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Abstract

Active P systems are a bio-inspired distributed and parallel computation model,
consisting of network of computing units called membranes, where membranes can
be added and removed during the computation. This paper presents the simulation
of functional register machines (i.e. a register machine model that includes instruc-
tions that can define functions and make function calls) using active P systems with
the same run-time complexity.
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1 Introduction

Membrane systems [9, 11] (also known as P systems) are distributed and parallel com-
puting model, inspired by the structure and function of living cells. A membrane system
consists of a network of (multiset processing) computing units called membranes. Each
membrane contains a multiset of symbols and is associated with a set of multiset pro-
cessing rules. Several variant P system models [8, 7] have been introduced, inspired from
various features of living cells, that provide new ways to process information and solve the
computational problems of interest. An active P system [10] is a variant P system model
that supports dynamic network structure of membranes by: (i) adding new membranes to
the systems and (ii) removing existing membranes from the system. An active P system
model [10] extends a transition P system model [10] by incorporating membrane creation
operation (which adds new membranes to the system) and membrane dissolution opera-
tion (which removes existing membranes from the system). Figure 1 illustrates creation
and dissolution of membranes; a child membrane, µj, can be created inside membrane
µi with content wj, and membrane µj can dissolve, leaving its content, wj, to its parent
membrane, µi. These operations are incorporated into evolution rule specification, such
that executing evolution rules with these operations can create or dissolve membranes of
a system.
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Figure 1: Membrane creation and dissolution operations [10].

In theoretical computer science, register machines are computational models with the
equivalent computation power of a Turing machine. Register machines [2] have a finite
set of instructions that can perform data handling, arithmetic, logic and control flow
operations. A recently introduced functional register machine [1] extends the model of [2]
by including instructions for defining functions and making function calls.

In the P systems community, several studies have shown Turing completeness (i.e. can
compute anything a Turing machine [12] can compute) and universality (i.e. can simulate
an arbitrary Turing machine with input) results of various P system models by showing
that these P system models can simluate register machines [6, 7, 4, 5].

The main results of this paper is the simulation of functional register machines using
active P systems with the same run-time complexity. For the recently introduced func-
tional register machine model [1], which is more complex than the ones considered in the
earlier studies, we present the details for constructing an active P system that simulates
an arbitrary functional register machine. Specifically, we present a set of evolution rules
that replicate the behavior of each of the instructions of this functional register machine
with the same run-time complexity.

This paper is organized as follows. Section 2 recalls the definitions of a functional reg-
ister machine model and a P system with active membrane model, and covers several key
mathematical concepts. Section 3 presents the details of constructing an active P system
that simulates any functional register machine. Finally, Section 4 summarizes this paper.

2 Preliminaries

2.1 Strings, multisets and graphs

An alphabet is a finite non-empty set with elements called symbols. A string over alphabet
O is a finite sequence of symbols from O. The set of all strings over O is denoted by O∗.
The length of a string x ∈ O∗, denoted by |x|, is the number of symbols in x. The number
of occurrences of a symbol o ∈ O in a string x over O is denoted by |x|o. The empty string
is denoted by λ.

A multiset is a set with multiplicities associated with its elements. A set that contains
the distinct elements of a multiset v is denoted by distinct(v). The empty string or
multiset is represented by λ. The size of a multiset v is denoted by |v|. The multiplicity
of an element x in a multiset v is denoted by |v|x. We say that a multiset v is included
in a multiset w, denoted by w ⊆ v, if, for all o ∈ O, |w|o ≤ |v|o. The union of multisets
v and w, denoted by v ∪ w, is a multiset x, such that, for all o ∈ O, |x|o = |v|o + |w|o.
The difference of multisets v and w, denoted by v − w, is a multiset x, such that, for all
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o ∈ O, |x|o = max(|v|o − |w|o, 0).

A (binary) relation R over two sets X and Y is a subset of their Cartesian product,
R ⊆ X × Y . For A ⊆ X and B ⊆ Y , we set R(A) = {y ∈ Y | ∃x ∈ A, (x, y) ∈ R},
R−1(B) = {x ∈ X | ∃y ∈ B, (x, y) ∈ R}.

