
CDMTCS
Research
Report
Series

Using Membrane Systems to
Solve the Bounded Fanout
Broadcast Problem

Michael J. Dinneen
Yun-Bum Kim

Department of Computer Science,
University of Auckland,
Auckland, New Zealand

CDMTCS-467
July 2014

Centre for Discrete Mathematics and
Theoretical Computer Science

Using Membrane Systems to Solve
the Bounded Fanout Broadcast Problem

Michael J. Dinneen and Yun-Bum Kim

Department of Computer Science, University of Auckland,
Private Bag 92019, Auckland, New Zealand

mjd@cs.auckland.ac.nz, tkim021@aucklanduni.ac.nz

July 28, 2014

Abstract

Broadcasting is the information distribution process in a communication network,
which aims to inform all network nodes with a unique message, initially held by a
subset of nodes called originators. This paper considers a decision problem that asks
if it is possible to inform all nodes within t time units. This paper presents a non-
deterministic solution, implemented with a bio-inspired distributed and parallel
computational model called membrane systems, which decides in t+ 1 steps.

Keywords: P systems, broadcast, fanout, communication network.

1 Introduction

For a given communication network G = (V,E), broadcasting from node v ∈ V is
the process of distributing information from v to every other node, under the following
constraints: (i) messages are exchanged between neighboring nodes, (ii) each message
exchange takes one time unit, (iii) each node can exchange messages with up to f ≥ 1
neighbors in one time unit. The problem is to design a messaging protocol that informs all
network nodes from a starting set of vertices with the unique message within a deadline.
This problem, a variant to the Minimum Broadcast Time Problem [3, 2], is formulated
next in Problem 1.

Problem 1. The Bounded Fanout Broadcast Problem
Instance: graph G = (V,E), subset V0 ⊆ V called originators, a positive integer f
called fanout, a positive integer t called deadline.
Question: Is there a sequence of sets V0, E1, V1, . . . , Et, Vt, such that each Vi ⊆ V , each
Ei ⊆ E, Vt = V , and, for 1 ≤ i ≤ t,

1. Vi = Vi−1 ∪ {v | (u, v) ∈ Ei},

1

2. each edge in Ei has an endpoint in both Vi−1 and Vi \ Vi−1,

3. each vertex in Vi−1 is incident to at most f edges in Ei,

4. each vertex in Vi \ Vi−1 is incident to at most 1 edge in Ei.

The set of edges Ei, 1 ≤ i ≤ t, satisying the constraints of Problem 1 is considered
to be a broadcast tree (protocol) of time t for a graph G. Usually the set of originators
is a single source vertex v ∈ V . We say the fanout f broadcast time of G originating at
v, denoted BTf (G, v), is the smallest value t such that there is corresponding broadcast
tree of time t.

0 1

2 3

4 5

6 7

V0 = {0}

V1 = {0, 1, 4}

V2 = {0, 1, 2, 3, 4, 5, 6}

V3 = {0, 1, 2, 3, 4, 5, 6, 7}

E1 = {(0, 1), (0, 4)}

E2 = {(0, 2), (1, 3), (4, 5), (4, 6)}

E3 = {(5, 7)}

0 1

2 3

4 5

6 7

11

2

2 2 2 3

Figure 1: Left: A connected graph. Center: A graph that shows the time step in which
nodes have been informed (indicated with edge labels) during broadcasting from node 0
with fanout f = 2. Right: The sequence of sets V0, E1, V1, E2, V2, E3, V3 corresponding
to the graph shown in the center.

The main contribution in this paper is to present a non-deterministic1 solution to
the bounded fanout broadcast problem using a computing model called membrane sys-
tem. Membrane systems [6, 7] (also known as P systems) are distributed and parallel
computing model, inspired by the structure and function of living cells. A membrane
system consists of a network of (multiset processing) computing units called membranes.
Each membrane contains a multiset of symbols and is associated with a set of multiset
processing rules.

This paper is organized as follows. Section 2 recalls several key mathematical concepts
that are used in this paper. Section 3 presents the definition of a membrane system used
in this paper. Section 4 presents the details of constructing a membrane system that
solves the bounded fanout broadcast problem for a given instance. Finally, Section 5
summarizes this paper and provides some open problems.

2 Preliminaries

This section covers several key mathematical concepts that are used in this paper, such
as sets, strings, multisets and graphs.

