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Abstract

This short paper introduces possibilistic functional dependencies.
These dependencies are associated with a particular possibility dis-
tribution over possible worlds of classical database. The possibility
distribution reflects a layered view of the database. The highest layer
of the (classical) database consists of those tuples which certainly be-
long to it, while the other layers add tuples that only possibly belong
to the database, with different levels of possibility. The relation be-
tween the confidence levels associated with the tuples and the possi-
bility distribution over possible database worlds is discussed in detail
in the setting of possibility theory. A possibilistic functional depen-
dency is a classical functional dependency associated with a certainty
level that reflects the highest confidence level where the functional
dependency no longer holds in the layered database. Moreover, the
relationship between possibilistic functional dependencies and possi-
bilistic logic formulas is established. Related work is reviewed, and
the intended use of possibilistic functional dependencies is discussed
in the conclusion.

Keywords: Database decomposition, Functional dependency, Possibilistic
logic, Possibility theory, Uncertain data



1 Introduction

Functional dependencies (FDs for short) constitute a core notion in database
theory [4], for database decomposition, safe updating, redundancy elimina-
tion, and query optimization. This fact has led to a great number of works
on fuzzy functional dependencies in the fuzzy set literature, especially in
the nineties and in the first half of the next decade (see [10, 51] and the
related work section of this paper for some overview discussions). This is
due to the existence of different views of fuzzy databases, as well as dif-
ferent proposals for fuzzy functional dependencies (FFDs for short). FFDs
may be stronger or weaker than classical FDs. They may extend classical
FDs to fuzzy databases, or may already differ from classical FDs on classical
databases.

The view we investigate in this short note remains close to the one of a
classical database where classical FDs hold. We only depart from it by ad-
mitting that some tuples may be uncertain, in the sense that we are not sure
if some tuple, as it is, belongs or not to the database. This uncertainty may
be due to several reasons, for example when the database gathers tuples from
different sources with different confidence levels. The uncertainty of some of
the tuples will result in levels of certainty associated with classical FDs. The
proposal presented here has some similarity in its basic features with an old
one, published more than 20 years ago by Kiss [29], and which has had a
limited impact in the literature until now. However Kiss’ proposal was cast
in the setting of multiple-valued logic, while the approach in this short note
relies on a possibility theory [24, 52] view. Moreover, the possibilistic view
makes more precise the meaning of the weights associated with the tuples
and the FDs, respectively. It provides a richer semantic characterization of
the weighted FDs. We would like to stress that the simple model we propose
may be useful for managing databases with uncertain tuples.

The short note is structured as follows. We start with a motivating ex-
ample in Section 2. We then discuss the relation between a possibility dis-
tribution over possible database worlds and the confidence in the tuples of a
database. We make clear that these confidence levels are degrees of possibil-
ity. However, the highest one is also associated with a full certainty degree.
The uncertain database is then viewed as a layered database. Section 3 intro-
duces possibilistic FDs in this setting and establishes properties for them. It
is shown that we can reason with the weighted FDs that hold in an uncertain
database using possibilistic logic. We establish soundness and completeness
theorems for inference from the weighted FDs with respect to the FDs that
hold in the level cuts of the uncertain database, or, in other words, with
respect to the possibility distribution over possible database worlds and the



FDs that hold in each world. Section 4 reviews related work that deals either
with fuzzy FDs, or with classical FDs in fuzzy tuple databases; it also dis-
cusses classical FDs in possibilistic uncertain databases. Section 5 concludes
by outlining some potential uses and future developments.

2 DMotivating example

There has been an increase in recognition over recent years that a database
may contain uncertain pieces of information, although it has been a concern
for a long time [49, 36, 1, 45]. This uncertainty may take different forms.
Attribute values may be imprecise or pervaded with uncertainty, or one may
just be uncertain about the fact that a tuple, as it is, should be considered
or not as belonging to a database. In the following, we take the latter view.
The tuples are standard tuples (without null values), but we do not have full
confidence in some of them.

To illustrate the idea, let us consider the database in Table I. It consists
of a unique relation r with attributes C' (Course), T' (Time), L (Lecturer),
and R (Room). As can be seen, each tuple is associated with a weight «;.

