

RESEARCHSPACE@AUCKLAND

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

Biological Studies on Turnip Yellow Mosaic Virus in Brassica pekinensis

Lena Fraser

Department of Cell Biology
University of Auckland

December 1982

Thesis submitted to the University of Auckland for the

Degree of Doctor of Philosophy

Table of Contents

		Page
Acknowledgen	nents	
Abbreviation	ns	
Summary		
Chapter 1	Introduction	1
1.1	TYMV	2
1.1.1	The Virus Particle	2
1.1.2	Cytological Changes in the Host Cell	3
1.1.3	Replication	4
1.2	Plant Growth after Viral Infection	6
1.2.1	Mosaic Patterns Induced by Virus Infection	7
1.2.2	Metabolic Changes in Infected Cells	7
1.2.2.1	Early Metabolic Changes after Infection	8
1.2.2.2	Virus Induced Changes in Plant Hormones	9
1.3	General General	11
Chapter 2	Materials and Methods	13
2.1	<u>Materials</u>	13
2.1.1	Sources of Important Chemicals and Enzymes	13
2.1.2	Plants	14
2.1.3	Viruses	14
2.1.3.1	TYMV	14
2.1.3.2	Turnip Mosaic Virus	14
2.1.3.3	Cauliflower Mosaic Virus	14
2.1.3.4	Tobacco Mosaic Virus	15

	2.2	Methods	
	2.2.1	Isolation of TYMV	15
	2.2.2	Fractionation of TYMV on CsCl Density Gradients	16
	2.2.3	Preparation of TYMV-RNA	16
	2.2.4	Preparation of Enzymes	17
	2.2.5	Protoplast Isolation	17
	2.2.6	Seedlings for Leaf Initiation Experiments	17
	2.2.7	Measurement of Rate of Leaf Initiation	18
	2.2.8	Reproducibility of Results	18
	2.2.9	ABA Radioactivity Measurements	19
	2.2.10	Fixation and Embedding of Plant Tissue for	
		Microscopy	19
	2.2.11	Sectioning and Staining for Electron Microscopy	20
	2.2.12	Photography	20
	2.2.13	Mitotic Index	21
	2.2.14	Feulgen Staining Procedure	21
	2.2.14.1	Feulgen Stain	21
	2.2.14.2	Squash Method of Staining	21
Chapt	ter 3	A Reassessment of the Specific Infectivity of TYMV	22
	3.1	Introduction	22
	3.2	Experimental	24
	3.2.1	The Virus Preparation used as Inoculum	24
	3.2.2	Application of Inoculum	24
	3.2.3	Efficiency of Mechanical Inoculation with Small	
		Volumes of Inoculum	25
	3.2.4	Assay of the Virus in a Single Infected Cell	25
	3.2.5	Infection Achieved with the Viral Content of a	
		Single Infected Cell	28

	3.3	Discussion	30		
Chap	ter 4	The Suppression of Leaf Initiation by TYMV	34		
,	4.1	Introduction	34		
	4.2	Experimental	35		
	4.2.1	Rate of Leaf Initiation following Inoculation			
		with TYMV	35		
	4.2.2	Effects of Season and Plant Age	35		
	4.2.3	Does the Inhibition of Leaf Initiation Reflect			
		Virus-Induced Nutritional Disturbances?	36		
	4.2.4	Effects of Inoculum Concentration and Leaf			
		Area Inoculated	36		
	4.3	Discussion	37		
Chapter 5		Requirements in the Inoculum for the Suppression			
		of Leaf Initiation	41		
	5.1	Introduction	41		
	5.2	Experimental	42		
	5.2.1	Activity of Nucleoprotein and Protein Particles	43		
	5.2.2	Comparison Between Infectious and Non-Infectious			
		Nucleoprotein Particles	43		
	5.2.3	Effect of Infectious RNA and Non-Infectious RNA			
		on Leaf Initiation	43		
	5.2.4	An Infectious RNA in a Non-Host Species	44		
	5.2.5	Activity of other Viruses	44		
	5.2.6	Another Virus-Host Combination	45		
	5.3	Discussion	45		