A graph is an ordered pair (V,E), where V is a finite set of elements called nodes and
E is a set of unordered pairs of V called edges. A path of length n− 1 is a sequence of n
nodes, v1, v2, . . . , vn, such that {(v1, v2), . . . , (vn−1, vn)} ⊆ E. The diameter of G, denoted
by dia(G), is the maximum of the lengths of shortest paths between every pair of nodes
of G.

A directed graph (digraph) is a pair (V,A), where V is a finite set of elements called
nodes and A is a set of an ordered pair of V called arcs. Given a digraph D = (V,A), for
v ∈ V , the parents of v are A−1(v) = A−1({v}) and the children of v are A(v) = A({v}).

2.2 Register machines

A register machine has n ≥ 1 instructions and m ≥ 0 registers, where each register may
hold an arbitrarily large non-negative integer. All registers are, by default, initialized to
0. A register machine program consists of a finite list of instructions, followed by optional
input data, denoted as a sequence of bits. The first instruction of a program is indexed
at address (i.e. line number) 0.

A set of instructions of a register machine [1], denoted in Chaitin’s style [3], is described
below, which perform data handling, arithmetic, logic and control flow operations. In the
instructions below, variables z1, z2 and z3 denote registers and k denotes a non-negative
binary integer constant. The content of register zi, 1 ≤ i ≤ 3, is denoted by value(zi).

• Instruction (EQ r1 r2 r3) or (EQ r1 k r3):
If value(r1) = value(r2) or value(r1) = k, then the execution of M continues at
the value(r3)-th next instruction in the sequence. Otherwise, the execution of M
continues at the next instruction.

• Instruction (EQ r1 r2 −r3) or (EQ r1 k −r3):
If value(r1) = value(r2) or value(r1) = k, then the execution of M continues at
the value(r3)-th previous instruction in the sequence. Otherwise, the execution of
M continues at the next instruction.

• Instruction (SET r1 r2) or (SET r1 k):
r1 is replaced by value(r2) or the constant k.

• Instruction (ADD r1 r2) or (ADD r1 k):
r1 is replaced by value(r1) + value(r2) or value(r1) + k.

• Instruction (READ r1):
r1 is replaced by x, where x is the integer value of the binary input data with leading
bit of 1.
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• Instruction (HALT):
This is the last instruction of a register machine program, which is used to separate
program instructions from binary input data.

Functional register machine model of [1] includes the following additional instructions,
which can define functions and make function calls.

• Instruction (FUNC f r1):
Declares a function, named f , that takes r1 as an input argument. It is assumed
that the FUNC instructions will only be executed via previous CALL instructions.

• Instruction (CALL f r1 r2):
Makes a function call to the function f , which: (i) passes r1 as an input argument of
f , (ii) sets the content of r2 with the return value of f and (iii) on returning, restores
every register, except register r2, to its original content prior to this function call.

• Instruction (RETURN r1):
This instruction corresponds to one of “return” statements of a function, which
returns a value (i.e. the content of r1) back to where a function call was made. The
execution of the register machine continues to the instruction that made a function
call. The main program may also halt using this instruction.

2.2.1 Register machine subroutine

The Cantor pairing function, cantor : N×N→ N, is defined by cantor(x, y) = 1/2(x+
y)(x+ y + 1) + y. The inverse this cantor is denoted by cantor−1.

In the register machine model [1], the Cantor pairing function defined below is used
to store and retrieve a list of integers. The Cantor pairing function is denoted by
(CNTR r1 r2 r3), where r1, r2 and r3 denote registers.

• If value(r3) = 0, set value(r3) as cantor(value(r1), value(r2)).

• Otherwise, compute (value(r1), value(rz)) = cantor−1(value(r3)).

An implementation of the (CNTR r1 r2 r3) instruction is given below, which uses the
basic instructions and registers a, t1, t2, t3.

