
CDMTCS
Research
Report
Series

Deterministic Transition
P Systems Modeled as
Register Machines

Michael J. Dinneen
Yun-Bum Kim

Department of Computer Science,
University of Auckland,
Auckland, New Zealand

CDMTCS-465
July 2014

Centre for Discrete Mathematics and
Theoretical Computer Science

Deterministic Transition P Systems
Modeled as Register Machines

Michael J. Dinneen and Yun-Bum Kim

Department of Computer Science, University of Auckland,
Private Bag 92019, Auckland, New Zealand

mjd@cs.auckland.ac.nz, tkim021@aucklanduni.ac.nz

July 28, 2014

Abstract

This paper presents the details for constructing register machines that simulate
deterministic transition P systems with rule priorities. The time complexity of the
constructed register machine is polynomial with respect to the number of rewriting
rules applied. We illustrate our conversion with a non-trivial example.

Keywords: P systems, register machines, modeling, simulation.

1 Introduction

In theoretical computer science, there are many computational models that are equivalent
to the computation power of a Turing machine. Two such models are register machines
and, more recently, membrane systems. Register machines have been proposed in many
flavors (mainly by theoreticians). These machines have a common theme of having a
finite set of registers that can represent arbitrarily large non-negative integers. Also these
machines are presented as a finite sequence taken from a small set of basic instructions
(e.g. to do arithmetic, data handling and flow control). P systems [9, 11] (also called
membrane systems) are distributed and parallel computing models, inspired by the struc-
ture and function of living cells. Several variants of P systems [8, 7] have been introduced,
inspired from various features of living cells, that provide new ways to process informa-
tion and solve computational problems of interest. Essentially, all P system models have
a structure consisting of connected cells and a set of evolution rules that govern their
evolution over time.

Several studies have investigated the relationship between P systems and register ma-
chines [6, 3] and presented universality results by proving that P systems can simulate
a universal register machine [4]. Previously, in a companion paper [4], we presented the

1

details for constructing an efficient P system from an arbitrary register machine [1]. In
this paper we address the opposite direction of mapping deterministic P systems to reg-
ister machines. Our motivation is based on the fact that it is easier to design parallel
algorithms using P systems instead of sequential-based classical (i.e. von Neumann ar-
chitecture) computer models. Thus, we want to automate the conversion of a P system
framework to the existing computers, which today have multi-core CPUs and many-core
GPUs available. The work in this paper is a first step towards a translation to “parallel”
register machines.

This paper is organized as follows. Section 2 recalls several key mathematical concepts
that are used in this paper. Section 3 provides the definition of a transition P system
model. Section 4 presents the definition of a register machine model. Section 5 presents the
construction details for building a register machine that simulates a transition P system.
Section 6 gives a non-trivial concrete mapping of a P system to a register machine. Finally,
Section 7 summarizes this paper and provides some future areas of study.

2 Preliminaries

This section covers several key mathematical concepts that are used in this paper, such
as sets, strings, multisets and graphs.

An alphabet is a finite non-empty set with elements called symbols. A string over
alphabet O is a finite sequence of symbols from O. The set of all strings over O is
denoted by O∗. The length of a string x ∈ O∗, denoted by |x|, is the number of symbols
in x. The number of occurrences of a symbol o ∈ O in a string x over O is denoted by
|x|o. The empty string is denoted by λ.

A multiset over an alphabet O is represented as strings over O, such as on1
1 . . . onk

k ,
where oi ∈ O and ni ≥ 0, for 1 ≤ i ≤ k. The multiplicity of an element x in a multiset
v is denoted by |v|x. We say that a multiset v is included in a multiset w, denoted by
w ⊆ v, if, for all o ∈ O, |w|o ≤ |v|o. The union of multisets v and w, denoted by v ∪w, is
a multiset x, such that, for all o ∈ O, |x|o = |v|o + |w|o. The difference of multisets v and
w, denoted by v − w, is a multiset x, such that, for all o ∈ O, |x|o = max(|v|o − |w|o, 0).
The empty multiset is represented by λ. A set that contains the distinct elements of a
multiset v is denoted by distinct(v).

