}\left(b_{19}\right) \epsilon_{24}\left(b_{26}\right) \\
& \epsilon_{25}\left(b_{22}\right) \epsilon_{26}\left(b_{24}\right) \epsilon_{27}\left(b_{28}\right) \epsilon_{28}\left(b_{27}\right) \epsilon_{29}\left(b_{32}\right) \epsilon_{30}\left(b_{30}\right) \epsilon_{31}\left(b_{33}\right) \epsilon_{32}\left(b_{29}\right) \epsilon_{33}\left(b_{31}\right) \epsilon_{34}\left(b_{35}\right) \epsilon_{35}\left(b_{34}\right) \\
& \left(\prod_{i=36}^{41} \epsilon_{i}\left(a_{i}\right)\right) \epsilon_{42}\left(b_{4} b_{7}+b_{11} b_{12}+b_{22} b_{25}+b_{34} b_{35}+b_{42}\right) \text { for some } a_{i} \in k . \tag{3.2}
\end{align*}
$$

Since q_{1} and q_{2} centralize u, we have $b_{1}=\cdots=b_{7}, b_{8}=\cdots=b_{14}, b_{15}=\cdots=b_{28}, b_{29}=\cdots=$ b_{35}. Set $b_{1}=a, b_{8}=b, b_{15}=c, b_{29}=d$. Then (3.2) simplifies to

$$
q_{1} u q_{1}^{-1}=\prod_{i=1}^{7} \epsilon_{i}(a) \prod_{i=8}^{14} \epsilon_{i}(b) \prod_{i=15}^{28} \epsilon_{i}(c) \prod_{i=29}^{35} \epsilon_{i}(d)\left(\prod_{i=36}^{41} \epsilon_{i}\left(a_{i}\right)\right) \epsilon_{42}\left(a^{2}+b^{2}+c^{2}+d^{2}+b_{42}\right)
$$

Since q_{1} centralizes u, comparing the arguments of the ϵ_{42} term on both sides, we must have

$$
b_{42}=a^{2}+b^{2}+c^{2}+d^{2}+b_{42}
$$

which is equivalent to $a+b+c+d=0$. Then we obtain the desired result.
Proposition 3.3. K acts non-separably on $R_{u}\left(P_{\alpha \beta \gamma \delta \epsilon \eta}\right)$.
Proof. In view of Proposition 3.1, it suffices to show that $e_{1}+e_{2}+e_{3}+e_{4}+e_{5}+e_{6}+e_{7} \notin$ Lie $C_{R_{u}\left(P_{\lambda}\right)}(K)$. Suppose the contrary. Since by [17, Cor. 14.2.7] $C_{R_{u}\left(P_{\lambda}\right)}(K)^{\circ}$ is isomorphic as a variety to k^{n} for some $n \in \mathbb{N}$, there exists a morphism of varieties $v: k \rightarrow C_{R_{u}\left(P_{\lambda}\right)}(K)^{\circ}$ such that $v(0)=1$ and $v^{\prime}(0)=e_{1}+e_{2}+e_{3}+e_{4}+e_{5}+e_{6}+e_{7}$. By Lemma 2.5, $v(a)$ can be expressed uniquely as $v(a)=\prod_{i=1}^{42} \epsilon_{i}\left(f_{i}(a)\right)$ for some $f_{i} \in k[X]$. Differentiating the last equation, and evaluating at $a=0$, we obtain $v^{\prime}(0)=\sum_{i \in\{1, \cdots, 42\}}\left(f_{i}\right)^{\prime}(0) e_{i}$. Since $v^{\prime}(0)=\sum_{i \in O_{1}} e_{i}$, we have

$$
\left(f_{i}\right)^{\prime}(0)= \begin{cases}1 & \text { if } i \in O_{1} \\ 0 & \text { otherwise }\end{cases}
$$

Then we have

$$
f_{i}(a)= \begin{cases}a+g_{i}(a) & \text { if } i \in O_{1} \\ g_{i}(a) & \text { otherwise }\end{cases}
$$

where $g_{i} \in k[X]$ has no constant or linear term.

Then from Proposition 3.2, we obtain $\left(a+g_{1}(a)\right)+g_{8}(a)+g_{15}(a)=g_{29}(a)$. This is a contradiction.

