

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

CYTOKININS

AND

THE DIVISION OR EXPANSION

OF

PLANT CELLS

Lesley L. Beuning

Department of Molecular and Cellular Biology University of Auckland

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy, May, 1988.

<u>PREAMBLE</u>

"Cytokinins: Plant Hormones in Search of a Role"

This title of a book recently published by the British Plant Growth Regulator Group is an apt description of what is probably the least understood of the major hormones of the higher plants — the cytokinins.

The cytokinins participate in almost all of a plant's growth responses involving cell division, cell expansion and differentiation. However, virtually every aspect of the cytokinins — biosynthesis, mechanism of action and metabolism — is poorly understood.

The slow progress in understanding the mechanism of action of the cytokinins partly stems from the lack of a simple plant system in which the hormone can be studied away from the influences of the other hormones and in which only one of the many responses induced by the cytokinins is found.

The purpose of this thesis was to search for such a system and when found it was hoped that some progress could then be made toward an understanding of the mechanism of action of the cytokinins. For various technical reasons this was not achieved, however, some of the technical difficulties were at least partially overcome.

ABSTRACT

The effect of cytokinins was studied in three systems: the alga *Chlorella*, callus cultures and etiolated cucumber cotyledons.

In Chlorella cultures:

1) A range of concentrations of 6BA and IP had no effect on growth;

2) Low concentrations of an anticytokinin had no effect on growth, whereas higher concentrations appeared to be inhibitory.

3) Characterisation of the *Chlorella* species suggested that it was surrounded by an impermeable sporopollenin layer which hindered the uptake of cytokinin.

4) The uptake of radioactive adenine occurred readily, whereas the uptake of radioactive 6BA was very slow in both growing and saturated cultures of *Chlorella*.

5) Extracts isolated from *Chlorella* and the medium in which *Chlorella* was growing contained cytokinin-like activity in two bioassays.

6) HPLC analyses of these extracts showed that there were fractions which eluted at the positions of IP and IPA.

In callus cultures:

A.1) A carrot callus was grown from the secondary phloem of the storage root of carrot.

2) This callus, which was grown on 2,4-D and kinetin, produced roots and shoots when subcultured onto IAA and kinetin.

3) Growth on 2,4-D alone was independent of the presence of kinetin.

4) Growth was inhibited in the presence of an anticytokinin, suggesting that the callus produced a cytokinin.

B.1) A tobacco callus was grown from a young leaf of tobacco.

2) This callus habituated to cytokinin independence following subculture onto lower concentrations of kinetin.

 Subculture of the habituated callus onto a higher concentration of kinetin resulted in the production of roots and shoots.

C.1) Cytokinin-dependent soybean and tobacco callus cultures were obtained from the Botany Department, University of Otago.

Analysis of the total proteins from suspension and callus cultures of soybean by
 1-D polyacrylamide gel electrophoresis showed one small 6BA-induced change in
 the proteins from the suspension cultures.

In etiolated cucumber cotyledons:

1) 6BA caused the expansion of excised etiolated cucumber cotyledons after a 24-hour incubation in the dark in a solution containing 6BA, in comparison to cotyledons incubated in water only.

2) The cotyledons curved upwards and in the light microscope the cells of the vascular bundles and the lower epidermis exhibited greater expansion than the upper epidermis.

3) Electron microscopic examination showed that the central vacuole of palisade cells from cotyledons treated with 6BA had expanded and that the cytoplasm had probably lost water and was compressed by the vacuole against the cell wall.

4) In contrast to other research, there was no apparent increase in polysome formation in 6BA-treated cotyledons in comparison to untreated cotyledons examined in the electron microscope.

5) A number of protein extraction methods were tried before a method was found which produced a protein extract suitable for both 1-D and 2-D polyacrylamide gel electrophoresis analyses. 6) 1-D and 2-D polyacrylamide gel electrophoresis showed that a number of proteins either increased or decreased following the treatment of cotyledons with 6BA.