An alphabet is a finite non-empty set with elements called symbols. A string over
alphabet O is a finite sequence of symbols from O. The set of all strings over O is

1each informed node non-deterministically selects uninformed neighbors

2

denoted by O∗. The length of a string x ∈ O∗, denoted by |x|, is the number of symbols
in x. The number of occurrences of a symbol o ∈ O in a string x over O is denoted by
|x|o. The empty string is denoted by λ.

A multiset is a set with multiplicities associated with its elements. A set that contains
the distinct elements of a multiset v is denoted by distinct(v). The empty string or
multiset is represented by λ. The size of a multiset v is denoted by |v|. The multiplicity
of an element x in a multiset v is denoted by |v|x. We say that a multiset v is included
in a multiset w, denoted by w ⊆ v, if, for all o ∈ O, |w|o ≤ |v|o. The union of multisets
v and w, denoted by v ∪ w, is a multiset x, such that, for all o ∈ O, |x|o = |v|o + |w|o.
The difference of multisets v and w, denoted by v −w, is a multiset x, such that, for all
o ∈ O, |x|o = max(|v|o − |w|o, 0).

A (binary) relation R over two sets X and Y is a subset of their Cartesian product,
R ⊆ X × Y . For A ⊆ X and B ⊆ Y , we set R(A) = {y ∈ Y | ∃x ∈ A, (x, y) ∈ R},
R−1(B) = {x ∈ X | ∃y ∈ B, (x, y) ∈ R}.

A graph is an ordered pair (V,E), where V is a finite set of elements called nodes
and E is a set of unordered pairs of V called edges. A path of length n− 1 is a sequence
of n nodes, v1, v2, . . . , vn, such that {(v1, v2), . . . , (vn−1, vn)} ⊆ E. The diameter of G,
denoted by dia(G), is the maximum of the lengths of shortest paths between every pair
of nodes of G.

A directed graph (digraph) is a pair (V,A), where V is a finite set of elements called
nodes and A is a set of an ordered pair of V called arcs. Given a digraph D = (V,A), for
v ∈ V , the parents of v are A−1(v) = A−1({v}) and the children of v are A(v) = A({v}).

3 Membrane systems

Membrane systems (also known as P systems) are distributed and parallel computing
model. A membrane system consists of a network of (multiset processing) computing
units called membranes. Each membrane contains a multiset of symbols and is associated
with a set of multiset processing rules. Several P system models [5, 4, 1] have been
introduced, inspired from various features of living cells, that provide new ways to process
information and solve the computational problems of interest. A membrane system model
used in this paper has the form Π = (O,Q,K,R,∆), where

1. O is a finite non-empty alphabet of symbols.

2. Q is a finite set of states.

3. K = {µ1, µ2, . . . , µn | n ∈ N+} is a finite set of membranes. Each membrane µi ∈ K
is of the form µi = (si, wi), where

• si ∈ Q denotes the current state of µi,

• wi ∈ O∗ denotes the current content of µi.

4. R is a set of evolution rules, where an evolution rule r ∈ R has the form:

j s u→α s
′ v w x

3

• α ∈ {min, max} is a rewriting operator of r,

• j ∈ N is the priority of r, where the lower value j indicates higher priority,

• s, s′ ∈ Q, where s is the start state and s′ is the target state of r,

• u ∈ O+,

• v ∈ (O×τ)∗, where τ ∈ {�, ↑, ↓, l} is a target indicator. Note that, (o,�) ∈ v,
o ∈ O, is abbreviated to o,

5. ∆ is an irreflexive and asymmetric relation on K, representing a set of arcs between
membranes with bidirectional communication capabilities.

A configuration of system Π of order n is (s1, w1, s2, w2, . . . , sn, wn), where, for 1 ≤ i ≤
n, si and wi correspond to the current state and content of membrane σi, respectively.
Consider two configurations of system Π, C ′ and C ′′. A transition in system Π is a
transformation from C ′ to C ′′ in one time unit, denoted by C ′ ⇒ C ′′, such that C ′′

is obtained from C ′. A transition C ′ ⇒ C ′′ consists of two substeps (substep 1 and
substep 2). All membranes simultaneously perform substep 2, after every membrane has
finished substep 1.

• Substep 1: Each membrane µi, 1 ≤ i ≤ n, finds a maximal multiset of evolution
rules, Mi, as described in Definitions 2 and 3.

• Substep 2: Each membrane µi, 1 ≤ i ≤ n, executes a multiset of evolution rules
found in substep 1, Mi, as described in Definition 4.

System Π halts, if it reaches a configuration (called the halting configuration), where
no evolution rule can be applied to the existing symbols inside all membranes. The
computational results of a halted system are the multiplicities of symbols present in the
membranes of the system.

