
CDMTCS
Research
Report
Series

Indexed Grammars, ET0L
Systems and Programming
Languages
— A Tribute to Alexandru
Mateescu —

Radu Nicolescu
Department of Computer Science,
The University of Auckland,
Auckland, New Zealand

Dragoş Vaida
Department of Computer Science,
University of Bucharest,
Bucharest, Romania

CDMTCS-464
July 2014

Centre for Discrete Mathematics and
Theoretical Computer Science

Indexed Grammars, ET0L Systems and Programming
Languages

— A Tribute to Alexandru Mateescu — ∗

Radu Nicolescu
Department of Computer Science, The University of Auckland,

Auckland, New Zealand, r.nicolescu@auckland.ac.nz

Dragoş Vaida
Department of Computer Science, University of Bucharest,

Bucharest, Romania, dragos.vaida@clicknet.ro

14 July, 2014

Abstract

We revise and extend a couple of earlier incompletely published papers regarding
the competence limits of formal systems in modelling the full syntax of programing
languages. We show that the full syntax of mainstream programming languages
(e.g. similar to Pascal or CAML) and of schema based XML documents cannot
be modelled by either ET0L systems or indexed grammars. We raise a few open
questions related to ET0L languages and two powerful but less known classes of
languages: iterative languages and generalised Ogden-like languages.

Keywords: programming languages, formal syntax, static semantics, formal gram-
mars and languages, context-free grammars and languages, ET0L systems and lan-
guages, indexed grammars and languages, iterative languages, generalised Ogden-
like languages, Pascal-like languages, CAML-like languages, XSD schemas, valid
XML documents.

1 Introduction

Classical results showed that full syntax (which includes phrase structure and static se-
mantics) of typical programming languages cannot be modelled by simple generative
systems, such as context-free grammars [2, 10]. The well-known limits of such mod-
els, together with the practical and theoretical interest of this modelling problem, have

∗Gh. Paun, G. Rozenberg, A. Salomaa, eds.: ”Discrete Mathematics and Computer Science. Pa-
pers in Memoriam Alexandru Mateescu (1952-2005)”, The Publ. House of the Romanian Academy,
Bucharest, 2015 (in press).

1

triggered the quest for more powerful generative systems, such as matrix languages, lan-
guages which verify certain pumping-type conditions, mildly context-sensitive languages,
indexed grammars [1] or ET0L systems [8, 16].

Marcus [18] and Păun [7, 25] highlight the early results on these topics obtained by
the Romanian computational linguistics school. Briefly, many context-free extensions
have been shown inadequate; however, indexed grammars and ET0L systems still proved
elusive.

Next, Vaida [30] and Vaida and Mateescu [33] discussed the enhanced competence
of the indexed grammars: arguably, indexed languages form the largest “natural” class
between context-free and context-sensitive languages. They mentioned that (at that
time) finding a programming language construct which was beyond the limits of indexed
grammars was still an open problem. However, they also cited a negative result due to
Hayashi [13], regarding the competence limits of indexed grammars, suggesting that this
could be used to provide an answer.

Then, using Hayashi’s results, Nicolescu [22] and Nicolescu and Vaida [23] solved this
open problem, showing that FORTRAN and other similar algorithmic languages allow
constructions which cannot be modelled by either indexed grammars or ET0L systems.
The first solution involves the required correspondence, in number, order and type, be-
tween arguments used in function calls with parameters appearing in their definition; but
other possible constructions were also mentioned. Essentially, the proofs used construc-
tions which can be recursively nested. These results were subsequently cited, but never
formally published (except few bits).

Revisiting and extending these unpublished papers, we now show that the syntax and
static semantics of Pascal, CAML, XML and other similar languages allow constructs
which lie outside the competence limits of even sophisticated generative systems such as
indexed grammars and ET0L systems.

The Pascal and CAML results are based on our earlier results [22, 23]; however, our
XML results appear to be novel, despite the considerable practical interest raised by XML
and XML schemas and the related extensive theoretical research, see e.g. [3–6,15,21].

In the following sections, we identify several syntactic constructions, based on recur-
sive nesting, which exceed the competence limits of these two major context-free exten-
sions: indexed grammars and ET0L systems. We then take a look at a few solved or still
open problems, related to the classes of iterative languages and generalised Ogden-like
languages, introduced by Mateescu and Vaida [20,32].

Finally, we suggest that the contextual grammar model, introduced by Marcus [17]
and further developed by the Romanian school on computational linguistics [19,27], could
offer additional insight into some specific programming language constructs.

2 Background

Here, we use the term ”Pascal-like” as a wide umbrella, covering imperative languages
which, like Pascal, have a context-free phrase structure and a static semantics which
defines clear rules on:

2

• the correspondence of arguments used in function calls with parameters used in
corresponding function definitions, in number, order and types;

• the correspondence of integer indices used in array expressions with corresponding
array declarations, in number;

• optionally, support for associative arrays or indexed properties, where the cor-
respondence between array expressions and corresponding definitions extends to
number, order and types of indices.

With this convention, our definition for Pascal-like language covers many mainstream
languages, e.g. Pascal and its derivatives, C and its derivatives, managed languages such
as Java and C#.

By CAML-like languages we understand an umbrella concept which covers an impor-
tant segment of the functional languages derived from ML: with main members CAML,
OCAML and F#.

In both cases. we consider an ideal scenario, when there are no bounds on the size of
programs and of their elements, such as identifiers, parameter lists, array dimensionality.

