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Abstract

The main problem studied in this thesis is to analyse and model time-

to-event data, particularly when the survival times of subjects under study are

not exactly observed. One of the primary tasks in the analysis of survival data

is to study the distribution of the event times of interest. In order to avoid strict

assumptions associated with a parametric model, we resort to nonparametric

methods for estimating a function. Although other nonparametric approaches,

such as Kaplan-Meier, kernel-based, and roughness penalty methods, are popular

tools for solving function estimation problems, they suffer from some non-trivial

issues like the loss of some important information about the true underlying func-

tion, difficulties with bandwidth or tuning parameter selection. In contrast, one

can avoid these issues at the cost of enforcing some qualitative shape constraints

on the function to be estimated. We confine our survival analysis studies to es-

timating a hazard function since it may make a lot of practical sense to impose

certain shape constraints on it. Specifically, we study the problem of nonpara-

metric estimation of a hazard function subject to convex shape restrictions, which

naturally entails monotonicity constraints.

In this thesis, three main objectives are addressed. Firstly, the problem of

nonparametric maximum-likelihood estimation of a hazard function under con-

vex shape restrictions is investigated. We introduce a new nonparametric ap-

proach to estimating a convex hazard function in the case of exact observa-

tions, the case of interval-censored observations, and the mixed case of exact

and interval-censored observations. A new idea to handle the problem of choos-

ing the minimum of a convex hazard function estimate is proposed. Based on

this, a new fast algorithm for nonparametric hazard function estimation under

convexity shape constraints is developed. Theoretical justification for the con-

vergence of the new algorithm is provided. Secondly, nonparametric estimation

of a hazard function under smoothness and convex shape assumptions is stud-

ied. Particularly, our nonparametric maximum-likelihood approach is generalized

for smooth estimation of a function by applying a higher-order smoothness as-
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sumption of an estimator. We also evaluate the performance of the estimators

using simulation studies and real-world data. Numerical studies suggest that the

shape-constrained estimators generally outperform their unconstrained competi-

tors. Moreover, the empirical results indicate that the smooth shape-restricted

estimator has more capability to model human mortality data compared to the

piecewise linear continuous estimator, specifically in the infant mortality phase.

Lastly, our nonparametric estimation of a hazard function approach under con-

vex shape restrictions is extended to the Cox proportional hazards model. A

new algorithm is also developed to estimate both convex baseline hazard function

and the effects of covariates on survival times. Numerical studies reveal that our

new approaches generally dominate the traditional partial likelihood method in

the case of right-censored data and the fully semiparametric maximum likelihood

estimation method in the case of interval-censored data. Overall, our series of

studies show that the shape-restricted approach tends to provide more accurate

estimation than its unconstrained competitors, and further investigations in this

direction can be highly fruitful.
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Chapter 1

Introduction

1.1 Nonparametric Survival Analysis

Survival analysis is a class of statistical methods that deal with situations where one is

interested in the study of the time related to a certain event. In actuarial applications, the

event of interest is most often the age of death. In biomedical sciences, this could be the

time of a disease onset or the time of the first heart attack. In reliability engineering, it can

be the time of failure of an electrical component. The time to the occurrence of a particular

event is generally referred to as survival or lifetime data. The terminology for the analysis

of the occurrence and the timing of events varies in different fields. The terms survival

analysis, failure time analysis, and duration analysis are applied in biomedical, engineering,

and economic or sociology studies, respectively. Throughout this thesis, we will often adopt

the terminology of survival analysis.

A peculiar characteristic that often arises in survival data is known as censoring. By

censored data, we mean that we have only partial information about the random variable

of interest, instead of knowing it exactly. Various types of censoring schemes include right

censoring, left censoring, and interval censoring. Right-censored data implies that not all of

the survival times are observed, so for some of them it is only known that the event of interest

occurs sometime after the end of the study. Left-censored data indicates that the subject

under study has experienced the event of interest prior to the start of the study. Interval-

censored data arises when one only knows that the event of interest occurred within a certain

time interval; e.g., two consecutive patient monitoring times. We note that right and left

censoring are special cases of interval censoring. Another well-known phenomenon that exists

1



2 1.1 Nonparametric Survival Analysis

in time-to-event data is truncation. Truncation occurs when subjects whose failure times fail

to meet certain conditions are excluded from a study. In this thesis, we consider univariate

uncensored data, purely interval-censored data, and the case of interval-censored data mixed

with exact observations.