3.2 Step 2

Let $C_{1}:=\left\{\prod_{i=1}^{7} \epsilon_{i}(a) \mid a \in k\right\}$, pick any $a \in k^{*}$, and let $v(a):=\prod_{i=1}^{7} \epsilon_{i}(a)$. Now, set

$$
\begin{aligned}
H & :=v(a) K v(a)^{-1}=\left\langle q_{1} \epsilon_{40}\left(a^{2}\right) \epsilon_{41}\left(a^{2}\right) \epsilon_{42}\left(a^{2}\right), q_{2} \epsilon_{36}\left(a^{2}\right) \epsilon_{39}\left(a^{2}\right)\right\rangle, \\
M & :=\left\langle L_{\alpha \beta \gamma \delta \epsilon \eta}, G_{36}, \cdots, G_{42}\right\rangle .
\end{aligned}
$$

Remark 3.4. By Proposition 3.1 and Proposition 3.2 the tangent space of C_{1} at the identity, $T_{1}\left(C_{1}\right)$, is contained in $\mathfrak{c}_{\operatorname{Lie}\left(R_{u}\left(P_{\alpha \beta \gamma \delta \epsilon \eta}\right)\right)}(K)$ but not contained in $\operatorname{Lie}\left(C_{R_{u}\left(P_{\alpha \beta \gamma \delta \epsilon \eta}\right)}(K)\right)$. The element $v(a)$ can be any non-trivial element in C_{1}.
Remark 3.5. In this case σ is the unique simple root not contained in $\Psi\left(L_{\alpha \beta \gamma \delta \epsilon \eta}\right)$. M was chosen so that M is generated by a Levi subgroup $L_{\alpha \beta \gamma \delta \epsilon \eta}$ containing K and all root subgroups of σ-weight 2 .

We have $H \subset M, H \not \subset L_{\alpha \beta \gamma \delta \epsilon \eta}$. Note that $\Psi(M)=\{ \pm 36, \cdots, \pm 63\}$. Since M is generated by all root subgroups of even σ-weight, it is easy to see that $\Psi(M)$ is a closed subsystem of $\Psi(G)$, thus M is reductive by [3, Lem. 3.9]. Note that M is of type A_{7}.

Proposition 3.6. H is not $M-c r$.
Proof. Let $\lambda=3 \alpha^{\vee}+6 \beta^{\vee}+9 \gamma^{\vee}+12 \delta^{\vee}+8 \epsilon^{\vee}+4 \eta^{\vee}+7 \sigma^{\vee}$. We have

$$
\left.\left.\begin{array}{rl}
\langle\alpha, \lambda\rangle & =0,\langle\beta, \lambda\rangle=0,\langle\gamma, \lambda\rangle
\end{array}\right)=0,\langle\delta, \lambda\rangle=0, ~ 子, ~ l e, \lambda\right\rangle=0,\langle\eta, \lambda\rangle=0,\langle\sigma, \lambda\rangle=2 .
$$

So $L_{\alpha \beta \gamma \delta \epsilon \eta}=L_{\lambda}, P_{\alpha \beta \gamma \delta \epsilon \eta}=P_{\lambda}$.
It is easy to see that L_{λ} is of type A_{6}, so $\left[L_{\lambda}, L_{\lambda}\right]$ is isomorphic to either $S L_{7}$ or $P G L_{7}$. We rule out the latter. Pick $x \in k^{*}$ such that $x \neq 1, x^{7}=1$. Then $\lambda(x) \neq 1$ since $\sigma(\lambda(x))=x^{2} \neq 1$. Also, we have $\lambda(x) \in Z\left(\left[L_{\lambda}, L_{\lambda}\right]\right)$. Therefore $\left[L_{\lambda}, L_{\lambda}\right] \cong S L_{7}$. It is easy to check that the map $k^{*} \times\left[L_{\lambda}, L_{\lambda}\right] \rightarrow L_{\lambda}$ is separable, so we have $L_{\lambda} \cong G L_{7}$.

