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Abstract

The data deluge is defined by increasing amounts of large data with increasing degree
of uncertainty. In a recent response, probabilistic databases are receiving a great deal of
interest from research and industry. One popular approach to probabilistic databases is to
extend traditional relational database technology to handle uncertainty. In this approach
probabilistic databases are probability distributions over a collection of possible worlds of
relational databases. On the one hand, research has seen various efforts to extend query
evaluation from relational to probabilistic databases. On the other hand, updates have
not received much attention at all. In this paper we show that well-known syntactic nor-
mal form conditions capture probabilistic databases with desirable update behavior. Such
behavior includes the absence of data redundancy, insertion, deletion, and modification
anomalies. We further show that standard normalization procedures can be applied to
standard representations of probabilistic databases to obtain database schemata that satisfy
the normal form condition, and can thus be updated efficiently.

Keywords: Data redundancy, Normal form, Probabilistic data, Schema design, Uncertainty,
Update anomaly

1 Introduction
Major challenges such as climate change, finding new sources of energy, curing diseases and
overcoming poverty engage thousands of people globally. In addressing these challenges we
have created a data deluge that makes it necessary to manage increasingly large sets of increas-
ingly uncertain data [57]. There are different roots of uncertainty ranging from measurement

1



errors in sensor data, ambiguity in natural language processing for information extraction, tol-
erating uncertainty to reduce the cost of data cleaning in business intelligence, or even in-
troducing uncertainty to guarantee a higher level of data privacy [17]. Traditional database
technology was designed for applications with certainty in data, including payroll and inven-
tory. However, the desire of users to get more out of large volumes of uncertain data highlights
the need for generic tools to manage uncertain data.

Probabilistic databases aim to extend standard relational database technology to handle un-
certain data. In contrast to relational databases where a tuple is either present or not, tuples
in probabilistic databases are present with some probability. One popular approach is to de-
fine probabilistic databases as probability spaces over a collection of possible worlds, each of
which is a relational database. That is, the exact state of the database is given by a probability
distribution. The following example illustrates these concepts on the running example we will
utilize in this paper.

Example 1 As a simple running example we consider probabilistic database over a single
relation schema where suppliers deliver articles from a location at a cost.

World w1 with P (w1) = 0.3
article supplier location cost
mypad pear wuhan 780

myphone pear phuket 350

World w2 with P (w2) = 0.7
article supplier location cost
urpad mango busan 760
urpad mango tokyo 760

urphone mango tokyo 375
urphone mango busan 375

Each possible world in the probabilistic database satisfies the integrity constraints that cap-
ture important business rules that hold in this domain. For example, each world satisfies the
functional dependencies that a supplier is uniquely determined by an article; and that the cost
is uniquely determined by an article and the location it is supplied from. Furthermore, the
worlds satisfy the multivalued dependency that the set of locations a supplier supplies from is
uniquely determined by the supplier, independently of the article and the cost of its supply.

As probabilistic databases are probability spaces over worlds of relational databases their
schema designs can be affected by poor performance behavior under queries and updates.
While the processing of queries has been the subject of recent research endeavors [3, 18, 55,
57], updates have not yet received much attention at all. One classic lesson learned from re-
lational databases is that the query and update load of a database must be considered together.
In particular, efficient query evaluation benefits from high levels of data redundancy while ef-
ficient update processing benefits from low levels of data redundancy [1]. It is no surprise that
probabilistic databases follow the same trade-off pattern. In Example 1, for instance, world w2

suffers from several occurrences of redundant data values, e.g., any occurrence of banana or
375 can already be inferred from the remaining data values and the business rules. Data value
redundancy is commonly an indicator for inefficiencies with updates.

Contribution. For these reasons it is desirable to have available a normalization theory
for probabilistic databases, similar to that for relational databases [1, 12, 22, 63]. There are
different approaches to normalize probabilistic databases, but in this paper we will focus on
the popular approach of defining probabilistic databases as probability spaces over worlds of
relational databases. Our contributions are as follows:
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• We provide a simple, general and mathematically precise semantics for including in-
tegrity constraints in the definition of probabilistic databases. The definition can be used
in future research to investigate several classes of integrity constraints, and therefore
incorporate more semantics into probabilistic databases.

