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Abstract. We present and study new definitions of universal and programmable universal unary functions and
consider a new simplicity criterion: almost decidability of the halting set. A set of positive integers S is almost
decidable if there exists a decidable and generic (i.e. a set of natural density one) set whose intersection with S is
decidable. Every decidable set is almost decidable, but the converse implication is false. We prove the existence
of infinitely many universal functions whose halting sets are generic (negligible, i.e. have density zero) and (not)
almost decidable. One result—namely, the existence of infinitely many universal functions whose halting sets
are generic (negligible) and not almost decidable—solves an open problem in [9]. We conclude with some open
problems.
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1. Universal Turing Machines and Functions

The first universal Turing machine was constructed by Turing [19, 20]. In Turing’s words:

. . . a single special machine of that type can be made to do the work of all. It could in fact be made to
work as a model of any other machine. The special machine may be called the universal machine.

Shannon [18] proved that two symbols were sufficient for constructing a universal Turing machine providing
enough states can be used. According to Margenstern [12]: “Claude Shannon raised the problem of what is now
called the descriptional complexity of Turing machines: how many states and letters are needed in order to get
universal machines?” Notable universal Turing machines include the machines constructed by Minsky (7-state
4-symbol) [15], Rogozhin (4-state 6-symbol) [17], Neary–Woods (5-state 5-symbol) [16]. Herken’s book [10]
celebrates the first 50 years of universality. Woods and Neary presents a survey in [21]; Margenstern’s paper [12,
p. 30–31] presents also a time line of the main results.

www.cs.auckland.ac.nz/~cristian
desfontain.es/serious.html
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Roughly speaking, a universal machine is a machine capable of simulating any other machine. There are a few
definitions of universality, the most important being universality in Turing’s sense and programmable universality
in the sense of Algorithmic Information Theory [1, 7].

In the following we denote by Z+ the set of positive integers {1, 2, . . .}, and Z+
= Z+[{1}. The cardinality of

a set S is denoted by #S. The domain of a partial function F : Z+ �! Z+ is dom(F ) = {x 2 Z+ | F (x) 6= 1}.
We assume familiarity with the basics of computability theory [6, 13].

We define now universality for unary functions.
A partially computable function U : Z+ �! Z+ is called (Turing) universal if there exists a computable

function CU : Z+ ⇥ Z+ �! Z+ such that for any partially computable function F : Z+ �! Z+ there exists an
integer gU,F (called a Gödel number of F for U ) such that for all x 2 Z+ we have: U (CU (gU,F , x)) = F (x).

Following [14, 3] we say that a partially computable function U : Z+ �! Z+ is programmable universal if for
every partially computable function F : Z+ �! Z+ there exists a constant kU,F such that for every x 2 Z+ there
exists y  kU,F · x with U(y) = F (x).

1

Theorem 1. A partially computable function U : Z+ �! Z+ is programmable universal iff there exists a partially
computable function CU : Z+ ⇥ Z+ �! Z+ such that for any partially computable function F : Z+ �! Z+ there
exist two integers gU,F , cU,F such that for all x 2 Z+ we have

U (CU (gU,F , x)) = F (x) (1)

and
CU (gU,F , x)  cU,F · x. (2)

Proof:
First we construct a partially computable function V : Z+ �! Z+ and a partially computable function CV : Z+ ⇥
Z+ �! Z+ such that for every partially computable function F , (1) and (2) are satisfied. Indeed, the classical
Enumeration Theorem [6] shows the existence of a partial computable function � : Z+ ⇥Z+ �! Z+ such that for
every partial computable function F : Z+ �! Z+ there exists e 2 Z+ such that F (x) = �(e, x), for all x 2 Z+.
Consider the computable function f : Z+ ⇥ Z+ �! Z+ such that the binary expansion of f(e, x) is obtained by
prefixing the binary expansion of x with the binary expansion of 2e+ 1. Then ↵ is injective because if e1e2 . . . en
and x1x2 . . . xm are the binary expansions of e and x, respectively, then e10e20 . . . en1x1x2 . . . xm is the binary
expansion of f(e, x) from which we can uniquely recover e and x. If f1, f2 : Z+ �! Z+ are computable partial
inverses of f , i.e. f(f1(x), f2(x)) = x, for all x 2 f(Z+⇥Z+

), then the function V (x) = �(f1(x), f2(x)) has (1)
and (2) for CV = f .2

Let U be programmable universal, that is, for every partially computable function F : Z+ �! Z+ there exists
a constant kU,F such that for every x 2 Z+ there exists y  kU,F · x with U(y) = F (x). We shall use V to prove
that U satisfies the condition in the statement of the theorem.