Line Instruction

0 EQ r3 0 9

1 SET t2 r1

2 ADD t2 r2

3 ADD r3 t1

4 EQ t1 t2 3

5 ADD t1 1

6 EQ a a −3

7 ADD r3 r2

8 EQ a a 17

Line Instruction

9 ADD t1 t2

10 SET t4 t1

11 SET t3 0

12 EQ r3 t4 7

13 EQ t3 t2 4

14 ADD t3 1

15 ADD t4 1

16 EQ a a −4

17 ADD t2 1

Line Instruction

18 EQ a a −9

19 SET r2 t3

20 SET r1 0

21 EQ t2 t3 4

22 ADD r1 1

23 ADD t3 1

24 EQ a a −3
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2.3 Active P systems

An active P system of order n is Π = (O,K,∆), where

1. O is a finite non-empty alphabet of symbols.

2. K = {µ1, µ2, . . . , µn} is a finite set of membranes. Each µi ∈ K is of the form
µi = (Qi, si0, wi0, Ri), where

• Qi is a finite set of states,

• si0 ∈ Qi is the initial state (si ∈ Qi denotes the current state),

• wi0 ∈ O∗ is the initial content and (wi ∈ O∗ denotes the current content),

• Ri is a finite linearly ordered set of evolution rules. An evolution rule r ∈ Ri

has the form:
j s u→α s

′ v w x

where

◦ α ∈ {min, max} is a rewriting operator of r,

◦ j ∈ N is the priority of r, where the lower value j indicates higher priority,

◦ s, s′ ∈ Qi, where s is the start state and s′ is the target state of r,

◦ u ∈ O+,

◦ v ∈ (O × τ)∗, where τ ∈ {�, ↑, ↓, l} is a target indicator. Note that,
(o,�) ∈ v, o ∈ O, is abbreviated to o,

◦ w ∈ ([s, x])∗, where [s, x] is the notation used to create a child membrane
inside µi with an initial state s ∈ Qi and an initial content x ∈ O∗,
◦ x ∈ {λ, δ}, where δ is the notation used to remove the current membrane
µi from system Π.

3. ∆ is an irreflexive and asymmetric relation on K, representing a set of arcs between
membranes with bidirectional communication capabilities.

In each step, each membrane µi = (Qi, si, wi, Ri) finds a multiset of rules, Mi, as
follows. Let Ui =

⋃
rh∈Mi

LHS(rh). For each rule rj ∈ Ri, 1 ≤ j ≤ |Ri| (in an increasing
priority order), membrane µi adds k ≥ 1 copies of rule rj into Mi, if:

• source(rj) = si,

• LHS(rj) ⊆ wi \ Ui and

• target(rj) equals the target states of all the rules in Mi, where:

◦ k = 1, if α = min and

◦ k = t, such that LHS(rj)
t+1 * wi \ Ui, if α = max.

Each membrane µi = (Qi, si, wi, Ri) applies all the rules of Mi simultaneously and
performs the following:

• transits from state si to target(ri), ri ∈Mi,
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• transforms multiset wi into multiset w′i =
⋃
{o | (o,�) ∈ RHS(rj), rj ∈ Mi} ∪ Vi,

where Vi corresponds to the multiset of symbols that membrane µi receives from its
neighbors, i.e. ∆(i) ∪∆−1(i),

• sends one copy of symbol o of (o, τ) ∈ RHS(rj), rj ∈Mi, to:

◦ each membrane µj ∈ ∆−1(i), if τ =↑,
◦ each membrane µj ∈ ∆(i), if τ =↓ and

◦ each membrane µj ∈ ∆(i) ∪∆−1(i), if τ =l,

• creates a child membrane if Mi contains a rule with notation “[ ]”,

• dissolves µi if there is a rule in Mi that contains symbol δ.

A system halts, if no further rules are applicable for all membranes. The computational
results of a halted system are the multiplicities of symbols present in the membranes of
the system.

3 Register machine simulator

We assume that, in a register machine program compiled using the register machine model
of Section 2.2, the FUNC instructions will only be executed via previous CALL instructions.