• We propose several semantic normal form conditions for probabilistic databases. These
include a normal form that eliminates local data redundancy in terms of the expressive
combined class of functional and multivalued dependencies from any worlds in a prob-
abilistic database. It further includes normal forms that eliminate update anomalies in
terms of insertions, deletions, and modifications in probabilistic databases.

• We show that the Fourth Normal Form, well-known from relational databases [22, 63],
is equivalent to most of these semantic normal forms for probabilistic databases. Fourth
Normal Form reduces to Boyce-Codd-Heath normal form [16, 39] when the given sets
of constraints are functional dependencies only. Hence, these normal forms guarantee
the same efficient update behavior for probabilistic databases as they do for relational
databases [63]; when probabilistic databases are naturally defined as probability spaces
over worlds of relational databases.

• Finally, we propose to normalize database schemata for probabilistic databases by apply-
ing normalization techniques to standard representations of the probabilistic databases.
Recent research has shown that some of the representations of probabilistic databases
guarantee that uncertain information can be queried efficiently by standard relational
technology. Our approach to normalization further shows that uncertain information can
also be updated efficiently by standard relational technology. This is achieved by making
available standard relational normalization theory to standard representations of proba-
bilistic databases.

Organization. We summarize related work in Section 2. We define the model of probabilistic
databases in Section 3, including integrity constraints used to capture the semantics of appli-
cation domains. Here, we also summarize previous relevant findings on the class of functional
and multivalued dependencies. In Section 4 we define a semantic normal form that guarantees
the absence of any redundant data value occurrences in any world of any probabilistic database.
We show that the Fourth Normal Form characterizes this semantic normal form syntactically,
for the case of functional and multivalued dependencies. For functional dependencies alone,
the Boyce-Codd-Heath Normal Form achieves this. We propose several semantic normal forms
regarding the absence of any insertion, deletion, and different types of modification anomalies
from updates on any worlds of any probabilistic database in Section 5. A syntactic character-
ization is established for each of these semantic normal forms, which in most cases equates
to the Fourth Normal Form in the general case, and to Boyce-Codd-Heath Normal Form in
the case of just functional dependencies. In Section 6 we propose to normalize probabilis-
tic databases by normalizing their standard representations, for example, in the form of BID
databases. We conclude in Section 7 where we also comment on future work.
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2 Related Work
Probabilistic database have become a hot topic due to the need to handle uncertain data in
many applications. Any probabilistic database can be represented in form of either PC-tables,
tuple-independent databases together with relational algebra views, block-independent-disjoint
databases together with conjunctive query views, or U-databases [57]. Querying techniques
range from extensional to intensional techniques. In extensional query evaluation, the proba-
bility of a tuple to belong to a query answer can be processed efficiently by an SQL engine; but
not all queries can be processed correctly this way. In intensional query evaluation, any query
can be processed, but the data complexity of a query can be ]P -hard [57]. Different prototypes
of probabilistic databases exist, including Mystiq [18], Trio [55], and MayBMS [3].

Handling uncertain data by extending relational technology has several advantages, in par-
ticular the mature technology and the trust from its user base. The relational database industry
is worth an estimated 32 billion US dollars [52]. After almost 40 years in use, relational
database systems still dominate the market today and influence new paradigms [2]. Web mod-
els are applied primarily to roll-out, exchange and integrate data that are commonly relational
[53]. Many websites, e.g. Facebook, and distributed applications, e.g. e-commerce, require
high scalability, but their core data stores and services remain relational [53].

Relational normalization theory is rich and deep. The present paper shows how probabilis-
tic databases can apply this theory. Functional dependencies (FDs) were already proposed by
Codd [14], and Delobel, Fagin, and Zaniolo independently introduced multivalued dependen-
cies (MVDs) [22]. The implication problem of FDs and MVDs is finitely axiomatisable [10],
can be decided in almost linear time [25] and enjoys a strong correspondence to logic [54].
These results have recently been extended to SQL [35]. Third Normal Form (3NF) [12, 45],
Boyce-Codd-Heath Normal Form (BCHNF) [16, 39], and Fourth Normal Form (4NF) [22, 66]
are standard teaching material. Vincent demonstrated what these syntactically defined normal
forms actually achieve on the semantic level [63], in terms of the absence of data redundancy
and update anomalies. Note that data redundancy may still occur, e.g. in terms of other data
dependencies such as join, embedded multivalued or inter-relational dependencies [46].