7) A number of RNA extraction methods were tried, to obtain RNA suitable for translation *in vitro*. Only one method produced RNA which appeared to be free of contaminating substances. Weak translation of this RNA was obtained *in vitro* and it might be possible to develop conditions for optimal translation of the RNA given an adequate supply of an *in vitro* translation system.

ACKNOWLEDGEMENTS

I thank my supervisor Professor R. Ralph for his help during the time of this degree and for editing this manuscript. Thanks are also extended to Dr W. Judd for his advice in regards to experimental problems encountered with polyacrylamide gel electrophoresis and staining and for the use of some of his chemicals and equipment. Dr H. Nonhebel, of the Biochemistry Department, made available her time, chemicals and equipment for the HPLC and GC analyses, all of which I thank her for.

T. Cooney, PhD student, Biochemistry Department, was very helpful with HPLC and GC analyses, which was very much appreciated. P. Lawson helped with the HPLC analyses, for which I thank her. I thank John White for assisting with the thin sectioning. He and Terry Gruijters were always ready to help and advise on electron microscopic and photographic problems and, therefore, I extend my appreciation to them.

Special thanks go to E. Podivinsky (PhD student, this department) for moral support and with whom many discussions were held on the problems of RNA isolation from cucumber cotyledons and other tissues, and how to solve these problems.

I would also like to express my thanks to the other members of the Department of Molecular and Cellular Biology, in particular those of the Molecular Biology Laboratory, who gave assistance and encouragement.

Finally, the most important thanks of all go to my husband, John, for all his encouragement and for spending many hours typing this thesis and assisting with the printing of the photographs.

TABLE OF CONTENTS

PREAMBLE ABSTRACT ACKNOWLEDGEMENTS TABLE OF CONTENTS LIST OF FIGURES AND TABLES ABBREVIATIONS	
CHAPTER I: INTRODUCTION	2
1.1 GENERAL INTRODUCTION	2
1.2 PLANT HORMONES	3
 1.3 THE AUXINS Synthesis, Metabolism and Transport of Auxin Mechanism of Action of Auxin Auxin and Cell Elongation Auxin and Cell Division 	4 5 6 7 10
 1.4 THE GIBBERELLINS 1.4.1 Synthesis, Metabolism and Transport of GA 1.4.2 Mechanism of Action of Gibberellin 1.4.2.1 Gibberellin and Stem Elongation 1.4.2.2 Gibberellin and the Aleurone Layer of Barley 	11 11 12 13 14
1.5ETHYLENE1.5.1Synthesis, Metabolism and Transport of Ethylene1.5.2Mechanism of Action of Ethylene1.5.2.1Ethylene and Fruit Ripening1.5.2.2Ethylene and Abscission	16 17 18 19 20
1.6 ABSCISIC ACID 1.6.1 Mechanism of Action	21 23
 1.7 THE CYTOKININS Synthesis, Metabolism and Transport of Cytokinin T.2 Mechanism of Action of Cytokinins T.2.1 Cytokinins and Cell Division 	23 25 27 28
1.8 THE CELLULAR TARGETS OF THE PLANT HORMONES	29
1.9 THE AIM OF THIS THESIS	32
CHAPTER II: INVESTIGATION OF CYTOKININS OF CHLORELLA	96
	36
2.1 INTRODUCTION	36