A (binary) relation R over two sets X and Y is a subset of their Cartesian product,
R ⊆ X × Y . For A ⊆ X and B ⊆ Y , we set R(A) = {y ∈ Y | ∃x ∈ A, (x, y) ∈ R},
R−1(B) = {x ∈ X | ∃y ∈ B, (x, y) ∈ R}.

A directed graph (digraph) is a pair (V,A), where V is a finite set of elements called
nodes (or vertices), and A is a set of ordered pairs of V called arcs. Given a digraph
D = (V,A), for v ∈ V , the parents of v are A−1(v) = A−1({v}) and the children of v are
A(v) = A({v}).

2

3 Transition P Systems

A deterministic transition P system (of order n ≥ 1) is a construct of the form:

Π = (O,K,∆,W,R)

where:

1. O is the finite and non-empty alphabet of symbols.

2. K = {σi | 1 ≤ i ≤ n} is the set of cells, where i represents the cell ID of σi.

3. ∆ is an irreflexive and asymmetric relation on K, representing a set of arcs between
cells with bidirectional communication capabilities, (i.e. parents can communicate
to their children and vice versa).

4. W = {wi | 1 ≤ i ≤ n}, where wi ∈ O∗ is a multiset of symbols, called the content,
present in cell σi.

5. R = {Ri | 1 ≤ i ≤ n}, where Ri is a finite set of evolution rules that are associated
with cell σi. An evolution rule r ∈ Ri is a linearly ordered transition multiset
rewriting rule of the form:

r : j u→ v

where:

• j ∈ {1, 2, . . . , |Ri|} indicates the priority order of r, where the lower value j
indicates higher priority.

• u ∈ O+.

• v ∈ (O × τ)∗, where τ ∈ {�, ↑, ↓} is a set of target indicators. Note that
(o,�) ∈ v, o ∈ O, is abbreviated to o. Moreover, we denote:

◦ multiset v� = {o | (o,�) ∈ v},
◦ multiset v↑ = {o | (o, ↑) ∈ v} and

◦ multiset v↓ = {o | (o, ↓) ∈ v}.

Thanks to the unique priority assigned to each rule in the item 5 above, this transition
P system is a deterministic model.

A cell evolves by applying one or more rules, which can change its content and can
send multisets to its parent and child cells. For a cell σi ∈ K, a rule j u → v ∈ Ri is
applicable, if u ⊆ wi. The rules are applied in the weak priority order [10], i.e. higher
priority applicable rules are applied, as many times as possible, before lower priority
applicable rules. All applicable rules of all cells are applied simultaneously in one step.
A computation halts, if none of the cells can evolve. The output of a halted transition
P system computation is defined by the multiset of symbols present in the cells.

Applying an applicable rule j u→ v in cell σi at step k ≥ 1: (i) consumes multiset u
at step k, i.e. wi = wi− u, (ii) produces multiset v�, which will become available to σi at
step k + 1, (iii) sends multiset v↑ to every parent cell σp ∈ ∆−1(i) and sends multiset v↓

3

to every child cell σc ∈ ∆(i), which will become available to σp and σc at step k + 1. We
denote the multiset produced in cell σi in the current step by wi, i.e. wi = {v� | j u →
v ∈ Ri}+ {v↑ | j u→ v ∈ Rc, σc ∈ ∆(i)}+ {v↓ | j u→ v ∈ Rp, σp ∈ ∆−1(i)}. At the end
of step k, σi updates its content as wi = wi +wi. The following pseudocode describes the
behavior of the transition P system Π at each step k ≥ 1. This pseudocode terminates
when it reaches line 19.