Work on normalization in probabilistic databases is rather limited. Dalvi, Ré and Suciu note
that Şto date there exists no comprehensive theory of normalization for probabilistic databases"
[17]. Noticeably, two other papers have studied normalization in the context of probabilistic
databases. Dey and Sarkar [20] introduce stochastic dependencies as generalizations of FDs
to model the dependency between the probability distribution of attributes. The work is not
founded on the possible world semantics. Finally, Das Sarma, Ullman and Widom study vari-
ous classes of FDs over uncertain relations [56]. While they do found their work on a possible
world semantics, the possible worlds originate from alternatives of tuples, which is their main
construct for uncertainty. Probabilistic databases, normal forms and their semantic justification
are out of that work’s scope. This, however, is the focus of this paper.

3 Probabilistic Databases and Data Dependencies
We give the main definitions for the data model, and introduce integrity constraints as first-class
citizens of probabilistic databases. Results on FDs and MVDs are summarized.
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3.1 Relational databases
First we fix standard relational database terminology [1].

As usual, we assume that there is a countably infinite set A of symbols, whose elements we
call attributes. Each attribute A ∈ A has an at most countable set dom(A) as its domain, i.e.,
the set of possible values associated with an attribute.

Let R denote some finite, non-empty set of attributes from A. A tuple over R is a function
t : R → ∪A∈Rdom(A) such that for all A ∈ R, t(A) ∈ dom(A) holds. For some X ⊆ R
we write t(X) to denote the projection of t onto X . An R-local integrity constraint over R
is a function i that maps a finite set r of tuples over R to {0, 1}. If i(r) = 1, we say that r
satisfies i. Popular classes of local integrity constraints are keys, functional dependencies, and
multivalued dependencies; which we define later on.

A relation schema is a pair (R,ΣR) where R is a finite, non-empty set of attributes from A,
and ΣR is a set of R-local integrity constraints. A relation over (R,ΣR) is a finite set of tuples
over R that satisfies all elements of ΣR.

Let D = {(R1,Σ1), . . . , (Rk,Σk)} denote a finite set of relation schemata. A D-global
integrity constraint over D is a function i that maps a finite set d = {r1, . . . , rk} of relations
ri over relation schema (Ri,Σi), i = 1, . . . , k, to {0, 1}. If i(d) = 1, we say that d satisfies
i. Popular classes of global integrity constraints are foreign keys, inclusion dependencies,
and cardinality constraints. They are outside the scope of this paper, but model important
application semantics.

A database schema is a pair (D,Σ) where D = {(R1,Σ1), . . . , (Rk,Σk)} is a finite, non-
empty set of relation schemata, and Σ is a set of D-global integrity constraints. A relational
database over (D,Σ) is a set d = {r1, . . . , rk} that satisfies every σ ∈ Σ, and where for
i = 1, . . . , k, ri is a relation over (Ri,Σi).

3.2 Probabilistic databases
In recent popular approaches to probabilistic databases, uncertainty is modeled by allowing
different relational databases to co-exist [57]. Each of them represents a possible world, comes
associated with a weight between 0 and 1, and the weights sum up to 1. In a subjectivist
Bayesian interpretation, one of the possible worlds represents the ŞtrueŤ relational database.
However, we are uncertain about the true world, and the probabilities represent degrees of
belief in the various possible worlds. This model can be formalized by the following definition.

Definition 1 A probabilistic database over a database schema (D,Σ) is a probability space
(W,P ) over the finite set W of relational databases over (D,Σ). That is, P : W → (0, 1] such
that

∑
w∈W P (w) = 1. Each element of W is called a possible world of W.

Example 2 Recall Example 1 where (D,Σ) consists of the single relation schema

R = {article, supplier, location, cost}

and the set ΣR of consists of the three business rules mentioned. The set Σ ofD-global integrity
constraints is empty. Example 1 also shows the setW of two possible worldsw1 andw2, each of
which satisfies all of the business rules, and are thus relations over (R,ΣR). The probabilities
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P (w1) = 0.3 and P (w2) = 0.7 sum up to 1, and (W,P ) is therefore a probability space over
W . That is, (W,P ) is a probabilistic database.

Definition 1 is purposefully more general than we require here. For the remainder of this
article the set Σ of global constraints will be empty, as is the case in the running example. That
means we will not be concerned with constraints between different relation schemata, including
referential integrity constraints. Our more general definition has the purpose to encourage
further research into this subject, and promote integrity constraints as first-class citizens of
probabilistic databases, similar to their role in relational databases [1].