2.2	2 HORMONE	ES IN ALGAE	37
	2.2.1	Auxins	38
	2.2.2	Gibberellins	40
	2.2.3	Cytokinins	41
2.3	MATERIA	LS AND METHODS	
	2.3.1	Chlorella Cells	43
	2.3.2	Physiological Identification of Chlorella	43
	2.3.3	Growth Medium	43
	2.3.4	Growth Conditions	44
	2.3.5	Cell Number	45
	2.3.6		45
	2.3.0	Uptake of Radioactive Label	45
	2.3.7	Statistical Analysis	46
		Extraction of Cytokinins from Chlorella Cells	46
	2.3.9	Extraction of Cytokinins from the Culture Medium	47
	2.3.10	Analysing the Extracts for Cytokinins	47
2.4	EXPERIME	INTAL PROCEDURES AND RESULTS	50
	2.4.1	Identification of Chlorella	50
	2.4.2	The Approaches Taken	50
	2.4.3	Growth in the Presence of Cytokinin	51
	2.4.4	Uptake of Radioactively Labelled 6BA	68
	2.4.5	Cytokinin Extraction, Assay and Analysis	77
	2.4.5.	1 Extraction	77
	2.4.5.	2 Assay in the Cucumber Cotyledon System	78
	2.4.5.	3 High Performance Liquid Chromatography (HPLC) Analysis	81
	2.4.5.	4 Gas Chromatography (GC)	90
			50
2.5	DISCUSSIO	N	91
-			
<u>CH</u>	APTER III:	CYTOKININS AND THE GROWTH OF CALLUS TISSUE	98
3.1	INTRODUC	TION	98
3.2	CYTOKININ	IS AND CALLUS TISSUE	00
			99
3.3		S AND METHODS	102
	3.3.1	Nutrient Medium and Hormone Solutions for Tissue Culture	102
	3.3.2	Initiation of a Callus	103
	3.3.3	Subculture of Callus	104
	3.3.4	Suspension Cultures	105
	3.3.5	Radioactive-labelling of Soybean Callus or Suspension Cultures	105
	3.3.6	Protein Isolation from Soybean Callus and Suspension Cultures	105
	3.3.7	Protein Estimation	107
	3.3.8	Polyacrylamide Gel Electrophoresis (PAGE)	108
	3.3.9	Staining of Gels	109
	3.3.10	Photography	110
3.4	EXPERIME	NTAL PROCEDURES AND RESULTS	110
	3.4.1	Carrot Storage Root Callus Culture	110
	3.4.2	Tobacco Leaf Root Callus Culture	110
	3.4.3	Other Callus Cultures	115
	3.4.4		115
	3.4.5	Analysis of Total Protein in Soybean Callus and Susp Cultures Evaluation of the Results	118
	0	a random of the fresults	121

3.5	3.5 DISCUSSION		
	3.5.1	Carrot Callus	124
	3.5.2	Other Callus Cultures	$124 \\ 127$
	3.5.3	Tobacco Leaf Callus	129
	3.5.4	Soybean Callus	131
			101
<u>CH</u>	APTER IV:	CYTOKININS AND CELL EXPANSION	135
4.1	INTRODUC	TION	105
			135
4.2	HORMONE	S AND LEAF GROWTH	1.07
			137
4.3	CYTOKININ	IS AND THE EXPANSION OF COTYLEDONS	139
			199
4.4	MATERIAL	S AND METHODS	142
	4.4.1	Plant Tissue	142
	4.4.2	Cytokinin Treatment of Cucumber Cotyledons	142
	4.4.3	Fixation and Embedding of Cucumber Cotyledons for Microscopy	142
	4.4.4	Thin Sectioning and Staining for Light Microscopy	143
	4.4.5	Thin Sectioning and Staining for Electron Microscopy	143
	4.4.6	Microscopy and Photography	144
	4.4.7	Protein Isolation from Cucumber Cotyledons	144
	4.4.8	Protein Estimation	148
	4.4.9	Polyacrylamide Gel Electrophoresis (PAGE)	148
	4.4.10	Staining of Gels	149
	4.4.11	Utensils and Solns for RNA Extraction, mRNA Isol. and Transl.	151
	4.4.12	Preparation of Vanadyl-ribonucleoside Complexes	151
	4.4.13 4.4.14	RNA Isolation	151
	4.4.14	mRNA Isolation	157
	4.4.14.	Grand Consolation Contailose	157
	4.4.15	Translation of mRNA or Total RNA	157
	4.4.15.	1 The Wheatgerm In Vitro Translation System	158
	4.4.15.	Bound and the for o fransiduloit by stelli	158
		Agarose Gel Electrophoresis of RNA	159
		Barose del Diechophoresis di ItivA	160
4.5	EXPERIMEN	NTAL PROCEDURES AND RESULTS	1.00
	4.5.1	The Morphology of Expansion	160 160
	4.5.2	Electron Microscopic Examination of Expansion	163
	4.5.3	Analysis of Total Proteins by Polyacrylamide Gel Electrophoresis	169
	4.5.3.1	Evaluation of the Protein Isolation Methods	169
	4.5.3.2		181
	4.5.4	RNA Isolation from Cucumber Cotyledons	197
16	DISCUSSIO	N	
4.0	4.6.1		209
	4.6.2	The Morphology of Expansion	209
	4.0.4	Analysis of In Vivo and In Vitro Proteins	214