1 bool evolve := false

2 for σi, i = 1, 2, . . . |K|
3 for j = 1, 2, . . . , |Ri|
4 r := (j u→ v) ∈ Ri

5 while (u ⊆ wi)
6 evolve := true

7 wi := wi − u
8 wi := wi + v�
9 foreach σp ∈ ∆−1(i)
10 wp := wp + v↑
11 endfor

12 foreach σc ∈ ∆(i)
13 wc := wc + v↓
14 endfor

15 endwhile

16 endfor

17 endfor

18 if (evolve = false) then
19 system Π halts
20 endif

20 foreach σi ∈ K
21 wi := wi + wi
22 wi := ∅
23 endfor

24 goto line 1

4 Register Machines

The register machine model used in this paper extends the register machine of [1] by
adding an instruction that performs subtraction. A register machine has n > 1 instruc-
tions and m > 0 registers, where each register may hold an arbitrarily large non-negative
integer.

A register machine program consists of a finite list of instructions, EQ, SET, ADD, SUB,
READ and HALT, followed by an optional input data, denoted as a sequence of bits, with
the restriction that the HALT instruction appears only once as the last instruction of the
list. The first instruction of a program is indexed at address (i.e. line number) 0, and any
value greater than or equal to n denotes the illegal branch error. In general, a register
machine program is presented in: (i) symbolic instruction form or (ii) machine instruction

4

(i.e. raw binary) form. In this paper we adopt the symbolic instruction form, where labels
of the form “Lx:” are added to make the presentation more readable.

A set of instructions of a register machine M , denoted in Chaitin’s style [2], is described
below. In the instructions below, variables z1, z2 and z3 denote registers and k denotes a
non-negative binary integer constant. The content of register zi, 1 ≤ i ≤ 3, is denoted by
value(zi).

• Instruction (EQ, z1, z2, z3) or (EQ, z1, k, z3):
If value(z1) = value(z2) or value(z1) = k, then the execution of M continues
at the value(z3)-th instruction in the sequence. Otherwise, the execution of M
continues at the next instruction.

• Instruction (SET, z1, z2) or (SET, z1, k):
value(z2) or the constant k is assigned to register z1.

• Instruction (ADD, z1, z2) or (ADD, z1, k):
value(z1) + value(z2) or value(z1) + k is assigned to register z1.

• Instruction (SUB, z1, z2) or (SUB, z1, k):
max{value(z1)− value(z2), 0} or max{value(z1)− k, 0} is assigned to register z1.

• Instruction (READ, z1):
One bit is read into r1, so the numerical value of z1 becomes either 0 or 1. Any
attempt to read past the last data-bit results in a run-time error.

• Instruction (HALT):
This is the last instruction of the register machine program.

In the following, we will not use the READ instruction in our translation from P systems
to register machines.

5 Translating P Systems into Register Machines

This section presents the details for building a register machine program IMΠ
for a register

machine MΠ that simulates a deterministic transition P system Π = (O,K,∆,W,R) of
Section 3. The instructions of IMΠ

are in the symbolic instruction form, separated by
white space.

We present two pseudocodes, side by side, with corresponding lines, where:

• Left: describes evolution of a transition P system Π (according to Section 3).

• Right: gives the details for building IMΠ
. The methods used in this pseudocode,

such as INITIALIZE, CONSUME, PRODUCE, APPLICABLE and EXECUTE, are described in
Sections 5.1, 5.2, 5.3, 5.4 and 5.5, respectively.

5

In a translated register machine, multisets are represented as follows. Register oi stores
the multiplicity of symbol o ∈ O in cell σi ∈ K, i.e. multiset {ooi | o ∈ O} equals wi.
Register oi gives the multiplicity of symbol o ∈ O to be stored into cell σi ∈ K in the
next step, i.e. multiset {ooi | o ∈ O} equals wi.