By XML we understand valid W3C schema (XSD) based XML documents. We
consider that, besides restricting the unconstrained anyType phrase structure, schemas
roughly correspond to the declaration sections of Pascal programs. Therefore, we con-
sider that schemas form an integral part of the documents which use them; this can be
physically realized either by using inline schemas or concatenating each document with
all its required schemas. Our constructions use only simple declarations allowed by both
existing schema definitions: (i) the older, but still widely used, XSD 1.0 (2001, 2004),
and (ii) the newer XSD 1.1 (2012); however, we note that more counter-examples can be
created under XSD 1.1 rules. Again, we consider an ideal scenario, with no bounds on
schema and document size or on their types and elements.

Under these assumptions, we shows that all these three language families, i.e. Pascal-
like languages, CAML-like languages and the XML language, contain recursively nested
constructs which map to the famous not indexed language: {(aw)|w| | w ∈ T ∗} [13].

3 Indexed grammars and languages

In this section we briefly recall a few basic definitions and concepts on indexed grammars
and languages, as required for the following sections. Here we use a notation inspired
by the modern definitions used by Hopcroft and Ullman [14], which are equivalent to —
but easier to use than — the original definitions used by Aho [1] and Hayashi [13] (for a
quick introduction, see also the Wikipedia entry [35]).

Definition 3.1. An indexed grammar is a 5-tuple G = (N, T, F, P, S) where:

• N is finite alphabet of non-terminal (variable) symbols

• T is finite alphabet of terminal symbols

• F is a finite set of index symbols (or indices)

3

• P is a finite set of production rules (briefly productions or rules), further classified
into three different types, as discussed below

• S ∈ N is the start symbol

An indexed non-terminal is an element of NF ∗, typically written as A[σ], where
A ∈ N, σ ∈ F ∗; in this context, σ is the stack attached to A. A sentential form α is an
element of (NF ∗∪T)∗, typically written as α = X1[θ1]X1[θ2] . . . Xn[θn], where n ∈ N and
(Xi ∈ N, θi ∈ F ∗) ∨ (Xi ∈ T, θi = λ),∀i ∈ [1, n].

The attachment operation is extended from non-terminals to sentential forms, by
distributing stacks over all non-terminals. Formally, for α defined as above and σ ∈ NF ∗,
α[σ] = X1[τ1]X1[τ2] . . . Xn[τn], where (Xi ∈ N, τi = θiσ) ∨ (Xi ∈ T, τi = λ),∀i ∈ [1, n].
For example, (aB[fg]cD[]e)[h] = aB[fgh]cD[h]e.

The three types of productions are defined in following way:

1. A production of type 1 is an element of N× (N ∪T)∗, often written as A[..]→ α[..],
where A ∈ N,α ∈ (N ∪ T)∗ .

2. A production of type 2 (also known as a push rule) is an element of N ×NF , often
written as A[..]→ B[f..], where A,B ∈ N, f ∈ F .

3. A production of type 3 (also known as a pop rule) is an element of NF × (N ∪T)∗,
often written as A[f..]→ α[..], where A ∈ N, f ∈ F, α ∈ (N ∪ T)∗.

Given a sentential form βA[φ]γ, with A ∈ N, φ ∈ F ∗, β, γ ∈ (NF ∗ ∪ T)∗, direct
derivations, denoted by ⇒, are defined separately for each type of production:

1. If A[..]→ α[..] is a type 1 production, then βA[φ]γ ⇒ βα[φ]γ.

2. If A[..]→ B[f..] is a type 2 (push) production, then βA[φ]γ ⇒ βB[fφ]γ.

3. If A[f..]→ α[..] is a type 3 (pop) production, then βA[fφ]γ ⇒ βα[φ]γ.

Direct derivations are extended, in the usual way, to transitive and reflexive closures,
denoted by ⇒∗.

Definition 3.2. The language L ⊂ T ∗ generated by the indexed grammar G is called
an indexed language and is defined by: L = L(G) = {w ∈ T ∗ | S[]⇒∗ w}.

Indexed languages form a “natural” class in an extended Chomski’s hierarchy, larger
than context-free but smaller than context-sensitive and are precisely the languages recog-
nised by nested stack automata [1] (and by other equivalent formalisms), but we do not
follow this discussion here.

Example 3.3. The language {anbncn | n ∈ N+} is a classical simple indexed language
which is not context-free and can be generated by the following indexed grammar:

S[..]→ T [g..] A[f..]→ (aA)[..] A[g..]→ a[..]

T [..]→ T [f..] B[f..]→ (bB)[..] B[g..]→ b[..]

T [..]→ (ABC)[..] C[f..]→ (cC)[..] C[g..]→ c[..]

4

For example, the string a2b2c2 can be derived in the following way:

S[] ⇒ T [g]⇒ T [fg]⇒ (ABC)[fg] = A[fg]B[fg]C[fg]
⇒3 (aA)[g](bB)[g](cC)[g] = aA[g]bB[g]cC[g]⇒3 aa[]bb[]cc[]
= a2b2c2.

Remark 3.4. Applying the attachment definition for sentential forms, several rules of
the above sample grammar are typically written more succinctly, e.g.:

T [..]→ (ABC)[..] T [..]→ A[..]B[..]C[..]

A[f..]→ (aA)[..] A[f..]→ aA[..]

A[g..]→ a[..] A[g..]→ a

Thus, the above derivation can also be written more succinctly:

S[] ⇒ T [g]⇒ T [fg]⇒ A[fg]B[fg]C[fg]
⇒3 aA[g]bB[g]cC[g]⇒3 a2b2c2.