Definition 1 is a simple, intuitive and natural definition of a probabilistic database. It meets
the requirements of the discussion from the beginning of this section. As part of this definition
of a probabilistic database (W,P ), every relation r over some relation schema (R,ΣR) that
occurs in some possible world w ∈ W satisfies all constraints in ΣR. This is a natural way
to model integrity constraints, whose purpose is to constrain instances to those considered
meaningful for the application at hand. For probabilistic databases, specifically, this means that
a world is considered possible only if it satisfies the integrity constraints. For the remainder
of this article our attention will focus on the expressive combined class of FDs and MVDs.
In Section 7 we briefly discuss other approaches towards integrity constraints in probabilistic
databases.

3.3 Keys, Functional and Multivalued Dependencies
Keys, functional and multivalued dependencies play a fundamental role in database design
and facilitate many data processing tasks. Literature on these dependencies in the relational
model include [6, 8, 9, 10, 11, 12, 15, 19, 21, 23, 25, 31, 41, 47, 48, 49, 50, 51, 54, 59, 63],
in conceptual models [44, 61, 62, 65], in models that incorporate incomplete information [7,
28, 29, 35, 42, 43, 58], in nested data models [24, 26, 36, 30, 37, 32, 60], and more recently in
XML [4, 5, 13, 27, 33, 34, 38, 40, 64].

Let R denote a finite set of attributes. A functional dependency (FD) over R is a statement
X → Y where X, Y ⊆ R. The FD X → Y over R is satisfied by a finite set r of tuples over
R if and only if for all t1, t2 ∈ r the following holds: if t1(X) = t2(X), then t1(Y ) = t2(Y ).
We call X → Y trivial whenever Y ⊆ X , and non-trivial otherwise.

A multivalued dependency (MVD) over R is a statement X � Y where X, Y ⊆ R. The
MVDX � Y overR is satisfied by a finite set r of tuples overR if and only if for all t1, t2 ∈ r
the following holds: if t1(X) = t2(X), then there is some t ∈ r such that t(XY ) = t1(XY )
and t(X(R − Y )) = t2(X(R − Y )). We call X � Y trivial whenever Y ⊆ X or XY = R,
and non-trivial otherwise.

For a set Σ of R-local integrity constraints, we say that a finite set r of tuples over R
satisfies Σ if r satisfies every σ ∈ Σ.

Constraints interact with one another. Let Σ ∪ {ϕ} be a set of FDs and MVDs over R. We
say that Σ implies ϕ if every finite set t of tuples over R that satisfies Σ also satisfies ϕ. For
Σ we let Σ∗ = {ϕ | Σ |= ϕ} be the semantic closure of Σ, i.e., the set of all FDs and MVDs
implied by Σ. In order to determine the logical consequences we use a syntactic approach by
applying inference rules, e.g. those in Table 1. We let Σ `R ϕ denote the inference of ϕ from Σ
by the set R of inference rules [1]. We let Σ+

R = {ϕ | Σ `R ϕ} be the syntactic closure under
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Table 1: Axiomatization S of FDs and MVDs

XY → Y

X → Y

X → XY

X → Y Y → Z

X → Z
(reflexivity,RF) (extension, EF) (transitivity, TF)

∅� R

X � Y X � Z

X � Y Z

X � Y Y � Z

X � Z − Y
(R-axiom, CRM) (MVD union, UM) (pseudo-transitivity, TM)

X → Y

X � Y

X � Y Y → Z

X → Z − Y
(MVD implication, IFM) (mixed pseudo-transitivity, TFM)

inferences by R. A set R of inference rules is said to be sound (complete) for the implication
of FDs and MVDs if for every finite set R of attributes, and for every set Σ of FDs and MVDs
over R we have Σ+

R ⊆ Σ∗ (Σ∗ ⊆ Σ+
R). The (finite) set R is said to be a (finite) axiomatization

for the implication of FDs and MVDs if R is both sound and complete. The implication
problem for FDs and MVDs is to decide, given some finite set R of attributes and some set
Σ ∪ {ϕ} of FDs and MVDs over R, whether Σ implies ϕ. Several finite axiomatizations exist
for the implication of FDs and MVDs [10], Table 1 shows that from [31]. When we define the
syntactic normal forms later we will make reference to the set S of inference rules from Table
1, but, in fact, any finite axiomatization will have the same effect.