Given an arbitrary register machine M of Section 2.2, with n ≥ 1 instructions and
k ≥ 0 registers, r0, r1, . . . , rk−1, we build a P system ΠM = (O,K,∆) that simulates M ,
where:

1. O = {ri | 0 ≤ i < k} ∪ {∗,+, φ}

• the multiplicity of symbol ri minus one, 0 ≤ i < k, represents the value of
register ri,

• the multiplicity of symbol ∗minus one equals the current instruction line index,
i.e. multiset ∗j+1, 0 ≤ j < n, represents j-th instruction.

• + is an auxiliary symbols used for executing the evolution rules that correspond
to the EQ, CALL, RETURN and FUNC instructions.

• the multiplicity of symbol φ minus one equals the integer value of the binary
input data with leading bit of 1.

2. K = {µm}, where membrane µm is of the form

(Qm, sm0, wm0, Rm)

• Qm = {si, s′i | 0 ≤ i < n} ∪ {sGOTO} ∪ {sf | for every function (FUNC f zi1)
included in a given register machine program}, where:

◦ si, s′i, 0 ≤ i < n, represent the i-th instruction of M ,

◦ sn−1 represent the “halting” state,
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◦ sGOTO represents the “GOTO” state; if the execution of M continues to j-th
instruction, 0 ≤ j < n, then the “GOTO” state enables µm to transit to
state sj.

• sm0 = s0, indicates the first instruction, i.e. 0-th instruction.

• wm0 = {ri | 0 ≤ i < k}∪{∗}∪{φz+1 | z is the integer value of the binary input
data with leading bit of 1}, indicates µm’s initial content.

• Rm corresponds to a set of evolution rules that replicate the behavior of the
instructions of M . The rules of Rm are described in the following subsections.

3. ∆ = ∅.

3.1 Evolution rules for a SET instruction

3.1.1 Rules for an i-th instruction of the form (SET ri1 ri2)

• Precondition: n1 ≥ 1 copies of symbol ri1 , n2 ≥ 1 copies of symbol ri2 and n4 ≥ 1
copies of symbol ∗.
• Rules:

1. si ∗ →min si+1 ∗ ∗
2. si ri1 →max si+1

3. si ri2 →max si+1 ri1 ri2

• Postcondition: End state is si+1. n2 copies of symbol ri1 , n2 copies of symbol ri1
and n4 + 1 copies of symbol ∗.
• Description: Rule 1 produces one additional copy of symbol ∗. Rule 2 consumes

all copies of symbol ri1 . At the same time, rule 3 rewrites every copy of symbol ri2
into multiset ri1ri2 .

3.1.2 Rules for an i-th instruction of the form (SET ri1 ki)

• Precondition: n1 ≥ 1 copies of symbol ri1 and n4 ≥ 1 copies of symbol ∗.
• Rules:

1. si ∗ →min si+1 ∗ ∗
2. si ri1 →min si+1 r

ki+1
i1

3. si ri1 →max si+1

• Postcondition: End state is si+1. ki + 1 copies of symbol ri1 and n4 + 1 copies of
symbol ∗.
• Description: Rule 1 produces one additional copy of symbol ∗. Rule 2 rewrites one

copy of symbol ri1 into ki + 1 copies of symbol ri1 . Rule 3 consumes the remaining
copies of symbol ri1 .
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3.2 Evolution rules for an ADD instruction

3.2.1 Rules for an i-th instruction of the form (ADD ri1 ri2)

• Precondition: n1 ≥ 1 copies of symbol ri1 , n2 ≥ 1 copies of symbol ri2 and n4 ≥ 1
copies of symbol ∗.
• Rules:

1. si ∗ →min si+1 ∗ ∗
2. si ri2 →min si+1 ri2
3. si ri2 →max si+1 ri1 ri2

• Postcondition: End state is si+1. n1 + n2 − 1 copies of symbol ri1 , n2 copies of
symbol ri2 and n4 + 1 copies of symbol ∗.
• Description: Rule 1 produces one additional copy of symbol ∗. Rule 2 rewrites

one copy of symbol ri2 into one copy of symbol ri2 . Rule 3 rewrites every remaining
copy of symbol ri2 into multiset ri1ri2 .

