

Version
This is the Accepted Manuscript version. This version is defined in the NISO
recommended practice RP-8-2008 http://www.niso.org/publications/rp/

Suggested Reference

Dinneen, M. J., & Wei, K. (2013). A (1+1) adaptive memetic algorithm for the
maximum clique problem. In IEEE Congress on Evolutionary Computation (CEC)
2013 (pp. 1626-1634). Cancun, Mexico. doi:10.1109/CEC.2013.6557756

Copyright

Items in ResearchSpace are protected by copyright, with all rights reserved, unless
otherwise indicated. Previously published items are made available in accordance
with the copyright policy of the publisher.

© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

http://www.ieee.org/publications_standards/publications/rights/rights_policies.ht
ml

https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm

http://www.niso.org/publications/rp/
http://dx.doi.org/10.1109/CEC.2013.6557756
http://www.ieee.org/publications_standards/publications/rights/rights_policies.html
http://www.ieee.org/publications_standards/publications/rights/rights_policies.html
https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm
https://researchspace.auckland.ac.nz/

A (1+1) Adaptive Memetic Algorithm for the
Maximum Clique Problem

Michael J. Dinneen and Kuai Wei∗
Department of Computer Science, University of Auckland, Auckland, New Zealand

{mjd,kuai}@cs.auckland.ac.nz
∗Corresponding author.

Abstract—A memetic algorithm (MA) is an Evolutionary
Algorithm (EA) augmented with a local search. We previously
defined a (1+1) Adaptive Memetic Algorithm (AMA) with two
different local searches, and the comparison with the well-known
(1+1) EA, Dynamic (1+1) EA and (1+1) MA on some toy functions
showed promise for our proposed algorithm.

In this paper we focus on the NP-hard Maximum Clique
Problem, and show the success of our proposed (1+1) AMA.
We propose a new metric (expected running time to escape a
local optimal), and show how this metric dominates the expected
running time of finding a maximum clique. Then based on this
new metric, we show the above analyzed algorithms are expected
to find a maximum clique on graphs, bipartite graphs and sparse
random graphs in a polynomial time in the number of vertices.

Also based on our new metric, we will show that if an
algorithm takes an exponential time to find a maximum clique of
a graph, it must have been trapped into at least one local optimal
that is extremely hard to escape. Furthermore, we will show that
our proposed (1+1) AMA with a random permutation local search
is expected to escape these (hard to escape) local optimal cliques
drastically faster than the well-known basic (1+1) EA. The success
of our experimental results also shows the benefit of our adaptive
strategy combined with the random permutation local search.

Keywords—memetic algorithms, maximum clique problem

I. INTRODUCTION

A Memetic Algorithm (MA) is a meta-heuristic algorithm
which hybridizes Evolutionary Algorithms (EAs) and local
searches. This hybridization preserves both the exploratory
search ability of evolutionary algorithms and the neighborhood
search ability of local searches [1], which has led to many
interests in MAs. The successful experimental results have
showed the merits of MAs. An overview in 2011 shows the
usefulness of MAs in many applications [13].

However, theoretical studies of MAs are far behind exper-
imental studies. Since MAs combine EAs and local searches,
to study the theory of MAs, we first study EAs. There are a
number of theoretical investigations on EAs in the literature.
A survey can be found in [16]. In short, the time complexity
analysis of EAs started from the basic (1+1) EA (an EA with
only a mutation approach but no crossover) on simple pseudo-
boolean functions [20] in 1998, Onemax [20] in 1998, Trap
Functions [3] in 1998, and plateaus of constant fitness [8] in
2001. In 2002, Droste, Jansen and Wegener [4] summarized the
basic (1+1) EA, where most theoretic studies of EAs are based
on this algorithm. A very important progress is the analysis on

population-based EAs, such as the (µ + 1) EA [25], (1 + λ)
EA [7]. Also many researches have focused on showing the
crossover operation is essential in EAs such as [9], [12], [19].

Meantime, after the basic (1+1) EA were analyzed, some
variants of EAs, including MAs, have been formalized and ana-
lyzed on some artificially created functions. These studies help
us understand what characteristics of these algorithms may
make their optimizations easier or harder than the basic (1+1)
EA. Examples are the Dynamic (1+1) EA [10] in 2006, (1+1)
MA [22] in 2006, (1+1) Genetic Programming [5] in 2011 and
our (1+1) AMA [2] in 2013. Apart from analyzing those toy
functions (ONEMAX, BIN, and LEADINGONES, etc.), many
researches have started to analyze the EAs for main-stream
combinatorial optimization problems such as the Maximum
Matching Problem [6] in 2003, the Minimum Spanning Tree
Problem [14] in 2004, and the Partition Problem [24] in 2005.

All these theoretical studies help us to understand how
EAs and their variants find a global optimum on specific
problems. However, we need more rigorous research on NP-
hard problems (which sometimes needs exponential time). A
few results studied NP-hard problems but with restriction on
the input cases. Such as Storch analyzed the Maximum Clique
Problem but only in planar graphs in 2006 [21]; Oliveto, He
and Yao analyzed the Vertex Cover Problem, but only focused
on Papadimitriou-Steiglitz graphs in 2007 [15], and on bipartite
graphs in 2008 [17]; Witt analyzed the Vertex Cover Problem
but only on sparse random graphs in 2012 [26]; and Sudholt
and Zarges analyzed the Vertex Coloring Problem on bipartite
graphs, sparse random graphs and planar graphs in 2010 [23].

This implies that the reason why Evolutionary Algorithms
are efficient on NP-hard problems is still underdeveloped. In
order to make a step to this goal, we investigate the running
time of some EA variants on the Maximum Clique Problem
(MCP). Because the MCP is NP-complete, which implies
every other problem in NP can be transformed into MCP in
polynomial time, our study in this paper is also related to other
NP-hard problems.

Our main results are: we propose a new metric based on
the expected running time to escape a local optimal. We will
show the usefulness of this metric, such as how it dominates
the expected running time of finding a maximum clique. This
metric tells us whether an algorithm has found a maximum
clique, with an overwhelming high probability. Then, based on
this metric, we will show our analyzed algorithms are expected
to find a maximum clique on planar graphs, bipartite graphs

mailto:mjd@cs.auckland.ac.nz?subject=1+1AMA_paper
mailto:kuai@cs.auckland.ac.nz?subject=1+1AMA_paper

and sparse random graphs in polynomial time in the number of
vertices. Finally, the new metric shows if an algorithm takes
an exponential time to find a maximum clique of a graph,
it must have been trapped into at least one local optimal
which is extremely hard to escape. Furthermore, we will show
that our previous proposed (1+1) Adaptive Memetic Algorithm
(AMA) with a random permutation local search is expected to
escape these (hard to escape) local optimal cliques drastically
faster than the well-known basic (1+1) EA. The success of our
experimental results not only verifies our theoretical analysis,
but also shows that our proposed (1+1) AMA outperforms a
state-of-art applied Spacing Memetic Algorithm (SMA) [18].
This indicates the benefit of the adaptive strategy combined
with the random permutation local search.