For a set Σ of FDs and MVDs over R, let Σk denote the set of keys of R with respect to Σ.
An FD X → R ∈ Σ+

S is called a superkey of R with respect to Σ. A superkey X → R ∈ Σ+
S

is called a key of R with respect to Σ, if there is no superkey X ′ → R ∈ Σ+
S of R with respect

to Σ where X ′ ⊂ X .

Example 3 Consider the relation schema R = {article, supplier, location, cost} from Exam-
ple 1. The business rules from that example can be formalized as FDs and MVDs over R.
Indeed, the FD article → supplier says that every article has at most one supplier, the FD
article,location → cost says that the cost of an article is determined by the article and the
location the article is supplied from. Finally, the MVD supplier � location says that the set
of locations where a supplier supplies from is determined by the supplier, independently of the
article and cost. The set ΣR, consisting of these two FDs and the MVD, imply other FDs and
MVDs. For example, the FD article→ cost or the MVD article � location. The only key of R
with respect to ΣR is article,location→ R.

For the remainder of this article we assume that all local constraints are functional and
multivalued dependencies.
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4 Data Value Redundancy in Probabilistic Databases
In this section we will propose the Probabilistic Redundancy-Free Normal Form that captures
database schemata for which no probabilistic database exists that features any redundant data
value occurrence in any possible world. From the point of view of updates and consistency, this
is highly desirable since there is no need to ever consistently update any redundant data values
- consistency enforcement would be cheap. We will then show that Fagin’s 4NF proposal,
specifically designed for relational databases, is equivalent to Probabilistic Redundancy-Free
Normal Form. Since 4NF is a syntactic normal form and can be checked efficiently, it is a
highly desirable normal form for probabilistic databases, too.

4.1 Probabilistic Redundancy-Free Normal Form
Before the definition of this semantic normal form, we need to define explicitly what a redun-
dant data value occurrence constitutes. For this, we follow the proposal by Vincent [63]. Let
(R,Σ) denote a relation schema, A an attribute of R, and t a tuple over R. A replacement of
t(A) is a tuple t̄ over R that satisfies the following conditions: i) for all Ā ∈ R− {A} we have
t̄(Ā) = t(Ā), and ii) t̄(A) 6= t(A). Intuitively, a data value occurrence in some possible world
is redundant if the occurrence cannot be replaced by any other data value without violating
some constraint in Σ.

Definition 2 Let D be a database schema, (R,Σ) a relation schema over D, A ∈ R an at-
tribute, r a relation over R, and t a tuple in r. We say that the data value occurrence t(A) is
redundant if and only if for every replacement t̄ of t(A), r̄ := (r − {t}) ∪ {t̄} is not a relation
over (R,Σ).

Example 4 Consider the worlds w1 and w2 from Example 1. Both satisfy the set ΣR of FDs
and MVDs from Example 3. However, in w1 no data value occurrence is redundant. That is,
each data value can be replaced by some other data value without violating ΣR. In w2 there
are several redundant data value occurrences. For example, any occurrence of mango cannot
be replaced by a different value since it would result in a set of tuples that does not satisfy ΣR

and would thus not be a relation over (R,ΣR).

Given this definition of redundant data value occurrence, a database schema is now said to
be in Probabilistic Redundancy-Free Normal Form if there cannot be any probabilistic database
over D that features a possible world with some redundant data value occurrence in it.

Definition 3 We say thatD is in Probabilistic Redundancy-Free Normal Form (PRFNF) if and
only if there is no probabilistic database (W,P ) over D such that there is some possible world
w ∈ W with some relation r in w over some relation schema (R,Σ) in D, some attribute
A ∈ R, and some tuple t ∈ r where the data value occurrence t(A) is redundant.

Example 5 Clearly, the database schema D consisting of (R,ΣR) from Example 3 is not in
PRFNF. The probabilistic database (W,P ) from Example 1 is a probabilistic database over D
which features the possible world w2 over (R,ΣR) in which a redundant data value occurs.