Let b : Z+ ⇥ Z+ �! Z+ be a computable bijection and b1, b2 the components of its inverse.
We define the partially computable function CU as follows. We consider first the set S(z, x) = {y 2 dom(U) |

y  b1(z) · x, U(y) = V (CV (b2(z), x))} and then we define CU (z, x) to be the first element of S(z, x) according
to some computable enumeration of dom(U). Formally, let E be a computable one-one enumeration of dom(U)

and define

CU (z, x) = E (inf{y | E(y)  b1(z) · x and U(E(y)) = V (CV (b2(z), x))}) .
1For the programming-oriented reader we note that the property “programmable universal” corresponds to being able to write a compiler.
2This construction suggests that the function CU may be taken to be computable.
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We now prove that U satisfies the condition in the statement of the theorem via CU . To this aim let F be a
partially computable function and let gV,F , cV,F be the constants associated to V and F .

Put gU,F = b(kU,F , gV,F ) and cU,F = kU,F .

We have:

CU (gU,F , x) = E (inf{y | E(y)  b1(gU,F ) · x and U(E(y)) = V (CV (b2(gU,F ), x))})
= E (inf{y | E(y)  kU,F · x and U(E(y)) = V (CV (gV,F , x))})
= E (inf{y | E(y)  kU,F · x and U(E(y)) = F (x)})
 kU,F · x = cU,F · x,

and U(CU (gU,F , x)) = F (x).
Conversely, if V satisfies (1) and (2) with the partially computable function CV , then V is programmable

universal: given a partially computable function F and x 2 Z+, y = CV (gV,F , x) and kV,F = cV,F . ut

Universal and programmable universal functions exist and can be effectively constructed. Every programmable
universal function is universal, but the converse implication is false.

2. The Halting Set and Almost Decidability

Interesting classes of Turing machines have decidable halting sets: for example, Turing machines with two letters
and two states [12]. In contrast, the most (in)famous result in computability theory is that the halting set Halt(U) =

dom(U) of a universal function U is undecidable.
However, the halting set Halt(U) is computably enumerable (see [6, 13]). How “undecidable” is Halt(U)?

To answer this question we formalise the following notion: a set S is “almost decidable” if there exists a “large”
decidable set whose intersection with S is also decidable. In other words, the undecidability of S can be located to
a “small” set.

To define “large” sets we can employ measure theoretical or topological tools adapted to the set of positive
integers (see [1]). In what follows we will work with the (natural) density on P (Z+

). Its motivation is the
following. If a positive integer is “randomly” selected from the set {1, 2, . . . , N}, then the probability that it
belongs to a given set A ⇢ Z+ is

pN (A) =

# ({1, . . . , N} \A)

N

.

If limN�!1 pN (A) exists, then the set A ⇢ Z+ has density:

d (A) = lim

N�!1

# {1  x  N | x 2 A}
N

.

Definition 2. A set is generic if it has density one; a set of density zero is called negligible. A set S ⇢ Z+ is almost
decidable if there exists a generic decidable set R ⇢ Z+ such that R \ S is decidable.

Every decidable set is almost decidable, but, as we shall see below, there exist almost decidable sets which are
not decidable. A set which is not almost decidable contains no generic decidable subset; of course, this result is
non-trivial if the set itself is generic.

Theorem 3. ([9], Theorem 1.1)
There exists a universal Turing machine whose halting set is negligible and almost decidable (in polynomial time).
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A single semi-infinite tape, single halt state, binary alphabet universal Turing machine satisfies Theorem 3;
other examples are provided in [9].

Negligibility reduces to some extent the power of almost decidability in Theorem 3. This deficiency is overcome
in the next result: the price paid is in the redundancy of the universal function.

Proposition 4. There exist infinitely many universal functions whose halting sets are generic and almost decidable
(in polynomial time).