Let $c_{\lambda}: P_{\lambda} \rightarrow L_{\lambda}$ be the homomorphism as in Definition 2.3. In order to prove that H is not M-cr, by Theorem 2.4 it suffices to find a tuple $\left(h_{1}, h_{2}\right) \in H^{2}$ which is not $R_{u}\left(P_{\lambda}(M)\right)$ conjugate to $c_{\lambda}\left(\left(h_{1}, h_{2}\right)\right)$. Set $h_{1}:=v(a) q_{1} v(a)^{-1}, h_{2}:=v(a) q_{2} v(a)^{-1}$. Then

$$
\begin{aligned}
c_{\lambda}\left(\left(h_{1}, h_{2}\right)\right) & =\lim _{x \rightarrow 0}\left(\lambda(x) q_{1} \epsilon_{40}\left(a^{2}\right) \epsilon_{41}\left(a^{2}\right) \epsilon_{42}\left(a^{2}\right) \lambda(x)^{-1},\left(\lambda(x) q_{2} \epsilon_{36}\left(a^{2}\right) \epsilon_{39}\left(a^{2}\right) \lambda(x)^{-1}\right)\right. \\
& =\left(q_{1}, q_{2}\right)
\end{aligned}
$$

Now suppose that $\left(h_{1}, h_{2}\right)$ is $R_{u}\left(P_{\lambda}(M)\right)$-conjugate to $c_{\lambda}\left(\left(h_{1}, h_{2}\right)\right)$. Then there exists $m \in$ $R_{u}\left(P_{\lambda}(M)\right)$ such that

$$
m v(a) q_{1} v(a)^{-1} m^{-1}=q_{1}, m v(a) q_{2} v(a)^{-1} m^{-1}=q_{2}
$$

Thus we have $m v(a) \in C_{R_{u}\left(P_{\lambda}\right)}(K)$. Note that $\Psi\left(R_{u}\left(P_{\lambda}(M)\right)\right)=\{36, \cdots, 42\}$. So, by Lemma 2.5, m can be expressed uniquely as $m:=\prod_{i=36}^{42} \epsilon_{i}\left(a_{i}\right)$ for some $a_{i} \in k$. Then we have

$$
m v(a)=\epsilon_{1}(a) \epsilon_{2}(a) \epsilon_{3}(a) \epsilon_{4}(a) \epsilon_{5}(a) \epsilon_{6}(a) \epsilon_{7}(a)\left(\prod_{i=36}^{42} \epsilon_{i}\left(a_{i}\right)\right) \in C_{R_{u}\left(P_{\lambda}\right)}(K)
$$

This contradicts Proposition 3.2,
Remark 3.7. In [3, Sec. 7, Prop .7.17], Bate et al. used [1, Lem. 2.17, Thm. 3.1] to turn a problem on M-complete reducibility into a problem involving M-conjugacy. We have used Proposition 2.4 to turn the same problem into a problem involving $R_{u}(P \cap M)$-conjugacy, which is easier.
Remark 3.8. Instead of using C_{1} to define $v(a)$, we can take $C_{8}:=\left\{\prod_{i=8}^{14} \epsilon_{i}(a) \mid a \in k\right\}$, $C_{15}:=\left\{\prod_{i=15}^{28} \epsilon_{i}(a) \mid a \in k\right\}$, or $C_{29}:=\left\{\prod_{i=29}^{35} \epsilon_{i}(a) \mid a \in k\right\}$. In each case, a similar argument goes through and gives rise to a different example with the desired property.

3.3 Step 3

Proposition 3.9. H is G - $c r$.
Proof. First note that H is conjugate to K, so H is G-cr if and only if K is G-cr. Then, by [1, Lem. 2.12, Cor. 3.22], it suffices to show that K is $\left[L_{\lambda}, L_{\lambda}\right]$-cr. We can identify K with the image of the corresponding subgroup of S_{7} under the permutation representation $\pi_{1}: S_{7} \rightarrow S L_{7}(k)$. It is easy to see that $K \cong D_{14}$. A quick calculation shows that this representation of D_{14} is a direct sum of a trivial 1-dimensional and 3 irreducible 2-dimensional subrepresentations. Therefore K is $\left[L_{\lambda}, L_{\lambda}\right]$-cr.

4 A rationality problem

We prove Theorem 1.10. The key here is again the existence of a 1-dimensional curve C_{1} such that $T_{1}\left(C_{1}\right)$ is contained in $\mathfrak{c}_{\text {Lie }\left(R_{u}\left(P_{\lambda}\right)\right)}(K)$ but not contained in $\operatorname{Lie}\left(C_{R_{u}\left(P_{\lambda}\right)}(K)\right)$. The same phenomenon was seen in the G_{2} example.