1
2 bool evolve := false

3 for σi, i = 1, 2, . . . |K|
4 for j = 1, 2, . . . , |Ri|
5 r := (j u→ v) ∈ Ri

6 while (u ⊆ wi)
7 evolve := true

8 wi := wi − u
9 wi := wi + v�
10 foreach σp ∈ ∆−1(i)
11 wp := wp + v↑
12 endfor

13 foreach σc ∈ ∆(i)
14 wc := wc + v↓
15 endfor

16 endwhile

17 endfor

18 endfor

19 if (evolve = false) then
20 HALT

21 endif

22 foreach σi ∈ K
23 wi := wi + wi
24 wi := ∅
25 endfor

26 goto line 2

1 INITIALIZE()
2 append LSTEP: (SET, evolve, 0)
3 for σi, i = 1, 2, . . . , |K|
4 for j = 1, 2, . . . , |Ri|
5 r := (j u→ v) ∈ Ri

6 APPLICABLE(i, r, |Ri|)
7 append (SET, evolve, 1)
8 CONSUME(i, r)
9 PRODUCE(i, r,�)
10 foreach σp ∈ ∆−1(i)
11 PRODUCE(p, r, ↑)
12 endfor

13 foreach σc ∈ ∆(i)
14 PRODUCE(c, r, ↓)
15 endfor

16 append (EQ, a, a, LR(i,j))
17 endfor

18 endfor

19
20 append LR(|K|+1,1): (EQ, evolve, 0, LHALT)
21
22 foreach σi ∈ K
23 EXECUTE(i)
24 endfor

25
26 append (EQ, a, a, LSTEP)
27 append LHALT:(HALT)

5.1 INITIALIZE method

This method sets register oi with the multiplicity of symbol o ∈ O in cell σi ∈ K. For
example, for cell σi with content wi = aabc ∈ O∗, the values of registers ai, bi and ci are
2, 1 and 1, respectively.

1 INITIALIZE()
2 foreach σi ∈ K
3 foreach o ∈ O
4 append (SET, oi, |wi|o)
5 endfor

6 endfor

Proposition 1. INITIALIZE appends |K| · |O| instructions.

6

5.2 CONSUME method

This method implements wi := wi − u of line 8, which corresponds to a cell consuming
the multiset u.

1 CONSUME(cell ID i, rule r = j u→ v)
2 foreach o ∈ distinct(u)
3 append (SUB, oi, |u|o)
4 endfor

A difference of multisets operation wi := wi−u transforms wi, such that |wi|o = |wi|o−|u|o
for each o ∈ O. An instruction (SUB, oi, |u|o), appended for each o ∈ O, subtracts the
value |u|o to register oi.

Proposition 2. For a rule r = j u→ v, CONSUME appends |distinct(u)| instructions.

5.3 PRODUCE method

This method implements wi := wi + vτ , τ ∈ {�, ↑, ↓}, of lines 9, 11 and 14, which
determines a multiset to be produced and stored in σi ∈ K.

1 PRODUCE(cell ID i, rule r = j u→ v, target τ)
2 foreach o ∈ distinct(vτ)
3 append (ADD, oi, |vτ |o)
4 endfor

A union of multisets operation wi := wi + vτ transforms wi, such that |wi|o = |wi|o + |vτ |o
for each o ∈ O. An instruction (ADD, oi, |vτ |o), appended for each o ∈ O, adds the value
|vτ |o to register oi.

Proposition 3. For a rule r = u → v, with target indicator τ ∈ {�, ↑, ↓}, PRODUCE

appends |distinct(vτ)| instructions.

5.4 APPLICABLE method

This method, together with “append (EQ, a, a, LR(i,j))” of line 16, implements the while

statement of line 6, which involves a cell to check if its content contains the multiset
specified on the left-hand side of a rule.

1 APPLICABLE(cell ID i, rule r = j u→ v, rulesetSize n)
2 append LR(i,j):
3 foreach o ∈ distinct(u)
4 for m = 0, 1, . . . , |u|o − 1
5 if (j < n) then
6 append (EQ, oi, m, LR(i,j+1))
7 else

8 append (EQ, oi, m, LR(i+1,1))

7

10 endif

11 endfor

12 endfor

Condition u ⊆ wi is false, if there is a o ∈ O, such that |u|o > |wi|o. For each o ∈
distinct(u), APPLICABLE generates |u|o instructions below:

LR(i,j): (EQ, oi, 0, L)

(EQ, oi, 1, L)

(EQ, oi, 2, L)

...