The primary concern in survival analysis is to find the distribution of the event times

of interest. Many statistical approaches study the direct estimation of the density or the

survival function. However, assessing the risk of an individual at certain times has received

considerable attention in recent years. This instantaneous rate of occurrence of a time event,

given subjects having survived so far, is known as hazard. Parametric survival models, such

as exponential, Weibull, and Gompertz distributions, are commonly used to model lifetimes.

For reviews, see, e.g., Juckett and Rosenberg (1993), Kalbfleisch and Prentice (2002), Murthy

et al. (2004), Rinne (2008), and Lai (2013). Although the advantages of parametric models

include the ease in their computation, interpretation and prediction, the main limitation of

parametric methods is the necessary model assumptions. This can cause the risk of model

misspecification, which may lead to invalid estimates and incorrect inferences (Gómez et al.,

2009; Sun, 2006).

On the other hand, nonparametric methods require fewer restrictive assumptions of the

models and are more flexible and robust to model misidentification. The most popular non-

parametric technique for modelling survival data is the Kaplan-Meier (KM) or product limit

estimator for a survival function (Kaplan and Meier, 1958). One can derive an alternative

of the KM estimator for the survival function based on the Nelson-Aalen (NA) estimator for

the cumulative hazard rate function (Nelson, 1972; Aalen, 1978). The great advantages of

the KM and NA estimators are their straightforward implementation and intuitive interpre-

tation. Both estimators are step functions with jumps at the observed event times. Due to

discontinuities, these estimators can have low efficiencies, depending on how censoring times

are distributed. The low efficiency of the KM estimator compared to parametric survival

estimators is extensively discussed by Miller (1983) (see also Efron; 1988). Moreover, the

KM estimator is not able to estimate survival probabilities beyond the last observed time.

In the case of heavily censored data, the traditional nonparametric estimators tend to have

a few jumps with larger sizes and, therefore, we can not rely on the accuracy of the estima-

tion. In order to retrieve the lost information in the traditional nonparametric estimators,

smooth and more efficient estimators are highly desirable in such a situation. Nonparametric

smoothing approaches to estimating hazard functions include kernel, spline, local likelihood,

and penalized likelihood methods. Smooth hazard function estimators are practically pre-

ferred to crude estimators since these estimators can be more accurate or efficient, and they

also provide flexible estimates that lend themselves to nice graphical presentation. Smooth

nonparametric estimation of the hazard or density function was covered in details in many

monographs; see, e.g., Watson and Leadbetter (1964), Tanner and Wong (1983), Silverman
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(1986), Kooperberg and Stone (1992), Tibshirani and Hastie (1987), and Wand and Jones

(1995).

1.2 Nonparametric Survival Analysis under Shape Restrictions

In a nonparametric framework, smoothing approaches, such as kernel-based and penalized

likelihood methods, define specific families of estimators for solving density or hazard estima-

tion problems. The density or hazard estimators based on kernels or penalized likelihood are

frequently used in the literature; however, they suffer from non-trivial issues like bandwidth

or tuning parameter selection. Both the selection difficulty and the restrictions of a para-

metric method can be avoided at the price of imposing some qualitative shape constraints

on the true underling density or hazard function.

In many applications, one often has some prior knowledge about the shape of the un-

derlying density or hazard function. Thus, it is reasonable to impose natural qualitative

constraints on these functions. In such situations, this prior knowledge can be turned into

restrictions on the shape of the function. The most plausible types of shape restrictions

on a density or hazard function are monotonicity (increasing or decreasing), convexity, or

bathtub-shapes. Two popular criteria for nonparametric estimation of a function under

shape constraints are maximum likelihood and least squares. The milestone work of Grenan-

der (1956) proposed a maximum likelihood estimator of a nondecreasing failure rate or a

nonincreasing density. Recently, there has been a great deal of attention paid to the other

kinds of shape constraints. We draw the attention of the reader to Hall et al. (2001) and

Banerjee (2008) for nonparametric estimation of monotone failure rates, to Reboul (2005)

for the U-shaped or unimodal functions and to Groeneboom et al. (2001) and Jankowski and

Wellner (2009a) for the situations of convex density and hazard function, respectively. The

reader is also referred to Hildreth (1954), Groeneboom et al. (2001), Balabdaoui and Wellner

(2007) and Jankowski and Wellner (2009b) for nonparametric estimation of a function under

shape restrictions through the least square method.