Remark 3.5. Combining rules of type 1 and type 2 (push), one can obtain derivations
that simulate the more complex push rules of the original definition proposed by Aho [1].
For example, the hypothetical rule A 7→ aB[fg..]bC[h..]c can simulated by the following
rules (where B̄, B̂, and C̄ are ad-hoc symbols): A[..] → aB̄[..]bC̄[..]c, B̄[..] → B̂[g..],
B̂[..]→ B[f..], C̄[..]→ C[h..].

To prove that a language is not indexed, one can use Hayashi’s pumping lemma [13].
This lemma is quite complex and rather unwieldy for practical purposes. Instead, in
the following sections, we will use one of its remarkable consequences and the fact that
indexed languages are closed under several fundamental operations (the same result can
also be obtained with the ulterior and easier to use Gilman’s shrinking lemma [11]).

Fact 3.6. [13] For any alphabet T and symbol a, where a 6∈ T 6= Φ, the language
La,T = {(aw)|w| | w ∈ T ∗} is not indexed.

Fact 3.7. As shown by Aho [1], the indexed languages form a full abstract family of lan-
guages (full AFL), and are therefore closed under any finite applications of the following
operations: unions, concatenations, Kleene closures, intersections with regular sets, left
and right quotients by regular sets, substitutions, homomorphisms, inverse homomor-
phisms, direct and inverse generalised sequential machine (GSM) mappings.

4 Pascal-like languages are not indexed

Let us consider three languages, LP0 , LP1 , LP2 , defined as follows.
Let LP0 be the set of all syntactically correct Pascal programs, according to its context-

free phrase rules and its static syntax.
Intuitively, LP1 highlights a valid scenario with recursively nested function calls. Let

LP1 = {Qπ1,π2,...,πn
n | n ∈ N+}, where each Qπ1,π2,...,πn

n is the Pascal-like code shown in

5

program P;
function F (π1 , π2 , . . . , πn : integer) : integer ;
begin F := 0 end ;
var V: integer ;

begin
V := F({∗outer call to F, with n arguments∗}

F(1 , 1 , . . . , 1) , {∗1-st inner call to F, with n all 1 arguments∗}
F(1 , 1 , . . . , 1) , {∗2-nd inner call to F, with n all 1 arguments∗}
. . . ,
F(1 , 1 , . . . , 1)) ; {∗n-th inner call to F, with n all 1 arguments∗}

WriteLn(V) ;
end .

Figure 1: Qπ1,π2,...,πn
n , a typical element in LP1 .

Fig. 1, where π1, π2, ..., πn ∈ p+ are pairwise distinct, ellipses (...) are meta-syntactic
symbols, and markers {∗ ∗} delimit meta-comments, which are (true) assertions and do
not appear in the actual code.

Intuitively, LP2 is relaxed version of LP1 , without any constraints on the size of the argu-
ment lists used in the recursively nested calls. Let LP2 = {Rπ1,π2,...,πn

n,m,k1,k2,...,km
| n,m, k1, k2, . . . , km ∈

N+}, where eachRπ1,π2,...,πn
n,m,k1,k2,...,km

is the Pascal-like code shown in Fig. 2, where π1, π2, ..., πn ∈
p+, ellipses (...) are meta-syntactic symbols, and markers {∗ ∗} delimit meta-comments,
which are (true) assertions and do not appear in the actual code.

program P;
function F (π1 , π2 , . . . , πn : integer) : integer ;
begin F := 0 end ;
var V: integer ;

begin
V := F({∗outer call to F, with m arguments∗}

F(1 , 1 , . . . , 1) , {∗1-st inner call to F, with k1 all 1 arguments∗}
F(1 , 1 , . . . , 1) , {∗2-nd inner call to F, with k2 all 1 arguments∗}
. . . ,
F(1 , 1 , . . . , 1)) ; {∗m-th inner call to F, with km all 1 arguments∗}

WriteLn(V) ;
end .

Figure 2: Rπ1,π2,...,πn
n,m,k1,k2,...,km

, a typical element in LP2 .

Lemma 4.1. LP1 ⊂ LP0 (i.e. all items in LP1 are correct Pascal programs).

Proof. Each Qπ1,π2,...,πn
n ∈ LP1 follows Pascal’s phrase structure. Additionally, it is seman-

tically correct, because: (i) parameters are given by distinct identifiers; (ii) each of the n
inner calls to F has exactly n integer arguments; and (iii) the outer call to F has exactly
n integer arguments.

6

Lemma 4.2. LP1 ⊂ LP2 .

Proof. Straightforward, as each Qπ1,π2,...,πn
n ∈ LP1 appears as Rπ1,π2,...,πn

n,n,n,n,...,n ∈ LP2 .

Lemma 4.3. LP1 ⊂ LP0 ∩ LP2 .

Proof. Straightforward, from Lemmas 4.1 and 4.2.

Lemma 4.4. LP2 ∩ LP0 ⊂ LP1 .

Proof. Let us consider an item ρ = Rπ1,π2,...,πn
n,m,k1,k2,...,km

∈ LP2 and assume that it also appears

in LP0 , i.e. it is semantically correct. Therefore: (i) parameter identifiers must be pairwise
distinct; (ii) each of the m inner calls to F must have n arguments, thus k1 = k2 = · · · =
km = n; and (iii) the outer call to F must have n arguments, thus m = n. Consequently,
ρ = Qπ1,π2,...,πn

n ∈ LP1 .

Lemma 4.5. LP1 = LP0 ∩ LP2 .