These weights a; belong to a linearly ordered scale S = {ay, -+, an, pi1}
with oy > -+ > a;; > ay,11. They may be encoded numerically, e.g., a; = 1,
as = 0.8, -+, a, = 0.2, apy1 = 0, but this is not compulsory. Indeed, a

numerical encoding will have no particular meaning beyond the ordering of
the numbers. These levels may also receive a linguistic reading. We shall
come back to that in the next section.

Clearly, this encoding suggests a layer-based view of the relation r: we
have first the tuples with the highest confidence level «, followed by those
with a smaller confidence level (in the example as), and so on (in the example
we have a third layer with level ay). It also implicitly suggests a possibility
distribution over possible database worlds. How this distribution can be
related to the weights «; is discussed in the following.

3 Relating possible database worlds and con-
fidence in tuples

The problem we are facing is how to relate a possibility distribution over a
set of tuples to a distribution over tuples. Although this kind of problem
has not been considered very often, it already received an answer many years
ago in [23]. We first recall these results using the motivating example used
at that time [40], namely the representation of an imprecise and uncertain



Course Time Lecturer  Room | Poss(t)
DB Mon, 9am Ann Aqua q
IS Mon, 1pm Ann Aqua Qq
CS Mon, 1pm Pete Buff aq
CS Tue, 2pm Pete Buff Qq
Al Tue, 4pm Gill Buff o
Al Wed, 3pm Gill Cyan q

Math  Thu, 4pm Mary Lava Qs

Logic ~ Thu, 4pm Mary Pink Q3
HCI Fri, 9am Bob Tan oy
OR Fri, 9am Bob Tan oy
OR Fri, 9am Jack Tan Uy

Table 1: Example of an uncertain database

information about a multiple-valued attribute, here, the set of languages
spoken by a person.

3.1 Possibility distribution on a power set and its up-
per and lower approximations

For instance, we have the partial information that “John speaks either En-
glish and French, or English and German, and no other languages”. In
that case, it can be described by a two-valued possibility distribution 7 de-
fined over the power set 2° of the set of languages £, namely let A, =
{English, French}, and let Ay = {English, German}, then we have m(A;) =
m(Ay) =1 and 7w(Ag) = 0 for any k # 1,2. Clearly, this information has an
upper approximation by the set of languages possibly spoken by John, here
AT = {English, French, German}, and the set of languages certainly spoken
by John, here A~ = {English} is a lower approximation. Note that this is
only an approximation of the information conveyed by the original distribu-
tion m over 2¢, since we have lost the information that John speaks (only)
two languages. However, the two approximations are now distributions over
L. This is simpler, namely, pas+(l) = 1 if [ € {English, French, German}
and pa+(l) = 0 otherwise, while pus-(I) = 1 if | = English and pa-(1) =0
otherwise.

This can be generalized to multiple-valued possibility distributions [40].
Let 7 be a mapping from a power set 2 (we keep the same notation, but £
now denotes any set) to a linearly ordered scale S where 1 and 0 continue to
denote the top and the bottom element, respectively. We assume that x is
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normalized, i.e., sup;e;m(A;) = 1 (where I is an index set for the subsets in
2£). The upper and lower approximations are defined respectively by

pa+(l) = sup m(A;) (1)
i:lEAi
pa-(1) =1— sup m(A;) = inf (1 —7(4;)) (2)
GlgA; g A;
where 1 — (+) denotes a mapping from S = {aq, -+, an, @pi1} with ag =1 >
cor > ay > apyq = 0 into scale 8" = {fy, -+, Bn, Bprrp With B =1 > -+ >

Bn > /Bn-i-l =0, such that Bl =1- (an+1)a e 62 =1- (an+2—i)> Ty Bn-&-l =
1 — (). When S is a subset of [0,1], 1 — (-) is just the complementation to
1, otherwise it is the order-reversing map of the scale S (for S finite). Since
S is a possibility scale, S’ is a certainty scale.

