
CDMTCS
Research
Report
Series

LECQTER:
Learning Conjunctive SQL
Queries Through Exemplars

Stefan Böttcher
University of Paderborn
Paderborn, Germany

Sebastian Link
University of Auckland,
Auckland, New Zealand

Lin Zhang
University of Auckland,
Auckland, New Zealand

CDMTCS-453
February 2014

Centre for Discrete Mathematics and
Theoretical Computer Science

LECQTER: Learning Conjunctive SQL
Queries Through Exemplars

Stefan Böttcher
University of Paderborn, Germany

stb@uni-paderborn.de

Sebastian Link
The University of Auckland, Private Bag 92019, New Zealand

s.link@auckland.ac.nz

Lin Zhang

The University of Auckland, Private Bag 92019, New Zealand
l.zhang@auckland.ac.nz

February 12, 2014

Abstract

We present Lecqter, a system for learning how to write sound conjunctive SQL
queries by example. The key novelty of Lecqter is its ability to construct for every
given conjunctive query Q without self-joins over every given database schema,
a database dbQ such that for every query Q′ in a large fragment of conjunctive
queries, Q and Q′ produce matching answers on every database if and only if Q
and Q′ produce matching answers on dbQ. Since it is known that such construction
is impossible to achieve under set semantics, the key novelty relies on the use
of SQL’s bag semantics. Lecqter shows the answer to both the user query Q′

and the target query Q, such that users receive immediate feedback that either
their query is correct - and not just their query answer - or where their query
answer deviates from that of the target query. Lecqter can therefore automate
feedback and assessment in its primary application area of Massive Open Online
Courses. Everyone who requires basic SQL skills to match the demands of our
data-centric society can use Lecqter to confidently learn how to write sound
conjunctive queries under the semantics of the industry standard.

Keywords: Armstrong database, Bag Semantics, Complexity, Conjunctive Query, Ex-
ample Database, Learning, Set Semantics, SQL, Performance

1

1 Introduction

Data has evolved into becoming the number one asset for many organizations. The ability
to write sound SQL queries is no longer a craft reserved for specialists, but a necessary
core skill that businesses seek from more and more of their employees. Similarly, an
increasing number of people working in education, engineering, entertainment, finance,
government, health, science and so on must be able to query data to help achieve their
objectives. The reliable relational technology that has been readily accessible through
the industry standard SQL for more than three decades now is predicted to also dominate
the market over the next years: According to a forecast by Gartner, the NoSQL market is
estimated to be worth 3.5 billion US dollars and the SQL market is estimated to reach 40
billion US dollars annually by 2018 [5]. As Sean Doherty, Vice President at EnterpriseDB,
puts it: “Relational databases may not be hot or sexy but for your important data, there
is no substitute” [5].

The are many forms in which basic SQL skills can be acquired: certified training
courses, self- and peer-learning, or in a so-called Massive Open Online Course (MOOC),
for examples. Independently of the learning environment, the quality, timing and form
of feedback is critical to effective learning. Intuitively, the larger the number of trainees
the more feedback relies on self- or peer-review. This form of feedback, however, is of
low quality and its use for assessment is therefore difficult to justify. Automation is seen
as the savior of high quality feedback and assessment, in particular in MOOCs [12].

There are strong economic reasons to pursue research in automating feedback and
assessment now. As Moshe Vardi wrote “From the point of view of Silicon Valley, higher
education is a particularly fat target right now. MOOCs may be the battering ram of
this attack” [22].According to the National Venture Capital Association, investment in
education technology companies increased from less than $100 million in 2007 to nearly
$400 million last year [1].

Automated feedback and assessment must overcome several obstacles, in particular
for learning how to write sound SQL queries. However, the benefits of pushing the
boundaries further provide great motivation. Part of its strength as a query language
is derived from providing users with different ways of declaring their target in SQL
syntax. The trade-off for trainers is therefore the need to verify the soundness of many
different sound queries and to provide different feedback to different incorrect queries.
The savings in resources obtained from higher levels of automation thus provide strong
economic incentives, in particular for MOOCs [12]. Currently, however, most systems
simply verify whether the answer to a user query is the same as that of the target query
on a given database. Obviously, if the answers deviate from one another, the user query
is incorrect. Unfortunately, if the answers are the same, neither trainers nor trainees
can usually conclude that the user query is semantically correct, in the sense that it
is equivalent to the target query, that is, returns matching answers on every database.
It follows that the current level of feedback, provided by SQL tutoring systems, is of
poor quality. Ideally, the database, on which the user queries are evaluated, could be
chosen such that users would indeed be able to conclude that their query is semantically
correct whenever it returns answers that match those of the target query. In fact, such
a database would be an ideal model of the target query. For this reason, we call such

2

a database an exemplar. The idea of exemplars faces several challenges that seem to
inhibit their practical use to provide high quality assessment and feedback for learning
how to write sound SQL queries. Firstly, neither can real-world data be expected to
form exemplars - as illustrated later - nor is the complexity of recognizing exemplars
known. Secondly, Mannila and Räihä have given an example of a simple conjunctive
target query Q without self-joins and two conjunctive user queries Q1 and Q2, neither
of them equivalent to Q, for which no exemplar exists [17]. That is, no matter which
database is chosen, Q1 returns the same answer as Q or Q2 returns the same answer
as Q. Interestingly, Mannila and Räihä have assumed set semantics where duplicate
tuples are always removed from the results. The default of the industry standard SQL,
however, is the use of bag semantics, where duplicates are preserved. The main drivers
for this default semantics are the significance of duplicates for aggregate queries, and the
cost of duplicate removal. It is the key observation of this research that the use of bag
semantics guarantees the existence of exemplars for conjunctive queries without self-joins.
Our contributions, as outlined now, establish exemplars as a useful tool to provide high-
quality feedback and assessment for learning how to write semantically sound conjunctive
SQL queries.

• We revive the idea of exemplars as a core concept to automate feedback and as-
sessment for learning how to write sound SQL queries. We believe that exemplars
provide further practical motivation to study deep questions in core database re-
search, and to establish links to database education, which is a big target area of
the software industry.

• Mannila and Räihä investigated the existence of exemplars for conjunctive queries
Q without self-joins. More specifically, they focused on the language L(Q) that
consists of all conjunctive queries that use the same SELECT and FROM clause as
those of Q, respectively, and where every constant that appears in the WHERE clause
of Q′ is also a constant in the WHERE clause of Q. Indeed, they investigated the
existence of an L(Q)-exemplar dbQ in the sense that for each query Q′ ∈ L(Q),
the answer to Q′ when evaluated on dbQ is different from the answer to Q when
evaluated on dbQ. It was shown that, under set semantics, there are conjunctive
queries Q without self-joins and Q1, Q2 ∈ L(Q) for which no L(Q)-exemplars exist
[17]. As our main result we show, under bag semantics, how to construct an L(Q)-
exemplar for every conjunctive query without self-joins.

• We have fully implemented our construction in form of a graphical user interface
(GUI), called Lecqter. In a showcase we illustrate the primary use of Lecqter
as an automated tutoring system. Trainers can enter SQL table definitions, followed
by a target query in the GUI. Lecqter then generates an exemplar over the table
definition within a MySQL database. Trainees can then enter their queries in
the GUI, which connects to the MySQL database to fetch the query answer and
present it in comparison to the target answer. As the distinguishing key feature of
Lecqter, its users recognize the semantic soundness of their queries whenever the
query answers on the exemplar match those shown for the target query. Otherwise,
the difference in the query answers is highlighted visually.

3

• We demonstrate the efficiency of constructing our L(Q)-exemplars for the purpose
of learning how to write sound conjunctive SQL queries in theory and by a se-
ries of experiments. These are established despite challenging problems well-known
from the literature, as outlined in Section 3. While the worst-case time and space
complexity of our construction is exponential in the total number of participat-
ing attributes, the exemplar separates a number of pairwise non-equivalent user
queries from the target query that is at least exponential in the exemplar’s size.
Our experiments show that exemplars were constructed within 25 seconds for 15
attributes in these worst cases. On average, exemplars were constructed within
350ms for 15 attributes. It is a feature of our construction that its size and time
are both proportional to the number of conditions in the WHERE clause of the target
query. Therefore, the number of conditions is a natural mechanism to control the
complexity of our construction. Our experiments show further that user queries
can be efficiently evaluated on the constructed exemplars, taking 70ms to evaluate
in the worst cases observed.

• We propose an alternative use of L(Q)-exemplars for the training of conjunctive
queries under set semantics, motivated by the SELECT DISTINCT clause in SQL.
Indeed, while it is no longer possible to use the same database dbQ to distinguish
Q simultaneously from all user queries in L(Q), for each Q′ ∈ L(Q) we can select
a single tuple from each table of dbQ that results in a database which separates
Q from Q′ if and only if they are not equivalent. Therefore, exemplars are also
instrumental in automating high-quality feedback and assessment of conjunctive
queries under set semantics.