Chapter	r 6	Movement of Material from the Inoculated Leaf -		
		Indirect and Direct Evidence	47	
6.	. 1	Introduction	47	
6.2 6.2.1	.2	Experimental	48	
	.2.1	Indirect Evidence	48	
6.	2.1.1	Timing of Movement of Some Signal from the		
		Inoculated Leaf	48	
6.	2.1.2	Time at which Infectious Virus or RNA Moves		
		out of the Inoculated Cotyledon	49	
6.	2.1.3	Response to a Second Inoculation when the		
		Primary Site of Infection Remained on the Plant	49	
6.	2.1.4	Response to a Second Inoculation when the		
		Primary Site of Infection was Removed	50	
6.	2.2	Direct Evidence	50	
6.	2.2.1	Detection of an Active Substance Diffusing from		
		the Cut Petioles of Inoculated Leaves	50	
6.	2.2.2	Effect of Dilution on the Activity of the Eluate	51	
6.2	2.2.3	Effect of Heating the Eluate Obtained from		
		Inoculated Leaves	51	
6.	3	Discussion	52	
Chapter 7	7	Cytological Changes in the Apical Dome Associated		
		with the Suppression of Leaf Initiation	55	
7.	1	Introduction	55	
7.	2	Experimental	56	
7.	2.1	The Mitotic Index	56	
7.	2.2	Changes in the Mitotic Index in the Apical		
\mathcal{H}°		Meristem following Inoculation with TYMV	56	

7.2.3	Effect of Inoculation with TYMV on the Mitotic	
	Cycle in the Apical Meristem	57
7.2.4	Examination of Apical Dome Tissue by Electron	
	Microscopy for Possible Cytological Changes	57
7.3	Discussion	58
7.3.1	The Mitotic Cycle	58
7.3.2	Cytological Changes in the Apical Meristem	61
Chapter 8	Abscisic Acid as a Candidate Hormone	64
8.1	Introduction	64
8.2	Experimental	65
8.2.1	Effect of ABA Treatment on Rate of Leaf Initiation	65
8.2.2	Effect of Concentration of ABA on Reduction in	
	Rate of Leaf Initiation	66
8.2.3	Effect of ABA Treatment on the Mitotic Index in	
	the Apical Meristem	66
8.2.4	ABA Translocation from the Cotyledon Leaf	66
8.3	Discussion	67
Chapter 9	Further Experiments on the Relationship Between	
	Plant Growth Hormones and Virus-Induced Inhibition	
	of Leaf Initiation	70
9.1	A Search for ABA in Leaf Eluates	70
9.1.1	Introduction	70
9.1.2	Experimental	70
9.1.2.1	A Search for ABA using a Physicochemical Assay-	
	Gas Chromatography-Mass Spectrometry of the	
	Eluate from Virus- and Buffer-Inoculated Leaves	70

9.1	1.2.2	Treatment of the Eluate with β -glucosidase	
		before GC-MS	71
9.1	.2.3	A Search for ABA using a Stomatal Closure Assay	72
9.1	.2.4	Treatment of the Eluate with $\beta\text{-glucosidase}$ Before	
		Stomatal Closure Assay	73
9.2	2	Possible Involvement of Another Hormone	74
9.2	.1	Introduction	74
9.2	2	Experimental	74
9.2	.2.1	Effect of Gibberellic Acid when Applied with Eluate	
		from Virus-Inoculated Leaves	74
9.2	.2.2	Examination of Eluates for Gibberellic Acid by	
		GC-MS	75
9.3		Discussion	75
Chapter	10	General Discussion and Summary	78
10.	1	Inhibition of Leaf Initiation after Virus Infection	78
10.	2	Requirements in the Inoculum	78
10.	3	Host and Virus Specificity of the Response	79
10.	4	Events at Early Times after Inoculation	79
10.	5	Number of Cells Involved in Initiating the Response	80
10.	6	Effect of Varying Virus Concentration	81
10.	7	Evidence for Movement of an Inhibitory Substance	82
10.8	8	Immunity to a Second Inoculation	82
10.	9	Recovery from Inhibition of Rate of Leaf Initiation	82
10.	10	Mitotic Activity in the Apical Meristem	83
10.	11	Cytological Changes in the Apical Meristem	84
10.	12	Evidence for the Involvement of ABA in the	
		Inhibition of Leaf Initiation	85

F

10	.13	Physicochemical and Biological Assays for ABA	86
10	.14	Possible Factors in the Control of Growth	86
10	.15	Conclusions	87
Reference	ces		89
Appendia	x I	Publications	

Acknowledgements

It has been a privilege to study under the direction of Professor R.E.F. Matthews to whom I am very grateful for excellent and generous supervision.