Proof:
Let V be a universal function and define U by the formula:

U(x) =

(
V (y), if x = y

2, for some y 2 Z+
,

0, otherwise .

Clearly, U is universal, Halt(U) is generic, the set S = {y 2 Z+ | y 6= x

2 for every x 2 Z+} is generic and
decidable (in polynomial time) and S \ Halt(U) is generic and decidable (in polynomial time). ut

Corollary 5. There exist infinitely many almost decidable but not decidable sets.

Does there exist a universal function U whose halting set is not almost decidable? This problem was left open
in [9]: here we answer it in the affirmative.

Theorem 6. There exist infinitely many universal functions whose halting sets are not negligible and not almost
decidable.

Proof:
We start with an arbitrary universal function V and construct a new universal function U whose halting set Halt(U)

is not almost decidable.

First we define the computable function ' : Z+ �! Z+ by '(n) = max{k 2 Z+ | 2k�1 divides n}.

The function ' has the following properties:

(a) '(2

m�1
(2k + 1)) = m, for every m, k 2 Z+, so ' outputs every positive integer infinitely many times.

(b) '

�1
(n) = {k 2 Z+ | 2n�1 divides k but 2n does not divide k}.

(c) d('

�1
(n)) = 2

�n, for all n 2 Z+.

(d) If S ✓ Z+ and d(S) = 1, then for every n 2 Z+, '�1
(n) \ S 6= ;.

For (d) we note that if '�1
(n) \ S = ;, then d (S)  1� 2

�n, a contradiction.

Next we define U(x) = V ('(x)) and prove that U is universal. We consider the partially computable func-
tion CU (z, x) = inf{s 2 Z+ | '(s) = CV (z, x)} and note that: 1) by (a), dom(CU ) = dom(CV ), and 2)
'(CU (z, x)) = CV (z, x), for all (z, x) 2 dom(CV ). Consequently, for every partially computable function
F : Z+ �! Z+ we have F (x) = V (CV (gV,F , x)) = V ('(CU (gV,F , x))), so gU,F = gV,F .

Let us assume by absurdity that there exists a generic decidable set S ✓ Z+ such that S\Halt(U) is decidable.
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Define the partial function ✓ : Z+ �! Z+ by ✓(n) = inf{k 2 S | ' (k) = n}.

As S is decidable, ✓ is partially computable; by (a) (' is surjective) and by (d) (as d(S) = 1, for all n 2 Z+,
'

�1
(n) \ S 6= ;) it follows that ✓ is computable. Furthermore, the computable function ✓ has the following two

properties: for all n 2 Z+, '(✓(n)) = n and ✓(n) 2 S.

We next prove that for all n 2 Z+,

n 2 Halt(V ) iff ✓(n) 2 S \ Halt(U). (3)

Indeed,

n 2 Halt(V ) () V (n) < 1
() V ('(✓(n))) < 1 ('(✓(n)) = n)

() U(✓(n)) < 1 (definition of U)

() ✓(n) 2 Halt(U)

() ✓(n) 2 S \ Halt(U). (✓(n) 2 S)

From (3) it follows that Halt(V ) is decidable because S \ Halt(U) is decidable, a contradiction.

Finally, d(Halt(U)) > 0 because Halt(U) = '

�1
(Halt(V )).

By varying the universal function V we get infinitely many examples of universal functions U . ut

Corollary 7. There exist infinitely many universal functions U such that for any generic computably enumerable
set S ✓ Z+, S \ Halt (U) is not decidable.

Proof:
Assume S is computable enumerable and d(S) = 1. If replace the computable function ✓ with the computable
function �(n) = E(min{k 2 Z+ | '(E(i)) = n}), where E : Z+ �! Z+ is a computable injective function such
that E(Z+

) = S (S is infinite) in the proof of Theorem 6, then we prove that S \ Halt (U) is not decidable. ut

There are six possible relations between the notions of negligible, generic and almost decidable sets. The above
results looked at three of them: here we show that the remaining three possibilities can be realised too. First, it is
clear that there exist non-negligible and decidable sets, hence non-negligible and almost decidable sets.

The next result is a stronger form of Theorem 6: its proof depends on a set A and works for other interesting
sets as well.