Definition 2. Given a multiset w ∈ O∗ and an evolution rule r ∈ R, where LHS(r) ⊆ w,
the number of applications of r over w is

apply(r, w) =

{
1 if rewrite(r) = min,

|w|LHS(r) if rewrite(r) = max.

Definition 3. For membrane µi, in state si with content wi and a set of evolution rules
Ri, a maximal multiset of rules, Mi, is obtained by the procedure below.

Input: a set of evolution rules Ri and a multiset w := wi.
Output: a maximal multiset Mi.
Mi := ∅
for each rj ∈ Ri with source(rj) = si, 1 ≤ j ≤ |Ri| (by priority order)

if (Mi = ∅ || ∀rk ∈Mi (dest(rj) = dest(rk))) then
if (LHS(rj) ⊆ w then

m := apply(rj, w)
Mi := Mi ∪ {rmj }

4

w := w − LHS(rj)
m

endif
endif

endfor

Definition 4. For each membrane µi, 1 ≤ i ≤ n, consider a maximal multiset of
evolution rules, Mi, found according to Definition 3. For membrane µi with the current
content wi, multisets Ui, Vi, V

↓
i , V ↑i and V

l
i , for each µk ∈ ∆(i) ∪∆−1(i), are defined as

follow:

• Ui =
⋃
rj∈Mi

LHS(rj), denotes the multiset that will be consumed from wi.

• Vi =
⋃
rj∈Mi

⋃
(o,�)∈RHS(rj){o}, denotes the multiset that will be produced and added

to wi.

• V ↓i =
⋃
rj∈Mi

⋃
(o,↓)∈RHS(rj){o}, denotes the multiset that will be sent to each µk ∈

∆(i).

• V ↑i =
⋃
rj∈Mi

⋃
(o,↑)∈RHS(rj){o}, denotes the multiset that will be sent to each µk ∈

∆−1(i).

• V li =
⋃
rj∈Mi

⋃
(o,l)∈RHS(rj){o}, denotes the multiset that will be sent to each µk ∈

∆(i) ∪∆−1(i).

For each membrane µi in state si with content wi:

• If Mi = ∅, then µi remains in state si with content wi.

• Otherwise, µi transforms:

◦ its current state to si = dest(rf), where rf ∈Mi.

◦ its current content wi to w′i, where

w′i = wi − Ui ∪ Vi ∪
⋃

f∈∆−1(i)

V ↓f ∪
⋃

g∈∆(i)

V ↑g ∪
⋃

h∈∆(i)∪∆−1(i)

V
l
h

4 Non-deterministic P systems solutions

This section presents P system Π that correspond to a non-deterministic solution to the
bounded fanout broadcast problem of Problem 1. A trace of system Π for the example
of Figure 1 is given in Section 4.4.

5

Have all nodes been informed?

Produce one copy
of symbol o

Halt

Is counter ≥ 1?

For each informed node i:
non-deterministically
select up to f uninformed
neighbors of i.

No

Yes No

YesDecrement counter by 1

(LHS of rule 1)

(LHS rules 2 & 3)

(Rule 4)

(RHS of rule 2)

(RHS of rule 1)

Figure 2: Procedure for µ to determine if all nodes can be informed within t steps from
nodes of V0. Initially, nodes of V0 are marked as “informed” and every other node is
marked as “uninformed”. Variable counter has an initial value of input parameter t.

4.1 Overview of system Π

System Π consists of one membrane, labeled µ, that determines if every node can be
informed within t steps from nodes of V0, using the procedure illustrated in Figure 2.
Activities and decisions indicated inside boxes of the procedure are accompanied by the
corresponding evolution rules specified in Section 4.2.

As illustrated in Figure 2, µ produces one copy of symbol o if every node can be
informed within t steps. The final configuration of a halted system Π can be interpreted,
with respect to Problem 1, as follows:

• If µ ends with one copy of symbol o, then the answer is “Yes”.

• Otherwise, the answer is “No”.

4.2 Specification of system Π

Specification of system Π described earlier is (O,Q,R,K,∆), where

1. O = {vi, ui, ei,j, h, o | i, j ∈ {1, 2, . . . , n}}.

• Symbols ei,j and ej,i represent edge (i, j) ∈ E.

• Symbols vi and ui represent the “informed” and “uninformed” status of node
i ∈ V , respectively.

• Multiplicity of symbol vi represents the fanout parameter f .

• Recall variable counter of Figure 2, which has an initial value of input param-
eter t. Multiplicity of symbol h corresponds to value counter + 1.