3.2.2 Rules for an i-th instruction of the form (ADD ri1 ki)

• Precondition: n1 ≥ 1 copies of symbol ri1 and n4 ≥ 1 copies of symbol ∗.
• Rules:

1. si ∗ →min si+1 ∗ ∗
2. si ri1 →min si+1 r

ki+1
i1

• Postcondition: End state is si+1. n1 + ki copies of symbol ri1 and n4 + 1 copies of
symbol ∗.
• Description: Rule 1 produces one additional copy of symbol ∗. Rule 2 rewrites

one copy of symbol ri1 into ki + 1 copies of symbol ri1 .

3.3 Evolution rules for an EQ instruction

This section presents the evolution rules that correspond to an i-th instruction of the
form (EQ ri1 ri1 ri3), (EQ ri1 ri2 ri3), (EQ ri1 ki ri3), (EQ ri1 ri1 −ri3), (EQ ri1 ri2 −ri3)
or (EQ ri1 ki −ri3). The rules of these instructions use the rules of the “GOTO” state
(described below), which mimic the way a register machine makes a jump to a particular
instruction.

3.3.1 Rules for the “GOTO” state

Recall that system ΠM keeps track of the current instruction line index by the multiplicity
of symbol ∗, where multiset ∗j+1 indicates instruction line j. In the “GOTO” state,
membrane’s state transition is determined by the multiplicity of symbol ∗, such that if a
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membrane contains j+ 1 copies of symbol ∗, then the membrane transits to state sj. The
rules of the “GOTO” state are given below.

1 sGOTO ∗n+1 →min sGOTO ∗n+1

2 sGOTO ∗n →min sn−1 ∗n
3 sGOTO ∗n−1 →min sn−2 ∗n−1
...
n sGOTO ∗2 →min s1 ∗2

n+ 1 sGOTO ∗ →min s0 ∗

3.3.2 Rules for an i-th instruction of the form (EQ ri1 ri1 ri3)

• Precondition: n1 ≥ 1 copies of symbol ri1 , n3 ≥ 1 copies of symbol ri3 and n4 ≥ 1
copies of symbol ∗.
• Rules: Rules below plus the rules of the “GOTO” state

1. si ri3 →min sGOTO ri3
2. si ri3 →max sGOTO ri3 ∗

• Postcondition: n1 copies of symbol ri1 , n3 copies of symbol ri3 and j copies of
symbol ∗, where j = n3 + n4 − 1. End state is sj−1.

• Description: Rule 1 rewrites one copy of symbol ri3 into one copy of symbol ri3 .
For the remaining n3−1 copies of symbol ri3 , rule 2 rewrites every copy of symbol ri3
into one copy of symbol ri3 and one copy of symbol ∗. Then, using the j = n3+n4−1
copies of symbol ∗, the “GOTO” state rules guide the cell to transit to state sj−1.

3.3.3 Rules for an i-th instruction of the form (EQ ri1 ri2 ri3)

• Precondition: n1 ≥ 1 copies of symbol ri1 , n2 ≥ 1 copies of symbol ri2 , n3 ≥ 1
copies of symbol ri3 , n4 ≥ 1 copies of symbol ∗ and n5 ≥ 0 copies of symbol +.

• Rules: Rules below plus the rules of the “GOTO” state

Rules of state si:

1. si +→max s
′
i

2. si ri1 ri2 →max s
′
i ri1 ri2

3. si ri1 →min s
′
i ri1 +

4. si ri2 →min s
′
i ri2 +

Rules of state s′i:

5. s′i +→min si+1 ∗
6. s′i ri3 →min sGOTO ri3

7. s′i ri3 →max sGOTO ri3 ∗

• Postcondition:

◦ If the contents of registers ri1 and ri2 are the same, then:
End state is sj−1, where j = n3 + n4 − 1. n1 copies of symbol ri1 , n2 copies
of symbol ri2 , n3 copies of symbol ri3 , j copies of symbol ∗ and zero copies of
symbol +.
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◦ Otherwise:
End state is si+1. n1 copies of symbol ri1 , n2 copies of symbol ri2 , n3 copies of
symbol ri3 , n4 + 1 copies of symbol ∗ and zero copies of symbol +.