In particular, the nonparametric maximum likelihood estimator (NPMLE) of a function

has no closed-form solution and a numerical algorithm has to be used. Although some theo-

retical properties of the convexity shape-constrained estimators of a function are established

in the literature, there is no fast algorithm to solve this problem. In essence, the main

motivation of this thesis is to propose new techniques that address the problems of nonpara-

metric estimation of a function subject to shape constraints and then develop fast and simple

computational algorithms to solve these problems. Another interest is to provide a compre-

hensive algorithm that covers the case of exact observations, interval-censored data, and the

situation of interval-censored data mixed with exact observations. In a nutshell, without any

distribution assumption, but with only knowledge of the shape of the underlying density or
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hazard function, one can potentially obtain a more accurate estimate by a shape-constrained

method.

Specifically, we focus on nonparametric estimation of a hazard function, since it can be

practically more sensible to impose certain shape restrictions on it than a survival function.

In this thesis, we consider the bathtub-shaped or convexity shaped constraint on a hazard

function, which naturally entails both the increasing and decreasing shape restrictions. We

describe a new idea to overcome the issue of choosing the minimum of a convex hazard

function. Particularly, a series of research studies on nonparametric convex hazard function

estimators are conducted to compare our proposed estimators with the other existing ones.

We further study the smoothed nonparametric hazard function under convexity restriction.

The resulting density estimators are compared with those based on the kernel-based and

logspline approaches. In the presence of some additional features such as age, gender, and

blood pressure that may affect the failure times, one may be interested in estimating the

baseline hazard function and the effects of covariates simultaneously. Consequently, we con-

sider nonparametric estimation of a convex baseline hazard function within the Cox model.

We illustrate our proposed approaches with some simulated and real data sets and assess the

performance and efficiency of the new methods compared to unconstrained ones.

1.3 Contributions

The primary goal of this thesis is to propose a novel approach to estimating a hazard function

under convexity restriction. The proposed framework is not only applicable to the case of

exact observations, but can also deal well with the situation of censored data. Moreover, this

framework extends in a straightforward manner for the Cox proportional hazards model in

order to estimate the baseline hazard function along with the effects of covariates that may

influence the times to failure of a system. Our proposed approaches can also be adjusted to

accommodate monotone increasing or decreasing shape constraints.

The main contributions of this thesis are given as follows:

• Study nonparametric estimation of a hazard function subject to convex shape con-

straint.

• Present a novel idea to overcome the difficulty of choosing the minimum of a convex

hazard function estimate during its computation.

• Develop a new algorithm for computing the nonparametric maximum likelihood esti-

mate of a convex hazard function.

• Assess the performance of the nonparametric maximum likelihood estimate of a convex

hazard function using both simulation studies and real data sets in different scenarios.
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• Study nonparametric likelihood-based estimators under smoothness and convex shape

assumptions.

• Propose a new algorithm for nonparametric estimation of a convex hazard function

under smoothness assumption.

• Evaluate and compare the performance of the smoothed and non-smoothed density

estimators with the other competitors.

• Derive the nonparametric maximum likelihood estimate of a convex baseline hazard

within the Cox model.

• Develop a new algorithm to simultaneously estimate both convex baseline hazard func-

tion and the effects of covariates on survival times.

• Investigate the performance of our proposed methods through simulation studies and

illustrate them by a variety of real-world data sets.

1.4 Outline of the Thesis

The thesis is organized as follows. In Chapter 2, we first provide a description of the funda-

mental concepts in survival analysis. Then, a brief overview of the existing survival analysis

techniques to model survival data is given. Furthermore, we give a review of the nonpara-

metric estimation methods for shape-restricted functions. The strengths and weaknesses of

different methods are also discussed.

Chapter 3 introduces a nonparametric maximum likelihood estimator of a convex hazard

function in the case of, respectively, exact observations, interval-censored data, and interval-

censored data mixed with exact observations. The computational difficulty with estimating

the minimum of a convex hazard function and the new idea for solving this problem are also

discussed. A general algorithm is presented for estimating a hazard function under convex

shape restriction. Moreover, in the case of exact observations, some theoretical properties of

the nonparametric convex hazard function estimator are established and a proof of conver-

gence for the proposed algorithm is given.