Proof of Theorem 1.10. Let k_{0}, k, and G be as in the hypothesis. We choose a k_{0}-defined $k_{0^{-}}$ split maximal torus T such that for each $\zeta \in \Psi(G)$ the corresponding root ζ, coroot ζ^{\vee}, and homomorphism ϵ_{ζ} are defined over k_{0}. Since k_{0} is not perfect, there exists $\tilde{a} \in k \backslash k_{0}$ such that $\tilde{a}^{2} \in k_{0}$. We keep the notation $q_{1}, q_{2}, v, K, P_{\lambda}, L_{\lambda}$ of Section 3. Let

$$
\begin{aligned}
H & =\left\langle v(\tilde{a}) q_{1} v(\tilde{a})^{-1}, v(\tilde{a}) q_{2} v(\tilde{a})^{-1}\right\rangle \\
& =\left\langle q_{1} \epsilon_{40}\left(\tilde{a}^{2}\right) \epsilon_{41}\left(\tilde{a}^{2}\right) \epsilon_{42}\left(\tilde{a}^{2}\right), q_{2} \epsilon_{36}\left(\tilde{a}^{2}\right) \epsilon_{39}\left(\tilde{a}^{2}\right)\right\rangle
\end{aligned}
$$

Now it is obvious that H is k_{0}-defined. We already know that H is G-cr by Proposition 3.9 , Since G and T are k_{0}-split, P_{λ} and L_{λ} are k_{0}-defined by [4, V.20.4, V.20.5]. Suppose that there exists a k_{0}-Levi subgroup L^{\prime} of P_{λ} such that L^{\prime} contains H. Then there exists $w \in R_{u}\left(P_{\lambda}\right)\left(k_{0}\right)$ such that $L^{\prime}=w L_{\lambda} w^{-1}$ by [4, V.20.5]. Then $w^{-1} H w \subseteq L_{\lambda}$ and $v(\tilde{a})^{-1} H v(\tilde{a}) \subseteq L_{\lambda}$. So we have $c_{\lambda}\left(w^{-1} h w\right)=w^{-1} h w$ and $c_{\lambda}\left(v(\tilde{a})^{-1} h v(\tilde{a})\right)=v(\tilde{a})^{-1} h v(\tilde{a})$ for any $h \in H$. We also have $c_{\lambda}(w)=c_{\lambda}(v(\tilde{a}))=1$ since $w, v(\tilde{a}) \in R_{u}\left(P_{\lambda}\right)(k)$. Therefore we obtain $w^{-1} h w=c_{\lambda}\left(w^{-1} h w\right)=$ $c_{\lambda}(h)=c_{\lambda}\left(v(\tilde{a})^{-1} h v(\tilde{a})\right)=v(\tilde{a})^{-1} h v(\tilde{a})$ for any $h \in H$. So we have $w=v(\tilde{a}) z$ for some $z \in$ $C_{R_{u}\left(P_{\lambda}\right)}(K)(k)$. By Proposition 3.2, z must have the form

$$
z=\prod_{i=1}^{7} \epsilon_{i}(a) \prod_{i=8}^{14} \epsilon_{i}(b) \prod_{i=15}^{28} \epsilon_{i}(c) \prod_{i=29}^{35} \epsilon_{i}(a+b+c) \prod_{i=36}^{42} \epsilon_{i}\left(a_{i}\right) \text { for some } a, b, c, a_{i} \in k
$$

Then

$$
\begin{aligned}
w & =\left(\prod_{i=1}^{7} \epsilon_{i}(\tilde{a})\right) \prod_{i=1}^{7} \epsilon_{i}(a) \prod_{i=8}^{14} \epsilon_{i}(b) \prod_{i=15}^{28} \epsilon_{i}(c) \prod_{i=29}^{35} \epsilon_{i}(a+b+c) \prod_{i=36}^{42} \epsilon_{i}\left(a_{i}\right) \\
& =\prod_{i=1}^{7} \epsilon_{i}(\tilde{a}+a) \prod_{i=8}^{14} \epsilon_{i}(b) \prod_{i=15}^{28} \epsilon_{i}(c) \prod_{i=29}^{35} \epsilon_{i}(a+b+c) \prod_{i=36}^{42} \epsilon_{i}\left(b_{i}\right) \text { for some } b_{i} \in k .
\end{aligned}
$$

Since w is a k_{0}-point, b, c, and $a+b+c$ all belong to k_{0}, so $a \in k_{0}$. But $a+\tilde{a}$ belongs to k_{0} as well, so $\tilde{a} \in k_{0}$. This is a contradiction.

