Species Diversity, 2000, 5, 155-162

Larval Development and Metamorphosis of the Sea Star
Luidia foliolata (Echinodermata: Asteroidea)

Mieko Komatsu¹, Mary Sewell², Sally F. Carson² and Fu-Shiang Chia²

¹Department of Biology, Faculty of Science, Toyama University, Toyama, 930-8555 Japan
²Department of Zoology, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada

(Received 5 July 1999; Accepted 15 May 2000)

Spawning of *Luidia foliolata* in Barkley Sound, British Columbia, Canada, occurs in spring. Ova are transparent and about 150 μm in diameter. The first cleavage occurs approximately 3 hr after fertilization at ca. 10°C. The embryo develops into a bipinnaria after a wrinkled blastula stage. Metamorphosis takes place about 4 mo after fertilization, without the larva’s passing through a brachiolaria stage. The full-grown bipinnaria is 2.5 mm long and has five pairs of bipinnaria arms. At metamorphosis, the larval part is absorbed into the asteroid rudiment. Juveniles are about 730 μm in diameter. They have five arms, each bearing two pairs of tube-feet. The present observations show that *L. foliolata* undergoes a non-brachiolarian type of development, as do all species of *Luidia* previously studied.

Key Words: starfish, larval development, metamorphosis, *Luidia foliolata*, wrinkled blastula, bipinnaria, non-brachiolarian development.

Introduction

Development through metamorphosis has been reported for seven species of *Luidia* (see Table 1). They are *L. ciliaris* (Philippi, 1837), *L. clathrata* (Say, 1825), *L. maculata* Müller and Troschel, 1842, *L. quinaria* v. Martens, 1865, *L. sarsi* Dübner and Koren, 1845, *L. savignyi* (Audouin, 1826), and *L. senegalensis* (Lamarck, 1816) (Komatsu et al. 1982, 1991, 1994; Mortensen 1938). The bipinnariae of all these species metamorphose without passing through a brachiolarian stage, thus exhibiting a non-brachiolarian type of development (Oguro et al. 1976; Oguro 1989). Although Strathmann (1987) briefly noted the development of *L. foliolata* Grube, 1866, little is known about the larvae and metamorphosis of this species.

Luidiid larvae have been considered clearly distinct from those of other asteroid groups (see Discussion). The bipinnariae are large, with well-developed arms and median processes (Mortensen 1913, 1938; Tattersall and Sheppard 1934; Wilson 1978; Bosch et al. 1989; Jaeckle 1994). Giant bipinnariae that might belong to this family have also been described without identifying the species (Mortensen 1927; Tokioka 1942). On the other hand, Komatsu et al. (1991) showed that luidiid bipinnariae are not always large; in comparison with bipinnariae of other asteroid gen-
era, these larvae's morphological features vary more among species. In this context, it is important to make a study of the larval development of more species of *Luidia*.

The genus *Luidia* is the sole genus in the family Luidiidae (Hyman 1955; Clark and Downey 1992). This family has been traditionally considered primitive among living asteroids (Fell 1963; Heddle 1967; Jaeckle 1994). Blake (1988), however, proposed on the basis of a cladistic analysis that paxillosids, comprising the Luidiidae, are not primitive, but specialized. In addition, he cited the presence of a brachiolaria in the development of paxillosids in support of this view, based on the erroneous interpretations offered by Strenger and Erber (1983) and Erber (1985). This situation spotlights the need for thorough studies of the development of luidiid species in order to provide accurate data for phyletic discussions. We undertook this study to clarify the similarities and differences between the development of luidiids and that of related groups.