The paper is structured as follows. In Section II, we state
the basic (1+1) EA, the Dynamic (1+1) EA, the (1+1) MA, and
our (1+1) AMA with two different local search approaches–
Random Permutation Local Search (RPLS) and Random Com-
plete Local Search (RCLS). In Section III, we first define our
new metric, then analyze the upper bounds of each algorithm to
find a maximum clique, and finally show that those algorithms
are expected to find a maximum clique on certain families of
sparse graphs in polynomial time. In Section IV, we show that
if a graph needs an exponential time to escape a local optimal
clique, the (1+1) AMA with RPLS will be drastically faster
to escape than the basic (1+1) EA. In Section V, experimental
results provides a running time comparison among the (1+1)
EA [4], the Dynamic (1+1) EA [10], (1+1) MA [22], the (1+1)
AMA [2], and the SMA [18] on the Maximum Clique Problem.
Our conclusions and future work will be given in Section VI.

II. ALGORITHM DEFINITIONS

In this section we give basic definitions of our algorithms
and we begin with the following standard notation that will be
used throughout this paper.

1) f(n) = ω(g(n)) ↔ ∀k > 0, ∃n0, ∀n > n0, g(n) ·
k < f(n)

2) f(n) = Ω(g(n)) ↔ ∃k > 0, ∃n0, ∀n > n0, g(n) ·
k ≤ f(n)

3) f(n) = o(g(n)) ↔ ∀ε > 0, ∃n0, ∀n > n0, f(n) <
g(n) · ε

4) f(n) = O(g(n)) ↔ ∃k > 0, ∃n0, ∀n > n0, f(n) ≤
g(n) · k

5) f(n) = Θ(g(n)) ↔ ∃k1 > 0, ∃k2 > 0, ∃n0, ∀n >
n0, g(n) · k1 ≤ f(n) ≤ g(n) · k2

6) limn→∞ (1 + 1/n)
n

= e

A. The Maximum Clique Problem

A clique of a graph is a subset of vertices from this graph
such that every two vertices in the subset are connected by an
edge. The Maximum Clique Problem is the NP-hard problem of
finding the largest size of a clique in a graph. In this section,
we will formalize a fitness function fMCP for the Maximum
Clique Problem.

For a given graph G = (V = {v1, v2, ..., vn}, E), a bit
string x = (x1, x2, ..., xn) ∈ {0, 1}n defines a Maximum
Clique potential solution (an induced subgraph) where xi = 1
represents that vertex vi is selected. We say x represents a
clique if each selected vertex in x is connected to all other

selected vertices in x, i.e. {(vi, vj) | xi = xj = 1 and i 6=
j} ⊆ E.

Definition 1. The fitness function fMCP is defined as
follows:

fMCP(x) =

{
ONEMAX(x), if x represents a clique,
−LackEdges(x), otherwise,

where ONEMAX(x) is the number of ones in x; and
LackEdges(x) is the number of missing edges such that the
subgraph becomes a clique.

Example 2. For a given graph G displayed below,
fMCP(1101) = 3 because x = (1101) is a clique consists of
vertices 1, 2 and 4. fMCP(1111) = −1 because we need to add
at least one edge (1, 3).

1 4

2 3

A maximum clique for a graph G is a global optimal
solution x that maximizes fMCP(x).

B. Algorithms to be analyzed

The algorithms we will analyze on the Maximum Clique
Problem are the (1+1) EA [4], the Dynamic (1+1) EA [10], the
(1+1) MA [22] and the (1+1) AMA [2]. Note these algorithms
all try to maximize a function f . The time complexity analysis
in this paper looks at the number of evaluations of this fitness
(objective) function f = fMCP. The algorithms are stated as
below:

Algorithm 3. (1+1) EA.

1) pm := 1/n.
2) Choose randomly an initial bit string x ∈ {0, 1}n.
3) Repeat the following mutation step:

a) Compute x′ by flipping independently each
bit xi with probability pm.

b) If f(x′) ≥ f(x) then x := x′.

Algorithm 4. Dynamic (1+1) EA.

1) Choose a sequence pt(n) ∈ (0, 1/2) called mutation
probabilities for step t.

2) Choose x ∈ {0, 1}n uniformly at random. t := 1.
3) Let y be the result of flipping each bit in x indepen-

dently with probability pt(n) (mutation).
4) If f(y) ≥ f(x) then x := y (selection).
5) Increase t by 1.
6) Stop if meet some stopping criterion; otherwise, go

to step 3.

where pt(n) = 2t
∗
/n with t∗ ≡ (t− 1) mod (dlog ne − 1).

Algorithm 5. (1+1) MA.

1) Choose x ∈ {0, 1}n uniformly at random.
x := LocalSearch(x).

2) y := x. Flip every bit in y with probability pm.
y := LocalSearch(y).

3) If f(y) ≥ f(x) then x := y.
4) Go to step 2.

where the Local Search in Step 1 and 2 is a Random Complete
Local Search which we will state below.

Algorithm 6. (1+1) AMA.

1) Initialize the mutation probability p ∈ [0, 1/2].
2) Choose x ∈ {0, 1}n uniformly at random.
3) y := Mutation(x).
4) z := LocalSearch(y).
5) p := Adaptive(f(x), f(z), p).
6) If f(z) ≥ f(x) then x := z.
7) Stop if meet some stopping criterion; otherwise, go

to step 3.

where the adaptive function in step 5 is chosen as below:

p =

{
1
n , if f(z) > f(x) or p = 1

2

min
(
2p, 1

2

)
, otherwise.

C. Two local searches

As stated before, the local search in MAs can have many
variations. We will analyze a Random Complete Local Search
(RCLS) and a Random Permutation Local Search (RPLS) in
this paper.

Algorithm 7. Random Complete Local Search (RCLS).
For a given string x ∈ {0, 1}n:

1) BestNeighborSet :={
y | f(y) > f(x),Hamming(x, y) = 1, and
∀z with Hamming(x, z) = 1→ f(y) ≥ f(z)}

}
.

2) Stop and return x if BestNeighborSet = ∅.
3) x is randomly choosen from BestNeighborSet.
4) Go to step 1.

where Hamming(x, y) is the number of different bits between
x and y. Note that the RCLS will evaluate all n neighbors
and then select one flip, thus the RCLS will stop on the
Maximum Clique Problem within 2n2 fitness evaluations, or
there is no neighbor solution which has a better fitness value,
i.e. BestNeighborSet = ∅.

Unlike RCLS that evaluates all n neighbors before select-
ing one flip, RPLS randomly generates a permutation to rep-
resent the sequence of bits to search and executes the flipping
as soon as the fitness evaluation improves. The algorithm is
stated as below:

Algorithm 8. Randomized Permutation Local Search
(RPLS).

For a given string x = (x1, x2, · · · , xn) ∈ {0, 1}n:

1) Generate a random permutation Per of length n.
2) i := 1, WorseCount := 0.
3) y := flip(x,Per[i]).
4) If f(y) > f(x) then x := y, WorseCount := 0.
5) WorseCount := WorseCount + 1.
6) i := (i mod n) + 1.
7) Stop if the stopping criterion holds (see below).

Otherwise, go to step 3.

Here flip(x,Per[i]) denotes that the Per[i]-th bit in x is
flipped, and Per[i] is the i-th number in the permutation Per.