In summary, Lecqter is an effective tool to efficiently provide high-quality feedback
and assessment to users who want to learn how to write sound conjunctive SQL queries.
Organization. Motivating examples for our research are presented in Section 2. The
related work discussed in Section 3 describes the current state-of-the-art and research
challenges. Section 4 introduces preliminary concepts required by the discussion. The
construction of exemplars is detailed in Section 5, and a showcase of Lecqter is given in
Section 6. Experimental results are presented in Section 7, and the use of exemplars for
set semantics is discussed in Section 8. Section 9 concludes, and future work is outlined
in Section 10.

2 Motivating Examples

In this section three different motivations are provided for the need and use of Lecqter.
Firstly, it is illustrated that current systems for learning how to write sound SQL queries
do not provide high-quality feedback to trainees. This motivates research on automated
SQL tutoring systems that do provide high-quality feedback. Secondly, a simple example
illustrates convincingly that real-world data sets cannot be expected to separate a rea-
sonably large number of non-equivalent queries. This motivates the use of Lecqter for
constructing exemplars. In fact, exemplars can be seen as templates whose values can
be replaced by real-world values. Thirdly, a natural example shows that the use of set

4

semantics cannot even always produce exemplars that can separate three non-equivalent
queries.

2.1 SQL Tutor

GNU SQLtutor is a web-based interactive tutorial of SQL. Trainees can select a tutorial,
which presents a series of tutorial questions in a simple dialog. When finished SQL-
tutor displays a final evaluation with the review of all questions asked during the session
together with the user’s SQL queries and correct answers for wrong solutions [7]. For
instance, in the tutorialOlympics the trainees are asked to convert the following English
language query into SQL syntax: “For the discipline table tennis in the singles Women
event, show in which city ’Chen, Jing’ won medals of which color”. A semantically correct
conjunctive SQL query is [7]:

SELECT city, medal

FROM olympics

JOIN medals USING (year)

JOIN sports USING (discipline_id, event_id, category)

JOIN athletes USING (athlete_id)

WHERE discipline = ’Table Tennis’ AND event=‘singles Women’ AND

forename=‘Jing’ AND surname=‘Chen’;

which returns the correct answer [7]:

Seoul gold
Atlanta silver
Sydney bronz

.

The semantically incorrect conjunctive SQL query

SELECT city, medal

FROM olympics

JOIN medals USING (year)

JOIN sports USING (discipline_id, event_id, category)

JOIN athletes USING (athlete_id)

WHERE event=‘singles Women’ AND surname=‘Chen’;

returns the same answer. Trainees who enter this query cannot conclude that their query
is semantically correct. The reality is that most trainees will think that they submitted
a semantically correct query. Worse, even trainees who submit indeed a semantically
correct query cannot conclude that they were right. Consequently, the value for trainees
in using such an automated tutor is modest at best. Similarly, the value for trainers in
using such an automated tutor is low: automated feedback is minimal and automated
marking difficult to justify.

5

2.2 Kinship Data Set

The Kinship data set from the UCI Machine Learning repository [2] consists of people
with 24 unique names that belong to two families with two equivalent structures. The
English language query “Print the names of Marco’s daughters and their aunts that are
Marco’s sisters” can be written as the conjunctive SQL query:

SELECT s.pname1 AS ‘aunt’, d.pname1 AS ‘daughter’

FROM father f, sister s, daughter d

WHERE f.pname1=‘Marco’ AND f.pname1=d.pname2 AND

s.pname2=d.pname2 AND d.pname1=f.pname2;

The non-equivalent query “Print the names of Marco’s daughters and their aunts”, which
also includes the aunts that are sisters of Marco’s wife, can be written as follows:

SELECT s.pname1 AS ‘aunt’, d.pname1 AS ‘daughter’

FROM father f, sister s, daughter d

WHERE f.pname1=‘Marco’ AND s.pname2=d.pname2 AND d.pname1=f.pname2;

However, for the simple reason that Marco’s wife does not have any sisters, both queries
return the same result

aunt daughter
Angela Sophia

.

The example illustrates convincingly that real-life data cannot be expected to exhibit a
structure able to separate a reasonably large number of non-equivalent queries.

2.3 Limits of Set Semantics

Finally, we adopt the example from [17, Example 14, page 250] to a real-world setting.
Indeed, there cannot be any database dbQ such that the query Q:

SELECT DISTINCT name

FROM PATIENT p, DIAGNOSIS d

WHERE name=‘Smith’ AND p.pid=‘NHI003’ AND

d.pid=‘NHI003’ AND condition=‘HIV’;

produces answers different from those of the queries Q1 and Q2 on dbQ. Here, Q1 results
from Q by removing from its WHERE clause condition=‘HIV’, and Q2 results from Q by
removing from its WHERE clause name=‘Smith’. Indeed, for Q(db) ̸= Q1(db) to hold, the
table over PATIENT must contain (Smith, NHI003), and the table over DIAGNOSIS must
not contain (NHI003, HIV) but some (NHI003, c) where c ̸= HIV. For Q(db) ̸= Q2(db) to
hold, the table over DIAGNOSIS must contain (NHI003, HIV). Hence, there is no database
db such that Q(db) ̸= Q1(db) and Q(db) ̸= Q2(db) both hold.
Summary. Together, the examples illustrate the core contribution of our research in
relation to the current state-of-the-art: We show how the bag semantics of SQL enables
Lecqter to construct databases that can separate a large number of non-equivalent
queries from any given conjunctive query. Therefore, Lecqter can automate high-
quality feedback to trainees and automate their assessment.

6

3 Related Work

Naturally, there is quite a number of SQL tutoring systems available, already on the
Web alone. Systems such as SQLtutor [7], SQL exercises [19] and SQLZOO [18] are all
interactive tutorials that provide a wide range of helpful exercises for SQL trainees. The
main shortcoming is their inability to provide feedback on the semantic soundness of the
queries submitted by their users. A positive exception to this list is the automated lab
tutor Gradience from Stanford [21], which includes on-line SQL exercises that “feature
immediate constructive feedback about the correctness of the submitted queries”. How-
ever, the detection of semantically incorrect queries depends crucially on the ability of
the trainer to anticipate all potential cases. Acknowledging the difficulty of this problem,
Gradience offers some guidelines to overcome the “critical issue in the design of labs ...
to pick the sample and evaluation databases. An important point is that students will
tend to try to write queries that work on the sample database, even if they don’t work in
general. Thus, it is important to use an evaluation database that detects such attempts”
[21]. The use of exemplars overcomes this design issue, as the sample database that is
automatically constructed by Lecqter is ideal in the sense that it will detect any such
attempts. Our recommendation is to automatically generate exemplars whenever they
exist and their construction requires reasonable resources, and to use Gradience in
other cases. We hope that this article initiates future research that uncovers fragments
of query languages for which exemplars can be constructed (efficiently).

Mannila and Räihä have initiated research on exemplars in [16, 17], where they were
called complete test databases. The notion was characterized using Armstrong databases
[6], and two constructions for producing complete test databases were given. The research
in these articles was focused on set semantics only, and essentially the example from
Section 2.3 was given to show that even {Q1, Q2}-complete test databases do not exist
for some conjunctive queries without self-joins. That is, for every database, the answer
to Q1 coincides with that to Q or the answer to Q2 coincides with that to Q. In sharp
contrast, we show that L(Q)-complete test databases do exist for every conjunctive query
without self-joins under bag semantics. Note that the default bag semantics of SQL was
not considered in [17], and neither was the possibility of using complete test databases
as a basis to extract different databases for different user queries in order to separate
them from the target query, see Section 8. Furthermore, our construction of exemplars
is original.

The availability of an L(Q)-exemplar dbQ means that for every Q′ ∈ L(Q), Q and
Q′ are semantically equivalent if and only if the answer to Q on dbQ is the same as the
answer to Q′ on dbQ. Therefore, the construction of exemplars is intrinsically linked
to the well-studied problem of query equivalence. Under set semantics the problem is
undecidable for relational calculus queries, and NP-complete for conjunctive queries [3].
Under bag semantics the query equivalence problem has the same complexity as the graph
isomorphism problem [4], which is one of the few problems for which it is still unknown
whether it is in P, or NP -complete, or neither. The complexity of the containment
problem for conjunctive queries under bag semantics remains still open after twenty years
of dedicated research [4, 9, 10, 13, 14]. Our results on the efficiency of our construction
should be viewed under the plethora of these computationally hard problems.

7

4 Preliminaries

In this section we fix preliminary definitions that are required for the remainder of this ar-
ticle. These include the relational model, conjunctive queries, and notions of containment
and equivalence, all under bag and set semantics.

