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Abstract

This work contains some fundamental investigations on Thiton X series

nonionic surfactants from different aspects. Techniques, such as

viscometry, densimetry, diffirsion measutement, ultra'violet

spectrophotometry, differential sganning calorimetry, surface tension

measurement and optical microscopy were employed to acquire the

information. Some theoretical analyses were given to the results of these

measurements.

Tliton X surfactants show different properties when they dissolve in

different solvents. Aggregation can occur in some solvents, depend.ing on

the interactions between solvent and solute. The addition of a surfactant

to a solvent will give rise to a solute-solvent interaction and change the

solute-solute and solvent-solvent interactions as well. From mass

transport properties of the surfactant solutions, these interactions were

studied and the contributions to them from each species of the solutions

were calculated with a transition-state theory model which is usually used

for small molecule systems. Under some reasonable assumptions, a new

theoretical method was set up and was able to grve a reasonable

explanation for the experimental results.
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The surfactants can also associate vrith some dyes in both polar and apolar

media. The ultra-violet spectra of the surfactant-dye solutions show that

surfactant-dye complexes might be formed in the polar and apolar media

where the surfactants form regular and reversed micelles respectively.

The mech"nism of the complexation reactions was studied wit,L

equilibrium theory and the charge-transfer nature of the association

between the surfactant and dye revealed.

The surface tension and. cloud point changes due to the addition of

polyethylene glycol were determined to discover the interaction between

the water-soluble polymer PEG and the surfactants at the air-solution

interface and in the bulk solutions respectively. The mass distribution of

the two materials between the two phases produced in the segregation (at

the cloud point) of the solutions were determined by their ultra-violet

adsorption spectra and densities. The analysis of the cloud point changes

was given with the new concepts of polysoap and depletion flocculation.

The results show that the size of the micelles, the length of the polymer

chains, and the structures of the intra - chain micelles can change the

mechanisms of polymer-surfactant interaction and influence the

properties of the polymer / surfactant solutions'

In a certain range of concentrations, the surfactants aqueous solutions can

form liquid crystalline structures which can be observed under a cross-

polarised microscope rnd determined by differential scanning calorimetry.
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The phase diagrams and their variations with additions of the third

component, such as xylene, polyethylene glycol and BaClz ZHzO have been

d.eterm.ined. The effects of temperatr:re and each of the additives on the

ord.ered structures were analysed separately in the light of concepts of

spontaneous meFn curvature ond'salting out " effect.

Osmotic coeffi.cients of the surfactant aqueous and methanol solutions

were determined with a vapour pressure osmometer, and the activity

coefficient of the solvent can be calculated with the osmotic coeffieients.

The change of the activity coefficient vrith i:rcrease of surfactant

concentration shows the interactions of the surfactant with the solvent. In

aqueous solution, the addition of surfactant frees the solvent molecules,

leading to an activity coeffrcient larger than 1. In methanol solution, the

surfactant addition reduces the fugacity of methanol molecules, resulting

in an activity coefficient less than 1.

Chemical shift changes of protons of the surfactant molecules in the lH

NMR spectra show some information about the ssnfiguration of the

chains, hydration, and phase structure of the solution system when the

surfactant concentration changes over the whole concentration range.

From 40Vo wlw the associated water molecules begin to be lost, and the

association number ratio of water molecules and the ethylene oxide unit of

the surfactant is 4 : 1.
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