As an extension of Chapter 3, Chapter 4 is concerned with the nonparametric estimation

of a function under both convex shape and smoothness assumptions. We derive the nonpara-

metric maximum likelihood estimator of a convex hazard function based on the smoothness

assumption. Moreover, a new algorithm for nonparametric hazard function estimation under

these assumptions is outlined. Furthermore, numerical studies to compare the performance

of our proposed methods with the presmoothed kernel-based and logspline approaches using

simulated and real data sets are performed.
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Chapter 5 considers the problem of nonparametric maximum likelihood estimation of

a shape-constrained baseline hazard function in the semiparametric Cox model. A general

hybrid algorithm is proposed for computing the nonparametric maximum likelihood estimator

of a convex baseline hazard along with the estimation of the covariate effects. In addition,

we report the results of empirical studies of simulation and real-world data sets that compare

the performance of our shape-restricted estimators to the traditional estimator.

Finally, Chapter 6 presents the conclusion of this thesis and depicts some interesting

aspects for future works related to the dissertation.



Chapter 2
Literature Review

2.1 Basics of Survival Analysis

This section describes the basic entities used in modeling univariate survival data. We intend

to present the essential notations, definitions, and fundamental facts about survival analysis

that will be used in subsequent sections and chapters.

Specifically, let T denote a nonnegative continuous random variable representing the

failure time of an individual in a homogeneous population, which is the survival variable

of interest. Four functions are commonly used to describe the distribution of failure or

survival time T , namely the survival function, the probability density function, the hazard

rate function, and the cumulative hazard function. For a continuous random variable T , let

f be the probability density function and F = Pr(T ≤ t) =
∫ t

0
f(u) du the corresponding

cumulative distribution function. Then, the first basic quantity used to characterize the

distribution of T is the survival function and is defined as

S(t) = 1− F (t) = Pr(T > t) =

∫ ∞
t

f(u) du, 0 < t <∞,

which is the probability of an individual to survive to time t or beyond. Another major

function that describes the distribution of failure time T is the hazard rate function, which

is given by

h(t) = lim
∆t→0

Pr(t ≤ T < t+ ∆t | T ≥ t)

∆t
.

7



8 2.2 Censoring Types in Survival Analysis

The hazard function can be interpreted as the instantaneous failure or death rate at time t,

given that the individual has not failed before time t. In what follows, we simply refer to

h(t) as the “hazard function” instead of the“ hazard rate function” for short. Assume that

the distribution of T is absolutely continuous. Therefore, the hazard function can also be

represented as

h(t) =
f(t)

1− F (t)
=
f(t)

S(t)
= −d logS(t)

dt
. (2.1)

Another feature of the event time distribution is the cumulative hazard function, which is

defined as

H(t) =

∫ t

0

h(u) du.

On the other hand, the cumulative hazard function can also be obtained in terms of the

cumulative distribution function or the survival function in the following way

H(t) = − log[1− F (t)] = − logS(t).

Thus, it can be shown that

S(t) = exp[−H(t)] = exp

[
−
∫ t

0

h(u) du

]
. (2.2)

Eventually, it follows immediately from (2.1) and (2.2) that

f(t) = h(t) exp[−H(t)]. (2.3)

Therefore, there is a one-to-one relationship between functions h, S,H and f .

2.2 Censoring Types in Survival Analysis

A major challenge in survival analysis is how to deal adequately with a peculiar characteristic

that often arises in time-to-event data. This special feature of survival data is the presence

of censoring, such as right censoring, left censoring, and interval censoring. By censoring, it

implies that the information about an observation on a survival time of interest is incompletely
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known due to the temporal limits of the observation interval or cost. Obviously, survival times

can also be observed exactly.

2.2.1 Right Censoring

The most common type of censored data is right-censored data. Right censoring exists when

the event of interest has not occurred before the study ends at a predetermined point of

time or a subject under study is lost to follow-up before an event happens. Within the

right censoring model, let us assume that there exists a lifetime T and a fixed censoring

time Cr. Suppose that T1, T2, · · · , Tn be independent identically distributed (i.i.d.) event

times from an absolutely continuous cumulative distribution function FT with density f and

the cumulative distribution function FCr of the i.i.d. censoring times Cr1, Cr2, · · · , Crn is

absolutely continuous with density g. The event times Ti and the censoring times Cri are

usually assumed to be independent. Then, the observed data can be represented by pairs of

random variables (Xi, δi), where Xi = min(Ti, Cri) and δi = I(Ti ≤ Cri).