The next question is how to recognize database schemata in PRFNF, without having to
look at any probabilistic databases over this schema. In other words, we would like to have a
syntactic characterization of PRFNF.
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4.2 Syntactic Characterization of PRFNF
Fagin [22] introduced the Fourth Normal Form condition on relation schemata that charac-
terizes the absence of redundant data value occurrences caused by FDs and MVDs [63]. Let
D denote a database schema. Then D is said to be in Fourth Normal Form (4NF) if and
only if for all relation schemata (R,Σ) in D and for all non-trivial multivalued dependencies
X � Y ∈ Σ+

S we have X → R ∈ Σ+
S. Using the axiomatization S this normal form is

purely syntactic, since it does not make any reference to any (probabilistic) database. The 4NF
proposal is also cover-insensitive, i.e., for any relation schema (R,Σ) we can replace Σ by an
equivalent set of FDs and MVDs, without affecting the property of D to be in 4NF. At first
sight it appears that it might require time exponential in the size of the given constraints to
check whether a given database schema is in 4NF. However, it suffices to check the constraints
given in Σ instead of checking all the constraints in the syntactic closure Σ+

S. Indeed, D is in
4NF if and only if for all relation schemata (R,Σ) in D, for all non-trivial FDs X → Y ∈ Σ
and for all non-trivial MVDs X � Y ∈ Σ, X → R ∈ Σ+

S. Indeed, 4NF characterizes database
schemata in Probabilistic Redundancy-Free Normal Form.

Theorem 1 D is in Fourth Normal Form if and only if D is in PRFNF.

Example 6 Continuing our running example, D from Example 3 is not in 4NF. For example,
the FD article → supplier ∈ Σ, but article → location /∈ Σ+

S. Indeed, we had already
confirmed that D is also not in PRFNF.

For the special case where all constraints are functional dependencies, Boyce-Codd-Heath
Normal Form (BCHNF) characterizes PRFNF. Recall that D is in BCHNF [16, 39] if and only
if for all relation schemata (R,Σ) in D, for all non-trivial FDs X → Y ∈ Σ, X → R ∈ Σ+

S.

Corollary 1 Suppose that D is a database schema where all local constraints are functional
dependencies. ThenD is in Boyce-Codd-Heath normal form if and only ifD is in PRFNF.

5 Update Anomalies in Probabilistic Databases
In this section we will propose several semantic normal forms that guarantee the absence of
various update anomalies in any probabilistic databases. In essence, an update anomaly occurs
whenever it does not suffice to show that all minimal keys are still satisfied after an update. The
absence of such anomalies is desirable since checking key constraints is cheap, but checking
FDs and MVDs is expensive. Again, we show that several of these semantic normal forms
are equivalent to Fagin’s 4NF proposal. For the remaining cases, we establish other syntactic
characterizations.

5.1 Insertion Anomalies
Insertion anomaly normal form requires for the insertion of any tuple in any possible world of
any probabilistic database that the resulting set of tuples is a relation whenever it is a relation
with respect to all keys. Hence, it suffices to check that all keys are satisfied to permit an
insertion.
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Definition 4 D is said to be in probabilistic key-based insertion anomaly normal form (PKINF)
if and only if there is no probabilistic database (W,P ) over D such that there is some world
w ∈ W and some relation r in w over relation schema (R,Σ) in D, and some R-tuple t /∈ r
where r ∪ {t} satisfies Σk, but r ∪ {t} is not a relation over (R,Σ).

Example 7 The database schema D from Example 1 is not in PKINF. Indeed, an insertion of
the tuple (article : myphone, supplier : pear, location : wuhan, cost : 400) into w1 would result
in a set of tuples that satisfies Σk, i.e. the key article,location → R of R with respect to ΣR,
but it would violate the MVD supplier � location.

It turns out that 4NF characterizes database schemata in PKINF.

Theorem 2 D is in 4NF if and only if D is in PKINF.

5.2 Deletion Anomalies
Deletion anomaly normal form abandons the deletion of tuples from relations of any possible
world whenever the resulting set of tuples is a relation with respect to all keys, but not a relation
with respect to the set of constraints.

Definition 5 D is said to be in probabilistic key-based deletion anomaly normal form (PKDNF)
if and only if there is no probabilistic database (W,P ) over D such that there is some world
w ∈ W and some relation r in w over relation schema (R,Σ) in D, and some R-tuple t ∈ r
where r − {t} satisfies Σk, but r − {t} is not a relation over (R,Σ).

Example 8 The database schema D from Example 1 is not in PKDNF. Indeed, a deletion of
the tuple (article : urphone, supplier : mango, location : busan, cost : 375) from w2 would
result in a set of tuples that satisfies Σk, i.e. the key article,location → R of R with respect to
ΣR, but it would violate the MVD supplier � location.