Equation 2 means that we are all the more certain that [ € £ belongs
to the ill-known set A described by 7, i.e. pa-(l) is all the higher, as it is
impossible to find an A; such that [ € A;. Similarly, it is all the more possible
that [ € £ belongs to the ill-known set A, i.e. pa+(l) is all the higher, as there
exists an A; such that [ € A; having a high possibility level. The quantity
1—pa+(l) is called by Yager [50] “rebuff measure”, since it expresses to what
extent [ is impossible to be an element of A.

3.2 Some linkage with evidence theory

The construction made here is reminiscent of Shafer’s [43] setting for his
evidence theory, where he starts with a mass function m, called “basic prob-
ability assignment” defined over the subsets A; of some referential, say L,
which is such that ), m(A4;) = 1. Then m is nothing but the representation
of a random subset A of £. Then, a so-called contour function can be de-
fined as c(l) = >, 4, m(A;), which represents the plausibility that [ belongs
to A. Due to the probabilistic normalization of m, note that we also have
c(l) =1 =3 5124, m(A;). Here, the construct is similar, except that m is re-
placed by a possibilistic mass function 7, and »_ is replaced by sup to agree
with the idea of possibility. Such a qualitative counterpart of Shafer evidence
theory was first suggested in [22] (see [39] for recent developments). Then
the contour function splits into upper and lower approximation functions,
i.e., pa+ and pg-, respectively, which no longer coincide. Still, the following
strong inclusion of the fuzzy set A~ in A™ can be checked:

Vie L, pa-(1) >0= pys+(l) =1

It can also be observed that if p4- (1) is interpreted as the certainty that [
belongs to A (the ill-known set represented by ), namely pa- (1) = cert(l €

b}



A), the expected duality between possibility and certainty holds, namely,
par(l) = 1 — cert(l € A), since if the ill-known set A is represented by
{(A;, 7(Ay))]i € I} (where I is an index set), then its complement A should
be represented by {(A;,7(A;))|i € I} with Vi € I,7(A;) = 7(4;). Indeed

then 1—cert(l € A) = 1—p (1) = 1—(1—sup, gz T(A;) = supeq, 7(A;) =
HA+ (l)

3.3 Recovering the possibility distribution on the power
set

We have shown how a normalized possibility distribution 7 over 2% induces
upper and lower approximation functions over £. Conversely, since (A=, AT)
is only an approximation of the information contained in {(A;, 7(A4;))|i € I},
there are several possibility distributions over 2¢ in general that agree with
(A7, A") in the sense of Equations 1 and 2. However, it can be shown that
there exists a unique possibility distribution which is the largest one in the
sense of the fuzzy set inclusion defined on 2¢ (7 C 7/ <= Vi € I,7(A;) <
7'(A;)). This is the least committed one (since it does not arbitrarily weaken
the possibility level of any subset). This possibility distribution is defined by

©(B) = min(inf 4+ (1), mf(1 — pa-(1))) (3)

This equation is easy to understand, a subset B is all the more possible, as
both all its elements are possible, and no elements outside B are certain.
Entering 7* in Equations 1 and 2, we recover 4+ and jig-.

3.4 Application to layered databases

We can now apply these results to our original problem. Here, we consider
subsets of tuples t € T, so these subsets are in 27, which plays the role of 2¢
in the previous subsections. The possibility distribution 7, associated with
the relation r is now defined as (denoting B a subset of tuples)

m(B) = «; if 3i, B = r,,;m,(B) = 0 otherwise, with r,, = {t € r|c(t) > a;}

(4)
where 7, is the cut of level «; of the relation r and ¢(¢) is the confidence
level associated with tuple ¢. Thus, the different possible database worlds
are precisely the level cuts of the fuzzy relation induced by the confidence
weights. Any other possible database world that would not coincide with
such level cuts has a possibility level equal to a,,11 = 0. Note that the level
cuts are nested, i.e. r,, C ro,,, and thus r,, is included in any possible
database world that has a non zero possibility level.
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Applying Equations 1 and 2 to the distribution defined by Equation 4,
we get

ct(t)= sup m.(B) =« ift €1, but t € r,,_, (5)
B:teB
¢ (t)= inf (1-m(B))=ay =11ift € r,, and ¢ (t) = a1 = 0 otherwise.