Remark 4.1. As in Section 3, we can take $v(\tilde{a})$ from C_{8}, C_{15}, or C_{29}. In each case, a similar argument goes through, and gives rise to a different example.
Remark 4.2. [1, Ex. 5.11] shows that there is a k_{0}-defined subgroup of G of type A_{n} which is not G-cr over k even though it is G-cr over k_{0}. Note that this example works for any $p>0$.

5 A problem of conjugacy classes

We prove Theorem 1.11. Here, the key is again the existence of a 1-dimensional curve C_{1} such that $T_{1}\left(C_{1}\right)$ is contained in $\mathfrak{c}_{\text {Lie }\left(R_{u}\left(P_{\lambda}\right)\right)}(K)$ but not contained in $\operatorname{Lie}\left(C_{R_{u}\left(P_{\lambda}\right)}(K)\right)$ as in the G_{2} example. Let G, M, k be as in the hypotheses of the theorem. We keep the notation $q_{1}, q_{2}, v, K, P_{\lambda}, L_{\lambda}$ of Section 3. A calculation using the commutator relations (Lemma 2.6) shows that

$$
Z\left(R_{u}\left(P_{\lambda}\right)\right)=\left\langle U_{36}, U_{37}, U_{38}, U_{39}, U_{40}, U_{41}, U_{42}\right\rangle
$$

Let $K_{0}:=\left\langle K, Z\left(R_{u}\left(P_{\lambda}\right)\right)\right\rangle$. It is standard that there exists a finite subset $F=\left\{z_{1}, z_{2}, \cdots, z_{n^{\prime}}\right\}$ of $Z\left(R_{u}(P)\right)$ such that $C_{P_{\lambda}}(\langle K, F\rangle)=C_{P_{\lambda}}\left(K_{0}\right)$. Let $\mathbf{m}:=\left(q_{1}, q_{2}, z_{1}, \cdots, z_{n^{\prime}}\right)$. Let $n:=n^{\prime}+2$. For every $x \in k^{*}$, define $\mathbf{m}(x):=v(x) \cdot \mathbf{m} \in P_{\lambda}(M)^{n}$.

Lemma 5.1. $C_{P_{\lambda}}\left(K_{0}\right)=C_{R_{u}\left(P_{\lambda}\right)}\left(K_{0}\right)$.
Proof. It is obvious that $C_{R_{u}\left(P_{\lambda}\right)}\left(K_{0}\right) \subseteq C_{P_{\lambda}}\left(K_{0}\right)$. We prove the converse. Let $l u \in C_{P_{\lambda}}\left(K_{0}\right)$ for some $l \in L_{\lambda}$ and $u \in R_{u}\left(P_{\lambda}\right)$. Then $l u$ centralizes $Z\left(R_{u}\left(P_{\lambda}\right)\right)$, so l centralizes $Z\left(R_{u}\left(P_{\lambda}\right)\right)$, since u does. It suffices to show that $l=1$. Let $l=t \tilde{l}$ where $t \in Z\left(L_{\lambda}\right)^{\circ}=\lambda\left(k^{*}\right)$ and $\tilde{l} \in\left[L_{\lambda}, L_{\lambda}\right]$. We have

$$
\begin{equation*}
\langle i, \lambda\rangle=4 \text { for any } i \in\{36, \cdots, 42\} \tag{5.1}
\end{equation*}
$$