CHAPTER V: CONCLUDING DISCUSSION

APPENDIX A	230
APPENDIX B	232
APPENDIX C	234
REFERENCES	239
Chapter I	239
Chapter II	256
Chapter III	263
Chapter IV	268
Chapter V	276

LIST OF FIGURES AND TABLES

Figure 2.1 A Possible Evolutionary Tree	39
Table 2.1 The Hoaglund's Solution	44
Figure 2.2 Typical Growth Curves of Chlorella	55
Figure 2.3 Growth of Chlorella in the Presence of 6BA ($5\mu g/ml$)	56
Figure 2.4 Growth in the Presence of 6BA, Adenine and Guanosine	58
Figure 2.5 Growth of Chlorella in the Presence of Different 6BA Concentrations	60
Figure 2.6 Growth of Chlorella in the Presence of Different IP Concentrations	62
Figure 2.7 The Effect of DMSO on the Growth of Chlorella	64
Figure 2.8 Growth of Chlorella in the Presence of an Anticytokinin	65
Figure 2.9 Growth of Chlorella in the Presence of $25\mu M$ Anticytokinin	67
Figure 2.10 Adenine or 6BA Uptake During Cell Growth (Minus Glucose)	72
Figure 2.11 Adenine or 6BA Uptake During Cell Growth (Plus Glucose)	74
Figure 2.12 Adenine or 6BA Uptake in a Saturated Culture of Chlorella	76
Table 2.2 Analysis of Cytokinin-like Activity in Chlorella Extracts	80
Table 2.3 Retention Times of the Cytokinin Standards	84
Table 2.4 The Retention Times (Minutes) of Putative Cytokinin Peaks in the Extracts	
of Chlorella and the Medium	84
Figures 2.13 to 2.16 HPLC Graphs of the Extracts of Chlorella and the Medium	85
Table 3.1 Murashige and Skoog (MS) medium (Murashige and Skoog, 1962)	102
Table 3.2 Hormone Solutions	103
Figure 3.1 The response of Carrot Callus to Subculture onto 2,4-D or IAA, and Kinetin	113
Figure 3.2 The Response of Carrot Callus to Different Concentrations of Kinetin	114
Figure 3.3 Cytokinin-dependent Callus Cultures	117
Figure 3.4 1-D PAGE of Proteins Extracted From Soybean Cultures Grown in/on MS \pm	
6BA	123
Figure 4.1 6BA-induced Expansion of Etiolated Cucumber Cotyledons	165