B:t¢B
(6)
This means that with the exception of the tuples that are in r,,, which are
certainly in the database, the other tuples are only possibly in the database
r, the possibility levels ¢ (¢) then corresponding exactly to the confidence
levels, i.e. ¢ (t) = c(t).
Now applying Equation 3, we get

. e e e N s _

" (B) = min(inf ¢ (¢), inf(1 — <7(1))) (7)
and recover the original distribution m,, i.e., VB, 7*(B) = 7,(B). Indeed
inf;¢5(1 —c™(t)) = 0 for any B that fails to include some ¢ in r,,, otherwise,
inf,¢p(1 — ¢ (t)) = 1. Thus, in our case, the information conveyed by the
distribution 7, over 27 is equivalent to the pair (¢, c¢”) of upper and lower
contour functions defined on 7.

The «a;’s may now receive a proper linguistic counterpart. Since they
are possibility levels, one may interpret them on a linguistic scale such that
(taking, e.g., n = 4) ay = ‘fully possible’, ay = ‘quite possible’, ag = ‘medium
possible’, ay = ‘somewhat possible’, as = ‘not at all possible’.

Since a database whose tuples are associated with confidence levels has
now received a clear interpretation in the setting of possibility theory, we are
in a position to study what the concept of a functional dependency means in
this setting. This approach promotes the idea to keep confidence levels fully
qualitative in practice.

4 Possibilistic functional dependencies

A functional dependency (FD for short) X — Y, where X and Y are sets
of attributes, is a constraint of the form t¢.X = . X = tY =¢.Y. It is
obvious that if an FD holds in a database, it also holds in any subpart of the
original database. Here our layered set of tuples results in a nested sequence
of possible database worlds. So, if an FD holds in r,,,, the FD also holds
in r,,. Conversely, if an FD does not hold in r,, then the FD does not hold
inrg,. .



Thus, if we examine the example of Table 2, we can check, that CT — R
holds everywhere, namely in r,,, ¢' = L and RT — C holds in r,,, and
LT — Cin r4, = 74, only. This suggests to attach a certainty level to an
FD, such that the FD is all the more certain as it holds in a larger database
world provided that it is possible to some extent. This suggests the following
definition for the certainty level of an FD.

4.1 Defining possibilistic FDs
Cert.(fd) =1 — sup{m(ra,)|fd does not hold in r,,} (8)

where fd denotes an FD, and we have 7(r,,) = ;. Equation 8 is nothing
but the necessity of the event “fd holds in r” with respect to the possibility
distribution 7., since by definition the necessity N(p) of a statement p is
equal to 1 — II(—p), which corresponds to 1 minus the possibility, i.e., to the
impossibility of the opposite event “fd does not hold in r”. Thus, if fd fails
to hold in r,,, ,, but holds in r,,, Cert,(fd) = 1=m(ra,,,) = 1—aip1 = Brgi1-i
(since the possibility that fd fails is the greatest possibility to be in a database
world where fd fails). Thus, Cert,(fd) = 1 =1 — ap41 = 1 if fd holds for
any level cut of r. Note also that in particular, we get Cert,.(fd) = 0 if fd
fails to hold in r,,; in fact since the tuples in r,, are not only fully possible,
but also fully certain, there is no possibility at all that fd holds in a database
world having a non-zero possibility level, and thus it is fully certain that fd
fails to hold. Besides, in case the scales S and S’ are included in [0, 1], we just
have Cert,(fd) = 1 — a; 41 where now 1 — (-) is the usual complementation
to 1. We call a classical FD associated with a certainty level a possibilistic
functional dependency.

Coming back to our example, it can be checked that the set ¥ made up
of the previously mentioned FDs associated with their certainty weights is:

Y ={(CT = R, p1); (C — L, Ba); (RT — C, Ba); (LT — C, B3)}

Then the following proposition can be stated

F, (X —=Ye)ek, X->Y 9)
where F, (X — Y, ¢) means that Cert,(X — Y) > ¢ and where r, denotes
the strict a-level cut of r, namely r, = {t|c(t) > a}. This proposition is easy
to prove. First observe that F, (X — Y, ¢) entails F, (X — Y, ) as soon as
c>d. If Cert,(X = Y) > ¢, it follows from definition 8 that X — Y may
be violated at most in r,_., but certainly not in r,_.. Conversely, if X — Y
holds for any level cut of r of level strictly greater than 1 —c¢, Cert,.(X —Y)
cannot be less than 1 — (1 —¢)) = c.