• Description: Rule 1 consumes all copies of symbol +, if any, such that one copy
of symbol + produced by rule 3 or 4 can indicate that the values of the registers ri1
and ri2 are not the same. Rule 2 pairs up every copy of symbol ri1 with one copy of
ri2 . If there are any unpaired copies of symbol ri1 or ri2 , then rule 3 or 4 produces
one copy of symbol +. If symbol + is present (i.e. the contents of registers ri1 and
ri2 are not the same), then rule 5 consumes symbol + and sets target state to si+1.
If symbol + is not present (i.e. the contents of registers ri1 and ri2 are the same),
then rules 6 and 7 produce j copies of symbol ∗, where j = n3 + n4 − 1, which are
used by the “GOTO” state rules to guide the cell to transit to state to sj−1.

3.3.4 Rules for an i-th instruction of the form (EQ ri1 ki ri3)

• Precondition: n1 ≥ 1 copies of symbol ri1 , n3 ≥ 1 copies of symbol ri3 and n4 ≥ 1
copies of symbol ∗.
• Rules: Rules below plus the rules of the “GOTO” state

1. si r
ki+2
i1
→min si+1 r

ki+2
i1

2. si r
ki+1
i1
∗ →min sGOTO r

ki+1
i1

3. si ri1 →min si+1 ri1
4. si ri3 →max sGOTO ri3 ∗
5. si ∗ →min si+1 ∗ ∗

• Postcondition:

◦ If the contents of registers ri1 equals the constant ki, then:
End state is sj−1, where j = n3 + n4 − 1. n1 copies of symbol ri1 , n3 copies of
symbol ri3 and j copies of symbol ∗.
◦ Otherwise:

End state is si+1. n1 copies of symbol ri1 , n3 copies of symbol ri3 and n4 + 1
copies of symbol ∗.

• Description: Rules 1, 2 and 3 check conditions ri1 > ki, ri1 = ki and ri1 < ki,
respectively. If the condition of rule 2 is met, then rule 2, together with rule 4,
produce j copies of symbol ∗, where j = n3+n4−1, which are used by the “GOTO”
state rules to guide the cell transits to state sj−1. If the condition of rule 2 is not
met, then rule 1 or rule 3 prompts the cell to transit to state si+1 and rule 5 produces
one additional copy of symbol ∗.

3.3.5 Rules for an i-th instruction of the form (EQ ri1 ri1 −ri3)

• Precondition: n1 ≥ 1 copies of symbol ri1 , n3 ≥ 1 copies of symbol ri3 and n4 ≥ 1
copies of symbol ∗.
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• Rules: Rules below plus the rules of the “GOTO” state

1. si ri3 →min sGOTO ri3
2. si ri3 ∗ →max sGOTO ri3

• Postcondition: n1 copies of symbol ri1 , n3 copies of symbol ri3 and j copies of
symbol ∗, where j = n4 − n3 + 1. End state is sj−1.

• Description: Rule 1 rewrites one copy of symbol ri3 into one copy of symbol ri3 .
For the remaining n3− 1 copies of symbol ri3 . Rule 2 rewrites one copy of symbol ∗
and copy of symbol ri3 into one copy of symbol ri3 . Then, using the j = n4−n3 + 1
copies of symbol ∗ produced from rules 1 and 2, the rules of the “GOTO” state
guide the cell to transit to state sj−1.

3.3.6 Rules for an i-th instruction of the form (EQ ri1 ri2 −ri3)

• Precondition: n1 ≥ 1 copies of symbol ri1 , n2 ≥ 1 copies of symbol ri2 , n3 ≥ 1
copies of symbol ri3 , n4 ≥ 1 copies of symbol ∗ and n5 ≥ 0 copies of symbol +.