Proof. Straightforward, from Lemmas 4.3 and 4.4.

Lemma 4.6. LP2 is regular.

Proof. Briefly, all repetitive fragments which appear in elements of LP2 can be indepen-
dently generated by Kleene closures. More formally, LP2 = LP3 , where LP3 is the language
generated by the regular expression of Fig. 3, where brackets
([]) are meta-syntactic grouping symbols.

program P;
function F ([p+ ,]∗p+ : integer) : integer ;
begin F := 0 end ;
var V: integer ;

begin
V := F(

[F(1 , 1 , . . . , 1) ,]∗

F(1 , 1 , . . . , 1)) ;
WriteLn(V) ;

end .

Figure 3: The regular expression defining the language LP3 .

Theorem 4.7. The set of syntactically correct Pascal programs, LP0 , is not an indexed
language.

Proof. By contradiction, let us assume that LP0 is an indexed language. By Lemmas 4.5
and 4.6, LP1 is the intersection of an indexed language, LP0 , with a regular language, LP2 .
By Fact 3.7, LP1 must be an indexed language.

7

Consider now a homomorphism, h, which maps ’F’ to a, ’1’ to b, and all other symbols
to λ. Applying h to LP1 , we obtain L′1 = h(LP1) = {aaa(abn)n | n ∈ N+}. By Fact 3.7, L′1
must be an indexed language.

Finally, we define a simple GSM mapping, g, which translates L′1 into the language
g(L′1) = La,{b} = {(aw)|w| | w ∈ b∗} of Fact 3.6 (this process is straightforward, so we
leave details out). Alternatively, we can take the left-quotient by the regular set {aaa},
to obtain the same result. By Fact 3.7, L′1 must also be an indexed language, but it is not.
Therefore, our initial assumption was invalid, and LP0 cannot be an indexed language.

Remark 4.8. Theorem 4.7 solely relies on the following closure operators on indexed lan-
guages: intersection with regular sets, λ-homomorphisms, and left-quotient with regular
sets or GSM mappings. Therefore, a similar result can be obtained in a straightforward
way for any family of languages which: (i) does not contain {(aw)|w| | w ∈ T ∗}; and (ii)
is closed under the same operations, in particular if it is a full AFL.

Remark 4.9. Nicolescu and Vaida [22, 23] present a list of several other programming
constructs which cannot be modelled by indexed grammars. For example, one can also
start with an n-dimensional array, initialize it properly, and then access it via a nested
construction, as in the sample code of Fig 4. We leave the details as an exercise.

program P;
var A: array [1 . . 1 , 1 . . 1 , . . . , 1 . . 1] of integer ;
var V: integer ;

begin
A[1 , 1 , . . . , 1] := 1 ;
V := A[

A[1 , 1 , . . . , 1] ,
A[1 , 1 , . . . , 1] ,
. . . ,
A[1 , 1 , . . . , 1]] ;

WriteLn(V) ;
end .

Figure 4: Array-based alternative example (Pascal).

Remark 4.10. Note that the proof Theorem 4.7 maps correct Pascal into a La,T =
{(aw)|w| | w ∈ T ∗} language, where T is a singleton set, T = {b}. If needed (for various
other reasons), Nicolescu and Vaida [22,23] indicate how to map correct Pascal into more
complex members of the La,T family, where T contains any number of letters, s ≥ 1, by
using explicit conversions between otherwise incompatible types.

Figure 5 shows such a stronger version of the earlier introduced Qπ1,π2,...,πn
n , for s = 2.

We redefine function F to use an arbitrary mix of integers and reals, which must be strictly
followed by all function calls, i.e. we set the additional constraints (αi = integer ∧ φi =
trunc ∧ πi = trunc(1.0)) ∨ (αi = real ∧ φi = λ ∧ πi = 1.0). We recall that Pascal

8

requires explicit real to integer conversions and we leave the details as an exercise for the
interested reader.

Similar results can be obtained with associative arrays, if the language supports this;
e.g. C# offers associative arrays as indexed properties.

program P;
function F (π1 : α1 , π2 : α2 , . . . , πn : αn) : real ;
begin F := 0 .0 end ;
var V: real ;

begin
V := F(

φ1 (F(π1 , π2 , . . . , πn)) ,
φ2 (F(π1 , π2 , . . . , πn)) ,
. . . ,
φn (F(π1 , π2 , . . . , πn))) ;

WriteLn(V) ;
end .

Figure 5: A stronger version of Qπ1,π2,...,πn
n , with additional constraints on parameters.

5 CAML-like languages are not indexed

In this section we extend our quest from imperative to functional languages. Specifically,
we discuss recursively nested constructs, similar to those used in Section 4, which are
beyond the competence limits of indexed grammars and appear in the CAML family
of functional languages. We restrict our attention to F#, which is a .NET integrated
variant of OCAML; however, the F# constructs can be straightforwardly transferred to
the other major members of the ML family, OCAML and CAML itself, by only minor
syntactic changes.

Figure 6 shows a typical element of set LF1 , i.e. of an F# version of the LP1 language
defined in Section 4 (with similar context constraints, which are not repeated here).

l et F (π1 : i n t) (π2 : i n t) . . . (πn : i n t) = 0
l et V: i n t =

F (F 1 1 . . . 1) // 1
(F 1 1 . . . 1) // 2
. . .
(F 1 1 . . . 1) // n

p r i n t f n ”%A” V

Figure 6: Typical element of language LF1 (F#).