If a database schema is in 4NF, then it is also in PKDNF. However, there are schemata not
in 4NF which are still in PKDNF. Such database schemata have only relation schemata whose
set of FDs and MVDs is necessarily equivalent to a set of FDs only.

Theorem 3 D is in PKDNF if and only if for every relation schema (R,Σ) in D, Σ is equiva-
lent to a set of functional dependencies.

5.3 Modification Anomalies
Modification anomaly normal forms abandon the modification of tuples from relations in any
possible world whenever the resulting set of tuples maintains key uniqueness, but is not a
relation with respect to the set of constraints. In practice, it is often desirable to maintain the
identity of a tuple during modification. Since, in general, there can be multiple keys, there are
several possible interpretations of maintaining the identity of a tuple: values on some key are
maintained, values on the primary key are maintained, or values on every key are maintained.
These interpretations result therefore in four different normal form proposals.
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Definition 6 D is said to be in probabilistic key-based modification normal form of type 1,
type 2, type 3, type 4, respectively, (PKMNFi for i = 1, . . . , 4) if and only if there is no
probabilistic database (W,P ) over D such that there is some world w ∈ W and some relation
r in w over relation schema (R,Σ) in D, and some R-tuples t ∈ r and t′ /∈ r

• with t(K) = t′(K) for some key K with respect to Σ (for type 2),

• with t(K) = t′(K) for the primary key K with respect to Σ (for type 3),

• with t(K) = t′(K) for all keys K with respect to Σ (for type 4), respectively,

where (r − {t}) ∪ {t′} satisfies Σk, but (r − {t}) ∪ {t′} is not a relation over (R,Σ).

Example 9 The database schemaD from Example 1 is not in PKMNFi for any i ∈ {1, . . . , 4}.
Indeed, a modification of the tuple (article : urphone, supplier : mango, location : busan, cost :
375) from w2 to (article : urphone, supplier : pear, location : busan, cost : 375) would result
in a set of tuples that satisfies Σk, i.e. the key article,location → R of R with respect to ΣR,
but it would violate the MVD supplier � location. Note that the modified tuple matches the
replaced tuple on all keys of R with respect to ΣR (there is only the key article,location→ R).

It turns out that the first three normal forms for modification anomalies can be characterized
by BCHNF in the case of FDs only, and by 4NF in the general case (assuming that some non-
trivial FD occurs).

Theorem 4 Let D be a database schema in which every relation schema (R,Σ) has a set
Σ of functional dependencies only. Then BCHNF, PKMNF1, PKMNF2, and PKMNF3 are
equivalent.

Theorem 5 Let D be a database schema in which every relation schema (R,Σ) is such that Σ
contains some non-trivial FD. Then 4NF, PKMNF1, PKMNF2, and PKMNF3 are equivalent.

The remaining normal form, PKMNF4, can be characterized by a different normal form.
For that, we require a few more definitions. We call a set Σ of FDs and MVDs reduced, if
there is no dependency σ ∈ Σ such that Σ− {σ} |= σ, and for every MVD X � Y ∈ Σ (FD
X → Y ∈ Σ) there is no MVD X ′ � Y ′ ∈ Σ+

S (FD X ′ → Y ′ ∈ Σ+
S) where X ′ ⊂ X or

∅ ⊂ Y ′ ⊆ Y holds. An attribute A ∈ R is said to be prime with respect to Σ if A ∈ X for
some key X → R of R with respect to Σ. Let Σ denote a reduced set of FDs. Then (R,Σ) is
in prime attribute normal form (PANF), if for every FD X → A ∈ Σ, either X is a key of R
with respect to Σ, or every attribute of XA is prime with respect to Σ. D is in PANF, if every
relation schema (R,Σ) of D is in PANF.

Theorem 6 Let D be a database schema in which every relation schema (R,Σ) has a set Σ of
functional dependencies only. Then D is in PKMNF4 if and only if D is in PANF.

An MVD X � Y in a set Σ of FDs and MVDs over R is said to be pure if it is non-trivial,
X → Y /∈ Σ+

S and X → R−XY /∈ Σ+
S.

Theorem 7 Let D be a database schema in which every relation schema (R,Σ) has a set Σ
that contains some pure MVD. Then D is in PKMNF4 if and only if for every relation schema
(R,Σ) in D, every attribute of R is prime with respect to Σ.