2.2.2 Left Censoring

The other kind of censoring data, which is relatively rare, is left censoring. By left-censored

data, we mean that the event of interest is only known to have already occurred before the

start of the study. Assume that the lifetime of an individual is denoted by T and Cl is the

left censoring time. The observed data in the left censoring scheme consists of the pairs of

random variables (Xi, δi), i = 1, · · · , n, where Xi = max(Ti, Cli) and δi = I(Ti ≥ Cli).

2.2.3 Interval Censoring

The more challenging censoring mechanism that predominantly takes place in medical, clin-

ical trials and the longitudinal studies that entail periodic follow-ups is interval censoring.

Interval-censored data implies that the failure time T can not be directly observed, but is

only known to have occurred within a time window or interval, e.g., two adjacent examination

times in a sequence of clinical visits.

Let Ti denote a nonnegative random variable representing the survival time of interest for

subject i, i = 1, · · · , n. An exact observation T may not be directly observable, but instead

may be censored by an interval of time between two values L and R such that T ∈ (L,R],

where L ≤ R. Therefore, the observed event times are defined by

Oi = (Li, Ri] ⊂ [0,∞), i = 1, · · · , n.
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Interval-censored failure time data can be regarded as a generalization of exact, right-

censored, and left-censored observations. That is, if L = R, we have an exact observa-

tion, whereas R =∞ gives a right-censored observation, and L = 0 represents a left-censored

observation. For illustration purposes, we consider an example data set that contains interval-

censored data. This example consists of four subjects under study. As shown in Figure 2.1,

subject A represents a left-censored event time with its interval OA = (0, 1], whereas subject

B is an example of exact observation since OB = [2, 2] = {2}. Moreover, subject C illus-

trate a right-censored event time with OC = (4,∞] and subject D presents an example of

interval-censored observation as OD = (2, 4].

Figure 2.1: Illustration example of different types of censoring.

The two common types of interval censored data is case I interval-censored data and case

II interval censored data. In the situation of case I interval-censored data or current status

data, each subject under study is observed only once and the only information about the

failure time T is that it has been observed to be either smaller or larger than the examination

or observation time. In this case, the observed failure time is either left- or right-censored,

which means either L = 0 or R = ∞. Current status data are frequently encountered in

animal tumorigenicity experiments, since the time of tumor onset is not observed and only

the death or sacrifice time of an animal is known (see Finkelstein and Wolfe, 1985 and Gómez

and Van Ryzin, 1992).

On the other hand, case II or general interval-censored data occur when the failure time of

interest T is only known to have occurred between two adjacent examination times such that

L < T ≤ R, before the first examination time (T ≤ L), or after the last examination time
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(T > R). The situation of mixed exact and interval-censored observations was generalized

by Yu et al. (2000) in order to involve exact observations as well.

As noted by Self and Grossman (1986), the interval censoring independence assumption

specifies

P (T ≤ t | L = l, R = r, L ≤ T < R) = P (T ≤ t | l ≤ T < r),

that is, the interval (L,R] does not provide any extra information about the survival time T

except for the fact that T lies between the two realised values l and r (see also Oller et al.,

2004 and Sun, 2006).

2.3 Nonparametric Estimation of a Survival Function

2.3.1 Non-smooth Estimation

Parametric distributions, such as the exponential and Weibull distributions, are commonly

used for modeling lifetime data. However, the exponential and Weibull models can not ade-

quately describe many functions in practical problems owing to their relative simplicity and

restrictiveness. The popularity of parametric models is due to their simplicity and manage-

able closed-form analytical solutions, while their main drawback is the model validity issue

that may result in invalid inferences and conclusions. The pros and cons of different para-

metric models can be found in the books by Kalbfleisch and Prentice (2002) and Lawless

(2003). As a consequence, the model misspecification problem of parametric methods moti-

vated many researchers to develop nonparametric approaches, which demand fewer restrictive

assumptions for modeling survival data.