The above snippet is a syntactically correct F# program and maps to the same non-
indexed language as in Section 4, i.e. {(aw)n | w ∈ T ∗, n = |w|}. Therefore, we obtain
the following theorem:

9

Theorem 5.1. The set of syntactically correct CAML programs is not an indexed lan-
guage.

As suggested in Fig. 7, the same result can also be obtained by starting with an F#
analogue of the nested array construct mentioned in Remark 4.9.

l et A = // n r e p e t i t i o n s
Array . c r e a t e 1 (Array . c r e a t e 1 (. . . (Array . c r e a t e 1 0) . . .))

l et V: i n t =
A

. [A . [0] . [0] [0]] // 1

. [A . [0] . [0] [0]] // 2

. . .

. [A . [0] . [0] [0]] // n
p r i n t f n ”%d” V

Figure 7: Array-based alternative example (F#).

Interestingly, if we drop the explicit type of result V, then V’s static type is determined
by the context and the array expression can be reduced from n lines to any number of
lines m ≤ n. As shown in Fig. 8, the last print statement can be kept, if we replace the
integer %d placeholder by the generic %A placeholder.

l et A = // n r e p e t i t i o n s
Array . c r e a t e 1 (Array . c r e a t e 1 (. . . (Array . c r e a t e 1 0) . . .))

l et V =
A

. [A . [0] . [0] [0]] // 1

. [A . [0] . [0] [0]] // 2

. . .

. [A . [0] . [0] [0]] // m ≤ n !
p r i n t f n ”%A” V

Figure 8: A more interesting array-based example (F#).

In the end, we obtain a potentially more interesting language, {(aw)m | w ∈ T ∗,m ∈
[0, |w|]}.

We note that the construction used in Remark 4.10 can be repeated here, to obtain the
same counter-example based on s letters. We leave this as an exercise for the interested
reader.

6 XML is not indexed

In this section, we continue our quest and we discuss nested constructs, similar to those
used in Section 4, which appear in valid XSD based XML documents and are beyond the
competence limits of indexed grammars.

10

Figures 9 and 10 show a typical element of set LX1 , i.e. of an XML version of the
LP1 language defined in Section 4. This element is presented as the concatenation of two
parts: (i) Fig. 9 shows the essential fragment of an XML schema definition (either XSD
1.0 or XSD 1.1); and (ii) Fig. 10 shows the essential fragment of the document instance;
for brevity, here we skip the verbose XSD and XML prologues and epilogues; however,
we give full codes in the Appendix.

<xs:complexType name=”RecType”>
<xs : s equence>
<xs : e l ement name=”R” type=”RecType” n i l l a b l e=” true ”/>
<xs : e l ement name=”R” type=”RecType” n i l l a b l e=” true ”/>
. . .
<xs : e l ement name=”R” type=”RecType” n i l l a b l e=” true ”/>

</ xs : s equence>
</xs:complexType>
<xs : e l ement name=”R” type=”RecType”/>

Figure 9: Typical element of LX1 : the essential part of its XML schema definition.

<R>
<R x s i : n i l=” true ”/>
<R x s i : n i l=” true ”/>
. . .
<R x s i : n i l=” true ”/>

</R>
<R>
<R x s i : n i l=” true ”/>
<R x s i : n i l=” true ”/>
. . .
<R x s i : n i l=” true ”/>

</R>
. . .
<R>
<R x s i : n i l=” true ”/>
<R x s i : n i l=” true ”/>
. . .
<R x s i : n i l=” true ”/>

</R>

Figure 10: Typical element of LX1 : the essential part of its XML document instance.

Adding the omitted standard prologues and epilogues (cf. Appendix), the above snip-
pet becomes a syntactically valid XML document and can be straightforwardly mapped
to the same non-indexed language as in Section 4, i.e. to {(aw)n | w ∈ T ∗, n = |w|}.
Therefore, we obtain the following theorem:

11

Theorem 6.1. The set of syntactically valid XML documents is not an indexed language.

Here we have used a simple nillable recursive complex type. Other constructs that
lead to the same non-indexed language (or even more complex variants) can be based on
more sophisticated schema ingredients, such as:

1. key constraints, i.e. unique, key, and keyref schema elements (available in both XSD
1.0 and XSD 1.1)

2. assertions, i.e. assert schema elements (only available in XSD 1.1)

However, because of space constraints, we leave these as an exercise.

7 ET0L systems and languages

In this section we briefly recall a few basic definitions and concepts on ET0L systems
and languages, as required for discussing the results.

Definition 7.1. An ET0L system is a 4-tuple G = (N, T, P, ω) where:

• N is finite alphabet of non-terminal (variable) symbols

• T is finite alphabet of terminal symbols

• P is a finite set of tables (or substitutions), further discussed below

• ω ∈ (N ∪ T)∗ is the start sequence

Each table Π ∈ P is a finite left-total relation on (N ∪ T)× (N ∪ T)∗, i.e. (i) Π is a
finite set of pairs (X,α) ∈ (N ∪T)×(N ∪T)∗, called production rules (briefly productions
or rules), typically written as X → α; and (ii) for each symbol X ∈ (N ∪ T), there is an
α ∈ (N ∪ T)∗ such that X → α ∈ Π.

Direct derivations between sentential forms are denoted, as usually, by ⇒ and are
defined in a total parallel mode. Let us consider α, β ∈ (N ∪ T)∗ and k ∈ N, such that
α = X1X2 . . . Xk, with Xi ∈ (N ∪ T),∀i ∈ [1, k]. Then:

α⇒ β ⇐⇒ ∃Π ∈ P, ∀i ∈ [1, k],∃Xi → γi ∈ Π : β = γ1γ2 . . . γk.