11



6 Normalization
The goal of this section is to address how the syntactic normal forms can actually be achieved,
in order to guarantee efficient processing of updates on probabilistic databases.

Definition 1 does not suggest a practical representation of probabilistic data. When the
number of possible worlds is very large, it becomes infeasible to enumerate all possible worlds
explicitly. Recent research on probabilistic databases has established several representation
systems that provide means to represent any probabilistic database concisely [57]. These rep-
resentation systems are used to evaluate queries on probabilistic databases efficiently. It is
therefore our simple proposition to apply standard relational normalization techniques to the
relational part of the representations of probabilistic databases. We describe this approach on
block-independent-disjoint databases, or BID databases for short.

A BID database, is a probabilistic database where tuples are partitioned into blocks, such
that all tuples in a block are mutually-exclusive probabilistic events, and all tuples from differ-
ent blocks are independent probabilistic events. BID databases are a complete representation
formalism of probabilistic databases when coupled with views expressed as conjunctive queries
[57]. Indeed, one can add to each set R of attributes a new attribute K which represents unique
identifiers for each possible world. Tuples from different possible worlds can thus be stored in
a single relation, and distinguished by their possible world identifier. The possible worlds are
stored over a BID schema with the singleton attributeK representing each possible world by an
identifier k. The original probability distribution P where P (w) = pi is simply represented by
setting P (k) := pk. The original possible worlds can then easily be recovered by a conjunctive
query view definition over the BID representation.

The crucial observation is that this BID representation also preserves the semantics given
by the integrity constraints. Indeed, w1, . . . , wn are possible worlds of (R,Σ) if and only if⋃n

i=1{i} × wi is a relation over ({K} ∪ R,KΣ) where KΣ = {KX → Y | X → Y ∈
Σ} ∪ {KX � Y | X � Y ∈ Σ}.

We therefore propose to normalize a probabilistic database by first representing the proba-
bilistic database as a BID database, and then apply standard relational normalization techniques
to the relation schemata ({K} ∪ R,KΣ) of the representation. These techniques may include
BCHNF- and 4NF-decomposition, or 3NF synthesis [1, 12, 22]. We illustrate our proposal by
a 4NF-decomposition of the running example.

Example 10 The following database is a BID representation of the probabilistic database from
Example 1. The possible worlds are represented by unique values on the extra attribute K, i.e.
world w1 by value 1 and world w2 by value 2, and the world table features the probability
distribution.

Article A
K article supplier cost
1 mypad pear 780
1 myphone pear 350
2 urpad mango 760
2 urphone mango 375

Location L
K article location
1 mypad wuhan
1 myphone phuket
2 urpad tokyo
2 urpad busan
2 urphone tokyo
2 urphone busan

World Table W
K P
1 0.3
2 0.7

12



Figure 1: Achievements of BCHNF and 4NF for Probabilistic Databases

This relational database, i.e. the part without the world table, is in 4NF. In particular, it does
not feature any redundant data value occurrences. The original database D is the conjunctive
query view defined by:

D(xa, xs, xc, xl) : −A(k, xa, xs, xc), L(k, xa, xl),W (k) .

Note that the decomposition into A(k, xa, xs, xc) and L(k, xa, xl) is a result of the functional
dependency that the cost and supplier are functionally determined by the article and K, an FD
implied by the constraints in Example 1 and the representation as a BID database.

7 Conclusion and Future Work
Probabilistic databases aim to manage efficiently large amounts of uncertain data. A popular
approach is to define probabilistic databases as probability spaces over collections of possible
worlds that are relational databases. Recent research has demonstrated that most queries over
probabilistic databases can be handled efficiently by following this approach. The present paper
shows further that this approach provides a simple, precise and natural framework to model
the semantics of applications by relational integrity constraints. In particular, the findings on
normal forms, their semantic justification, and normalization apply to probabilistic databases,
too. Figure 1 contains a summary of what well-known syntactic normal forms achieve for
probabilistic databases.

In future work, one should address global integrity constraints and their associated normal
forms, as well as soft approaches to integrity constraints. For example, one may define a
probabilistic functional dependency as a pair (X → Y, p) that is satisfied by a probabilistic
database whenever the probabilities of the possible worlds in which X → Y is satisfied sum
up to a value at least as big as p.
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