• Symbol o represents “Yes-output”, i.e. every node can be informed within in
t steps.

6

2. Q = {s0, s1, s2}, where

• s0 represents an active state where informed nodes non-deterministically select
up to f uninformed nodes.

• s1 represents a halt state where all nodes could not be informed within t steps.

• s2 represents a halt state where every node is informed within t steps.

3. R corresponds to the following rules. The task each rule undertakes is indicated in
Figure 2.

1. s0 v
f
1 v

f
2 . . . vfn →min s2 o

2. s0 h h→min s0 h

3. s0 h→min s1 h

4. s0 vi ei,j ej,i uj →min s0 vi v
f
j

4. K = {µ}, where µ has the initial form of (s0, VK ∪ UK ∪ EK ∪ ht+1), where

• VK = {vjf | j ∈ {V0}},
• UK = {uj | j ∈ {1, 2, . . . , n} \ {V0}},
• EK = {ei,j, ej,i | (i, j) ∈ E}.

5. ∆ = ∅.

4.3 Analysis of system Π

Propositions 5 and 6 demonstrate the correctness of construction of system Π for solving
the Problem 1. The run-time complexity of system Π is indicated in Proposition 7.

Proposition 5. Using rule 4, each informed node non-deterministically selects f unin-
formed neighbors repeatedly, if any, and marks them as “informed”.

Proof. Each copy of symbol vi is used to find one uninformed neighbor, if any, as follows.
If symbols vi, uj, ei,j and ej,i are available (i.e. node i is visited, node j is unvisited and
nodes i and j are neighbors), then rule 4 rewrites symbol uj into f copies of symbol vj
(i.e. transforms the status of node j from “uninformed” to “informed”). Every copy of
symbol vi is preserved, such that node i can select up to f uninformed neighbors in the
future repeatedly, if necessary. �

Proposition 6. Membrane µ replicates the the procedure of Figure 2.

Proof. We show that the evolution rules of R, which govern the behavior of µ resemble
the procedure of Figure 2. Membrane µ starts from state s0. Membrane µ in state s0

finds and executes rules in each step as follows:

• Due to the rule priority, rule 1 is the first rule checked by µ. Rule 1 inspects
whether every node is informed by requiring multiset {vfi | 1 ≤ i ≤ n}. If µ
meets this requirement, rule 1 is executed, which prompts µ to produce one copy
of symbol o and halt by entering state s2.

7

• Rule 2 is the next rule checked by µ, given that µ does not contain multiset {vfi | 1 ≤
i ≤ n} (i.e. not every node is informed). Rule 2 inspects the condition “counter ≥
1?” by requiring multiset {hh}. If µ contains {hh}, rule 2 is executed, which
prompts µ to consume one copy of symbol h (i.e. decrement counter by 1) and
remain in state s0 such that µ can check through rules of R in the next step.

• Rule 3 is the rule executed by µ, given that µ does not satisfy the requirements of
rules 1 and 2, i.e. not every node is informed and counter = 0. Executing rule 3
prompts µ to halt by entering state s1.

• Rule 4 can be executed in parallel with rule 2 in one step, since these rules have the
same target state of s0. As described in Proposition 5, rule 4 enables each informed
node to non-deterministically select up to f uninformed neighbors.

The manner in which rules 1, 2, 3 and 4 are selected, and the results these rules produce
resemble the procedure of Figure 2. Thus, µ replicates the procedure of Figure 2. �

Proposition 7. System Π takes at most t+ 1 steps.

Proof. In each step, µ executes (i) rule 1, (ii) rules 2 and 4, or (iii) rule 3. The maximum
number of steps rules 2 and 4 can be executed is t. If all nodes have been informed in
t′ ≤ t steps, then µ halts at step t′ + 1 by executing rule 1. Otherwise, µ halts at step
t′ + 1 by executing rule 3. �

4.4 Example - an evolution trace of system Π

The table below illustrates an evolution trace of system Π for the instance: G is the
graph shown in Figure 1 (Left), initiators V0 = {0}, fanout f = 2 and deadline t = 3.
The order in which nodes are informed in the trace below corresponds to the sequence
given in Figure 1 (Right). The table indicates the state and content of membrane µ in
each step. The content column is divided into five sub-columns that respectively indicate
(i) “edge” symbols, (ii) “counter” symbol, (iii) “unvisited node” symbols, (iv) “visited
node” symbols and (v) “Yes-output” symbol.