Theorem 8. There exist infinitely many universal functions whose halting sets are generic and not almost decid-
able.

Proof:
We use a computably enumerable generic set A which has no generic decidable subset (see Theorem 2.22 in [11])
to construct a universal function as in the statement above.

Assume A = Halt(F ) for some partially computable function F . Let V be an arbitrary universal function and
define U by:

U(x) =

(
V (y), if x = y

2, for some y 2 Z+
,

F (x), otherwise .
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Clearly Halt(U) is universal and generic.
For the sake of a contradiction assume that Halt(U) is almost decidable by S, i.e. S is a generic decidable set

such that Halt(U) \ S is decidable.
We now prove that Halt(F ) is almost decidable by S

0
= S \ P , where P is the set of square positive integers

(note that P is decidable and negligible) and P is the complement of P . It is clear that S0 is generic and decidable,
so we need only to show that Halt(F) \ S

0
= Halt(F) \ S \ P is decidable.

We note that Halt(U) is a disjoint union of the sets {x 2 Z+ | x = y

2
, for some y 2 Halt(V )} and Halt(F )\P ,

and the first set is a subset of P . To test whether x is in Halt(F) \ S

0 we proceed as follows: a) if x 2 P , then
x 62 Halt(F )\S

0 , b) if x 62 P , then x 2 Halt(F)\S

0 iff x 2 Halt(U)\S. Hence, Halt(F)\S

0 is decidable because
Halt(U) \ S is decidable, so Halt(U) is almost decidable.

We have obtained a contradiction because Halt(F)\S

0 is a generic decidable subset of A, hence Halt(U) is not
almost decidable. ut

Let r 2 (0, 1]. We say that a set S ⇢ Z+ is r-decidable if there exists a decidable set R ⇢ Z+ such that
d(R) = r and R \ S is decidable; a set S ⇢ Z+ is weakly decidable if S is r-decidable for some r 2 (0, 1). With
this terminology, generic sets coincide with 1-decidable sets.

Theorem 3.18 of [8] states that there is a computably enumerable generic set that has no decidable subset of
density in (0, 1). Using this set in the proof of Theorem 8 we get the following stronger result:

Theorem 9. There exist infinitely many universal functions whose halting sets are generic and not weakly decid-
able.

A simple set is a co-infinite computably enumerable set whose complement has no decidable subset; the exis-
tence of a negligible simple set is shown in the proof of Proposition 2.15 in [11]. If in the proof of Theorem 8 we
use a negligible simple set instead of the computably enumerable generic set which has no generic decidable subset
we obtain the following result:

Theorem 10. There exist infinitely many universal functions whose halting sets are negligible and not almost
decidable.

3. A Simplicity Criterion for Universal Functions and Open Problems

Universality is one of the most important concepts in computability theory. However, not all universal machines
are made equal. The most popular criterion for distinguishing between universal Turing machines is the number of
states/symbols. Other three other criteria of simplicity for universal prefix-free Turing machines have been studied
in [2]. The property of almost decidability is another criterion of simplicity for universal functions.

The universal function U constructed in the proof of Theorem 6 is not programmable universal. Theorems 2
and 8 in [4] show that the halting sets of programmable universal string functions (plain or prefix-free) are never
negligible. Are there programmable universal functions not almost decidable?

The notion of almost decidability suggests the possibility of an approximate (probabilistic) solution for the
halting problem (see also [5, 3]). Assume that the halting set is Halt(U) is almost decidable via the generic
decidable set S and we wish to test whether an arbitrary x 2 Z+ is in Halt(U). If x 2 S, then x 2 Halt(U) iff
x 2 S \ Halt(U). If x 62 S, then we don’t know whether x 2 Halt(U) or x 62 Halt(U) (the undecidability is
located in S \ Halt(U)). Should we conclude that x 2 Halt(U) or x 62 Halt(U)? Density does not help because
d(S \ Halt(U)) = d(S \ Halt(U)) = 0. It is an open problem to find a solution.
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The notion of almost decidability can be refined in different ways, e.g. by looking at the computational com-
plexity of the decidable sets appearing in Theorem 6. Also, it will be interesting to study the property of almost
decidability topologically or for other densities.
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