So for any $z \in Z\left(R_{u}\left(P_{\lambda}\right)\right)$, there exists $\alpha \in k^{*}$ such that $t \cdot z=\alpha z$. Then we have $\tilde{l} \cdot z=\alpha^{-1} z$. Now define $A:=\left\{\tilde{l} \in\left[L_{\lambda}, L_{\lambda}\right] \mid \tilde{l}\right.$ acts on $Z\left(R_{u}\left(P_{\lambda}\right)\right)$ by multiplication by a scalar $\}$. Then it is easy to see that $A \unlhd\left[L_{\lambda}, L_{\lambda}\right]$. Since $\left[L_{\lambda}, L_{\lambda}\right] \cong S L_{7}$ and $L_{\lambda} \cong G L_{7}$, we have $A=Z\left(\left[L_{\lambda}, L_{\lambda}\right]\right)$. Therefore we obtain $\tilde{l} \in A=Z\left(\left[L_{\lambda}, L_{\lambda}\right]\right) \subseteq \lambda\left(k^{*}\right)$. So we have $l=c \tilde{l} \in \lambda\left(k^{*}\right)$. Then we obtain $l \in C_{\lambda\left(k^{*}\right)}\left(Z\left(R_{u}\left(P_{\lambda}\right)\right)\right)$. By (55.1) this implies $l=1$.

Lemma 5.2. $G \cdot \mathbf{m} \cap P_{\lambda}(M)^{n}$ is an infinite union of $P_{\lambda}(M)$-conjugacy classes.
Proof. Fix $a^{\prime} \in k^{*}$. By Lemma 5.1] we have $C_{P_{\lambda}}\left(K_{0}\right)=C_{R_{u}\left(P_{\lambda}\right)}\left(K_{0}\right) \subseteq C_{R_{u}\left(P_{\lambda}\right)}(K)$. Then we obtain

$$
\begin{equation*}
C_{P_{\lambda}}\left(v\left(a^{\prime}\right) K_{0} v\left(a^{\prime}\right)^{-1}\right)=v\left(a^{\prime}\right) C_{P_{\lambda}}\left(K_{0}\right) v\left(a^{\prime}\right)^{-1} \subseteq v\left(a^{\prime}\right) C_{R_{u}\left(P_{\lambda}\right)}(K) v\left(a^{\prime}\right)^{-1} \tag{5.2}
\end{equation*}
$$

Choose $b^{\prime} \in k^{*}$ such that $\mathbf{m}\left(a^{\prime}\right)$ is $P_{\lambda}(M)$-conjugate to $\mathbf{m}\left(b^{\prime}\right)$. Then there exists $m \in P_{\lambda}(M)$ such that $m \cdot \mathbf{m}\left(b^{\prime}\right)=\mathbf{m}\left(a^{\prime}\right)$. By (5.2), we have

$$
m v\left(b^{\prime}\right) v\left(a^{\prime}\right)^{-1} \in C_{P_{\lambda}}\left(v\left(a^{\prime}\right) K_{0} v\left(a^{\prime}\right)^{-1}\right) \subseteq v\left(a^{\prime}\right) C_{R_{u}\left(P_{\lambda}\right)}(K) v\left(a^{\prime}\right)^{-1}
$$

By Proposition 3.2, we have

$$
v\left(a^{\prime}\right)^{-1} m v\left(b^{\prime}\right)=\prod_{i=1}^{7} \epsilon_{i}(a) \prod_{i=8}^{14} \epsilon_{i}(b) \prod_{i=15}^{28} \epsilon_{i}(c) \prod_{i=29}^{35} \epsilon_{i}(a+b+c) \prod_{i=36}^{42} \epsilon_{i}\left(a_{i}\right), \text { for some } a, b, c, a_{i} \in k
$$

This yields

$$
m=\prod_{i=1}^{7} \epsilon_{i}\left(a+a^{\prime}+b^{\prime}\right) \prod_{i=8}^{14} \epsilon_{i}(b) \prod_{i=15}^{28} \epsilon_{i}(c) \prod_{i=29}^{35} \epsilon_{i}(a+b+c) \prod_{i=36}^{42} \epsilon_{i}\left(b_{i}\right), \text { for some } a, b, c, b_{i} \in k
$$

But $m \in P_{\lambda}(M)$, so $a+a^{\prime}+b^{\prime}=0, b=0, c=0, a+b+c=0$. Hence we have $a^{\prime}=b^{\prime}$. Thus we have shown that if $a^{\prime} \neq b^{\prime}$, then $\mathbf{m}\left(a^{\prime}\right)$ is not $P_{\lambda}(M)$-conjugate to $\mathbf{m}\left(b^{\prime}\right)$. So, in particular, $G \cdot \mathbf{m} \cap P_{\lambda}(M)^{n}$ is an infinite union of $P_{\lambda}(M)$-conjugacy classes.