The careful definition of the concept of a possibilistic FD in fully jus-
tifiable in terms of possibility theory is also of great potential in database
practice. In particular, it allows us to take full advantage of previous results
on classical dependencies, which we will explore in future work. For example,
if a relation satisfies a classical FD, then that relation can be decomposed
into two of its projection without loss of information [47, 2]. More generally,
if a possibilistic relation satisfies a possibilistic FD, then the level cuts of the
possibilistic relation can be decomposed into two of their projections without
loss of information.

4.2 Relation with possibilistic propositional logic

It is well known [25, 27, 28] that FDs in classical databases have a simple
propositional logic counterpart in terms of Horn clauses. In fact, the following
holds

Fr {A,-- A} > Be Vit erE Al V- v=AL VB (10)

Wit}
where A, ---, A}, B’ are propositional variables associated with attributes
Ay, -+ Ay, B, respectively, and wy; 4y (A’) = Trueif t. A =t/ A and w4y (A) =
False otherwise.

This result extends to our setting, just as propositional logic extends
to possibilistic logic [21]. Let us first have a brief refresher on possibilistic
logic. A (standard) propositional possibilistic logic formula is a pair (p, )
where p is proposition and § is a certainty level. At the semantic level it
corresponds to the semantic constraint N(p) > [, where N is a necessity
measure, associated with a possibility distribution 7 in the following way
N(p) = infy 1 — m(w). The lower the possibility of an interpretation that
makes p False, the higher the necessity degree of p. So, given a formula
(p, B), an interpretation w that makes p True is possible at the maximal level
in the scale S, say 1, while an interpretation w that makes p False is at
most possible at level 1 — 3. A possibilistic logic knowledge base K is a
collection of possibilistic logic formulas, namely K = {(p;, 5;)|i = 1,--- ,n},
whose semantic counterpart is 7y (w) = min,;—; ... , max(1—f;, [p;](w)) where
[p](w) = 1 if w E p and where [p](w) = 0 otherwise. Then in possibilistic
logic, the following soundness and completeness theorem holds

Frx (p.B) ©Fx (p,B) © Fr, 0 Fi, p

where Fg (p, f) means VYw, g (w) < Typen(w), and Kz = {p;|(pi, 6i) €
K and 3; > }. So the last half of the above expression reduces to the sound-
ness and completeness theorem of propositional logic, applied to each level



cut of K, which is an ordinary propositional logic knowledge base. Lastly,
Fx (p, ) refers to the syntactic part of possibilistic logic, which relies on the
repeated use of the resolution rule (—=p Vv ¢, ), (pV r,v) F (¢ V r,min(5,7)).
It is also interesting to notice that, due to the characteristic property of ne-
cessity measures, i.e., N(p A ¢) = min(N(p), N(q)), a possibilistic logic base
can be easily put in clausal form.

Thus, we have seen that the semantics for the possibilistic logic formula
(p, B) amounts to rank-order interpretations according to the possibility dis-
tribution 7y, g3, where myp 1 (w) = 1if w F p (i.e., w makes p True) and
Tipp)}(w) =1 — f if w is an interpretation that makes p False (i.e., w ¥ p).
Going back to possibilistic FDs, interpretations now refer to pairs of tuples,
but one may have a similar construct. The counterpart of Equivalence 10
can be stated in the following way:

F. ({AL,-- A} — B, ) & Vit er*E ) (mAL V- VALV B B)
(11)
where r denotes a possibilistic database (in the sense of this paper), r* is the
same database without the levels, and 7y is the possibility distribution
over logical interpretations that accounts for the possible failure of the FD
in the possibilistic database. Indeed, the distribution 7y} is defined in the

following way

ﬂ‘{t,t’

o Ty (wiyy) = min(a, o), with c¢(t) = «, c(t') = o, if (¢,¢') violates
{Ah T 7Ak} — B in Tmin(a,a’)

o Ty (wipy) =0, if (¢,t) satisfies {Ay,--- , A} = Binr*
o T (w) =1 for all w # wypy.