Direct derivations are extended in the usual way to transitive and reflexive closures,
denoted by ⇒∗.

Definition 7.2. The language L ⊂ T ∗ generated by the ET0L system G is called an
ET0L language and is defined by: L = L(G) = {w ∈ T ∗ | ω ⇒∗ w}.

12

Example 7.3. The language {anbncn | n ∈ N+} is a classical simple ET0L language
which is not context-free and can be generated by the ET0L systemG = ({A,B,C}, {a, b, c},
{Π1,Π2}, ABC), where:

Π1 = {A→ aA,B → bB,C → cC, a→ a, b→ b, c→ c}
Π2 = {A→ a,B → b, C → c, a→ a, b→ b, c→ c}

For example, the string a2b2c2 can be derived in the following way:

ABC ⇒ aAbBcC ⇒ aabbcc = a2b2c2.

ET0L languages form an interesting class which is strictly larger than context-free, but
strictly smaller than indexed [9], and a fortiori smaller than context-sensitive. There are
several specific ways to prove that a given language is not ET0L, such as: (i) the inclusion
of the ET0L class in the indexed or context-sensitive class [9]; (ii) the ”rare/frequent”
theorem [8]; or (iii) an Ogden lemma for ET0L languages [28].

Fact 7.4. Using either of these, one can prove that the language La,T = {(aw)|w| | w ∈
T ∗}, defined in Fact 3.6, is not ET0L either.

Fact 7.5. As shown by Rozenberg [29], the ET0L languages form an AFL, therefore,
this class enjoys all closure properties mentioned in Fact 3.7.

7.1 Pascal-like languages, CAML-like languages and XML are
not ET0L

By way of Facts 7.4 and 7.5 and Remark 4.8, one can adapt Theorems 4.7, 5.1 and 6.1
to conclude that:

Theorem 7.6. The set of syntactically correct Pascal programs, the set of syntactically
correct CAML programs and the set of syntactically valid XML documents are not ET0L
languages.

However, this result is not totally satisfactory, because we relied on a counter-example
language, {(aw)|w| | w ∈ T ∗}, which is not indexed (i.e. not even in a strictly larger class).
Can one find tighter counter-examples, based on languages which are in the non-void
border between ET0L and indexed? We formulate the following open question:

Open question 7.7. Are there programming language constructs which map to a lan-
guage which is indexed but not ET0L?

13

8 Iterative and GOC-like languages

In this section we follow the earlier works of Mateescu and Vaida [20, 30–33], which
propose two novel classes of grammar-less languages – the iterative languages and the
GOC-like languages – and discuss their relation to programming languages.

The family of iterative languages is defined solely by the verification of a language-
based constraint, which is more general than the conclusion of the classical Ogden’s
iteration theorem [24] and similar to Greibach’s strong iteration condition [12].

Let δ(z) denote the number of distinguished positions in a word z, and ε(z) the
number of excluded positions in z.

Definition 8.1. [20] A language L is n-iterative if there exist integers n ≥ 2, p ≥ 1, q ≥ 1,
such that any word z ∈ L, with δ(z) ≥ p, has a factorisation z = x1y1x2y2 . . . xnynxn+1,
satisfying:

• zm = x1y
m
1 x2y

m
2 . . . xny

m
n xn+1 ∈ L,∀m ∈ N;

• ∃i ∈ N, 2 ≤ i ≤ n, with

– δ(yi−1xiyi) ≤ q;

– (δ(xi−1), δ(yi−1), δ(xi) ≥ 1) or
(δ(xi), δ(yi), δ(xi+1) ≥ 1).

Next, Mateescu and Vaida [20] proved that the family of iterative languages is closed
under several fundamental operations.

Theorem 8.2. [20] The family of iterative languages is closed under union and con-
catenation.

Proof. (Sketch) Let us consider two iterative languages, L1 and L2, where each Lh is an
nh-iterative language with constants ph and qh, for h = 1, 2. Then:

• The union, L1 ∪ L2, is n-iterative, for n = max(n1, n2), p = max(p1, p2), q =
max(q1, q2).

• The product, L1 · L2, is n-iterative, for n = max(n1, n2), p = p1 + p2 − 1, q =
max(q1, q2).

Theorem 8.3. [20] The family of iterative languages is closed under Kleene closure
(star).

Proof. (Sketch) Let us consider L, an n-iterative language with constants p and q. Then,
its Kleene closure, L∗, is n-iterative, for p′ = 2p, q′ = max(2(p− 1), q).

Theorem 8.4. [20] The family of iterative languages is closed under substitution.

Proof. (Sketch) Let us consider:

14

• L0, an n0-iterative language with constants p0 and q0, over a size k alphabet T =
{a1, a2, . . . , ak};

• L = {Lh | h ∈ [1, k]}, a family of iterative languages, where each Lh is an nh-
iterative language with constants ph and qh, for h ∈ [1, k];

• a function, f : T → L, f(ah) = Lh, h ∈ [1, k].

Then, the substitution, f(L0), is n-iterative, for:

• n = max{nh | h ∈ [0, k]};

• p = p0 ·max{ph | h ∈ [1, k]};

• q = max{(ph − 1)q0, qh | h ∈ [1, k]}.

Theorem 8.5. [20] The family of iterative languages is closed under homomorphic
replication (as defined by Greibach [12]).

Further, Mateescu and Vaida [20] defined a generalised Ogden condition (GOC) and
proved that the family GOC-like languages transcend the classical Chomski hierarchy.