Note that the RPLS uses only one fitness evaluation per
step, so the RPLS will stop on the Maximum Clique Problem
within 2n fitness evaluations, or there is no neighbor solution
which has a better fitness value, i.e. WorseCount = n.

Example 9. Suppose string x = (0, 0, 0, 0), and Per =
(3, 2, 1, 4). So the RPLS will first check a possible flipping
for the third bit in x to get x′ = (0, 0, 1, 0). If f(x′) > f(x)
then x := x′. This check sequence follows Per in a cyclic
fashion. That is, after checking the fourth bit in x, the PRLS
will restart checking the third bit in x.

Therefore, the expected running time for the local search on
the Maximum Clique Problem is O(n2) for RCLS and O(n)
for RPLS. In the rest of this paper, we will use AMA RCLS
to denote the algorithm AMA using RCLS as the local search,
and use AMA RPLS to denote the algorithm AMA using
RPLS as the local search.

III. NEW METRIC ON STAGNATION ANALYSIS

Now we analyze how these algorithms are coping with
the stagnation when they are trapped into a local optimal
clique. We first define a new metric to measure the difficulty
of escaping out of a local optimal clique. Then we show how
can this new metric dominates the time complexity of each
analyzed algorithm to find a maximum clique, so as to show
the usefulness of the new metric.

Definition 10. For a given clique x = (x1, x2, . . . , xn) ∈
{0, 1}n in graph G, function BLOCKONES(x) is formalized
as:

BLOCKONES(x) = min
(y1,y2,...,yn)∈Clique>x

(
n∑
i=1

xiyi

)
,

where Clique>x is the set of all cliques in G with clique size
greater than the clique size of x, i.e. fMCP(y) > fMCP(x) for
all y ∈ Clique>x. Note, the complement of yi is yi = 1− yi.

So BLOCKONES(x) is the minimal number, such that at
least BLOCKONES(x) number of ones in x are blocking x to
find a larger clique in G. So we have BLOCKONES(x) = 0
if the clique of x is a subset of a larger clique. Also 0 <
BLOCKONES(x) < n/2 if x is a local optimal clique.

Lemma 11. If the analyzed algorithms are stagnated at
a local optimal solution x, let t := BLOCKONES(x), the
expected running time to skip out of this local optimal solution
and find a larger clique is bounded by

1) O
(
n2t+1

)
for the (1+1) EA,

2) O
(
n2t+1 log n

)
for the Dynamic (1+1) EA,

3) O
(
n2t+2

)
for the (1+1) MA,

4) O
(
n2t+2 log n

)
for the (1+1) AMA RCLS, and

5) O
(
n2t+1 log n

)
for the (1+1) AMA RPLS.

Proof. Since t := BLOCKONES(x), there must exist a larger
clique y such that fMCP(y) = fMCP(x) + 1 and

∑n
i=1 yixi = t.

Part 1. The (1+1) EA and the Dynamic (1+1) EA both
need to flip those blocking t bits in x from one to zero,
and also flip another t + 1 bits in x from zero to one to
find this larger clique y. So the probability of the (1+1)
EA and the Dynamic (1+1) EA to find this larger clique
in one mutation is: Probsuccess = p2t+1 (1− p)n−2t−1

=
Ω
(
p2t+1e−p(n−2t−1)

)
, where p is the mutation probability. So

if p = 1/n, Probsuccess = Ω
(
n−(2t+1)

)
, the (1+1) EA is

expected to skip out of the local optimal x and find a larger
clique in O

(
n2t+1

)
steps. And for the Dynamic (1+1) EA,

because the dynamic mutation probability has a p = 1/n
in every dlog ne mutations, the upper bound of the Dynamic
(1+1) EA is proved.

Part 2. Note that the (1+1) MA, the (1+1) AMA RCLS,
and the (1+1) AMA RPLS both have a local search approach,
so these algorithms can flip t bits from one to zero and flip
another t bits from zero to one to get a new clique with the
same clique size as x, and this new clique is also a sub-clique
of y. Then the local search will flip at least one more bit to get
a larger clique (note this larger clique may not be y). So the
probability that the local search will find a larger clique after
this mutation is one. And the probability of this mutation hap-
pens is: Probsuccess = p2t (1− p)n−2t

= Ω
(
p2te−p(n−2t)

)
.

So if p = 1/n, Probsuccess = Ω
(
n−2t

)
. And since the

local search RPLS needs O(n) steps after each mutation
(see Algorithm 8), and RCLS needs O

(
n2
)

steps after each
mutation (see Algorithm 7); also the (1+1) AMA RPLS and
the the (1+1) AMA RCLS have at least one mutation with
probability p = 1/n in every dlog ne mutations, the rest upper
bounds are proved.

We claim Lemma 11 is important because it indicates that if
any of the analyzed algorithm has trapped into a local optimal
solution for more than this number of times evaluating the
fitness function, the probability that the algorithm can find a
larger clique in the future is exponentially small. Note that due
to Definition 10, BLOCKONES(x) ≤ ONEMAX(x). Thus each
running algorithm knows an upper bound of t in Lemma 11.
So Lemma 11 can indicate each running algorithm to stop with
an overwhelming probability that a maximum clique has been
found.

For example, if the (1+1) AMA RPLS has found a clique
of five nodes, then we know BLOCKONES(x) ≤ 5. So
according to Lemma 11, if we could not find a larger clique
in the next O

(
n2·5+1 log n

)
fitness evaluations, we can claim

this 5-clique is a maximum clique, and the probability of our
claim to be false is exponentially small.

Definition 12. For a given graph G, the function
MAXBLOCKONES (G) is formalized as:

MAXBLOCKONES(G) = max{BLOCKONES(x) | x is a
clique in G}.

Theorem 13. For a given graph G, let t :=
MAXBLOCKONES(G). The expected running time of the an-
alyzed algorithms to find a maximum clique of G is bounded
by

1) O
(
n2t+2

)
for the (1+1) EA,

2) O
(
n2t+2 log n

)
for the Dynamic (1+1) EA,

3) O
(
n2t+3

)
for the (1+1) MA,

4) O
(
n2t+3 log n

)
for the (1+1) AMA RCLS, and

5) O
(
n2t+2 log n

)
for the (1+1) AMA RPLS.

Proof. Part 1. We prove the upper bounds of the (1+1) EA
and the Dynamic (1+1) EA in two steps: (a) if the start string
x does not represent a clique, then the expected running time
of finding a clique is bounded by O

(
n2
)

and O
(
n2 log n

)
respectively; and (b) if the start string x represents a clique,
then the expected running time of finding a maximum clique
is bounded by O

(
n2t+2

)
and O

(
n2t+2 log n

)
respectively.

Step (a): if x does not represent a clique, the function fMCP
will guide the algorithm to flip many ones to zeros to find
a clique. The probability of the (1+1) EA and the Dynamic
(1+1) EA to flip at least one bit in x from one to zero
is Probsuccess = Ω

(
p1(1− p)n−1

)
. And Probsuccess =

Ω(1/n) when p = 1/n. Note we have one mutation with
p = 1/n in every dlog ne mutations for the Dynamic (1+1)
EA. So we will expect to flip at least one bit in x from one
to zero in O(n) mutations on the (1+1) EA and O(n log n)
mutations on the Dynamic (1+1) EA. Also, x has at most
n bits of ones, so we will expect to find a clique in O

(
n2
)

mutations on the (1+1) EA and O
(
n2 log n

)
mutations on the

Dynamic (1+1) EA.