• Rules: Rules below plus the rules of the “GOTO” state

Rules of state si:

1. si +→max s
′
i

2. si ri1 ri2 →max s
′
i ri1 ri2

3. si ri1 →min s
′
i ri1 +

4. si ri2 →min s
′
i ri2 +

Rules of state s′i:

5. s′i +→min si+1 ∗
6. s′i ri3 →min sGOTO ri3

7. s′i ri3 ∗ →max sGOTO ri3

• Postcondition:

◦ If the contents of registers ri1 and ri2 are the same, then:
End state is sj−1, where j = n4 − n3 + 1. n1 copies of symbol ri1 , n2 copies
of symbol ri2 , n3 copies of symbol ri3 , j copies of symbol ∗ and zero copies of
symbol +.

◦ Otherwise:
End state is si+1. n1 copies of symbol ri1 , n2 copies of symbol ri2 , n3 copies of
symbol ri3 , n4 + 1 copies of symbol ∗ and zero copies of symbol +.

• Description: Rule 1 consumes all copies of symbol +, if any, such that one copy
of symbol + produced by rule 3 or 4 can indicate that the values of the registers ri1
and ri2 are not the same. Rule 2 pairs up every copy of symbol ri1 with one copy of
ri2 . If there are any unpaired copies of symbol ri1 or ri2 , then rule 3 or 4 produces
one copy of symbol +. If symbol + is present (i.e. the contents of registers ri1 and
ri2 are not the same), then rule 5 consumes symbol + and sets target state to si+1.
If symbol + is not present (i.e. the contents of registers ri1 and ri2 are the same),
then rules 6 and 7 produce j copies of symbol ∗, where j = n4 − n3 + 1, which are
used by the “GOTO” state rules to guide the cell to transit to state to sj−1.
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3.3.7 Rules for an i-th instruction of the form (EQ ri1 ki −ri3)

• Precondition: n1 ≥ 1 copies of symbol ri1 , n3 ≥ 1 copies of symbol ri3 and n4 ≥ 1
copies of symbol ∗.
• Rules: Rules below plus the rules of the “GOTO” state

1. si r
ki+2
i1
→min si+1 r

ki+2
i1

2. si r
ki+1
i1
→min sGOTO r

ki+1
i1

3. si ri1 →min si+1 ri1
4. si ri3 →min sGOTO ri3
5. si ri3 ∗ →max sGOTO ri3
6. si ∗ →min si+1 ∗ ∗

• Postcondition:

◦ If the content of register ri1 equals the constant ki, then:
End state is sj−1, where j = n4 − n3 + 1. n1 copies of symbol ri1 , n3 copies of
symbol ri3 and j copies of symbol ∗.
◦ Otherwise:

End state is si+1. n1 copies of symbol ri1 , n3 copies of symbol ri3 and n4 + 1
copies of symbol ∗.

• Description: Rules 1, 2 and 3 check conditions ri1 > ki, ri1 = ki and ri1 < ki,
respectively. If the condition of rule 2 is met, then rules 4 and 5 produce j copies
of symbol ∗, where j = n4 − n3 + 1. Then, the j copies of symbol ∗ are used by
the “GOTO” state rules to guide the cell transits to state sj−1. If the condition of
rule 2 is not met, then rule 1 or rule 3 prompts the cell to transit to state si+1 and
rule 6 produces one additional copy of symbol ∗.

3.4 Evolution rules for a READ instruction

The rules for an i-th instruction of the form (READ ri1) are as follow.

• Precondition: n1 ≥ 1 copies of symbol ri1 , n4 ≥ 1 copies of symbol ∗ and n5 ≥ 1
copies of symbol φ.

• Rules:

1. si ∗ →min si+1 ∗ ∗
2. si ri1 →max si+1

3. si φ→max si+1 φ ri1

• Postcondition: End state is si+1. n5 copies of symbol ri1 , n4 + 1 copies of symbol
∗ and n5 copies of symbol φ.

• Description: Rule 1 produces one additional copy of symbol ∗. Rule 2 consumes
all existing copies of symbol ri1 . Rule 3 rewrites every copy of symbol φ into one
copy of symbol φ and one copy of symbol ri1 .
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3.5 Evolution rules for a HALT instruction

There are no evolution rules for the last instruction HALT. If a system enters the state
sn−1, where n denote the number of instructions, then the system will halt.