Definition 8.6. [20] A language L is GOC-like if ∃k ∈ N, such that any word z ∈ L,
with δ(z) > kε(z)+1, has a factorisation z = uvwxy, satisfying:

• δ(vwx) ≤ kε(vwx)+1;

• d(uvw) + δ(wxy) ≥ 1 ∧ ε(vx) = 0;

• zm = uvmwxmy ∈ L,∀m ∈ N.

Theorem 8.7. [20] There exists properly context-sensitive, properly recursive, properly
recursively enumerable and properly non-recursively enumerable languages which are
GOC-like.

The following results [20] indicate the position of these two novel classes against the
well-known family of n-locally linear languages [34].

Theorem 8.8. [20] The class of iterative languages is included in the class of locally
linear languages; more precisely: each n-iterative language is n-locally linear.

Theorem 8.9. [20] The class of GOC-like languages is included in the class of locally
linear languages; more precisely: each GOC-like language is 2-locally linear.

Based on the above inclusions, Theorems 8.8 and 8.9, the following result [20] shows
that neither of these classes can fully characterise all programming languages constructs.

Theorem 8.10. [20] Pascal-like programming languages are not locally linear.

15

program P:
procedure Vk ;
begin end ;

begin
Vk ; Vk ; . . . ; Vk

end .

Figure 11: Typical format of Pascal programs used in the proof of Th. 8.10.

Proof. (Sketch) The original proof [20] uses PL/I. Here we show an analogous construct
in Pascal, based on the family of syntactically correct Pascal programs shown in Fig. 11,
for k ∈ N+.

The proof is direct, without relying on any closure properties.

Theorem 8.11. [20] Pascal-like programming languages are neither interative nor GOC-
like.

Remark 8.12. [20] The families of simple matrix languages and of equal matrix lan-
guages are both homomorphic replications of locally linear languages. By Theorem 8.10,
it follows that programming languages are not members of these families either. For a
similar result, see Păun [26].

Open question 8.13. We list a few remaining open problems, related to the families of
interative and GOC-like languages:

• Is the inclusion of Theorem 8.8 strict? If yes, can we find programming language
constructs that map to their difference?

• Is the inclusion of Theorem 8.9 strict? If yes, can we find programming language
constructs that map to their difference?

• What is the relation between 2-iterative and GOC-like languages? If these are not
equal, can we find programming language constructs that map to their difference(s)?

9 Conclusions

We revisit our earlier unpublished results regarding the competence limits of indexed
grammars and ET0L systems as models for the full syntax of programing languages.
We show that usual programing languages are neither indexed nor ET0L. We extend
these results by showing a novel result: that schema based XML documents are neither
indexed nor ET0L. We revisit our earlier less published results and show that programing
languages are not iterative, not GOC-like, and not locally linear. Finally, we formulate
a few open questions.

Acknowledgments. We are indebted to the anonymous reviewers for their valuable
comments and suggestions.

16

References

[1] A. V. Aho. Indexed grammars - an extension of context-free grammars. J. ACM,
15(4):647–671, 1968.

[2] A. V. Aho and J. D. Ullman. The Theory of Parsing, Translation, and Compiling.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1972.

[3] M. Arenas, W. Fan, and L. Libkin. What’s hard about XML schema constraints?
In A. Hameurlain, R. Cicchetti, and R. Traunmüller, editors, DEXA, volume 2453
of Lecture Notes in Computer Science, pages 269–278. Springer, 2002.

[4] M. Arenas, W. Fan, and L. Libkin. Consistency of XML specifications. In L. E.
Bertossi, A. Hunter, and T. Schaub, editors, Inconsistency Tolerance, volume 3300
of Lecture Notes in Computer Science, pages 15–41. Springer, 2005.

[5] J. Berstel and L. Boasson. Formal properties of XML grammars and languages.
Acta Inf., 38(9):649–671, 2002.

[6] A. Brüggemann-Klein and D. Wood. Balanced context-free grammars, hedge gram-
mars and pushdown caterpillar automata. In Extreme Markup Languages R©, 2004.

[7] C. Ĉışlaru and G. Păun. Classes of languages with Bar-Hillel, Perles and Shamir’s
property. Math. Soc. Sci. Math. Roumanie, 18(66):273–278, 1975.

[8] A. Ehrenfeucht and G. Rozenberg. On proving that certain languages are not ET0L.
Acta Inf., 6:407–415, 1976.

[9] A. Ehrenfeucht, G. Rozenberg, and S. Skyum. A relationship between ET0L and
EDT0L languages. Theoretical Computer Science, 1(4):325 – 330, 1976.

[10] R. W. Floyd. On the nonexistence of a phrase structure grammar for ALGOL 60.
Commun. ACM, 5(9):483–484, Sept. 1962.

[11] R. H. Gilman. A shrinking lemma for indexed languages. Theor. Comput. Sci.,
163(1&2):277–281, 1996.

[12] S. A. Greibach. The strong independence of substitution and homomorphic replica-
tion. ITA, 12(3), 1978.

[13] T. Hayashi. On derivation trees of indexed grammars — an extension of the uvwxyz
theorem. Publ. RIMS, Kyoto Univ., 9(1):61–92, 1973.

[14] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, 1979.

[15] D. Lee and W. W. Chu. Comparative analysis of six XML schema languages. SIG-
MOD Record, 29(3):76–87, 2000.

17

[16] A. Lindenmayer and G. Rozenberg. Developmental systems and languages. In
Proceedings of the Fourth Annual ACM Symposium on Theory of Computing, STOC
’72, pages 214–221, New York, NY, USA, 1972. ACM.