Materials and Methods

Luidia foliata occurs on sandy or muddy bottoms. Specimens were collected by dredging in Barkley Sound, Vancouver Island, British Columbia, Canada, from the end of March to the middle of April, 1990. Spawning was induced by intracoelomic injection of 1 to 2 ml of 10^{-3} M 1-methyladenine per individual on March 30, April 16, and April 18, 1990. A dilute sperm suspension was added to the eggs for fertilization. Hatched embryos were kept in covered glass bowls, 80 cm tall and 10 cm in diameter, at the Bamfield Marine Station at about 10°C and then transferred into a tank, 100 cm tall and 150 cm in diameter, after formation of the larval mouth. The sea water in the tank was stirred by a suspended paddle and changed every 3 days. Larvae were fed a combined diet of the algae *Dunaliali teriolecta* Butcher, 1959 and *Isochrysis galbana* Parke, 1971 and the diatom *Skeletonema costatum* (Greville, 1878) (Komatsu et al. 1991).

The living embryos and larvae were observed and measured under a light microscope equipped with an ocular micrometer. The skeletal system was examined...
with a compound microscope, using either fresh squash preparations or specimens fixed in 70% ethanol and macerated in a 10% aqueous solution of KOH.

Results

Specimens collected in Barkley Sound could be spawned artificially from the end of March to the middle of April. Luidia foliolata is dioecious, with gonads and gonopores arranged serially along both sides of each arm. During the breeding season the gonads extended from the base to near the tip of each arm. Mature testes were milky white and ovaries were pale salmon pink in color.

The mature ova were spherical and transparent, measuring approximately 150 μm in average diameter (n=10, min=144 μm, max=160 μm). The fertilization membrane became apparent about 3 min after fertilization. The height of the perivitelline space was approximately 17 μm 100 min later (Fig. 1A). The first and second polar bodies were visible in the perivitelline space. First cleavage occurred on a plane through the animal and vegetal poles approximately 3 hr after fertilization at about 10°C. Cleavage is total, equal, and radial. The embryos were in the 16-cell stage 7 hr after fertilization. The wrinkled blastula stage lasted about 7 hr, from 19 to 26 hr after fertilization. The surface of the late blastula regained its smoothness. Ciliated coeloblastulae began to rotate within their fertilization membranes 30 hr after fertilization. While they were rotating, gastrulation occurred at the vegetal pole. One hr after the beginning of rotation, hatching took place and early gastrulae became free-swimming larvae. Hatched gastrulae gradually elongated along the archenteric axis. Mesenchyme cells were obvious in the blastocoel of the gastrula 2 days after fertilization. Fifty-two hr after fertilization the archenterons of the gastrulae had expanded blind ends. Gastrulae were 275 μm long and 180 μm wide 4 days after fertilization, with a differentiated coelomic pouch on each side of the archenteron's inner end. The mouth opened at the stomodaeum 7 days after fertilization. Two ciliary bands became obvious 8 days after fertilization. The bipinnaria at this stage was 350 μm long and 270 μm wide. By this time the archenteron had differentiated a functional, tripartite digestive tract: esophagus, stomach, and intestine. Both of the coelomic pouches had separated from the digestive tract and were situated dorso-laterally in the body between the esophagus and stomach. The left coelomic pouch was 65 μm long and larger than the right one (40 μm). The hydrocanal from the left coelomic pouch opened dorsally through the hydropore. The bipinnariae were feeding larvae and grew to 1.25 mm in length and 800 μm in width by 37 days after fertilization. Five pairs of bipinnaria arms were formed at this stage: anterior dorsal, posterior dorsal, posterior lateral, postoral, and preoral. Forty days after fertilization the tips of the right and the left coelomic pouches were in close contact with each other. Bipinnaria reached a length of 1.9 mm and a width of 1.2 mm by 50 days after fertilization.