Bags. We assume a countably infinite set A of elements that we call attributes. Each
attribute A ∈ A is associated with a domain dom(A) that consists of countably many
elements. The elements of the domain dom(A) model the potential values that can occur
in the column represented by A. A relation schema is a finite sequence (A1, . . . , An) of
attributes together with a nameR, denoted byR(A1, . . . , An). A tuple overR(A1, . . . , An)
is an element of the Cartesian product over the associated domains, that is, an element
of dom(R) := dom(A1)× · · · × dom(An). A bag or multiset over R(A1, . . . , An), usually
denoted by B, is a collection of tuples over R(A1, . . . , An) which can occur one or many
times in the collection. For a bag B and tuple t over R(A1, . . . , An) we denote by |t|B
the number of occurrences of t in B. For two bags B,B′ over R(A1, . . . , An) the bag
inclusion B ⊆b B

′ holds if and only if for all tuples t over R(A1, . . . , An), |t|B ≤ |t|B′ . B
and B′ are equal, denoted by B =b B

′ if and only if B ⊆b B
′ and B′ ⊆b B both hold.

The proper bag inclusion B (b B
′ holds if and only if B ⊆b B

′ holds and there is some
tuple t over R(A1, . . . , An) such that |t|B < |t|B′ . For a bag B over R(A1, . . . , An) and
attributes Ai1 , . . . , Aim ∈ {A1, . . . , An} we denote by πb

Ai1
,...,Aim

the duplicate-preserving
projection of B onto Ai1 , . . . , Aim , and by πAi1

,...,Aim
the duplicate-eliminating projection

of B onto Ai1 , . . . , Aim . A database schema D is a finite set of relation schemata, and
a database db over D assigns to each relation schema in D a finite bag over the relation
schema.

Conjunctive SQL Queries. A conjunctive SQL query Q (without self-joins) over
a database schema D is a statement of the form

SELECT Ai1 , . . . , Aim

FROM R1, . . . , Rk

WHERE C1 AND . . . AND Cl

.

Here, we have relation schemata Ri(A
i
1, . . . , A

i
ni
) ∈ D for i = 1, . . . , k. We assume that

R1, . . . , Rk are distinct. From here on, we denote the schema over the distinct attributes

R1.A
1
1, . . . , R1.A

1
n1
, . . . , Rk.A

k
1, . . . , Rk.A

k
nk

as R(A1, . . . , An) where n =
∑k

i=1 ni. In a conjunctive SQL query, we further have
for each j = 1, . . . ,m, Aij ∈ {A1, . . . , An}, and for h = 1, . . . , l, Ch denotes either an
attribute-attribute equality Ar = As or an attribute-constant equality Ar = c for some
Ar, As ∈ {A1, . . . , An} and some c ∈ dom(Ar). A tuple t over R(A1, . . . , An) satisfies
the WHERE clause, denoted by |=t φQ, if and only for h = 1, . . . , l, t(Ar) = t(As), if
Ch := Ar = As, or t(Ar) = c, if Ch := Ar = c. Here, (Ai1 , . . . , Aim) is the answer schema
of Q.

For a database db over D, where r1, . . . , rk denote the bags over R1, . . . , Rk, respec-
tively, the answer to the conjunctive SQL query Q on db is defined as

Q(db) := πb
Ai1

,...,Aim
({t ∈ r1 × · · · × rk ||=t φQ}),

8

using duplicate-preserving projection πb. As usual r1 × · · · × rk is the bag that is the
(bag) cross product of r1, . . . , rk.

A conjunctive query over D is defined as a conjunctive SQL query, except that we
use SELECT DISTINCT instead of SELECT. Similarly, the answer to the conjunctive query
Q on db with relations r1, . . . , rk is defined as

Q(db) := πAi1
,...,Aim

({t ∈ r1 × · · · × rk ||=t φQ}),

using duplicate-eliminating projection π.
Containment and Equivalence. For a database db over D, a conjunctive SQL

query Q over D with answer schema (Ai1 , . . . , Aim), and a tuple t over (Ai1 , . . . , Aim),
let |t|Qdb denote the multiplicity of t in the answer Q(db) to Q on db, i.e., the number of
tuples in the bag Q(db) that match t on all attributes of the output schema.

For two conjunctive SQL queries Q and Q′ over database schema D and same answer
schema (Ai1 , . . . , Aim), Q is said to be contained in Q′ (under bag semantics), denoted by
Q ⊆b Q

′, if and only if for every database db over D, and every tuple t ∈ dom(Ai1)×· · ·×
dom(Aim), |t|

Q
db ≤ |t|

Q′

db . Q is said to be properly contained in Q′ (under bag semantics),
denoted by Q (b Q

′, if and only Q ⊆b Q
′ holds, but Q′ ⊆b Q does not hold. Q and Q′ are

said to be equivalent (under bag semantics), denoted by Q ≡b Q
′, if and only if Q ⊆b Q

′

and Q′ ⊆b Q both hold. Let L denote a class of conjunctive queries. The containment
(equivalence) problem for L is to decide for arbitrarily given Q,Q′ ∈ L, whether Q ⊆b Q

′

(Q ≡b Q
′) holds. Similar notions can easily be defined for conjunctive queries (under set

semantics).

5 Construction of Exemplars

This section develops the main foundation of Lecqter. After giving the definition of
L(Q)-exemplars for conjunctive SQL queries, the requirements on the language L(Q)
are discussed. In what follows we establish a theory for constructing a special class
of L(Q)-exemplars that we call canonical. Subsequently, the computation of canonical
L(Q)-exemplars is detailed, and the complexity of the computation discussed.

5.1 Exemplars and Assumptions

We start with the main definition of this paper.

Definition 1 Let Q denote a conjunctive SQL query and dbQ a database, both over
database schema D. Let L denote a class of conjunctive SQL queries over D. We say
that dbQ is an L-exemplar for Q if and only if for every Q′ ∈ L, Q(dbQ) = Q′(dbQ) if
and only if Q ≡b Q

′.

Therefore, trainees who want to verify whether their query Q′ ∈ L is equivalent to
the target query Q just need to check that Q′ produces the same answer as Q on an
L-exemplar for Q. Indeed, the answers to Q and Q′ coincide on every database if and

9

only if the answers to Q and Q′ coincide just on the exemplar. Hence, the exemplar as
indeed an ideal model for testing equivalence between Q and any Q′ ∈ L.

The existence of exemplars depends critically on the choice of L. Here, we focus on
the same language L as in previous research [16, 17]. That is, for a conjunctive SQL
query Q, L := L(Q) consists of those conjunctive SQL queries Q′ which have identical
SELECT and FROM clauses as those of Q, respectively, and in which every constant that
appears in an equality of the WHERE clause in Q′ also appears as a constant in some
equality of the WHERE clause in Q. As explained in [16] these restrictions are reasonable:
Users are unlikely to introduce incorrect attributes in the SELECT clause or incorrect
table schemata in the FROM clause. Furthermore, users are unlikely to introduce in their
queries constants which are not mentioned in the natural language description of the
target query Q [16]. In sharp contrast to [16, 17] we consider indeed SELECT instead of
SELECT DISTINCT statements. In fact, SELECT DISTINCT statements prevent the general
existence of L(Q)-exemplars, as shown in [16, 17] and illustrated in Section 2.

5.2 Canonical Exemplars

Our ultimate aim is to compute an L(Q)-exemplar for every conjunctive SQL query Q
without self-joins. For this purpose our goal is to first understand what tuples can form
the elements of such an exemplar.

Containers

The approach towards achieving this goal is embodied in the following definition of min-
imal proper containers.

Definition 2 Let Q be a conjunctive query without self-joins, and let Q′ ∈ L(Q). We
call Q′ a container of Q if and only if Q ⊆b Q

′ holds. We call Q′ a proper container of
Q if and only if Q (b Q

′ holds. A proper container Q′ of Q is minimal if and only if
for every proper container Q′′ ∈ L(Q) of Q, Q′′ ⊆b Q

′ implies Q′′ ≡b Q
′. We denote by

M(Q) the set of all minimal proper containers of Q.

In the following we denote byM(Q) a set of queries that contains one representative
from each equivalence class of M(Q)/ ≡b. This notation simplifies discussion and is
sufficient for our construction. In particular, M(Q) is unique up to the equivalence of
queries.

Example 1 Consider an application domain where purchases of products by customers
are recorded. Products have an identifier pid and a name pname, customers have an
identifier cid and a name cname. Customers cid purchase products pid on a date at
a cost. The schema D is thus given by CUSTOMER(cid,cname), PRODUCT(pid,pname),
and BUY(cid,pid,date,cost). The target query Q is to “Print the customer name,
product name and cost of all purchases made by the customer with identifier c7 on
3/9/14”, which can be written in SQL as follows:

10

SELECT cname, pname, cost

FROM CUSTOMER c, PRODUCT p, BUY b

WHERE c.cid=b.cid AND c.cid=‘c7’ AND

b.pid=p.pid AND b.date=‘3/9/14’;

The queries Q′ on the left, and Q′′ on the right:

SELECT cname, pname, cost SELECT cname, pname, cost

FROM CUSTOMER c, FROM CUSTOMER c,

PRODUCT p, PRODUCT p,

BUY b BUY b

WHERE b.cid=c.cid AND WHERE b.cid=c.cid AND

b.pid=p.pid AND b.pid=p.pid;

b.date=‘3/9/14’;

are both proper containers of Q, but only Q′ is minimal.

Q′ ∈ L(Q) is equivalent to Q iff it is a container of Q but not a container of any of
Q’s minimal proper containers Qi.