[17] S. Marcus. Contextual grammars. Revue Roumaine de Mathématiques Pures et
Appliquées, 14(12):1525–1534, 1969.

[18] S. Marcus. Linguistics for programming languages. Rev. Roum. Ling. – Cahiers
Ling. Theor. Appl., 16(1):29–38, 1979.

[19] S. Marcus. Words and Languages Everywhere. Polimetrica International Scientific
Publisher, Milano, Italy, 2007.

[20] A. Mateescu and D. Vaida. Structuri Matematice Discrete. Applicatii (Discrete
Mathematical Structures. Applications). Editura Academiei, Bucharest, Romania,
1989.

[21] M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomy of XML schema lan-
guages using formal language theory. ACM Trans. Internet Techn., 5(4):660–704,
2005.

[22] R. Nicolescu. Limbaje Formale şi Limbaje de Programare (Formal Languages and
Programming Languages). PhD thesis, University of Bucharest, Faculty of Mathe-
matics, 1985.

[23] R. Nicolescu and D. Vaida. Limbaje de programare, limbaje indexate şi lim-
baje ET0L (Programming languages, indexed languages and ET0L languages). In
Lucrările celui de al V-lea Colocviu de Informatică (Proceedings of the V-th Collo-
quium on Informatics), INFO-IAŞI’85, pages 220–229, Iaşi, Romania, 1985. Univer-
sity A.I.Cuza.

[24] W. F. Ogden. A helpful result for proving inherent ambiguity. Mathematical Systems
Theory, 2(3):191–194, 1968.

[25] G. Păun. Asupra proprietăţii Bar-Hillel, Perles şi Shamir (Romanian). Stud. Cerc.
Matem., 28(3):303–309, 1976.

[26] G. Păun. Matrix Grammars (Romanian). Editura Ştiinţifică şi Enciclopedică,
Bucharest, Romania, 1981.

[27] G. Păun. Contextual Grammars (Romanian). The Publishing House of the Roma-
nian Academy, Bucharest, Romania, 1982.

[28] M. Rabkin. Ogden’s lemma for ET0L languages. In LATA, pages 458–467, 2012.

[29] G. Rozenberg. Extension of tabled 0L-systems and languages. International Journal
of Parallel Programming, 2(4):311–336, 1973.

18

[30] D. Vaida. Condiţii de iterare de tipul Ogden şi aplicaţii la limbajele de progra-
mare (Ogden-like iteration conditions and applications to programming languages).
In Lucrările celui de al III-lea Colocviu de Informatică (Proceedings of the III-th
Colloquium on Informatics), INFO-IAŞI’83, pages 551–587, Iaşi, Romania, 1983.
University A.I.Cuza.

[31] D. Vaida. Observaţie asupra limbajelor tare iterative (Remark concerning strong
iterative languages). In Lucrările celui de al V-lea Colocviu de Informatică (Pro-
ceedings of the V-th Colloquium on Informatics), INFO-IAŞI’85, pages 210–219, Iaşi,
Romania, 1985. University A.I.Cuza.

[32] D. Vaida. Iteration conditions of W. Ogden’s type and applications to programming
languages (II). In Developments in Language Theory, pages 44–50, 1993.

[33] D. Vaida and A. Mateescu. Limbaje Formale si Tehnici de Compilare — Capitole
Speciale de Limbaje Formale. Universitatea din Bucureşti, Bucharest, Romania,
1984.

[34] A. P. J. van der Walt. Locally linear families of languages. Information and Control,
32(1):27–32, 1976.

[35] Wikipedia. Indexed grammar — Wikipedia, the free encyclopedia, 2014. [Online;
accessed 4-May-2014] http://en.wikipedia.org/w/index.php?title=Indexed_

grammar&oldid=604802542.

A Appendix

Figures 12 and 13 (respectively) show the full XSD 1.0 and XML code of a typical element
of language LX1 , defined in Section 6.

19

<?xml ve r s i on =”1.0” encoding=”utf−8”?>
<xs : schema elementFormDefault=”q u a l i f i e d ”

targetNamespace=”http :// r e cu r s i on . org /”
xmlns=”http :// r e cu r s i on . org /”
xmlns : xs=”http ://www.w3 . org /2001/XMLSchema”>

<xs : complexType name=”RecType”>
<xs : sequence>
<xs : element name=”R” type=”RecType” n i l l a b l e=”true”/>
<xs : element name=”R” type=”RecType” n i l l a b l e=”true”/>
. . .
<xs : element name=”R” type=”RecType” n i l l a b l e=”true”/>

</xs : sequence>
</xs : complexType>

<xs : element name=”R” type=”RecType”/>
</xs : schema>

Figure 12: Full XSD schema definition (see Sec. 6).

<?xml ve r s i on=”1.0”?>
<R xmlns=”http :// r e cu r s i on . org /”

xmlns : x s i=”http ://www.w3 . org /2001/XMLSchema−i n s t anc e ” >

<R>
<R xs i : n i l=”true”/>
<R xs i : n i l=”true”/>
. . .
<R xs i : n i l=”true”/>

</R>
<R>
<R xs i : n i l=”true”/>
<R xs i : n i l=”true”/>
. . .
<R xs i : n i l=”true”/>

</R>
. . .
<R>
<R xs i : n i l=”true”/>
<R xs i : n i l=”true”/>
. . .
<R xs i : n i l=”true”/>

</R>
</R>

Figure 13: Full XML document instance (see Sec. 6).

20