Here, the interpretations w are the ones induced by the literals AY,--- |, A}, B’
(where Aj is True iff t.A; = t'.A;, and B’ is True iff t.B = t'.B), and wyy 4y is
the particular interpretation A} --- A}~ B’ that falsifies ~A|V--- VA,V B'.

Proof of (11). Let ¢ = {A;, -, Ay} — B, and ¢/ = =A] V---V -4, vV B
When (t,t") violates ¢ it means that min(a, o) < 1 — § assuming F, (¢, f).
Since W{(cp/ﬁ)}(w“’t/}) = 1—p and W{(cp/,g)}(w) =1 for all w # Wit i} it
is clear that we have Vw, 7y py(w) < e p)3(w). Conversely, if this later
inequality holds, there cannot exist ¢,t' such that min(a,a’) > 1 — 3, and
thus Cert,(p) > 5, i.e., F, (p,8). Q.E.D.

The above result indicates that possibilistic FDs have counterparts in
possibilistic propositional logic just as FDs have counterparts in propositional
logic.
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5 Related work

The literature on fuzzy FDs is quite abundant. It is not the place here to
survey it in detail, and some overview papers exist [9, 10, 51| for the first
decade of literature on the topic. We first briefly mention the main existing
types of fuzzy FDs, and then compare in detail the proposed approach to a
somewhat similar proposal, which originates from a different perspective. In
the second part of this section, we discuss FDs in the context of the possible
world semantics of another type of possibilistic databases.

5.1 Fuzzy functional dependencies

Fuzzy FDs may refer to a quite large variety of situations. First, we may con-
sider classical databases (where one mines FDs with satisfaction degrees [5],
or fuzzy approximate dependencies [7]), or databases with precise attribute
values but weighted tuples, or databases with fuzzy attribute values, or still
fuzzy similarity-based relational databases (moreover the database may have
null values [30]). Then we may either study classical FDs on weighted tu-
ple databases or on fuzzy attribute value databases [12] or even fuzzy values
with imprecise membership functions [35], or we may consider fuzzy FDs
on classical databases [3] as well as on more general databases allowing for
weighted tuples, fuzzy attribute values, or fuzzy values defined by means of
fuzzy similarity relations [41, 8, 18, 19, 20, 15, 16, 48, 33, 44, 46, 6]. Fuzzy
FDs may be stronger or weaker than classical FDs depending on whether
they are adding further constraints to the one conveyed by a classical FD
(such as ordered FDs that agree with orderings existing in attribute domains
[37], or gradual FDs [42]), or whether they weaken the constraint associated
with a classical FD. Clearly, all these different options may serve different
goals, which may depart from the role of classical FDs in classical databases
(such as data summarization [17], building of linguistic summaries [11], or a
Bayesian network [34]).

However, in this short note, we are not dealing with any fuzzy FDs of any
kind. The proposal made here is motivated by the idea that FDs may fail
to hold in the presence of some tuples in which we have not full confidence.
This might be related to the idea of partial FDs [26], where FDs hold up to
exceptions whose number may be quantified. However, here, we take advan-
tage of the confidence levels of the tuples for accommodating the exceptions.
There has been another proposal made more than two decades ago, by Kiss
[29] for dealing with classical FDs in a weighted tuple database, viewed as a
fuzzy relation r. The author computes the degree of truth with which an FD
X — Y holds, in the following way (where p denotes membership functions):

11



Truth(X —Y) = ?ig(mz’n(ur(t), pr (), u= (8. X, 8. X) =1 u(t.Y,t.Y)))
4!
where p— denotes the exact equality relation, and =, is Lukasiewicz implica-
tion (note however that other implications will give the same result since the
righthand part of the implication is equal to 0 or 1). An easy computation
leads to