Lemma 1 Let Q be a conjunctive query without self-joins, and let Q′ ∈ L(Q). Then,
Q ≡b Q

′ if and only if Q ⊆b Q
′ and for every Qi ∈M(Q), Qi ̸⊆b Q

′.

Proof If Q ≡b Q
′, then Q ⊆b Q

′ and Q′ ⊆b Q. If there was some minimal proper
container Qi of Q for which Qi ⊆b Q

′, then Q′ ⊆b Q ⊆b Qi ⊆b Q
′. Hence, Q ≡b Qi which

would contradict the definition of a proper container.
Assume that Q ̸≡b Q

′ and Q ⊆b Q
′. We need to show that there is some Qi ∈M(Q)

such that Qi ⊆b Q
′ holds. From Q ̸≡b Q

′ and Q ⊆b Q
′ follows that Q′ ̸⊆b Q, hence Q

′ is
a proper container of Q. If Q′ ∈M(Q), then we are done. Otherwise Q′ is not a minimal
proper container. Therefore, there is some proper container Q′′ of Q such that Q′′ ⊆b Q

′

and Q′′ ̸≡b Q
′. As every chain of proper containers is finite, Q′ contains some minimal

proper container of Q.

Duplicate-preserving Projection

The next result states an observation that holds the key to the construction of exemplars
for conjunctive SQL queries.

Lemma 2 Let B,B′ denote two bags over R(A1, . . . , An), such that B (b B
′. Then

πb
Ai1

,...,Aim
(B) (b π

b
Ai1

,...,Aim
(B′).

Proof This follows immediately from the definition of the proper bag inclusion (b, and
the fact that the duplicate-preserving projection πb

Ai1
,...,Aim

does not reduce the cardinality
of the underlying bags.

Lemma 2 does not apply to duplicate-eliminating projections. A simple example
over R(A) are the bags B = {0} and B′ = {0, 0}, i.e., B (b B

′ holds. As πb
∅(B) =

{()} (b {(), ()} = πb
∅(B

′) holds, we have π∅(B) = {()} = {()} = π∅(B
′) under duplicate-

eliminating projections. In particular, there are conjunctive queries under set semantics
for which no L(Q)-exemplars exist for this reason [17].

11

Calculus of Equalities

We now reduce the containment problem of two queries in L(Q) to an implication problem
of the two formulae derived from the WHERE clauses of the two queries. For this, we first
define the equivalence of two formulae. Recall our general format of a conjunctive SQL
query Q from before. For Q, let VQ := {A1, . . . , An} denote the attributes of R, which
we view as variables, and let CQ denote the constant symbols c that appear in the WHERE
clause of Q. The terms of Q are TQ := VQ ∪ CQ. An equality τ for Q is either an
attribute-attribute equality Ar = As for 1 ≤ r, s ≤ n or an attribute-constant equality
Ar = c where 1 ≤ r ≤ n and c ∈ CQ. A formula φ for Q is a conjunction of equalities
for Q. We use F0(Q) to denote the set of formulae for Q. A conjunctive SQL query for
Q is a conjunctive SQL query of the form

SELECT Ai1 , . . . , Aim

FROM R1, . . . , Rk

WHERE C ′
1 AND . . . AND C

′
o;

where C ′
1 ∧ · · · ∧ C ′

o ∈ F0(Q) is a formula for Q. We use L0(Q) to denote the set of
conjunctive SQL queries for Q. For Q′ ∈ L0(Q) let φQ′ = C ′

1 ∧ · · · ∧ C ′
o denote the

formula in F0(Q) that forms the WHERE clause of Q′.

Example 2 For the target query Q from Example 1,

c.cid=b.cid ∧ c.cid=‘c7’ ∧ b.pid=p.pid ∧ b.date=‘3/9/14’

denotes the formula φQ that forms its WHERE clause.

The satisfaction of a formula φ ∈ F0(Q) by a tuple t over R(A1, . . . , An), denoted by
|=t φ, is defined as follows:

• |=t Ar = As iff t(Ar) = t(As),

• |=t Ar = c iff t(Ar) = c,

• |=t φ1 ∧ · · · ∧ φn iff for all i = 1, . . . , n, |=t φi.

For φ, ψ ∈ F0(Q), φ implies ψ, denoted by φ→ ψ, iff every tuple t over R(A1, . . . , An)
that satisfies φ, satisfies ψ.

Example 3 Let Q denote the target query from Example 1. The tuple

(c0,Jimmy,p1,printer,c0,p1,3/9/2014,79)

over

R(c.cid,c.cname,p.pid,p.pname,b.cid,b.pid,b.date,b.cost)

does not satisfy φQ from Example 2, which is satisfied by the tuple

(c7,Jimmy,p1,printer,c7,p1,3/9/2014,79).

12

Let F(Q) ⊆ F0(Q) denote the formulae of F0(Q) that are satisfiable. That is, those
formulae φ ∈ F0(Q) such that there is some tuple t over R(A1, . . . , An) that satisfies
φ. For example, c.cid=b.cid ∧ c.cid=‘c0’ ∧ b.cid=‘c7’ is unsatisfiable. Let L(Q) ⊆
L0(Q) denote the set of conjunctive SQL queries for Q where φQ ∈ F(Q) holds. We
can now establish a correspondence between the containment of our queries and the
implication of their associated formulae.

Lemma 3 For Q′, Q′′ ∈ L(Q) we have Q′′ ⊆b Q
′ if and only if φQ′′ → φQ′.

Proof Based on our assumptions and the definition of L(Q), the SELECT and FROM

clauses of Q′′ and Q′ are identical. Hence, containment Q′′ ⊆b Q
′ reduces to the problem

whether every tuple that satisfies φQ′′ also satisfies φQ′ . That is, whether φQ′′ → φQ′

holds.

Representative Tuples

For an L(Q)-exemplar of Q we include some tuple t0 that satisfies the equalities of Q,
but does not satisfy any condition not entailed by Q. That way the tuple t0 separates Q
from any query Q′ that is not a container of Q.

Definition 3 For a conjunctive SQL query Q the tuple t over R(A1, . . . , An) represents
φ ∈ F(Q) if and only if for all ψ ∈ F(Q), |=t ψ iff φ→ ψ holds.

The existence of some tuple that represents some given φ ∈ F(Q) is guaranteed:
attributes, that must carry the same value but not a constant from Q, are given the
same unique value. For this reason, if φ → ψ does not hold, then the tuple t that
represents φ can always be chosen such that |=t ψ does not hold.

Example 4 For D with C(cid,cname), P(pid,pname), B(cid,pid,date,cost) and

R(c.cid,c.cname,p.pid,p.pname,b.cid,b.pid,b.date,b.cost),

t0=(c7,Jimmy,p1,printer,c7,p1,3/9/2014,79) represents φQ from Example 2, but it does
not represent c.cid=b.cid ∧ c.cid=‘c7’ ∧ b.date=‘3/9/14’. Indeed, t0 also satis-
fies the equality b.pid=p.pid which is not implied by c.cid=b.cid ∧ c.cid=‘c7’ ∧
b.date=‘3/9/14’.

Representative tuples resemble Armstrong databases [6, 8, 15]: for some tuple t that
represents φ, deciding if φ implies ψ reduces to the problem of deciding whether t satisfies
ψ.

We say the tuple t represents Q′ ∈ L(Q) if and only if t represents φQ′ ∈ F(Q).
Any tuple t0 representing Q will also be selected by any proper container of Q. Thus,
additional tuples are required to separate Q from any of its proper containers. Evidently,
it suffices to insert tuples that represent the minimal proper containers of Q.

13

Canonical Exemplars

We now construct exemplars from the tuples that represent the target query and its
minimal proper containers.

Definition 4 For a conjunctive query Q without self-joins let M(Q) = {Q1, . . . , Qp}.
Let t0 be a tuple that represents Q, and for j = 1, . . . , p, let tj denote a tuple that
represents Qj, such that the only values that occur in more than one tuple among t0, . . . , tj
are constants from CQ. For i = 1, . . . , k, let ri = πRi(Ai

1,...,A
i
ni

)({t0, t1, . . . , tp}). We call

dbQ := {r1, . . . , rk} a canonical L(Q)-exemplar for Q.

The following lemma establishes an important property of our canonical exemplar.
We will use this property to show that a canonical exemplar is indeed an exemplar.

Lemma 4 Let dbQ denote a canonical L(Q)-exemplar for Q. For all t ∈ ×k
i=1ri, if

|=t φQ′ for some Q′ ∈ L(Q), then Q ⊆b Q
′ holds.