(EQ, oi, |u|o − 1, L′)

which check the condition value(oi) ≥ |u|o. If value(oi) ≤ |u|o − 1, then, by one of
these instructions, the execution continues to the line specified by the label L or L′,
which indicates the line number k + 1, where line k contains instruction (EQ, a, a, LR(i,j)).
If value(oi) ≥ |u|o − 1 for all o ∈ distinct(u), then the execution continues to the
next instruction, and eventually, reaches instruction (EQ, a, a, LR(i,j)) that prompts an
unconditional jump back to the line with the label LR(i,j).

We note that a slight optimization in number of steps is possible if |u|o > 5, where we
can replace the sequence of (EQ, oi, . . .) with a direct test of register machine instructions
that check value(oi) < |u|o. However, in practice we believe rules have small |u|o.

1 APPLICABLE(cell ID i, rule r = j u→ v, rulesetSize n)
2 append LR(i,j): (SET, t1, |u|o)
3 append (SUB, t1, 1)
4 append (SET, t2, |wi|o)
5 append (SUB, t2, t1)
6 if (j < n) then
7 append (EQ, t2, 0, LR(i,j+1))
8 else

9 append (EQ, t2, 0, LR(i+1,1))
10 endif

Proposition 4. For a rule r = j u → v, APPLICABLE will append at most min(|u|, 5 ·
|distinct(u)|) instructions.

5.5 EXECUTE method

This method implements wi := wi + wi of line 23 and wi := ∅ of line 24, which represent
cells updating their current content with the multiset produced from the execution of the
rules.

8

1 EXECUTE(cell ID i)
2 foreach o ∈ O
3 append (ADD, oi, oi)
4 append (SET, oi, 0)
5 endfor

A union of multiset operation wi := wi +wi transforms wi, such that |wi|o = |wi|o + |wi|o
for each o ∈ O. An instruction (ADD, oi, oi), appended for each o ∈ O, adds the value
of register oi to register oi. A multiset assignment operation wi := ∅ transforms wi, such
that |wi|o = 0 for each o ∈ O. An instruction (SET, oi, 0), appended for each o ∈ O, sets
the value of register oi to 0.

Proposition 5. EXECUTE appends 2 · |O| instructions.

6 Translation Example

We illustrate a non-trivial example for the following (deterministic) transition P system
ΠBFS = (O,K,∆,W,R). The system ΠBFS, starting with cell σ1 ∈ K, visits all cells in
breadth-first search (BFS) manner.

• O = {a, b}.

• K = {σ1, σ2, . . . , σ5}, where σ1 represents the initiator.

• ∆ = {(σ1, σ2), (σ1, σ3), (σ2, σ4), (σ2, σ5), (σ3, σ2), (σ3, σ5), (σ4, σ1), (σ4, σ5),
(σ5, σ4)}. Figure 1 (left) shows the membrane structure of the system ΠBFS.

• w1 = {aab} and wj = {aa}, for 2 ≤ j ≤ 5.

• Ri, 1 ≤ i ≤ 5 is the set of evolution rules below.

1. a a b→ (b, ↓)
2. b → λ

Initially, only σ1 contains one copy of symbol b. By rule 1, when a cell contains symbol
b, it sends one copy of symbol b to all its children. By rule 2, cells consume any additional
copies of symbol b received from their parents. Note that these algorithmic rules work for
alternative ∆ structures.

Figure 1 (right) shows evolution trace, i.e. content of each cell at each step, of the
system ΠBFS. Starting from cell σ1, at each step k ≥ 0, cells in level k with respect to σ1

are visited (i.e. receive symbol b), e.g. cells σ2 and σ3 receive symbol b at step 1.

The following table contains the register machine program IΠBFS
, which simulates

the transition P system ΠBFS. IΠBFS
is generated by translating ΠBFS according to the

pseudocode given in Section 5.