Truth(X - Y)=1-— sup min (g, (t), pu-(t')).
tpt.X=t.x and t.Y£Y

Reorganizing the weighted tuples into layers of decreasing degrees, we see
that the above formula coincides with our definition of Cert,(X — Y), and
indeed X — Y holds in any level cut 7, of r such that a > 1—Truth(X — Y).
However, this simple multiple-valued logic view has no clear interpretation
from an uncertainty modeling point of view, while a possible database world
perspective also enables us to get a possibilistic logic counterpart. More-
over, interestingly enough, the author wrote about his proposal some years
after: “The so defined fuzzy relations can be handled mathematically well,
but they have less practical importance” [38]. On the point of usefulness,
we disagree with this view. Indeed, just as possibilistic logic is a valuable
extension of propositional logic, one may expect that certainty-based FDs
with a layer-based view of databases can help to control the normalization
of the decomposition process of uncertain relations.

5.2 FDs in possibilistic databases. Discussing the mean-
ing of the levels

In this short note, we have emphasized the relationship between the levels
attached to the tuples and the associated possibility distribution over possi-
ble database worlds. Several authors have pointed out the interest of seeing
a possibilistic database as a set of classical databases associated with possi-
bility degrees. When the possibilistic database is a database where attribute
values are fuzzy (i.e., for each tuple and each attribute, we have a possibility
distribution restricting the possible values), the possibility degrees associated
with database worlds can be computed from the possibility degrees attached
to the possible attribute values chosen for building each classical database
compatible with the possibilistic database. One may then precisely define
the possibility degree and the necessity degree with which a particular FD
holds in the possibilistic database [13].

12



As can be seen, we have not used here this view of a possibilistic database.
However, consider the particular case where all the attribute values of each
tuple ¢ would be precise but uncertain, with the same certainty level ;,
which would correspond to particular possibility distributions equal to 1 for
the precise value, and equal to 1 — 3; everywhere else. Then, the database
would contain only certainty-qualified values in the sense studied in [14].
Since here the certainty of all the attribute values is the same for a given
tuple, one can associate this certainty level to the whole tuple (without losing
any information), in agreement with the min-decomposability of necessity
measures. Thus, what is obtained looks a bit like the possibilistic database
considered in this note, except that tuples are now associated with certainty
levels rather with possibility levels. So, one may wonder, if an approach
similar to the one presented here, but with certainty levels would not be
interesting as well. The answer is negative. This is because as soon as an
FD is violated in rx* (the database without the certainty levels here), there
would be a fully possible world where the FD is violated, and then the FD
would have no certainty, and one cannot reason in a possibilistic logic manner
with FDs that are just possible to some extent. Besides, if we only consider
relations r where the FDs are not violated in r*, we would be in a position
to associate a certainty level with the FDs, but it would always be the same,
namely the minimal value of all the certainty values attached to tuples in r.
This is not very interesting and confirms that our approach with possibility
levels is the right one if one does not want to trivialize the approach.

6 Concluding remarks

This short note has introduced the notion of possibilistic functional depen-
dencies based on the idea of a classical database, layered according to possi-
bility levels attached to tuples, and where the first layer is the only certain
one. We have shown that in such a case the associated possibility distribution
over possible database worlds is uniquely determined by the possibility levels
attached to tuples, and vice versa. This has led us to associate certainty
levels with FDs in a natural way. Furthermore, this definition allows us to
extend the well-known propositional logic counterpart of FDs in the setting
of possibilistic logic.

The notion of possibilistic functional dependencies proposed here seems
particularly appealing for use in database practice. Indeed, the layered view
of the database together with the different levels of certainty of the FDs
suggest their use in the control of the decomposition process of relations in
Third normal forms, or in Boyce-Codd normal forms, which can then be

13



layered. The full investigation of these issues, with the study of the weighted
counterpart of Armstrong’s system of axioms, is the topic of a companion
paper [32] and a patent application [31]. Besides, rather than starting with a
layered database, and computing the certainty levels of the FDs, one may also
think of doing the converse, namely starting with a set of more or less certain
FDs that should hold in a classical database, and looking for a stratification
of the database which agrees with the certainty levels of the FDs.
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