8

Step State Content

0 s0 e0,1 e0,2 e0,4 e1,0 e1,3 e1,5 e2,0

e2,3 e2,6 e3,1 e3,2 e3,7 e4,0 e4,5

e4,6 e5,1 e5,4 e5,7 e6,2 e6,4 e6,7

e7,3 e7,5 e7,6

h4 u1 u2 u3

u4 u5 u6

u7

v2
0

1 s0 e0,2 e1,3 e1,5 e2,0 e2,3 e2,6 e3,1

e3,2 e3,7 e4,5 e4,6 e5,1 e5,4 e5,7

e6,2 e6,4 e6,7 e7,3 e7,5 e7,6

h3 u2 u3 u5

u6 u7

v2
0 v

2
1 v

2
4

2 s0 e1,5 e2,3 e2,6 e3,2 e3,7 e5,1 e5,7

e6,2 e6,7 e7,3 e7,5 e7,6

h2 u7 v2
0 v2

1 v2
2

v2
3 v2

4 v2
5

v2
6

3 s0 e1,5 e2,3 e2,6 e3,2 e3,7 e5,1 e6,2

e6,7 e7,3 e7,6

h v2
0 v2

1 v2
2

v2
3 v2

4 v2
5

v2
6 v

2
7

4 s2 e1,5 e2,3 e2,6 e3,2 e3,7 e5,1 e6,2

e6,7 e7,3 e7,6

h o

4.5 Remark

There are several variants to this bounded fanout broadcast problem. One of the variants
is to compute the fanout f broadcast time of a graph G = (V,E), defined BTf (G) =
maxv∈V BTf (G, v), where the broadcast time of an originator, BT (G, f, v), was defined
just after Problem 1.

An overview of P system Π′ that can solve this global broadcast problem is as follows.
Assume that for the input graph G, V = {v1, v2, . . . , vn}. System Π′ consists of n + 1
membranes, labeled µskin, µv1 , µv2 , . . . , µvn , which are arranged in a rooted tree structure
of Figure 3.

. . .

µskin

µv1 µv2 µvn

Figure 3: The membrane structure of system Π′.

Membrane µvi , 1 ≤ i ≤ n, covers the instance V0 = {vi} by determining if node vi can
inform every node within t steps. Membrane µvi uses the procedure illustrated in Figure 2
with the following difference: instead of producing one copy of symbol o locally, µvi sends
up one copy of symbol o to membrane µskin, i.e. replace rule s0 v

f
1 vf2 . . . vfn →min s2 o

with s0 v
f
1 v

f
2 . . . vfn →min s2 (o, ↑). The final configuration of a halted system Π′ can be

interpreted as follows:

• If µskin ends with n copies of symbol o, then the answer is “Yes”.

• Otherwise, the answer is “No”.

9

5 Conclusions

In this paper, we studied a communication networks problem, called the bounded fanout
broadcast problem, that asks: is it possible to informed all network nodes within a
specified deadline, under a communication constraint that limits the number of neighbors
each node can communicate simultaneously?

We designed our solution to this decision problem using membrane systems that
decides within t+1 steps, where t denotes the deadline. Future work include two natural
optimization problems: (i) find smallest fanout f when deadline t is fixed, and (ii) find
smallest t when f is fixed.

Acknowledgment

We want to thank Cristian Calude for the suggestion to work on this topic. This paper
was supported by the Quantum Computing Research Initiatives at Lockheed Martin.

References

[1] M. J. Dinneen, Y.-B. Kim, and R. Nicolescu. A faster P solution for the Byzantine
agreement problem. In M. Gheorghe, T. Hinze, and G. Păun, editors, Conference
on Membrane Computing, volume 6501 of Lecture Notes in Computer Science, pages
175–197. Springer-Verlag, Berlin Heidelberg, 2010.

[2] M. J. Dinneen, G. Pritchard, and M. C. Wilson. Degree- and time- constrained
broadcast networks. Networks, 39(3):121–129, Mar. 2002.

[3] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

[4] M. Ionescu, G. Păun, and T. Yokomori. Spiking neural P systems. Fundam. Inform.,
71(2-3):279–308, 2006.

[5] C. Mart́ın-Vide, G. Păun, J. Pazos, and A. Rodŕıguez-Patón. Tissue P systems.
Theor. Comput. Sci., 296(2):295–326, 2003.

[6] G. Păun. Membrane Computing: An Introduction. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2002.

[7] G. Păun, G. Rozenberg, and A. Salomaa. The Oxford Handbook of Membrane Com-
puting. Oxford University Press, Inc., New York, NY, USA, 2010.

10