Step (b): Based on Lemma 11, the (1+1) EA and the
Dynamic (1+1) EA can skip out of a local optimal clique
and find a larger clique by O

(
n2t+1

)
and O

(
n2t+1 log n

)
mutations respectively. Also, a maximum clique of G will be
obtained before this skip is performed n times.

So the (1+1) EA and the Dynamic (1+1) EA is expected to
find a maximum clique of G in O

(
n2t+2

)
and O

(
n2t+2 log n

)
mutations (i.e. fitness evaluations) respectively.

Part 2. We prove the upper bounds of the (1+1) MA, the
(1+1) AMA RCLS and the (1+1) AMA RPLS. The proof is
similar to Part 1. We have stated that if the start string x does
not represent a clique, the RPLS and the RCLS are expected
to find a clique in O(n) and O

(
n2
)

steps respectively (in
Algorithm 8 and Algorithm 7). Also, from Lemma 11, the
upper bounds for the three memetic based algorithms to skip
out of a local optimal clique and find a larger clique is known.
Since each time this skip will increase the clique size by at
least one, a maximum clique of G will be obtained before this
skip is performed n times. So the upper bounds of the (1+1)
MA, the (1+1) AMA RCLS and the (1+1) AMA RPLS are
proved.

Corollary 14. For a graph G, let t :=
MAXBLOCKONES(G). We have

1) If t = Θ(1), the analyzed algorithms are expected to
find a maximum clique of G in a polynomial time.

2) If t = ω(1) and t = o(n), the analyzed algorithms
are expected to find a maximum clique of G in a
sub-exponential time.

3) If any analyzed algorithm has took an exponential
time to find a maximum clique on a graph G, this
algorithm must have been trapped into at least one
local optimal clique x with BLOCKONES(x) = Θ(n).

Theorem 13 and Corollary 14 show that

1) For all bipartite graphs and planar graphs, the an-
alyzed algorithms are expected to find a maximum
clique within a polynomial time. This is because the
maximum clique size is three for planar graphs, and
two for bipartite graphs.

2) For all sparse random graphs in the G(n, c/n) model
(e.g. edges between n nodes are connected with
probability c/n, where c > 0 is a constant [26]), the
analyzed algorithms are expected to find a maximum
clique within a polynomial time. Note a graph in this
model is built by inserting all possible edges indepen-
dently with probability c/n. Thus the expected vertex
degree is c(n − 1)/n which is Θ(1). Hence it falls
into the category of t = Θ(1) in Corollary 14.

IV. ABILITY TO AVOID STAGNATION

From Section III, we see that the ability of jumping out
of a local optimal clique x with a large BLOCKONES(x) is
very important because it is the most time consuming part and
dominates the time complexity of finding a maximum clique.
This section we will analyze this ability and show that for
any local optimal clique x with a very large BLOCKONES(x),
our proposed (1+1) AMA RPLS algorithm is expected to take
much less running time than the well-known (1+1) EA with
a mutation probability p = 1/n to jump out of x and find a
better clique. First we define some formulas that will be used
in this section.

Definition 15. To measure the probabilities of jumping
from a local optimal clique x to another clique y with
fMCP(y) ≥ fMCP(x). Let U1 := {i | xi = 1, yi = 0 and 1 ≤
i ≤ n}, and U2 := {i | xi = 0, yi = 1 and 1 ≤ i ≤ n}, then
we have (a) |U2| ≥ |U1|, and (b) |U1| ≥ BLOCKONES(x) if
|U2| > |U1| (due to Definition 10).

Hence to jump from x to y, we need to flip all bits in U1

from one to zero, and flip all bits in U2 from zero to one. Now
we define ProbEA(x→y), K

U
RPLS, Prob+

(x→y) and Prob−(x→y) as
below:

1) Let ProbEA(x→y) be the probability of the (1+1) EA
jumping from x to y using one mutation. Then we
have:

ProbEA(x→y) = p|U1|p|U2|(1− p)n−|U1|−|U2|.

2) For a set of bits U , let KU
RPLS be the probability that

the RPLS will first check all bits in U according to the

permutation array. So the permutation array will have
all bits in U prior to the other (n−|U |) bits. Then the
probability of getting this type of permutation array
is:

KU
RPLS =

|U |!(n− |U |)!
n!

≥ 1

(n− |U |+ 1)|U |

3) Let Prob+
(x→y) be the probability of the (1+1)

AMA RPLS jumping from x to y using one mutation
with restriction that

a) The mutation flips all bits in U1 from one to
zero, and keeps n−|U1|− |U2| bits not been
flipped. Note none of these n − |U1| − |U2|
bits is in U1 or U2. Thus the mutation reaches
a sub-clique of both x and y.

b) The local search RPLS first checks all bits in
U2 and flips them if they are not ones.

Then we have:

Prob+
(x→y) = p|U1|(1− p)n−|U1|−|U2|KU2

RPLS,

where KU2
RPLS is the probability that the RPLS will

first check all bits in U2 according to the permutation
array.

4) Let Prob−(x→y) be the probability of the (1+1)
AMA RPLS jumping from x to y using one mutation
with restriction that

a) The mutation flips all bits in U2 from zero to
one, and keeps n− |U1| − |U2| bits not been
flipped. Note none of these n − |U1| − |U2|
bits is in U1 or U2. Thus the mutation reaches
a bit string which does not represent a clique.

b) The local search RPLS first checks all bits in
U1 and flips them if they are not zeros, i.e.
the RPLS reaches y by the −LackEdges
part in the fitness function (see Definition 1).

Then we have:

Prob−(x→y) = p|U2|(1− p)n−|U1|−|U2|KU1
RPLS,

where KU1
RPLS is the probability that the RPLS will

first check all bits in U1 according to the permutation
array.

Theorem 16. Let x and y be two cliques with fMCP(y) ≥
fMCP(x). Let U1 := {i | xi = 1, yi = 0 and 1 ≤ i ≤ n}.
If |U1| = Θ(n), then the expected running time of the (1+1)
AMA RPLS directly jumping from x to y is exponentially faster
than the expected running time of the (1+1) EA with a mutation
probability p = 1/n directly jumping from x to y.

Note “directly jumping” denotes the algorithm only use one
mutation to reach the destination y. This is to distinguish with
the algorithm using multiple mutations where each mutation
jumps to another clique and finally reaches the destination y.

Proof. Let U2 := {i | xi = 0, yi = 1 and 1 ≤ i ≤ n}. Since
fMCP(y) ≥ fMCP(x) and |U1| = Θ(n), we have |U2| ≥ |U1| =
Θ(n).

Then the success probability of the (1+1) EA with p =
1/n to find y in one mutation is: ProbEAx→y = p|U1|p|U2|(1−
p)n−|U1|−|U2| = (1

n)|U1|+|U2|(1− 1
n)n−|U1|−|U2| = (1

n)Θ(n).