9

Line Instruction

0 (SET, a1, 2)

1 (SET, b1, 1)

2 (SET, a2, 2)

3 (SET, b2, 0)

4 (SET, a3, 2)

5 (SET, b3, 0)

6 (SET, a4, 2)

7 (SET, b4, 0)

8 (SET, a5, 2)

9 (SET, b5, 0)

10 LSTEP: (SET, evolve, 0)

11 LR(1,1): (EQ, a1, 0, LR(1,2))

12 (EQ, a1, 1, LR(1,2))

13 (EQ, b1, 0, LR(1,2))

14 (SET, evolve, 1)

15 (SUB, a1, 2)

16 (SUB, b1, 1)

17 (ADD, b2, 1)

18 (ADD, b3, 1)

19 (EQ, a, a, LR(1,1))

20 LR(1,2): (EQ, b1, 0, LR(2,1))

21 (SET, evolve, 1)

22 (SUB, b1, 1)

23 (EQ, a, a, LR(1,2))

24 LR(2,1): (EQ, a2, 0, LR(2,2))

25 (EQ, a2, 1, LR(2,2))

26 (EQ, b2, 0, LR(2,2))

27 (SET, evolve, 1)

28 (SUB, a2, 2)

29 (SUB, b2, 1)

30 (ADD, b4, 1)

31 (ADD, b5, 1)

32 (EQ, a, a, LR(2,1))

33 LR(2,2): (EQ, b2, 0, LR(3,1))

34 (SET, evolve, 1)

35 (SUB, b2, 1)

36 (EQ, a, a, LR(2,2))

37 LR(3,1): (EQ, a3, 0, LR(3,2))

38 (EQ, a3, 1, LR(3,2))

39 (EQ, b3, 0, LR(3,2))

40 (SET, evolve, 1)

41 (SUB, a3, 2)

42 (SUB, b3, 1)

43 (ADD, b2, 1)

44 (ADD, b5, 1)

45 (EQ, a, a, LR(3,1))

46 LR(3,2): (EQ, b3, 0, LR(4,1))

47 (SET, evolve, 1)

48 (SUB, b3, 1)

49 (EQ, a, a, LR(3,2))

Line Instruction

50 LR(4,1): (EQ, a4, 0, LR(4,2))

51 (EQ, a4, 1, LR(4,2))

52 (EQ, b4, 0, LR(4,2))

53 (SET, evolve, 1)

54 (SUB, a4, 2)

55 (SUB, b4, 1)

56 (ADD, b1, 1)

57 (ADD, b5, 1)

58 (EQ, a, a, LR(4,1))

59 LR(4,2): (EQ, b4, 0, LR(5,1))

60 (SET, evolve, 1)

61 (SUB, b4, 1)

62 (EQ, a, a, LR(4,2))

63 LR(5,1): (EQ, a5, 0, LR(5,2))

64 (EQ, a5, 1, LR(5,2))

65 (EQ, b5, 0, LR(5,2))

66 (SET, evolve, 1)

67 (SUB, a5, 2)

68 (SUB, b5, 1)

69 (ADD, b4, 1)

70 (EQ, a, a, LR(5,1))

71 LR(5,2): (EQ, b5, 0, LR(6,1))

72 (SET, evolve, 1)

73 (SUB, b5, 1)

74 (EQ, a, a, LR(5,2))

75 LR(6,1): (EQ, evolve, 0, LHALT)

76 (ADD, a1, a1)

77 (SET, a1, 0)

78 (ADD, b1, b1)

79 (SET, b1, 0)

80 (ADD, a2, a2)

81 (SET, a2, 0)

82 (ADD, b2, b2)

83 (SET, b2, 0)

84 (ADD, a3, a3)

85 (SET, a3, 0)

86 (ADD, b3, b3)

87 (SET, b3, 0)

88 (ADD, a4, a4)

89 (SET, a4, 0)

90 (ADD, b4, b4)

91 (SET, b4, 0)

92 (ADD, a5, a5)

93 (SET, a5, 0)

94 (ADD, b5, b5)

95 (SET, b5, 0)

96 (EQ, a, a, LSTEP)

97 LHALT: (HALT)10

σ1

σ2 σ3

σ4 σ5

Step σ1 σ2 σ3 σ4 σ5

0 a2b a2 a2 a2 a2

1 a2b a2b a2 a2

2 b a2b a2b2

3 b b b

4

Figure 1: Left: the membrane structure of the system ΠBFS. Right: evolution traces of
the system ΠBFS.