I wish to thank Professor S. Bullivant for his guidance during the electron microscopy undertaken for this thesis.

I owe much to Mrs Jeannette Keeling. I value her friendship, and offer my special thanks for her advice and help in the laboratory.

I thank Mr Nga Tama for cultivating and providing the plant material used.

I thank Dr H. Young, D.S.I.R., Mt Albert, for carrying out the Gas Chromatography-Mass Spectrometry.

My love and gratitude to my husband Alex, my daughter Joanne, and son Paul, whose support and encouragement made my years of study possible and enjoyable.

Abbreviations

ABA - Abscisic acid

[3H]ABA - tritiated abscisic acid

Me-ABA - methylated abscisic acid

ATPase - Adenosine triphosphatase

CaMV - Cauliflower mosaic virus

CMV - Cucumber mosaic virus

cts/min - counts per minute

cv - cultivar

DNA - deoxyribonucleic acid

GC-MS - Gas chromatography-Mass spectrometry

ID-50 - dose infecting 50% of individuals

m/z - mass/charge ratio

revs/min- revolutions per minute

RNA - ribonucleic acid

SDS - sodium dodecyl sulphate

SSC - standard saline citrate (0.15 M NaCl, 0.015 M Na citrate)

T component - top component (empty protein shells)

TMV - Tobacco mosaic virus

TuMV - Turnip mosaic virus

TYMV - Turnip yellow mosaic virus

Summary

- 1. When purified turnip yellow mosaic virus was inoculated mechanically on to Chinese cabbage leaves, using known numbers of virus particles in 0.1 to 1.0 μ l volumes of inoculum, as few as 10 to 30 particles were required to produce a single local lesion.
- Inoculation of a cotyledon leaf of Chinese cabbage seedlings with turnip yellow mosaic virus produced a rapid transient inhibition in the rate of leaf initiation, so that infected plants developed 0.5 to 1.0 leaf less than healthy plants.
- 3. The factor that initiated the inhibitory response at the apical meristem began moving out of the inoculated cotyledon within 1 to 6 hours after inoculation, thus preceding the movement out of the inoculated cotyledon of infectious virus or RNA which was not detectable until about day 5.
- 4. The transient inhibition of leaf initiation occurred following inoculation with any one of three unrelated viruses, or with infectious turnip yellow mosaic virus RNA.
- A factor eluted in an active form from the cut petioles of inoculated leaves.
- It is necessary to inoculate with infectious virus or RNA to initiate the production of the inhibitory factor.

- 7. No differences were seen in the magnitude or timing of the reduced rate of leaf initiation, when the concentration of turnip yellow mosaic virus in the inoculum was varied between 1 μ g/ml and 100 μ g/ml.
- 8. Inoculation of the cotyledons of Chinese cabbage seedlings with turnip yellow mosaic virus caused a marked disturbance in the mitotic index at the apical meristem between 6 and 48 hours.
- 9. A reduction in the accumulation of starch in the chloroplasts of cells in the apical meristem occurred at 6 to 24 hours after inoculation of the cotyledon leaf.
- 10. Abscisic acid applied to the cotyledon in a single 20 µl dose, elicited a response that closely paralleled the events that took place when Chinese cabbage seedlings were inoculated with turnip yellow mosaic virus. A decrease in the rate of leaf initiation began 1 to 2 days after application and the inhibition of leaf initiation was preceded by a disturbance in the mitotic index in the apical meristem.
- 11. Gibberellic acid applied with the eluate from virus-inoculated leaves, was able to overcome the inhibition of leaf initiation.
- 12. The leaf inhibition assay in Chinese cabbage seedlings is a sensitive bioassay for abscisic acid. The minimum detectable concentration of 3 x 10^{-9} M is comparable to those reported for the <u>Commelina</u> stomatal closure bioassay which could detect 10^{-10} M abscisic acid (Ogunkanmi et al. 1973).