Metamorphosis took place 4 mo after fertilization without the larvae having passed through a brachiolaria stage (Fig. 1B). Spicules, corresponding to the rudiments of adult skeletal plates, appeared on the posterior part of the bipinnaria (Fig. 1C): one madreporic plate and five terminal plates on the future aboral side and five pairs of oral plates on the future oral side. The largest bipinnaria at this stage was about 2.5 mm in length. The bipinnaria arms were by now well devel-
Fig. 1. Development of *Luidia foliolata*. Scale=100 μm. A: Fertilized eggs with elevated fertilization membrane (arrowheads) and polar bodies (arrows). B: Bipinnaria fixed in 70% alcohol, 4 months after fertilization, ventral view, with asteroid rudiment (short arrow) on posterior part of body; long arrows and white arrowheads show postoral arms and preoral arms, respectively. Abbreviations: ada, anterior dorsal arm; dmp, dorsal median process; la, lateral arm; pda, posterior dorsal arm; vmp, ventral median process. C: Rudiments of skeletal plates, from squash preparation of a bipinnaria, same stage as shown in B. Abbreviations: mp, madreporic plate; o, oral plate; t, terminal plate. D: Later bipinnaria fixed in 70% alcohol, future aboral view, with shrunken larval body, or stalk; long and short arrows show the median processes and bipinnaria arms, respectively. E: Juvenile, 5 months after fertilization, oral view; arrows show tube-feet. Abbreviation: ts, terminal spine.

opied; in particular, one pair of the lateral arms was about 400 μm long. There were two preoral lobes at the anterior end of the bipinnaria, the dorsal and ventral median processes. The ventral surface of the anterior end was surrounded by a ciliary band passing in front of and above the mouth; the frontal field was 1.4 mm long and included a well-developed ventral median process.

The end of metamorphosis was indicated by the reduction of the larval body's anterior portion, the stalk; Fig. 1D shows a metamorphosing bipinnaria with this reduced part. Arm primordia of the sea star were visible already on the posterior part of the body. The stalk was quickly resorbed into the posterior part of the bip-
innaria corresponding to the asteroid rudiment until it completely disappeared. Figure 1E shows a newly metamorphosed juvenile 5 mo after fertilization; it was 750 \(\mu \text{m} \) in diameter with two pairs of tube-feet and one terminal tentacle per arm. At this stage, the juvenile moved about using its tube-feet; a red eye-spot was formed at the base of each terminal tentacle; and the adult mouth was apparent.

Discussion

Although Strathmann (1987) reported that bipinnaria larvae of *Luidia foliolata* do not form brachiolar arms or an adhesive disk, she made no explicit statement concerning possible later larvae. She neither described a brachiolaria stage of the larva nor referred to the development of this species as non-brachiolarian, a term proposed by Oguro et al. (1976) to denote a new type of asteroid development. The present study shows that bipinnariae of *L. foliolata* begin metamorphosis without passing through a brachiolaria stage. They exhibit the same non-brachiolarian type of development as has been reported in all other luidiids studied to date.

The developmental features observed in *L. foliolata* are similar to those of 8 other luidiid species (Table 1). The egg in *L. foliolata* is transparent, with an average diameter of about 150 \(\mu \text{m} \), intermediate between the smallest egg size of 124 \(\mu \text{m} \) in *L. quinaria* (Komatsu et al. 1982) and the largest, 197 \(\mu \text{m} \) in *L. senegaliensis* (Komatsu et al. 1991). Size of egg in asteroids differs with species, ranging from 100 \(\mu \text{m} \) in *Acanthaster planci* (Linnaeus, 1758) (Henderson 1969) to 3.0–4.0 mm in *Rhopiella koehleri* Fisher, 1940 (Fisher 1940). Eggs having direct development are generally larger and more opaque than those with indirect development (see Hyman 1955; Chia 1968). It is interesting that the eggs of luidiid species, which undergo non-brachiolarian development, not indirect development, are also less than 200 \(\mu \text{m} \) in diameter, a relatively small size for asteroids, and are transparent.

Luidia foliolata has a wrinkled blastula like many echinoderms (Chia et al. 1993; Cerra and Byrne 1995; Henry et al. 1991), although Strathmann (1987) did not mention the presence of this stage. The wrinkled blastula has been reported in all other studied luidiid species except for *L. sarsi* (Table 1); it seems, therefore, that the wrinkled blastula is a common feature of the species of *Luidia*.

In asteroids, the full-grown bipinnaria is generally around 1.0 mm long (Yamaguchi 1973). On the contrary, since bipinnariae of *L. sarsi* and *L. ciliaris* were respectively reported to be ca. 30 and 7 mm long (Mortensen 1927, 1938), luidiid bipinnariae have been considered to be large, as mentioned above. The fully grown bipinnaria of *L. foliolata* at 4 months after fertilization was only about 2.5 mm in length in the present study, which confirms the observation of Komatsu et al. (1991) that the bipinnaria of *Luidia* is not always large, depending on species.