7 Conclusions

The main result of this paper is a procedure that takes a transition P system and converts
it to an equivalent register machine. Our approach can be described as follows. Assume
that, at a particular step of a given P system, a membrane executes a maximal multiset
of rules Z = {rk1

1 , r
k2
2 , . . . , r

kj
j | ki ≥ 1, ri ∈ R, 1 ≤ i ≤ j}. The converted register machine

executes instructions that correspond to rule ri ∈ Z, ki times. Hence, the time complexity
of the converted register machine is polynomial with respect to the number of rewriting
rules applied. Our results open the following list of future work:

• Improve the time complexity of the converted register machine to polynomial with
respect to the number of steps of the P systems by extending our register machine
with integer-division and multiplication instructions.

• Develop a P system translator to a parallel register machine model that can effi-
ciently be simulated by conventional parallel computers.

• Extend our preliminary results of [4] and the results of this paper by using more
practical register machines and P systems, e.g. [8, 5]. P systems with active mem-
branes [10] extends transition P systems by incorporating membrane handling rules
that support membrane creation operation (which adds new cells to the system) and
membrane dissolution operation (which removes existing cells from the system).

Acknowledgment

We would like to thank the three anonymous referees of our earlier version of this paper
for providing useful comments that helped us to improve this paper. This paper was
supported by the Quantum Computing Research Initiatives at Lockheed Martin.

References

[1] C. S. Calude and M. J. Dinneen. Exact approximations of Omega numbers. Intl. J. of
Bifurcation and Chaos, 17(6):1937–1954, July 2007.

11

[2] G. J. Chaitin. Algorithmic Information Theory. Cambridge University Press, Cam-
bridge, UK, 1987.

[3] E. Csuhaj-Varjú, M. Margenstern, G. Vaszil, and S. Verlan. On small universal
antiport P systems. Theor. Comput. Sci., 372(2-3):152–164, 2007.

[4] M. J. Dinneen and Y.-B. Kim. A new universality result on P systems. Report
CDMTCS-423, Centre for Discrete Mathematics and Theoretical Computer Science,
University of Auckland, Auckland, New Zealand, July 2012.

[5] M. J. Dinneen, Y.-B. Kim, and R. Nicolescu. A faster P solution for the Byzantine
agreement problem. In M. Gheorghe, T. Hinze, and G. Păun, editors, Conference on
Membrane Computing, pages 167–192. Verlag ProBusiness, Berlin, 2010.

[6] R. Freund, L. Kari, M. Oswald, and P. Sośık. Computationally universal P systems
without priorities: two catalysts are sufficient. Theor. Comput. Sci., 330(2):251–266,
2005.

[7] M. Ionescu, G. Păun, and T. Yokomori. Spiking neural P systems. Fundam. Inform.,
71(2-3):279–308, 2006.

[8] C. Mart́ın-Vide, G. Păun, J. Pazos, and A. Rodŕıguez-Patón. Tissue P systems.
Theor. Comput. Sci., 296(2):295–326, 2003.

[9] G. Păun. Membrane Computing: An Introduction. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2002.

[10] G. Păun. Introduction to membrane computing. In G. Ciobanu, M. J. Pérez-Jiménez,
and G. Păun, editors, Applications of Membrane Computing, Natural Computing
Series, pages 1–42. Springer-Verlag, 2006.

[11] G. Păun, G. Rozenberg, and A. Salomaa. The Oxford Handbook of Membrane Com-
puting. Oxford University Press, Inc., New York, NY, USA, 2010.

12