The success probability of the (1+1) AMA RPLS
with p = 1/2 to find y in one mutation is:
ProbAMA_RPLSx→y > p|U1|p|U2|(1 − p)n−|U1|−|U2| =

(1
2)|U1|+|U2|(1− 1

2)n−|U1|−|U2| = (1
2)n.

Thus the success probability of the (1+1) AMA RPLS with
p = 1/2 directly mutating from x to y is exponentially larger
than the success probability of the (1+1) EA with p = 1/n
directly mutating from x to y.

Recall that the (1+1) AMA RPLS has a dynamic mutation
approach and a local search, so it will have at least one
mutation with p = 1/2 in every log n mutations, and every
mutation is followed by O(n) steps of local search. But
an exponential large number divided by a polynomial large
number is still exponential. Thus the expected running time
of the (1+1) AMA RPLS directly jumping from x to y is
still exponentially faster than the expected running time of
the (1+1) EA directly jumping from x to y.

Lemma 17. In Definition 15, if |U1| = ω(1), then the
probabilities Prob+

(x→y) and Prob−(x→y) with mutation p =

Θ(|U1|/n) are super-polynomially larger than the same prob-
abilities with mutation p = 1/n respectively. I.e. both ratios

of p
|U1|
1 (1−p1)n−|U1|−|U2|K

U2
RPLS

p
|U1|
2 (1−p2)n−|U1|−|U2|K

U2
RPLS

and p
|U2|
1 (1−p1)n−|U1|−|U2|K

U1
RPLS

p
|U2|
2 (1−p2)n−|U1|−|U2|K

U1
RPLS

are super-polynomially large when p1 = Θ(|U1|/n) and
p2 = 1/n.

Proof. Let p1 = Θ(|U1|/n) and p2 = 1/n. Then for the
probability Prob+

(x→y), the ratio of p1 and p2 is:

p
|U1|
1 (1− p1)n−|U1|−|U2|

p
|U1|
2 (1− p2)n−|U1|−|U2|

=

(
p1

p2

)|U1|(1− p1

1− p2

)n−|U1|−|U2|

,

We have
(

1−p1
1−p2

)n−|U1|−|U2|
> (1 − p1)n−|U1|−|U2| > (1 −

p1)n and (1− p1)n = Θ(e−|U1|), since p1 = Θ(|U1|/n). And

because p1 = Θ(|U1|/n), p2 = 1/n, we have
(
p1
p2

)|U1|
=

(ω(1))
|U1|. Thus this ratio is dominated by

(
p1
p2

)|U1|
. Also,

because |U1| = ω(1), this ratio is super-polynomially large.

Because |U2| ≥ |U1|, the proof for the probability
Prob−(x→y) is the same as above.

For the following theorem, recall that “directly jumping”
denotes the algorithm only use one mutation to reach the
destination y.

Theorem 18. Let x and y be two cliques with fMCP(y) ≥
fMCP(x). Let U1 := {i | xi = 1, yi = 0 and 1 ≤ i ≤ n}.
If |U1| = ω(1) and |U1| = o(n), then the expected running
time of the (1+1) AMA RPLS directly jumping from x to y
is super-polynomially faster than the expected running time of
the (1+1) EA with a mutation probability p = 1/n directly
jumping from x to y.

Proof. Let U2 := {i | xi = 0, yi = 1 and 1 ≤ i ≤ n}.
Then we have |U2| ≥ |U1| = ω(1) since fMCP(y) ≥ fMCP(x)
and |U1| = ω(1). According to Definition 15, the ratio of
Prob+

(x→y) and ProbEA(x→y) is:

Prob+
(x→y)

ProbEA(x→y)

=
1

(n− |U2|+ 1)|U2|
1

p|U2|
> 1.

We have this ratio is greater than one when p = 1/n. Note
this is the probability ratio of the (1+1) AMA RPLS with
mutation probability p = 1/n and the (1+1) EA with mutation
probability p = 1/n.

In the (1+1) AMA RPLS, the dynamic mutation approach
obtains a mutation probability between |U1|/n and 2|U1|/n
in every log n mutations unless it finds a larger clique earlier.
And according to Lemma 17, since |U1| = ω(1), the ratio of
the Prob+

(x→y) with a mutation probability between |U1|/n
and 2|U1|/n and the Prob+

(x→y) with a mutation probability
p = 1/n is super-polynomially large.

So the probability of the (1+1) AMA RPLS directly
jumping from x to y is super-polynomially larger than the
probability of the (1+1) EA directly jumping from x to y.

Theorem 19. For a local optimal clique x with t :=
BLOCKONES (x), we have if t = Θ(n), the (1+1) AMA RPLS
is expected to skip out of x and find a larger clique super-
polynomially faster than the (1+1) EA with a mutation prob-
ability p = 1/n.

Proof. To prove the theorem, we just need to show that if
both algorithms are trapped into x, then for any clique y
such that y is the first clique the algorithms have found with
fMCP(y) > fMCP(x) (escape from x), the probability of the
(1+1) AMA RPLS jumping from x to y is super-polynomially
larger than the probability of the (1+1) EA with p = 1/n
jumping from x to y.

Moreover, since the (1+1) EA only accepts a new solution
if its fitness is greater or equal to the current solution, it
can only escape from clique x to clique y by two ways: (a)
directly mutating from x to y; or (b) mutating multiple times
to different cliques with the same clique size as x, and then
mutating to the clique y.

Proof of case (a), by directly mutating from x to y.
Let U1 := {i | xi = 1, yi = 0 and 1 ≤ i ≤ n}. Since
fMCP(y) > fMCP(x), we have |U1| ≥ t = Θ(n).

Because |U1| = Θ(n), from Theorem 16 we know the
probability ratio of the (1+1) AMA RPLS directly jumping
from x to y and the (1+1) EA directly jumping from x to y
is exponentially large.

Proof of case (b), by mutating multiple times to different
cliques with the same clique size as x, and then mutating to
the clique y.

Let Pathλ be an arbitrary (λ+1)-length path x0 → x1 →
x2 · · ·xλ → y, where x0 = x, λ ≥ 0 and each xi is a bit
string with fMCP(x) = fMCP(xi). We proof this part by proving
that the probability of the (1+1) AMA RPLS jumping along
this Pathλ to reach y is super-polynomially larger than the

probability of the (1+1) EA jumping along this Pathλ to reach
y when t = Θ(n). The proof contains four steps.

Step 1. For any jump from xi to xi+1 (0 ≤ i ≤ λ −
1) in Pathλ, let xij denote the j-th bit of the bit string xi,
and let Ui = {j | xij = 1, xi+1

j = 0 and 1 ≤ j ≤ n}. So
we will flip |Ui| number of bits from one to zero and flip
another |Ui| number of bits from zero to one. So according to
Definition 15, we know Prob−(xi→xi+1) = Prob+

(xi→xi+1) >

ProbEA(xi→xi+1). Thus we have:

ProbAMA_RPLS(xi→xi+1)

ProbEA(xi→xi+1)

>
Prob+

(xi→xi+1) + Prob−(xi→xi+1)

ProbEA(xi→xi+1)

=
2

(n− |Ui|+ 1)|Ui|
1

p|Ui|
> 2.