An asteroid bipinnaria generally bears five pairs of bipinnaria arms and two anterior median processes. The large bipinnaria of some species of *Luidia* is more complex than this; the median processes are elongate and the arms are long and greater in number. In *L. ciliaris* and *L. sarsi* each of the anterior dorsal arms is divided from the base into two (or three) equally developed branches (Mortensen 1938). Bipinnariae of *L. quinaria* (Komatsu et al. 1982) have two pairs of branched anterior dorsal arms and their bipinnaria arms total 12 in number, while the bipinnariae are only 2.5 mm long, much smaller than those of *L. ciliaris* (7 mm) and *L.
sarsi (30 mm). However, the fully grown bipinnaria of *L. foliolata*, which is the same size as that of *L. quinaria*, has only five pairs of bipinnaria arms like *L. clathrata* and *L. senegalensis* (Komatsu et al. 1991), even though the arms and median processes of *L. foliolata* are as long as those of *L. quinaria*. Thus, the present observations are in accord with the conclusions proposed by Komatsu et al. (1991): the bipinnaria of *Luidia* is not always complex and large in size, and its morphological features vary among the species.

Shortly after the completion of metamorphosis, juveniles of *L. foliolata* bear two pairs of tube-feet in each arm as those of most asteroids do, including *L. clathrata*, *L. savignyi*, and *L. senegalensis* (Mortensen 1938; Komatsu et al. 1991). However, among the luidiiids there are some exceptions (Table 1): three, five, and more than ten pairs of tube-feet occur in the newly metamorphosed juveniles of *L. quinaria*, *L. ciliaris*, and *L. sarsi*, respectively (Mortensen 1938; Komatsu et al. 1982). As mentioned above, the bipinnariae of these three species have more than six pairs of bipinnaria arms. Therefore, it is likely that the occurrence of more than three pairs of tube-feet in just-metamorphosed juveniles is related to the more complex morphology of the bipinnariae of the relevant luidiid species.

The larval stalk of *L. foliolata* is absorbed into the future body of the juvenile during metamorphosis. The same fate of the larval stalk has been reported in six species of *Luidia* (Table 1), but *L. sarsi* casts off the larval stalk from the starfish rudiment (Mortensen 1927, 1938; Tattersall and Sheppard 1934). The bipinnaria of *L. sarsi* is extremely large (30 mm long) compared to those of the other species. In the family Astropectinidae, the fate of the larval stalk of the barrel-shaped larva has been reported in three species (Komatsu 1975, 1982; Komatsu and Nojima 1985): that of *Ctenopleura fisheri* Hayashi, 1957 (1,500 μm long) was either absorbed or it ruptured and collapsed; that of *Astropecten latespinosus* Meissner, 1892 (700 μm long) was absorbed; and the larval stalk of *A. gisselbrechti* Döderlein, 1917 (875 μm long), intermediate in size between those of *C. fisheri* and *A. latespinosus*, was absorbed in most cases. Komatsu (1982) proposed that casting off of the larval stalk is characteristic of large-sized bipinnariae and large-sized barrel-shaped larvae. The fact that the larval stalk of the small, 2.5 mm long bipinnaria of *L. foliolata* was absorbed may support Komatsu’s proposal.

Acknowledgements

The authors wish to express their cordial thanks to Professor John M. Lawrence (University of South Florida) and Dr. Chitaru Oguro (Toyama University) for their valuable suggestions and critical reading of the manuscript. Thanks are also extended to Dr. J. McInerney, Director, and other members of the Bamfield Marine Station for collecting specimens and providing research facilities. This research was supported by a grant from the Taihou Foundation to M. K. through the courtesy of Dr. R. E. Moskalyk, the Associate Dean, Faculty of Dentistry-Pharmacy, University of Alberta.
Metamorphosis of Luidia foliobata

References

