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Abstract

This work contains some fundamental investigations on Triton X series
nonionic surfactants from different aspects. Techniques, such as
viscometry, densimetry, diffusion measurement, ultra-violet
spectrophotometry, differential scanning calorimetry, surface tension
measurement and optical microscopy were employed to acquire the
information. Some theoretical analyses were given to the results of these

measurements.

Triton X surfactants show different properties when they dissolve in
different solvents. Aggregation can occur in some solvents, depending on
the interactions between solvent and solute. The addition of a surfactant
to a solvent will give rise to a solute-solvent interaction and change the
solute-solute and solvent-solvent interactions as well. From mass
transport properties of the surfactant solutions, these interactions were
studied and the contributions to them from each species of the solutions
were calculated with a transition-state theory model which is usually used
for small molecule systems. Under some reasonable assumptions, a new
theoretical method was set up and was able to give a reasonable

explanation for the experimental results.




The surfactants can also associate with some dyes in both polar and apolar
media. The ultra-violet spectra of the surfactant-dye solutions show that
surfactant-dye complexes might be formed in the polar and apolar media
where the surfactants form regular and reversed micelles respectively.
The mechanism of the complexation reactions was studied with
equilibrium theory and the charge-transfer nature of the association

between the surfactant and dye revealed.

The surface tension and cloud point changes due to the addition of
polyethylene glycol were determined to discover the interaction between
the water-soluble polymer PEG and the surfactants at the air-solution
interface and in the bulk solutions respectively. The mass distribution of
the two materials between the two phases produced in the segregation (at
the cloud point) of the solutions were determined by their ultra-violet
adsorption spectra and densities. The analysis of the cloud point changes
was given with the new concepts of polysoap and depletion flocculation.
The results show that the size of the micelles, the length of the polymer
chains, and the structures of the intra - chain micelles can change the
mechanisms of polymer-surfactant interaction and influence the

properties of the polymer / surfactant solutions.

In a certain range of concentrations, the surfactants aqueous solutions can
form liquid crystalline structures which can be observed under a cross-

polarised microscope and determined by differential scanning calorimetry.




The phase diagrams and their variations with additions of the third
component, such as xylene, polyethylene glycol and BaCl: 2H20 have been
determined. The effects of temperature and each of the additives on the
ordered structures were analysed separately in the light of concepts of

spontaneous mean curvature and “salting out ” effect.

Osmotic coefficients of the surfactant aqueous and methanol solutions
were determined with a vapour pressure osmometer, and the activity
coefficient of the solvent can be calculated with the osmotic coefficients.
The change of the activity coefficient with increase of surfactant
concentration shows the interactions of the surfactant with the solvent. In
aqueous solution, the addition of surfactant frees the solvent molecules,
leading to an activity coefficient larger than 1. In methanol solution, the
surfactant addition reduces the fugacity of methanol molecules, resulting

in an activity coefficient less than 1.

Chemical shift changes of protons of the surfactant molecules in the 1H
NMR spectra show some information about the configuration of the
chains, hydration, and phase structure of the solution system when the
surfactant concentration changes over the whole concentration range.
From 40% w/w the associated water molecules begin to be lost, and the
association number ratio of water molecules and the ethylene oxide unit of

the surfactantis 4 : 1.




Xiv
Electric conductance of electrolytes in the surfactant aqueous solutions are
reduced by the addition of the surfactants. The reduction is more

significant for large size cations, and the longer the EO chain of the

surfactant, the larger the reducing effect on conductance.
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