Proof For all Ai, Aj ∈ R, all c ∈ CQ, and all t′ ∈ {t0, t1, . . . , tp} the following hold: i) if
t′(Ai) = t′(Aj), then t0(Ai) = t0(Aj), and ii) if t′(Ai) = c, then t0(Ai) = c. Recall that
the only values that occur in more than one tuple amongst t0, t1, . . . , tp are the constants
from CQ. It follows that the cross product of r1, . . . , rk does not result in tuples that
have equalities of attribute values that are not already present in t0. That is, for each
tuple t ∈ ×k

i=1ri the following holds, too: if t(Ai) = t(Aj), then t0(Ai) = t0(Aj), and ii)
if t(Ai) = c ∈ CQ, then t0(Ai) = c. Consequently, if |=t φQ′ , then |=t0 φQ′ , too. However,
as t0 represents φQ, it follows by Definition 3 that φQ → φQ′ holds. This means that
Q ⊆b Q

′ by Lemma 3.

Soundness of Construction

Theorem 5 Let Q be a conjunctive SQL query without self-joins. For all Q′ ∈ L(Q),
Q ≡b Q

′ if and only if Q(dbQ) = Q′(dbQ).

Proof It follows from the definition of ≡b that Q ≡b Q
′ entails Q(dbQ) = Q′(dbQ).

Assume now that Q ̸≡b Q
′. That is, either 1) Q ̸⊆b Q

′, or 2) Q (b Q
′. Case 1) means

that φQ → φQ′ does not hold, by Lemma 3. As t0 ∈ r1×. . .×rk represents Q it follows by
Definition 3 that |=t0 φQ. Lemma 4 shows that for all t ∈ r1× . . .×rk, ̸|=t φQ′ . Therefore,
Q(dbQ) ̸= ∅ = Q′(dbQ). Case 2) means that there is some Qi ∈M(Q) such that Qi ⊆b Q

′,
by definition of the minimal proper containers Qi of Q. Consequently, φQi

→ φQ′ holds,
by Lemma 3. As ti ∈ r1 × . . .× rk represents Qi it follows by Definition 3 that |=ti φQ′ .
However, |=ti φQ does not hold. Since Q ⊆b Q

′, φQ → φQ′ holds. Therefore,

{t ∈ r1 × · · · × rk ||=t φQ} (b {t ∈ r1 × · · · × rk ||=t φQ′}.

Consequently, Q(dbQ) ̸= Q′(dbQ) by Lemma 2.

Corollary 6 For a conjunctive SQL query Q without self-joins, every canonical L(Q)-
exemplar for Q is an L(Q)-exemplar for Q.

14

5.3 Computation of Canonical Exemplars

The construction of a canonical exemplar is founded on tuples that represent the target
query Q and its minimal proper containers. Each query Q′ ∈ L(Q) partitions the set of
terms TQ of Q into equivalence classes, induced by the equalities in the WHERE clause of Q′.
Formally, for τ, τ ′ ∈ TQ, we define τ ≡Q′ τ ′ if and only if φQ′ → τ = τ ′. Evidently, ≡Q′

defines an equivalence relation over the terms TQ of Q. Let [τ]≡Q′ denote the equivalence
class of τ ∈ TQ, i.e., {τ ′ ∈ TQ | τ ≡Q′ τ ′}. Finally, let S≡Q′ denote the quotient of TQ
with respect to ≡Q′ , that is, S≡Q′ = {[τ]≡Q′ | τ ∈ TQ}.

Algorithm 1 shows the overall construction of a canonical L(Q)-exemplar for Q. Line
1 computes the quotient S≡Q0

of the input query Q. Starting with the partition of
singleton subsets of TQ the elements of the partition are merged as the equalities in the
WHERE clause are scanned one by one.

Lines 2-9 compute the setM(Q) of minimal proper containers for Q, represented by
their quotients S≡Qi

. Each S≡Qi
is derived from S≡Q

by replacing one element S ∈ S≡Q

by an element s from one of its bi-partitions S ′, i.e., a partition into two non-empty
subsets. All-Bi-Partitions(S) returns the set of all bi-partitions of a set S [20].

Lines 10-12 compute tuples that represent Q and its minimal proper containers
Q1, . . . , Qp. The only values that occur in more than one representative tuple are the
constants from Q. A representative tuple can easily be constructed from a quotient S≡Q′ :
two attributes Ar and As receive the same value iff they belong to the same equivalence
class. This value must equal the constant if the latter is also an element of the same
equivalence class. An equivalence class contains two constants iff φQ′ is unsatisfiable. In
practice, the algorithm will terminate in this case and return nothing.

Lines 13-15 compute a canonical L(Q)-exemplar dbQ as projections r1, . . . , rk of db =
{t0, . . . , tp} to the participating relation schemata Ri(A

i
1, . . . , A

i
ni
) for i = 1, . . . , k.

5.4 Complexity

The complexity of Algorithm 1 is dominated by the computation of all bi-partitions for
each element of Q’s quotient. The number of partitions of an n-element set into k non-
empty subsets is the Stirling number of the second kind, denoted by S(n, k). Here, the
relevant case is k = 2 where S(n, 2) = 2n−1 − 1 and the maximum number of minimal
proper containers is attained when S≡Q

= {TQ}. The computation of the bi-partitions
only starts when TQ contains at most one constant. Using our notation R(A1, . . . , An),
TQ contains at most n + 1 elements and there can be at most 2n − 1 minimal proper
containers and 2n representative tuples. As query equivalence under set semantics is
known to be NP-complete, it is elusive to find a PTIME -algorithm.

Proposition 7 For each conjunctive SQL query Q that has a total of n attributes in
the relation schemata that occur in its FROM clause, Algorithm 1 returns a canonical
L(Q)-exemplar for Q in time and space that is in O(2n).

Let Q be a conjunctive SQL query with a total number n of participating attributes
and a total number k of participating constants. Then the number of queries that an
L(Q)-exemplar can separate from Q is the m = n+ k-th Bell number Bm, which counts

15

Algorithm 1 Computation of Canonical Exemplar

Require: Conjunctive SQL Query Q without Self-Joins
Ensure: L(Q)-canonical exemplar for Q
1: S≡Q0

← Quotient(Q)
2: M(Q)← ∅
3: for all S ∈ S≡Q

do
4: S ′ ← All-Bi-Partitions(S)
5: for all s ∈ S ′ do
6: M(Q)←M(Q) ∪ {(S≡Q

− {S}) ∪ {s}}
7: end for
8: end for
9: M(Q) = {S≡Q1

, . . . , S≡Qp
}

10: for i = 0, . . . , p do ti ← Representative(S≡Qi
)

11: end for;
12: db← {t0, t1, . . . , tp}
13: for i = 1, . . . , k do ri ← πRi.Ai

1,...,Ri.Ai
ni
(db)

14: end for;
15: dbQ ← {r1, . . . , rk}
16: Return(dbQ)

the number of partitions of an m-element set. These may also include queries with
inconsistent conditions, which we assume to be not equivalent to the target query. Them-
th Bell number can be computed with the following recurrence relation Bm =

∑m−1
j=0 Bj ·(

m−1
j

)
where B0 := 1 = B1. As can be observed from Table 1 the number of pairwise non-

equivalent queries that an exemplar can separate from Q is at least exponential in the
size of the exemplar. For example, for n = 14 and k = 1 the maximum-sized canonical
L(Q)-exemplar has 16, 384 tuples and can separate B15 = 1, 382, 958, 545 queries from
Q, all pairwise non-equivalent. That is, the L(Q)-exemplar can distinguish more than
84, 000 times as many semantically different queries as its own size.

Proposition 8 Algorithm 1 returns L(Q)-exemplars dbQ that can separate a number of
pairwise non-equivalent queries from Q that grows at least exponentially in the size of
dbQ.

6 Show Case

This section illustrates the use of Leqcter in its primary application area as an auto-
mated lector. The case shows how Lecqter exploits its ability to test query equivalence
in assisting trainees in the process of learning how to write sound conjunctive SQL queries,
and in assisting trainers to provide automated feedback and marks from which trainees
can confidently learn. As show case we consider the schema D and target query Q from
Example 1.

16

n sn qn qn/sn
5 16 52 > 3 > 21

6 32 203 > 6 > 22

7 64 877 > 13 > 24

8 128 4140 > 32 = 25

9 256 21,147 > 82 > 27

10 512 115,975 > 226 > 28

11 1024 678,570 > 662 > 210

12 2048 4,213,597 > 2057 > 211

13 4096 27,644,437 > 6749 > 213

14 8192 190,899,322 > 23, 303 > 215

15 16384 1,382,958,545 > 84, 409 > 216

Table 1: Maximum size sn of exemplar, number qn of non-equivalent queries the exemplar
can separate, and the growth sn/qn for the number n = 5, . . . , 15 of terms in the target
query

6.1 Specify the Database Schema

Initially, a trainer uses Lecqter to create an underlying database schema in MySQL. As
can be seen in Figure 1, name and database schema are entered in the startGUI window.
When the “OK” button is clicked, the database schema named “Purchase” is created
on the MySQL database server by Lecqter.

Figure 1: Creation of the Database Schema

6.2 Target Query

The tutor enters the target query in the queryGUI window, as shown in Figure 2, and
clicks on the “Generate Data” button.

This invokes the construction of a canonical exemplar by Lecqter, which populates
the database Purchase . For instance, Figure 3 shows the Purchase-table buy of the
exemplar created.