3.6 Evolution rules for functional instructions

3.6.1 Rules for an i-th instruction of the form (CALL f ri1 ri2)

In the rule 1 below, multiset x = {ri | ri is a register of M}, which can be determined
when translating a given register machine M into the corresponding active P system ΠM .

• Precondition: n1 ≥ 1 copies of symbol ri1 , n2 ≥ 1 copies of symbol ri2 , n4 ≥ 1
copies of symbol ∗ and n5 ≥ 0 copies of symbol +.

• Rules:

Rules of state si:

1. si ∗ →min s
′
i ∗ ∗ [sf , ∗f+1 x]

2. si +→max s
′
i

3. si ri1 →max s
′
i ri1 (+, ↓)

4. si ri2 →max s
′
i

Rules of state s′i:

5. s′i +→max si+1 ri2

• Postcondition: End state is si+1. n4 + 1 copies of symbol ∗, n1 copies of symbol
ri1 , n

′
2 ≥ 1 copies of symbol ri2 , where n′2 is the number of symbol + received from

the current cell’s children.

• Description: Rule 1 produces one additional copy of symbol ∗. At the same
time, rule 1 creates one child cell with initial state sf and initial content {∗f+1 ri |
ri is a register of M}. Rule 2 consumes all existing copies of symbol +, if any, such
that, later, the number of symbol + received in state s′i corresponds to the returned
value from the function call made to the child. Rule 3 passes the parameter value,
i.e. content of the register ri1 , to the child by sending n1 copies of symbol + to
the child. Rule 4 consumes all copies of symbol ri2 . Rule 5 rewrites every copy of
symbol +, received from the child, into one copy of symbol ri2 , i.e. processes the
returned value from the function call made to the child.

3.6.2 Rules for an i-th instruction of the form (FUNC f ri1)

• Precondition: n1 ≥ 1 copies of symbol ri1 , n4 ≥ 1 copies of symbol ∗ and n5 ≥ 1
copies of symbol +.

• Rules:

1. si ∗ →min si+1 ∗ ∗
2. si ri1 →max si+1

3. si +→max si+1 ri1

13



• Postcondition: End state is si+1. n5 copies of symbol ri1 , n4 + 1 copies of symbol
∗ and zero copies of symbol +.

• Description: Rule 1 produces one additional copy of symbol ∗. Rule 2 consumes
all existing copies of symbol ri1 . Rule 3 rewrites n5 copies of symbol + into n5 copies
of symbol ri1 .

3.6.3 Rules for an i-th instruction of the form (RETURN ri1)

• Precondition: n1 ≥ 1 copies of symbol ri1 .

• Rules:

1. si ri1 →max si+1 (+, ↑)

• Postcondition: End state is si+1. Zero copies of symbol ri1 . n1 copies of symbol
+ sent to the current cell’s parents.

• Description: For each copy of symbol ri1 , rule 1 consumes the symbol ri1 and
sends one copy of symbol + to the parent cells.

4 Conclusions

In this paper, we presented the details for constructing an active P system that simulates
the functional register machines. Functional register machines of [1], extend the register
machines of [2] by including instructions that: (i) define a function, (ii) make a function
call and (iii) retrieve a return value from a function call.

Components of functional register machines are modeled as follows. Registers are rep-
resented by symbols, register contents are represented by multiplicity of the corresponding
symbol, instruction lines are represented by cell states, instructions are represented by
evolution rules.

Each constructed active P system has the following properties: (i) the number of states
and evolution rules are proportional to the number of instructions of a given register
machine and (ii) for each register machine instruction, the number of P system steps
required to execute the corresponding rules is constant.
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[4] E. Csuhaj-Varjú, M. Margenstern, G. Vaszil, and S. Verlan. On small universal
antiport P systems. Theor. Comput. Sci., 372(2-3):152–164, 2007.

[5] M. J. Dinneen and Y.-B. Kim. A new universality result on P systems. Report
CDMTCS-423, Centre for Discrete Mathematics and Theoretical Computer Science,
University of Auckland, Auckland, New Zealand, July 2012.

[6] R. Freund, L. Kari, M. Oswald, and P. Sośık. Computationally universal P systems
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