Figure 4.2 Longitudinal Sections Through 6BA-treated and Untreated Etiolated	
Cucumber Cotyledons	166
Figure 4.3 Electron Micrographs of Palisade Cells From 6BA-treated and Untreated	
Etiolated Cucumber Cotyledons	167
Figure 4.4 Electron Micrographs of the Ribosomes of Palisade Cells From 6BA-	
treated and Untreated Etiolated Cucumber Cotyledons	168
Figure 4.5 1-D PAGE of Proteins Extracted From 6BA-treated and Untreated Etiolated	
Cucumber Cotyledons	188
Figure 4.6 2-D IEF Analysis of Proteins Extracted From 6BA-treated and Untreated	
Etiolated Cucumber Cotyledons	189
Figure 4.7 2-D NEPHGE Analysis of Proteins Extracted From 6BA-treated and	
Untreated Etiolated Cucumber Cotyledons	190
Figure 4.8 2-D IEF Analysis of Proteins Extracted From 6BA-treated and Untreated	
Etiolated Cucumber Cotyledons	191
Figure 4.9 An Electron Micrograph of a Cell Full of Lipid Bodies From an Untreated	
Etiolated Cucumber Cotyledon	192
Figure 4.10 1-D PAGE Analysis of Proteins Extracted From 6BA-treated and	
Untreated Etiolated Cucumber Cotyledons using Protein Extraction Methods 5	
and 6	193
Figure 4.11 1-D PAGE of Proteins Extracted From 6BA-treated and Untreated	
Etiolated Cucumber Cotyledons	194
Figure 4.12 2-D IEF Analysis of Proteins Extracted From 6BA-treated and Untreated	
Etiolated Cucumber Cotyledons	195
Figure 4.13 1-D PAGE of Proteins Extracted From Etiolated Cucumber Cotyledons	
Untreated and Treated with 6BA, ABA, and 6BA/ABA.	196
Figure 4.14 Agarose Gel Analysis of RNA From 6BA-treated and Untreated Etiolated	
Cucumber Cotyledons	205

Figure	4.15	Translation in the Wheatgerm In Vitro Translation System of Total	
	RNA	Isolated From 6BA-treated and Untreated Etiolated Cucumber	
	Cotyl	edons	206
Figure	4.16	Translation in the Wheatgerm In Vitro Translation System of mRNA	
	Isolat	ed From 6BA-treated and Untreated Etiolated Cucumber Cotyledons	207
Figure	4.17	Isolation of mRNA From Total RNA Prepared From 6BA-treated and	
	Untre	ated Etiolated Cucumber Cotyledons	208
Figure	C.1 E	tiolated cucumber cotyledon expansion assay for cytokinins	237

Figure C.1 Etiolated cucumber cotyledon expansion assay for cytokinins

ABBREVIATIONS

1-D	one-dimensional
2-D	two-dimensional
6BA	6-(benzylamino)purine
2,4-D	2,4-dichlorophenoxyacetic acid
ABA	abscisic acid
AC	anticytokinin
ACC	1-amino-2-ethylcyclopropane-1-carboxylic acid
BSTFA	bis(trimethylsilyl)trifluoroacetamide
cDNA	complementary DNA
CGF	Chlorella growth factor
cpm	counts per minute
СТАВ	cetyltrimethylammonium bromide
d.d.	double-distilled
DMSO	dimethylsulphoxide
dpm	disintegrations per minute
DTT	dithiothreitol
EDTA	ethylenediaminetetra-acetic acid
ER	endoplasmic reticulum
GA	gibberellin
GC	gas chromatography
GC-MS	gas chromatography-mass spectroscopy
GF	growth factor
HPLC	high performance liquid chromatography
IAA	indole-3-acetic acid
IEF	isoelectric focusing
IP	isopentenyladenine
IPA	isopentenyladenosine

mAmps	milliamperes
MS	Murashige and Skoog
MW	molecular weight
NAA	naphthaleneacetic acid
NEPHGE	non-equilibrium pH gel electrophoresis
n m	nanometre
NP40	Nonidet P-40
OD	optical density
PAGE	polyacrylamide gel electrophoresis
PMSF	phenylmethylsulphonyl fluoride
psi	pounds per square inch
PVP	polyvinylpyrrolidone
rpm	revolutions per minute
RuBPCase	ribulose 1,6-bisphosphate carboxylase
SAM	S-adenosylmethionine
SDS	sodium dodecyl sulphate
TCA	trichloroacetic acid
TMS	trimethylsilyl
Tris	2-amino-2-hydroxyl-methylpropane-1,3-diol
uv	ultraviolet
v/v	volume for volume
w/v	weight for volume
wgt	weight
XS	times

CHAPTER ONE