17

Figure 2: Submitting the Target Query

Figure 3: Table buy of the Purchase database

Once an exemplar has been constructed the text box for entering equalities is cleared
while the SELECT and FROM clauses remain the same as in the target query and are not
allowed to be changed for the current session. Additionally, the text of “Generate Data”
button becomes “Run Query”.

User Queries

Once Lecqter has created an L(Q)-exemplar in MySQL based on the target query Q
and database schema D, trainees submit WHERE clauses that shall match the description
of Q. Trainee A does not specify the equality b.pid = p.pid. Results of A’s query are
shown in the bottom right with tuples not in Q being highlighted in red, as shown in
Figure 4.

Trainee B submits a query with

WHERE b.pid=c.cid AND c.cid=‘c7’ AND b.pid=c.cid AND b.date=‘3/9/14’.

This query illustrates that typos can easily lead to incorrect results. The empty result
to B’s query is shown in Figure 5, it originates from the incorrect equality b.pid=c.cid.

It can be seen from the screen shots that tuples in the results of user queries that are
not in the result of the target query are highlighted in red color. Furthermore, the number
of rows returned is presented as well. This makes it easy for the tutor and trainee to
spot any differences in the trainee’s results from the target results, even when the results
are large. The differences in the results may provide useful information for the trainees
to figure out what is wrong with their queries, so it is helpful in trial-and-error learning,
too.

18

Figure 4: User Query Returning More Tuples

Figure 5: User Query Returning Empty Answer

19

In Figure 6 trainee C submits the WHERE clause b.pid=‘c7’ AND c.cid=‘c7’ AND

b.pid=c.cid AND b.date=‘3/9/14’.
As the answers match the target, trainer and trainee do not need to inspect the

trainee query to conclude its correctness. This is not the case for queries evaluated on
any database, but the distinguishing feature of Lecqter.

Figure 6: Sound User Query

Lecqter is available at slink.foiks.org/Lecqter.zip for download. It can be
run on Windows 7, and access to a MySQL server can easily be configured.

6.3 Additional Features

It is noted again that Lecqter abandons the construction in case that the formula φQ is
unsatisfiable. For instance, a target query Q with inconsistent equalities such as p.pid =

b.pid and p.pid = 0 and b.pid = 1 results in an equivalence class {p.pid,b.pid,0,1}
with two constants, at which point Lecqter stops.

Users can specify values to populate representative tuples during construction time.
Users can click the “Import Value” button and select a text file with a comma-separated
list of values. The name of the text file matches that of the attribute. Once the pre-
specified list of values has been exhausted, new synthetic values are generated as required.

Users can change the configuration to access MySQL server by editing the text file
“dbconfig.txt”, which is located in the same folder Lecqter. The user name, password,
and IP address are set to: “admin|admin|127.0.0.1:3306”.

7 Experimental Results

The worst-case time and space complexity of constructing canonical L(Q)-exemplars
is exponential in the total number of participating attributes. We will now establish

20

empirical evidence that L(Q)-exemplars can be generated efficiently for the purpose of
learning how to write sound conjunctive SQL queries. Furthermore, we establish evidence
that the evaluation of user queries on L(Q)-exemplars is efficient, too. Together, the
experiments show that L(Q)-exemplars are a practical tool for learning how to write
sound conjunctive SQL queries, as they can be generated efficiently and are able to
efficiently separate at least an exponential number of non-equivalent queries from the
target query.

Experiments were carried out on a MySQL 5.6 database server running on an Asus
laptop, with 2.5 GHz i5-2450M Dual-Core processor and 4GB RAM, on a Windows 7
Home Premium operating system. We analyzed four different classes of queries regarding
their performance in constructing canonical L(Q)-exemplars with Algorithm 1.

7.1 Construction of Exemplars

First, we present four different classes of queries for which analyze the performance of
constructing canonical L(Q)-exemplars with Algorithm 1, as well as its size. Two of these
test cases illustrate extreme behavior: one of these cases produces exemplars of constant
size in almost constant time with increasing input size, while the other case produces
exemplars of size exponential in time exponential in the input size. The third test case
produces exemplars of size linear in time linear in the input size. Each of these three
test cases follows a particular pattern that determines the performance of constructing
exemplars. Apart from revealing the actual time it takes to construct an exemplar, our
experiments therefore also show what behavior to expect when these patterns occur in a
real-life target query. The fourth and final test case creates equalities randomly.

Constant

Target queries Qc
n in this test case have the format

SELECT ∗
FROM R
WHERE a1 = 0

where R(A1, . . . , An) is the only present relation schema. For this experiment, n varied
from 1 up to 50. For each n, there is one tuple that represents Qc

n and one tuple that
represents the only minimal proper container of Qc

n. Therefore, the size of the resulting
test database is constant for all n, and the times to construct a canonical exemplar are
illustrated in Figure 7. Minimum, average and maximum times were taken over 100 runs
for each n.

Linear

Target queries Ql
n in this test case have the format

SELECT ∗
FROM R1, . . . , Rn

WHERE R1.A1 = R2.A1 AND R2.A2 = R3.A2 AND · · · AND
Rn−1.As = Rn.As

21

Figure 7: Construction Times for Constant

where s = 1 when n is even, and s = 2 when n is odd, and R1(A1, A2), . . . , Rn(A1, A2)
form the underlying database schema. For this experiment, n also varied from 1 up to 50.
For each n, there is one tuple that represents Ql

n and one tuple that represents each of the
n−1 minimal proper containers of Ql

n. Therefore, the size of the resulting exemplar is n,
and the times to construct a canonical exemplar are illustrated in Figure 8. Minimum,
average and maximum times were taken over 100 runs for each n.

Figure 8: Construction Times for Linear

Exponential

Target queries Qe
n in this test case have the format

SELECT ∗
FROM R
WHERE A1 = A2 AND A2 = A3

AND · · · AND An−1 = An

22

where R(A1, . . . , An) is the only present relation schema. For this experiment, n varied
from 2 up to 15 due to memory limits. For each n, there are one tuple that represents
Qe

n and for each of the 2n−1 − 1 minimal proper containers of Qe
n one representative

tuple. Therefore, the size of the resulting exemplar is 2n−1, and the times to construct a
canonical exemplar are illustrated in Figure 9. Minimum, average and maximum times
were taken over 100 runs for each n.

Figure 9: Construction Times for Exponential

Random

Target queries Qr
n in this test case have the format

SELECT ∗
FROM R
WHERE ...;

with R(A1, . . . , An) being the only relation schema, and the equalities in the WHERE clause
are created randomly. For this experiment, n varied from 3 up to 15 due to memory limits.
Minimum, average and maximum times were taken over 1,000 runs for each n. For each
n, the algorithm randomly selects in each run the number of equalities that will form the
WHERE clause. Four different experiments were conducted, where the maximum number
of equalities to be randomly selected in each run for each n had an upper bound of
k · n where k ∈ {0.25, 0.5, 0.75, 1}, respectively. The sizes of the exemplars are shown in
Figures 10, 11, 12, and 13, respectively.

The figures confirm convincingly our intuition that the number of equalities selected
is proportional to the size of the canonical exemplars constructed, and therefore also the
time required to construct them.

Figure 13 for k = 1, in particular, illustrates a significant difference between the
average and maximum sizes of exemplars when equalities are selected randomly. While
the maximum size of exemplars for Qr

n coincides with the size of the exemplars for Qe
n,

the average size is significantly smaller. Note that the minimum sizes for Qr
n are zero,

23

Figure 10: Exemplar Sizes for Random, k = 0.25

Figure 11: Exemplar Sizes for Random, k = 0.5

Figure 12: Exemplar Sizes for Random, k = 0.75

24

Figure 13: Exemplar Sizes for Random, k = 1

indicating that the number of runs and number of equalities are sufficient to generate at
least one inconsistent input.

Figure 14 shows the minimum, average and maximum times taken for each n to create
a canonical L(Q)-exemplar given Qe

n. The figure illustrates the significant difference
between the average and maximum times required to construct canonical exemplars when
equalities are selected randomly.

Figure 14: Construction Times for Random, k = 1

For instance, the average and maximum sizes of the canonical exemplars for Qr
15 are

listed in Table 2, together with the average and maximum times to construct them. The
tables illustrate the impact of the maximum number of equalities permitted, and the
significant differences in size and time between the average and maximum cases.