We need the next result [11, Lem. 4.4]. We include the proof to make this paper selfcontained.

Lemma 5.3. $G \cdot \mathbf{m} \cap P_{\lambda}(M)^{n}$ is a finite union of M-conjugacy classes if and only if it is a finite union of $P_{\lambda}(M)$-conjugacy classes.

Proof. Pick $\mathbf{m}_{\mathbf{1}}, \mathbf{m}_{\mathbf{2}} \in G \cdot \mathbf{m} \cap P_{\lambda}(M)^{n}$ such that $\mathbf{m}_{\mathbf{1}}$ and $\mathbf{m}_{\mathbf{2}}$ are in the same M-conjugacy class of $G \cdot \mathbf{m} \cap P_{\lambda}(M)^{n}$. Then there exists $m \in M$ such that $m \cdot \mathbf{m}_{\mathbf{1}}=\mathbf{m}_{\mathbf{2}}$. Let $Q=m^{-1} P_{\lambda}(M) m$. Then we have $\mathbf{m}_{\mathbf{1}} \in\left(P_{\lambda}(M) \cap Q\right)^{n}$. Now let S be a maximal torus of M contained in $P_{\lambda}(M) \cap Q$.

Since S and $m^{-1} S m$ are maximal tori of Q, they must be Q-conjugate. So there exists $q \in Q$ such that

$$
\begin{equation*}
q S q^{-1}=m^{-1} S m \tag{5.3}
\end{equation*}
$$

Since $Q=m^{-1} P_{\lambda}(M) m$, there exists $p \in P_{\lambda}(M)$ such that $q=m^{-1} p m$. Then from (5.3), we obtain $p m S m^{-1} p^{-1}=S$. This implies $m^{-1} p^{-1} \in N_{M}(S)$. Fix a finite set $N \subseteq N_{M}(S)$ of coset representatives for the Weyl group $W=N_{M}(S) / S$. Then we have

$$
m^{-1} p^{-1}=n s \text { for some } n \in N, s \in S
$$

So we obtain $\mathbf{m}_{\mathbf{1}}=m^{-1} \cdot \mathbf{m}_{\mathbf{2}}=(n s p) \cdot \mathbf{m}_{\mathbf{2}} \in\left(n P_{\lambda}(M)\right) \cdot \mathbf{m}_{\mathbf{2}}$. Since N is a finite set, this shows that a M-conjugacy class in $G \cdot \mathbf{m} \cap P_{\lambda}(M)^{n}$ is a finite union of $P_{\lambda}(M)$-conjugacy classes. The converse is obvious.

Proof of Theorem 1.12. By Lemma 5.2 and Lemma 5.3, we conclude that $G \cdot \mathbf{m} \cap P_{\lambda}(M)^{n}$ is an infinite union of M-conjugacy classes. Now it is evident that $G \cdot \mathbf{m} \cap M^{n}$ is an infinite union of M-conjugacy classes.

Acknowledgements

This research was supported by a University of Canterbury Master's Scholarship and Marsden Grant UOC1009/UOA1021. The author would like to thank Benjamin Martin and Günter Steinke for helpful discussions. He is also grateful for detailed comments from J.P. Serre and an anonymous referee.

Appendix

(1)		0	1	1	1	0	(2)	1	1	1	1		0	0	(3)	0	1	1	1	1	(4)	0	0	1	1	2	1
(5)	1	1	2	2	1	0	(6)	0	1	1	1	1	2	1	(7)	1	2	2	1	1	(8)	0	0	0	1	0	0
(9)	0	0	0	1	0	0	(10)	0	1	1	1	1	1	0	(11)	0	0	1		1	(12)	1	2	2	2	2	1
(13)		1	2	3	2	1	(14)	1	2	3	1	1	2	1	(15)	0	0	1		0	(16)	0	0	0	1	1	0
(17)		1	1	1	0	0	(18)	0	0	0	1	1	1	1	(19)	0	0	1		0	(20)	1	1	1	1	1	0
(21)		1	1	1	1	1	(22)	1	1	1		1	1	1	(23)	1	2	2		0	(24)	1	1	2	2	1	1
(25)		1	2	2	2	1	(26)	1	1	2			2	1	(27)	0	1	2		1	(28)	1	2	2	1	2	1
(29)	0	0	1	1	1	1	(30)	0	1	1			1	0	(31)	1	1	1		0	(32)	1	1	1	1	1	1
(33)		1	2	2	1	0	(34)	0	1	2			1	1	(35)	1	1	1		1	(36)	0	1	2	3	2	1
(37)	1			3	2	1	(38)		2	2		2	2	1	(39)	1	2	3		1	(40)	1	2	3	2	2	1