(1)

Furthermore, this ratio is exponentially large if |Ui| = Θ(n)
(in Theorem 16), or this ratio is super-polynomially large if
|Ui| = ω(1) and |Ui| = o(n) (in Theorem 18).

Step 2. Also according to Definition 15, for the last jump
from xλ to y, we have:

ProbAMA_RPLS
(xλ→y)

ProbEA(xλ→y)

>
Prob+

(xλ→y)

ProbEA(xλ→y)

> 1,

and this ratio is exponentially large if this jump needs to flip
Θ(n) bits (in Theorem 16), or this ratio is super-polynomially
large if the number of bits flipped is between ω(1) and o(n)
(in Theorem 18).

Step 3. Let ProbAMA_RPLSsuccess and ProbEAsuccess be the prob-
abilities of the (1+1) AMA RPLS and the (1+1) EA with
p = 1/n jumping along this itinerary to reach y, respectively.
We have:

ProbAMA_RPLSsuccess

ProbEAsuccess
=

λ−1∏
i=0

ProbAMA_RPLS(xi→xi+1)

ProbEA(xi→xi+1)

ProbAMA_RPLS
(xλ→y)

ProbEA(xλ→y)

.

Step 4. Recall that t = BLOCKONES(x), and fMCP(y) >
fMCP(x), thus to jump along this itinerary from x to y, we will
finally flip at least t bits from one to zero. And since t = Θ(n),
to achieve our final goal of finding y, we have three ways:

1) at least one jump (either belonging to Step 1 or Step
2) needs to flip Θ(t) bits, and the ratio of this jump is
exponentially large (Theorem 16), while the ratios of
other jumps are all greater than one, thus the overall
ratio in Step 3 is exponentially large; or

2) have at least ω(1) number of jumps, which are
belonging to Step 1, where each jump needs to flip
ω(1) bits. Since the ratio of each jump with flipping
ω(1) bits is super-polynomially large, thus the overall
ratio in Step 3 is super-polynomially large; or

3) have Ω(t) number of jumps, which are belonging to
Step 1, where each jump only needs to flip Θ(1) bits.
Since the ratio of these small jumps is greater than
two (in Step 1), the overall ratio in Step 3 is still
exponentially large.

V. EXPERIMENTAL RESULTS

In this section we will test our analyzed algorithms on
the Maximum Clique Problem. To avoid only comparing
algorithms that are analyzed in theory, we also bring a state-of-
art Spacing Memetic Algorithm (SMA) [18] into comparison.

In short, the SMA first keeps the minimum distance
between each two individuals above a threshold, and then
try to maximize the average distance among the population
individuals. Also, it uses an elitist selection approach based
on both distance and fitness. Thus, it follows the principle
“diversity without quality sacrifices”.

Table I reports maximum clique results on some DIMACS
instances [11]. Column 1 depicts the graph names with their
best known clique size in the parentheses. We test the (1+1)
EA [4] in column 2, the Dynamic (1+1) EA [10] in column 3,
the (1+1) MA [22] in column 4, our (1+1) AMA RCLS [2]
in column 5, our (1+1) AMA RPLS [2] in column 6 and the
SMA [18] in column 7. Each algorithm is run on each graph 10
times where each run is limited to one minute of running time
on a linux machine with 2.5GHz Intel CPU. The sub-column
“Best” is the best clique found in 10 runs, and the sub-column
“Avg” is the average clique size in 10 runs. The sub-column
“Gen” represents the average generations, i.e. average number
of iterations.

The “Best” entry is grey-colored if it finds the best known
clique of that graph. The “Avg” entry is grey-colored if it has
the best average result.

Note we restrict the running time to one minute because
it is enough for our proposed (1+1) AMA RPLS to find a
maximum clique in all 10 runs on those small order graphs
(such as brock200_2, C125.9, gen200_p0.9_55, etc.),
but not all tested algorithms can achieve this within one
minute. Meanwhile, even though no algorithm can find a
maximum clique on some large order graphs (C4000.5,
p_hat1500_3, etc.) in one minute, our proposed (1+1)
AMA RPLS still outperforms other tested algorithms in terms
of the “best” and “Avg” performance.

From Table I, we claim the following:

1) All tested algorithms have found a global optimum
in some small order graphs such as C125.9 and
keller4. This means that each algorithm found the
global optimum if it has enough time.

2) The (1+1) AMA RPLS outperforms the other five
algorithms in most graphs in terms of getting the best
“Avg” results. Meanwhile, the “Best” results of the
(1+1) AMA RPLS are greater or equal to the “Best”
results in other three algorithms. This denotes that the
(1+1) AMA RPLS has excellent stability.

3) Apart from the population-based SMA, each iteration
of the (1+1) EA uses the least running time while
each iteration of the (1+1) AMA RCLS uses the most
running time, i.e. the (1+1) EA has the largest value in
the “Gen” sub-column for each graph, while the (1+1)
AMA RCLS has the smallest value. This denotes that
the local search approaches, especially the RCLS, are
very time consuming.

4) The (1+1) AMA RPLS is the most efficient algo-
rithm that can quickly detect a clique. This can

TA
B

L
E

I.
A

C
O

M
PA

R
IS

O
N

O
F

T
H

E
A

L
G

O
R

IT
H

M
S

O
N

T
H

E
M

A
X

IM
U

M
C

L
IQ

U
E

P
R

O
B

L
E

M
F

O
R

O
N

E
M

IN
U

T
E

O
F

C
P

U
T

IM
E

(K
=
1
0
3,

M
=
1
0
6).

(1+1)
E

A
D

ynam
ic

(1+1)
E

A
(1+1)

M
A

(1+1)
A

M
A

R
C

L
S

(1+1)
A

M
A

R
PL

S
(1+1)

SM
A

M
etrics

B
est

A
vg

G
en

B
est

A
vg

G
en

B
est

A
vg

G
en

B
est

A
vg

G
en

B
est

A
vg

G
en

B
est

A
vg

G
en

b
r
o
c
k
2
0
0
_
2

(=12)
11

9.8
15.1m

10
9.5

5.4m
11

10.1
170.0k

11
10.9

1.6k
12

12
59.8k

12
11

2.1k
b
r
o
c
k
2
0
0
_
4

(=17)
16

14.6
14.5m

15
14

5.5m
16

14.9
139.5k

16
15.8

1.7k
17

16.8
57.3k

16
16

2.2k
b
r
o
c
k
4
0
0
_
2

(=29)
23

22.3
7.6m

22
20.6

2.2m
24

22.9
37.8k

24
22.7

170.0
25

24
11.7k

23
21.9

21.7
b
r
o
c
k
4
0
0
_
4

(=33)
22

21.2
7.7m

22
19.5

2.2m
24

22.4
38.3k

24
22.7

169.7
24

23.3
11.9k

22
20.9

6.2
b
r
o
c
k
8
0
0
_
2

(=24)
18

16.5
4.2m

17
15.1

830.4k
18

16.6
3.4k

17
15.4

11.1
19

18.6
2.3k

16
15

1.0
b
r
o
c
k
8
0
0
_
4

(=26)
15

14.1
4.3m

14
12.4

1.3m
16

15.1
8.5k

16
13.8

16.1
16

16
3.9k

15
13.5

1.5
C
1
2
5
.
9

(≥
34)