So far, all experiments in the class Random were conducted with a fair chance of
selecting an attribute-attribute equality and attribute-constant equality, respectively. In-
tuitively, the higher the probability of selecting attribute-attribute equalities, the larger
the size of an exemplar will be. Attribute-constant equalities may force different con-
stants to be the same, in which case the input is inconsistent and the size and time
measured are both zero. Several attribute-attribute equalities increase the chance of a

25

k 0.25 0.5 0.75 1
avg size 4 10 30 256
avg time 10 21 56 361
max size 16 256 2,048 16,384
max time 78 546 3,838 22,169

Table 2: Average and maximum sizes of canonical exemplars and times inms to construct
them for Qr

15 and k = 0.25, 0.5, 0.75, 1

p 0.25 0.5 0.75
avg 118 256 330
max 8,193 16,384 16,384

Table 3: Average and maximum sizes of canonical exemplars for Qr
15 with k = 1 and

different probabilities p on attribute-attribute equalities

large equivalence class, resulting in larger exemplars. We have confirmed this intuition
by running two further experiments in the class Random where the probability p of se-
lecting an attribute-attribute equality was 0.25 and 0.75, respectively. Each experiment
was repeated 1,000 times for each input size n. For each n, a constant could be cho-
sen between 1 and n. While this margin may be relatively small, the outcomes already
confirm the intuition above, thereby suggesting a stronger trend with bigger margins.
Figures 15, 13 and 16 show the sizes of exemplars constructed for p = 0.25, p = 0.5 and
p = 0.75, respectively.

Figure 15: Exemplar Sizes for Random, k = 1, p = 0.25

Average and maximum sizes of the canonical exemplars for Qr
15 with k = 1 and p ∈

{0.25, 0.5, 0.75} are listed in Table 3. The table confirms that the higher the probability
of selecting attribute-attribute equalities the larger the exemplars become. Table 3 also
shows that the maximum size was not attained in any of the 1,000 runs with p = 0.25.

26

Figure 16: Exemplar Sizes for Random, k = 1, p = 0.75

7.2 Query Evaluation on Exemplars

Another important contributing factor to the performance of Lecqter concerns the
evaluation of queries on the exemplars constructed. It is important that users perceive
the evaluation of their queries as efficient. Otherwise, the application might not be
perceived as helpful.

For this purpose, some experiments were conducted regarding the evaluation of queries
on the exemplars that were constructed for each of the first three test cases. For each
case, we evaluated all queries on the largest exemplar generated.

For each case, the number of tuples returned by each query as well as the time taken
to return these tuples were recorded. In what follows, the results of these experiments
are presented and discussed for each test case in turn.

Constant

Here, we evaluated for each n = 1, . . . , 50, the target query Qc
n on its exemplar dbQc

n
.

In each case, a single tuple was therefore returned as the answer. Figure 17 illustrates
the minimum, average and maximum runtime to evaluate each of the 50 queries. These
were taken out of 500 runs for each query. The average time for evaluating each query is
almost identical, that is, between 4 and 6ms.

Linear

Here, we evaluated for each n = 1, . . . , 50, the target query Ql
n on the fixed exemplar

dbQl
50
. Therefore, 51 − n tuples were returned as the answer for the query Ql

n, for n =
1, . . . , 50. Figure 18 illustrates the minimum, average and maximum runtime to evaluate
each of the 50 queries. These were taken out of 500 runs for each query. For example,
the evaluation of Ql

50 takes less than 80ms.

27

Figure 17: Query times for Constant [500]

Figure 18: Query times for Linear

28

Exponential

Here, we evaluated for each n = 1, . . . , 15, the following query Qn on the fixed exemplar
dbQe

15
:

SELECT ∗
FROM R
WHERE A1 = A2 AND A2 = A3

AND · · · AND Ai−1 = Ai

Therefore, 215−n tuples were returned as the answer for the query Qi, for n = 1, . . . , 15.
Figure 19 illustrates the minimum, average and maximum runtime to evaluate each of
the 15 queries. These were taken out of 500 runs for each query. For example, the average
evaluation of Q1 takes approximately 70ms, as it returns all 16,384 tuples. Subsequently,
the average evaluation time stays at approximately 20ms for the remaining queries.

Figure 19: Query times for Exponential

7.3 Summary

Considering the first series of experiments, we conclude that the construction of canonical
exemplars with Lecqter is efficient, in particular when considering the actual times to
create them and their purpose for learning how to write sound conjunctive SQL queries.
Here, the number of participating attributes and constants should not be chosen too large
to remain illustrative for teaching purposes. While the extreme cases require dramatically
more time and space, even these cases are feasible. It is also unlikely that these extreme
cases occur in practice where the number of equalities can be expected to be rather
modest relative to the size of the underlying schema.

Considering the second series of experiments, we conclude that the evaluation of
queries on the exemplars constructed by Lecqter is efficient. Users of the application
will therefore obtain feedback to their queries efficiently. The feedback will tell them
with full certainty whether their queries are semantically correct or incorrect. In case
the user query is incorrect, the difference in its result to the target answer is illustrated
effectively.

29

8 Demo Databases

The example from Section 2.3 has shown that exemplars do not always exist for conjunc-
tive queries when set semantics is used, as already observed in [17]. Our results have
shown that for real conjunctive queries, namely conjunctive SQL queries or conjunctive
queries under bag semantics, exemplars can be constructed efficiently in practice. Never-
theless, one may still wonder how the situation can be handled when trainees are exposed
to SELECT DISTINCT queries. In this section, one possible approach is outlined.

We denote by Qd the query obtained from the conjunctive SQL query Q by adding
DISTINCT to its SELECT clause. What Section 2.3 has shown is that there are conjunctive
target queries Qd for which no database can exist on which all queries in L(Qd), that are
not equivalent to Qd, produce answers that are different from those of Qd. We suggest in
this case to construct for each Q′

d ∈ L(Qd) a demo database demoQ′
d
from our exemplar

dbQ that demonstrates either the equivalence ofQd andQ
′
d by producing the same answers

on demoQ′
d
, or their difference by producing different answers on demoQ′

d
. Therefore, dbQ

serves as a universal basis for constructing for each Q′
d ∈ L(Qd), a demo database that

illustrates the (non-)equivalence between Qd and Q′
d.

For Qd we construct an L(Q)-exemplar dbQ = {r1, . . . , rk} for the conjunctive SQL
query Q as before. For an arbitrary query Q′

d ∈ L(Qd) we first evaluate Q′(dbQ). If
Q′(dbQ) = Q(dbQ), then demoQ′

d
consists of the relations obtained from projecting t0

down to each of the participating relation schemata. In that case, both Q′
d(demoQ′

d
) and

Qd(demoQ′
d
) return πAi1

,...,Aim
(t0). Otherwise, we distinguish the following two cases. The

first case is where t0 is not in σφQ′ (r1 × · · · × rk). Then demoQ′
d
consists of the relations

obtained from projecting t0 down to each of the participating relation schemata. In that
case, Q′

d(demoQ′
d
) returns the empty answer and Qd(demoQ′

d
) returns πAi1

,...,Aim
(t0). The

second and remaining case is where there is some ti ∈ σφQ′ (r1×· · ·×rk)−σφQ
(r1×· · ·×rk)

that represents the minimal proper container Qi ∈M(Q). In that case, demoQ′
d
consists

of the relations obtained from projecting ti down to each of the participating relation
schemata. Consequently, Q′

d(demoQ′
d
) returns πAi1

,...,Aim
(ti) and Qd(demoQ′

d
) returns the

empty set. We thus obtain the following result that offers a solution to the class of
conjunctive queries without self-joins under set semantics.

Theorem 9 For every conjunctive query Q without self-joins and every conjunctive
query Q′ ∈ L(Q), Q ≡ Q′ if and only if Q(demoQ′) = Q′(demoQ′).

Our final example illustrates the construction of demo databases from exemplars and
shows how demo databases circumvent the limitations of exemplars that apply to set
semantics.

Example 5 Consider the target query Qd:

SELECT

DISTINCT name

FROM PATIENT p, DIAGNOSIS d

WHERE name=‘Smith’ AND p.pid=‘NHI003’

AND d.pid=‘NHI003’ AND condition=‘HIV’;

30

Our construction for Q would yield representative tuples:

p.pid p.name d.pid d.condition

NHI003 Smith NHI003 HIV
NHI003 Smith NHI003 Fever
NHI003 Smith QGP700 HIV
NHI003 Ryan NHI003 HIV
KGL050 Smith NHI003 HIV

and the following L(Q)-exemplar:

PATIENT

pid name

NHI003 Smith
NHI003 Ryan
KGL050 Smith

DIAGNOSIS

pid condition

NHI003 HIV
NHI003 Fever
QGP700 HIV

For the user query Q1
d:

SELECT

DISTINCT name

FROM PATIENT p, DIAGNOSIS d

WHERE name=‘Smith’ AND p.pid=‘NHI003’

AND d.pid=‘NHI003’;

we would obtain the demo database demoQ1
d
where

PATIENT

pid pname

NHI003 Smith

DIAGNOSIS

pid condition

NHI003 Fever

since t1 = (NHI003, Smith,NHI003, Fever) represents the minimal proper container
Q1 of Q. Here, Q1

d returns {Smith} while Qd returns an empty answer when evaluated on
demoQ1

d
. Note that Q1 returns {Smith,Smith} while Q returns {Smith} when evaluated

on dbQ. For the user query Q2
d:

SELECT

DISTINCT name

FROM PATIENT p, DIAGNOSIS d

WHERE p.pid=‘NHI003’ AND d.pid=‘NHI003’

AND condition=‘HIV’;

we would obtain the demo database demoQ2
d
where

PATIENT

pid pname

NHI003 Ryan

DIAGNOSIS

pid condition

NHI003 HIV

31

since t2 = (NHI003, Ryan,NHI003, HIV) represents the minimal proper container Q2

of Q. Here, Q2
d returns {Ryan} while Qd returns an empty answer when evaluated on

demoQ2
d
. Note that Q2 returns {Smith,Ryan} while Q returns {Smith} when evaluated

on dbQ. For a final user query Q′
d:

SELECT

DISTINCT name

FROM PATIENT p, DIAGNOSIS d

WHERE name=‘Smith’ AND p.pid=‘NHI003’

AND p.pid=d.pid AND condition=‘HIV’;

we would obtain the demo database demoQ′
d
where

PATIENT

pid pname

NHI003 Smith

DIAGNOSIS

pid condition

NHI003 HIV

since t0 = (NHI003, Smith,NHI003, HIV) is a tuple that represents Q. Since Q and
Q′ are equivalent, they produce matching answers on any database, including {Smith}
when evaluated on demoQ′

d
.