(41)	1	2	3	2 4	3	1	(42)	1	2	3	2	3	2	(43)	1	0	0	0	0	0	(44)	0	1	0	0 0	0	0
(45)	0	0	1	0 0	0	0	(46)	0	0	0	0 1	0	0	(47)	0	0	0	0	1	0	(48)	0	0	0	0	0	1
(49)	1	1	0	0	0	0	(50)	0	1	1	0	0	0	(51)	0	0	1	1	0	0	(52)	0		0	1	1	0
(53)	0	0	0	0	1	1	(54)	1	1	1	0	0	0	(55)	0	1	1	0 1	0	0	(56)	0	0	1	0 1	1	0
(57)			0	0 1	1	1	(58)	1	1		0 1		0	(59)	0	1	1	1	1	0	(60)	0	0	1	0 1	1	1
(61)		1	1	0 1			(62)	0			1	1	1	(63)		1	1	0 1		1							

Table 1: The set of positive roots of $G=E_{7}$

References

[1] M. Bate, B. Martin, and G. Röhrle. A geometric approach to complete reducibility. Inventiones Mathematicae, 161:177-218, 2005.
[2] M. Bate, B. Martin, G. Röhrle, and R. Tange. Closed orbits and uniform S-instability in geometric invariant theory. Trans. Amer. Math. Soc. to appear.
[3] M. Bate, B. Martin, G. Röhrle, and R. Tange. Complete reducibility and separability. Trans. Amer. Math. Soc., 362(8):4283-4311, 2010.
[4] A. Borel. Linear Algebraic Groups. Springer, Graduate Texts in Mathematics, second enlarged edition, 1991.
[5] R. Carter. Simple Groups of Lie Type. John Wiley \& Sons, 1972.
[6] H. Freudenthal and H. de Vries. Linear Algebraic Groups. Academic Press, New York and London, 1969.
[7] J. Humphreys. Introduction to Lie Algebras and Representation Theory. Springer, Graduate Texts in Mathematics, 1972.
[8] J. Humphreys. Linear Algebraic Groups. Springer, Graduate Texts in Mathematics, 1991.
[9] M. Liebeck and G. Seitz. Reductive subgroups of exceptional algebraic groups. Mem. Amer. Math. Soc., 580, 1996.
[10] M. Liebeck and D. Testerman. Irreducible subgroups of algebraic groups. Q.J. Math, 55:47-55, 2004.
[11] D. Lond. On reductive subgroups of algebraic groups and a question of Külshammer. PhD thesis, University of Canterbury, New Zealand, 2013.
[12] R. Richardson. Conjugacy classes in Lie algebras and algebraic groups. Ann. of Math., 86:1-15, 1967.
[13] R. Richardson. On orbits of algebraic groups and Lie groups. Bull. Austral. Math. Soc, 25(1):1-28, 1982.
[14] R. Richardson. Conjugacy classes of n-tuples in Lie algebras and algebraic groups. Duke Math. J., 57:1-35, 1988.
[15] J.P. Serre. Complète réductibilité. Séminaire bourbaki. vol 2003/2004. Astérisque, 299:195217, 2005.
[16] P. Slodowy. Two notes on a finiteness problem in the representation theory of finite groups, Austral. Math. Soc. Lect. Ser. 9, Algebraic groups and Lie groups, 331-348. Cambridge Univ. Press, Cambridge, 1997.
[17] T. Springer. Linear Algebraic Groups. Birkhäuser, Progress in Mathematics, second edition, 1998.
[18] D. Stewart. Non-G-completely reducible subgroups of the exceptional groups. Int. Math. Res. Not. to appear.
[19] E. Vinberg. On invariants of a set of matrices. J. Lie Theory, 6:249-269, 1996.