34
33.5

16.2m
34

33.8
10.8m

34
33.5

143.5k
34

34
13.1k

34
34

115.3k
34

34
3.4k

C
2
5
0
.
9

(≥
44)

44
41.9

9.5m
42

41.2
5.1m

44
42.2

45.5k
44

42.5
1.3k

44
43.4

30.9k
44

42.5
622.2

C
5
0
0
.
9

(≥
57)

48
44.8

5.6m
45

41.1
2.5m

49
46.4

15.5k
46

45.1
141.4

49
47.9

9.3k
47

45.4
70.3

C
1
0
0
0
.
9

(≥
68)

52
50.2

3.1m
49

45.4
919.7k

53
50.4

890.8
52

49.2
17.6

59
56.2

1.8k
50

46.4
1.1

C
2
0
0
0
.
5

(≥
16)

10
9.5

1.8m
10

9.1
384.7k

fail
fail

0
fail

fail
0

13
11.5

487.5
fail

fail
0

C
2
0
0
0
.
9

(≥
77)

46
41.3

1.7m
42

39
423.6k

fail
fail

0
fail

fail
0

52
49.5

492.8
fail

fail
0

C
4
0
0
0
.
5

(≥
18)

12
9.8

710.1k
fail

fail
70.7k

fail
fail

0
fail

fail
0

13
11.7

81.7
fail

fail
0

D
S
J
C
5
0
0
.
5

(≥
13)

12
11.3

6.6m
12

10.1
1.5m

12
11.3

31.9k
11

10.9
59.9

13
12.5

6.7k
12

10.8
2.0

D
S
J
C
1
0
0
0
.
5

(≥
15)

12
11.3

3.4m
11

10.3
492.3k

fail
fail

0
fail

fail
0

13
13

1.1
fail

fail
0

g
e
n
2
0
0
_
p
0
.
9
_
4
4

(=44)
44

40
11.1m

44
39

6.3m
44

39.9
64.8k

44
40.7

2.6k
44

39.9
47.1k

44
39.4

1.1k
g
e
n
2
0
0
_
p
0
.
9
_
5
5

(=55)
55

46.2
10.5m

55
44.1

6.2m
55

44.7
58.2k

55
55

2.3k
55

55
36.9k

55
50

879.1
g
e
n
4
0
0
_
p
0
.
9
_
5
5

(=55)
49

47.6
6.5m

47
44.5

2.7m
51

49.1
20.6k

50
48.4

270.8
52

50.2
11.5k

49
47.9

180.0
g
e
n
4
0
0
_
p
0
.
9
_
6
5

(=65)
48

46.3
6.6m

45
43.7

2.7m
55

48.7
21.1k

49
46

253.7
55

49.3
12.0k

49
46.4

184.7
g
e
n
4
0
0
_
p
0
.
9
_
7
5

(=75)
55

49.7
6.4m

56
48.8

2.7m
75

65.3
16.1k

75
64.8

287.0
75

65.7
9.9k

75
55.3

161.9
h
a
m
m
i
n
g
8
-
4

(=16)
16

13.2
11.6m

16
13.2

4.4m
16

16
90.7k

16
16

850.8
16

16
38.3k

16
16

885
h
a
m
m
i
n
g
1
0
-
4

(=40)
35

33.5
3.2m

30
27.7

720.7k
32

8
fails

20
32

9
fails

2
40

36.3
1.5k

fail
fail

0
k
e
l
l
e
r
4

(=11)
11

10.8
17.0m

11
10.3

7.0m
11

11
209.1k

11
11

3.2k
11

11
94.0k

11
11

4.0k
k
e
l
l
e
r
5

(=27)
18

17.0
4.4m

18
16.2

1.4m
19

17.8
10.0k

17
16.8

24.1
19

18.9
4.0k

17
16.0

1.2
k
e
l
l
e
r
6

(≥
59)

26
22.1

933.9k
fail

fail
1.3m

fail
fail

0
fail

fail
0

28
26.4

120.7
fail

fail
0

M
A
N
N
_
a
2
7

(=126)
124

122.4
3.5m

123
120.6

2.7m
125

124.3
6.8k

124
122.8

354.1
126

125.3
5.7k

125
121.9

680.3
M
A
N
N
_
a
4
5

(=345)
331

330.5
673.1k

331
330.1

502k
331

330.4
196.6

332
330.6

10.5
342

339
142.8

331
330.4

1.5
M
A
N
N
_
a
8
1

(≥
1100)

364
360.7

403.3k
fail

fail
135.1k

fail
fail

0
fail

fail
0

365
364.6

65.4
fail

fail
0

p
_
h
a
t
3
0
0
-
1

(=8)
8

7.2
10.6m

8
6.8

3.2m
8

7.6
97.3k

8
8

336.8
8

8
25.0k

8
7.8

468.0
p
_
h
a
t
3
0
0
-
2

(=25)
25

24.1
9.5m

25
23.9

2.6m
25

24.6
54.7k

25
25

320.8
25

25
18.1k

25
24.9

373.6
p
_
h
a
t
3
0
0
-
3

(=36)
36

34.5
8.8m

34
32.1

2.9m
36

35.3
41.7k

36
35.4

413.2
36

35.5
18.0k

36
35.4

409.3
p
_
h
a
t
7
0
0
-
1

(=11)
8

7.7
4.9m

8
7.1

951.2k
9

8.5
12.3k

9
8.3

14.6
11

9.8
3.0k

11
8.3

1.5
p
_
h
a
t
7
0
0
-
2

(≥
44)

37
35.0

4.5m
30

26
951.0k

38
37.1

6.9k
37

34.8
22.5

38
37.7

2.8k
35

31.9
1.5

p
_
h
a
t
7
0
0
-
3

(≥
62)

43
41.0

4.4m
40

33.8
1.4m

43
42.3

8.2k
42

40.8
37.4

43
42.9

4.3k
42

37.4
1.6

p
_
h
a
t
1
5
0
0
-
1

(≥
12)

9
8.0

2.3m
8

6.9
376.4k

fail
fail

0
fail

fail
0

11
9.4

581.8
fail

fail
0

p
_
h
a
t
1
5
0
0
-
2

(≥
65)

52
46.2

2.1m
54

44.4
213.9k

fail
fail

0
fail

fail
0

65
62.2

323.8
fail

fail
0

p
_
h
a
t
1
5
0
0
-
3

(≥
94)

73
67.8

2.0m
63

57.7
269.3k

fail
fail

0
fail

fail
0

88
85.3

390.8
fail

fail
0

be observed from some large order graphs such as
C4000.5. We claim this is important because there
are many real-world problems that do not require
the global optimal solutions, but they have strict
requirements on the running time.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we studied several variants of EAs on the
Maximum Clique Problem. We proposed a new metric of
analyzing the expected running time to escape a local optimal
solution. And showed how this metric dominates the expected
running time of finding a maximum clique. We also showed,
with high probablity, this metric indicates the algorithm will
stop with a maximum clique. Then, based on this metric,
we showed our analyzed algorithms are expected to find a
maximum clique on planar graphs, bipartite graphs and sparse
random graphs in polynomial time in the number of vertices.
Finally, we showed if an algorithm takes an exponential time
to find a maximum clique of a graph, it must have been trapped
into at least one local optimal which is extremely hard to
escape. Furthermore, we showed that our previous proposed
(1+1) Adaptive Memetic Algorithm (AMA) with a random
permutation local search is expected to escape these (hard to
escape) local optimal cliques drastically faster than the well-
known basic (1+1) EA. The success of our experimental results
not only verified our theoretical analysis, but also showed that
our proposed (1+1) AMA outperforms a state-of-art applied
Spacing Memetic Algorithm (SMA) [18]. This indicates the
benefit of the adaptive strategy combined with the random
permutation local search.