9 Conclusion

This article investigated the concept of exemplars for conjunctive queries without self-
joins. A database dbQ is an L(Q)-exemplar for such a query Q if and only if for every
query Q′ ∈ L(Q), Q′ and Q have matching answers on every database if and only if
Q′ and Q have matching answers on dbQ. Therefore, having an L(Q)-exemplar dbQ
for Q reduces the query equivalence problem for Q and any Q′ ∈ L(Q) to a simple
evaluation of Q and Q′ on dbQ. As the first main contribution a construction of an
L(Q)-exemplar dbQ was given for bag semantics, the default semantics in SQL. Here,
L(Q) consists of all conjunctive queries Q′ that have the same SELECT and FROM clause
as Q, respectively, and every constant in Q′ already occurs in Q. In contrast, L(Q)-
exemplars do not always exist under set semantics. For set semantics the new concept of
a demo database shows how to use L(Q)-exemplars to generate for each query Q′ ∈ L(Q)
a database demoQ′ of singleton relations such that Q and Q′ have matching answers
on demoQ′ if and only if they have matching answers on every database. The second
main contribution is an implementation of the exemplar construction in form of the
graphical user interface Lecqter. Here, trainers can construct exemplars for a given
target queryQ, and trainees can submit queries from L(Q) to find out whether their query
is semantically correct, that is, equivalent to Q. The benefits for learning conjunctive
queries using Lecqter have been emphasized throughout the article. The third main
contribution is a detailed performance analysis of Lecqter in terms of the size of the
exemplars it constructs and the time required for their construction. Exemplars may
contain exponentially many tuples in the number of participating attributes, yet they
are able to separate exponentially many non-equivalent queries in that size. It was found

32

that the worst cases, when the size and time are exponential in that of the input, are
unlikely to occur, yet their construction is still efficient for learning how to write sound
conjunctive queries. The general problem of deciding whether a given database is an
exemplar for a given conjunctive query appears to be difficult - and its time complexity
is not obvious. Therefore, our construction of exemplars is particularly useful. Indeed,
trainers can construct exemplars and populate them with real-world values.

10 Future Work

Several directions for future work arise from the research. Theoretically speaking, the
most prominent related problem is to identify the exact time complexity of deciding the
containment problem for conjunctive SQL queries, or in other words, for conjunctive
queries under bag semantics. Despite several attempts, the problem has remained open
for the last twenty years [4, 9, 10, 13, 14]. Similarly, it would be interesting to study the
time complexity of deciding whether a given database is an exemplar for a given conjunc-
tive query under bag semantics. It would also be valuable to increase the expressivity
of the query language for which exemplars do exist, and to appropriately extend our
techniques regarding their construction. In fact, we have shown that our construction
requires just a simple extension to cover the case where arbitrary constants can occur
in the user query. In that case tuple pairs are required to represent queries, as a query
Q′ (Q may now select the tuple t0 that previously represented Q by itself. For example,
by adding the equality p.pid=‘p1’ to the WHERE clause of our target query Q from Ex-
ample 1 we obtain a query Q′ (Q. The tuple t0 from Example 4 that represented Q so
far by itself now also satisfies φQ′ . However, by adding another tuple t̄0 that represents
Q, but uses different values from those in t0 wherever possible, it can be ensured that t0
and t̄0 both satisfy Q′ if and only if Q ⊆ Q′ holds. In our example we may add the tuple
t̄0=(c7,Jack,p0,scanner,c7,p0,3/9/2014,86). The resulting theory is more involved than
that presented in the current article, and warrants follow-up research. This holds even
more so in the case of self-joins.

Another challenge is to investigate the problems of this article in the context of
database constraints that naturally put restrictions on the patterns that can occur in
databases [11]. Here the problem changes significantly as equality-generating constraints
such as keys or functional dependencies may enforce some equalities that result in the
equivalence of queries that are not equivalent in the absence of the constraints. The same
applies to tuple-generating constraints such as foreign keys and multivalued dependencies.

Practically speaking, the next step would be to conduct empirical investigations re-
garding the usability of Lecqter within real teaching environments. Therefore, it would
be interesting to observe groups of students in learning conjunctive SQL queries with and
without the support of Lecqter. This should provide insight into the extent to which
the tool can help trainees learn, but also the extent to which the tool helps trainers save
time that they can use instead for other important tasks such as discussions.

Another sensible next step would be to exploit the application for the automated
marking of conjunctive SQL queries in database courses, and see whether it effectively
reduces the complexity of marking and the amount of time that trainers spend on mark-

33

ing. In this direction it would be interesting to identify the complexity of queries that
offer the right amount of flexibility to assign appropriate marks.

References

[1] M. Andreesen. Why software is eating the world. http://online.wsj.com/news/
articles/SB10001424053111903480904576512250915629460, 2011.

[2] K. Bache and M. Lichman. UCI machine learning repository, 2013.

[3] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries
in relational data bases. In STOC, pages 77–90, 1977.

[4] S. Chaudhuri and M. Y. Vardi. Optimization of real conjunctive queries. In Proceed-
ings of the Twelfth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, pages 59–70. ACM, 1993.

[5] S. Doherty. The future of enterprise data: RDBMS will be there. http:

//insights.wired.com/profiles/blogs/the-future-of-enterprise-data\

#axzz2owCB8FFn, 2013.

[6] R. Fagin. Horn clauses and database dependencies. J. ACM, 29(4):952–985, 1982.

[7] Free Software Foundation Inc. SQLTUTOR. http://sqltutor.fsv.cvut.cz/

cgi-bin/sqltutor.

[8] S. Hartmann, M. Kirchberg, and S. Link. Design by example for SQL table defini-
tions with functional dependencies. VLDB J., 21(1):121–144, 2012.

[9] Y. E. Ioannidis and R. Ramakrishnan. Containment of conjunctive queries: Beyond
relations as sets. ACM Trans. Database Syst., 20(3):288–324, 1995.

[10] T. S. Jayram, P. G. Kolaitis, and E. Vee. The containment problem for real conjunc-
tive queries with inequalities. In Proceedings of the Twenty-Fifth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, pages 80–89,
2006.

[11] D. S. Johnson and A. C. Klug. Testing containment of conjunctive queries under
functional and inclusion dependencies. J. Comput. Syst. Sci., 28(1):167–189, 1984.

[12] J. Kay, P. Reimann, E. Diebold, and B. Kummerfeld. MOOCs: So many learners,
so much potential .. IEEE Intelligent Systems, 28(3):70–77, 2013.

[13] P. G. Kolaitis. The query containment problem: Set semantics vs. bag semantics. In
Proceedings of AMW, volume 1087 of CEUR Workshop Proceedings. CEUR-WS.org,
2013.

[14] S. Kopparty and B. Rossman. The homomorphism domination exponent. Eur. J.
Comb., 32(7):1097–1114, 2011.

34

[15] H. Mannila and K.-J. Räihä. Design by example: An application of Armstrong
relations. J. Comput. Syst. Sci., 33(2):126–141, 1986.

[16] H. Mannila and K.-J. Räihä. Test data for relational queries. In Proceedings of
the Fifth ACM SIGACT-SIGMOD Symposium on Principles of Database Systems,
pages 217–223, 1986.

[17] H. Mannila and K.-J. Räihä. Automatic generation of test data for relational queries.
J. Comput. Syst. Sci., 38(2):240–258, 1989.

[18] Mediawiki. SQLZoo. http://sqlzoo.net/wiki/SELECT_basics.

[19] S. Moiseenko, O. Lysenko, D. Valuev, V. Dolgopolov, E. Krasovskij, P. Kurochkin,
A. Maistrenko, and V. Kalinkin. SQLEXERCISE. http://www.sql-ex.ru/

exercises.php.

[20] M. Orlov. Efficient generation of set partitions. Technical report, University of Ulm,
2002.

[21] J. D. Ullman. Gradiance on-line accelerated learning. In ACSC, pages 3–6, 2005.

[22] M. Y. Vardi. Will MOOCs destroy academia? Commun. ACM, 55(11):5, 2012.

35