A next step to investigate in the future is to compare the
random permutation local search with other local searches on
the clique problems with different fitness functions. Also, we
would like to try our proposed complexity metric and new
local search techniques on other optimization problems.

ACKNOWLEDGEMENTS

We wish to thank Ralph Versteegen for helpful discussions
that improved the content of this paper.

REFERENCES

[1] E. K. Burke and D. J. L. Silva, “The design of memetic algorithms
for scheduling and timetabling problems,” in Recent Advances in
Memetic Algorithms, Studies in Fuzziness and Soft Computing, W. H.
N. Krasnogor and J. Smith, Eds., 2004, vol. 166, pp. 289–312.

[2] M. J. Dinneen and K. Wei, “On the analysis of a (1+1) adjusting
memetic algorithm,” in Proceedings of Memetic Computing, MC2013.
IEEE, 2013, pp. 24–31.

[3] S. Droste, T. Jansen, and I. Wegener, “On the optimization of unimodal
functions with the (1+1) evolutionary algorithm,” in Proceedings of the
5th International Conference on Parallel Problem Solving from Nature.
Springer-Verlag, London, UK, 1998, pp. 13–22.

[4] ——, “On the analysis of the (1+1) evolutionary algorithm,” Theoretical
Computer Science, vol. 276, pp. 51–81, 2002.

[5] G. Durrett, F. Neumann, and U. M. O’Reilly, “Computational complex-
ity analysis of simple genetic programming on two problems modeling
isolated program semantics,” in Proceedings of the 11th workshop
proceedings on Foundations of genetic algorithms. ACM, New York,
NY, USA, 2011, pp. 69–80.

[6] O. Giel and I. Wegener, “Evolutionary algorithms and the maximum
matching problem,” in STACS’03: Proceedings of the 20th Annual
Symposium on Theoretical Aspects of Computer Science. Springer-
Verlag, London, UK, 2003, pp. 415–426.

[7] T. Jansen, K. A. D. Jong, and I. Wegner, “On the choice of the offspring
population size in evolutionary algorithms,” Evol, Comput., vol. 13,
no. 4, pp. 413–440, 2005.

[8] T. Jansen and I. Wegener, “Evolutionary algorithms: How to cope with
plateaus of constant fitness and when to reject strings of the same
fitness,” IEEE Transactions on Evolutionary Computation, vol. 5, no. 6,
pp. 589–599, 2001.

[9] ——, “On the analysis of evolutionary algorithms—a proof that
crossover really can help,” Algorithmica, vol. 34, no. 1, pp. 47–66,
2002.

[10] ——, “On the analysis of a dynamic evolutionary algorithm,” Journal
of Discrete Algorithms, vol. 4, no. 1, pp. 181–199, 2006.

[11] D. Johnson and M. Trick, “Cliques, coloring and satisfiability second
DIMACS implementation challenge, volume 26 of DIMACS series in
Discrete Mathematics and Theoretical Computer Science,” 1996.

[12] T. Kotzing, D. Sudholt, and M. Theile, “How crossover helps in pseudo-
boolean optimization,” in Proceedings of the 13th annual conference on
Genetic and evolutionary computation (GECCO ’11), N. Krasnogor, Ed.
ACM, New York, NY, USA, 2011, pp. 989–996.

[13] F. Neri, C. Cotta, and P. Moscato, Handbook of Memetic Algorithms.
Studies in Computational Intelligence, 2011, vol. 379.

[14] F. Neumann and I. Wegener, “Randomized local search, evolutionary
algorithms and the minimum spanning tree problem,” in Proceedings
of the annual conference on Genetic and evolutionary computation
(GECCO’04), 2004, pp. 713–724, lNCS 3102. Springer.

[15] P. S. Oliveto, J. He, and X. Yao, “Evolutionary algorithms and the
vertex cover problem,” in Proc. CEC, Singapore. IEEE, 2007, pp.
1870–1877.

[16] ——, “Time complexity of evolutionary algorithms for combinatorial
optimization: A decade of results,” Int’l Journal of Automation and
Computing, vol. 4, no. 3, pp. 281–293, 2007.

[17] ——, “Analysis of population-based evolutionary algorithms for the
vertex cover problem,” in Proc. CEC, Hong Kong, China. IEEE, 2008,
pp. 1563–1570.

[18] D. C. Porumbel, J. K. Hao, and P. Kuntz, “Spacing memetic algo-
rithms,” in Proceedings of the 13th annual conference on Genetic and
evolutionary computation (GECCO ’11), ACM, New York, NY, USA,
N. Krasnogor, Ed., 2011, pp. 1061–1068.

[19] C. Qian, Y. Yu, and Z. H. Zhou, “An analysis on recombination in
multi-objective evolutionary optimization,” in Proceedings of the 13th
annual conference on Genetic and evolutionary computation (GECCO
’11), N. Krasnogor, Ed. ACM, New York, NY, USA, 2011, pp. 2051–
2058.

[20] G. Rudolph, “Finite markov chain results in evolutionary computation:
A tour d’horizon,” Fundamenta Informaticae, vol. 35, no. 1–4, pp. 67–
89, 1998.

[21] T. Storch, “How randomized search heuristics find maximum clique in
planar graphs,” in Proceedings of the 8th annual conference on Genetic
and evolutionary computation (GECCO ’06). ACM, New York, NY,
USA, 2006, pp. 567–574.

[22] D. Sudholt, “On the analysis of the (1+1) memetic algorithm,” in
Proceedings of the 8th annual conference on Genetic and evolutionary
computation., 2006, pp. 493–500.

[23] D. Sudholt and C. Zarges, “Analysis of an iterated local search al-
gorithm for vertex coloring,” in Proceedings of the 21st International
Symposium on Algorithms and Computation (ISAAC), ser. LNCS, vol.
6506. Springer, 2010, pp. 340–352.

[24] C. Witt, “Worst-case and average-case aximations by simple randomized
search heuristic,” in Proc. of the 22nd Annual Symposium on Theoret-
ical Aspects of Computer Science (STACS’05), ser. LNCS, vol. 3804.
Springer, 2005, pp. 44–56.

[25] ——, “Runtime analysis of the (µ+1) ea on simple pseudo-boolean
functions,” in Proceedings of the 8th Annual Conference on Genetic
and Evolutionary Computation, Seattle, Washington, USA, 2006, pp.
651–658.

[26] ——, “Analysis of an iterated local search algorithm for vertex cover in
sparse random graphs,” Theoretical Computer Science, vol. 425, no. 1,
pp. 417–425, 2012.