Let Ti, i = 1, · · · , n, be a sample of the failure times. If there are no censored observations

in the sample, the estimate of the distribution or survival function can be obtained by the

empirical distribution or survival function as follows, respectively,

F̃ (t) =
1

n

n∑
i=1

I(Ti ≤ t) or S̃(t) =
1

n

n∑
i=1

I(Ti > t).

In the case of right-censored data, classical nonparametric estimators are well established

in the literature. The simplest nonparametric estimator of the survival function was proposed

by Kaplan and Meier (1958). Following the notation mentioned in Section 2.2.1 about right

censoring observations, let (X(i), δ(i)), i = 1, · · · , n, be the (Xi, δi) ordered with regard to the

Xi’s. Thus, the KM estimator, also known as the product limit estimator, of the survival
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function is given by

ŜKM(t) =


1, if 0 ≤ t ≤ X(1)∏j−1

i=1

(
n−i
n−i+1

)δ(i) , if X(j−1) < t ≤ X(j), j = 2, · · · , n,

0, if t > X(n)

(2.4)

(Wand and Jones, 1995; Bantis et al., 2012). The asymptotic variance of ŜKM(t) can easily

be computed by Greenwood’s formula. The straightforward computation and ease of under-

standing this classical nonparametric estimator have made it very attractive. Nevertheless,

Miller (1983) noted that the asymptotic efficiency of this nonparametric estimator can be as

low as 50 percent of that of parametric ones (Whittemore and Keller, 1986). In the case of no

censoring, the KM estimator coincides with the empirical survival function estimator. Fur-

thermore, if the largest event time corresponds to a censored observation, the KM estimator

of the survival function is restricted to the last observed event tmax. Several schemes have

been suggested to remedy this deficiency. For example, estimating survival probabilities at

time points beyond the largest event time tmax by 0 was suggested by Efron (1967), which re-

sults in a negatively biased estimator. Also, setting survival probabilities equal to ŜKM(tmax)

for t > tmax was proposed by Gill (1980), which leads to a positively biased estimator.

As an alternative estimator of the survival function to the KM, the NA estimator of H(t)

was proposed by Nelson (1972), further developed by Aalen (1978), and is known to perform

better in the case of small-sized data (Klein and Moeschberger, 2003). The NA estimator for

the cumulative hazard function has the form

ĤNA(t) =
∑

i:X(i)≤t

δ(i)

n− i+ 1
,

(Cao et al., 2005). Apparently, ŜKM(t) and ĤNA(t) are step functions with discontinuities or

jumps located only at the observed death times ti’s. In the situation with heavily censored

data, the KM and NA estimators tend to have only a few number of jumps and thus larger

jump sizes (López-de Ullibarri and Jácome, 2013b). Therefore, they might waste some impor-

tant information about the true underlying function and fail to efficiently use the information

that is available in the data.

In the case of current status data, suppose that Ti denotes the failure time of the ith

subject with distribution F . Let Ui be an observation or examination time for subject i

such that Ti is independent of Ui. Thus, the observed data consists of the random pairs
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(δi, Ui), i = 1, 2, · · · , n, where δi = I(Ti ≤ Ui). Then the likelihood function is

L(F ) =
n∏
i=1

{1− F (Ui)}1−δi {F (Ui)}δi .

The nonparametric maximum likelihood estimate (NPMLE) of a distribution function based

on current status data has received considerable attention starting with the forefront work

of Ayer et al. (1955), who introduced the pool adjacent violators (PAV) algorithm (see also

Robertson et al., 1988). The asymptotic properties of the NPMLE of a distribution function

can be found in Groeneboom and Wellner (1992) and Huang and Wellner (1995a).

For case II or general interval censored data, we consider a study with n independent

subjects and let Ti denote the survival time of interest for subject i with distribution F .

Each subject has a sequence of inspection times where the inspection times and survival

times are independent. This implies that the censoring is noninformative. Recall that the

observed data have the form {Oi}ni=1, where Oi = (Li, Ri] is the interval known to contain

the unobserved survival time Ti. Therefore, the likelihood function can be written as

L(F ) =
n∏
i=1

{F (Ri)− F (Li)} .

Let {sj}mj=0 define the unique ordered elements of {0, {Li}ni=1 , {Ri}ni=1}. Peto (1973) and

Turnbull (1976) noted that the likelihood does not depend on how F changes between sj’s,

but it only relies on F through the values {F (sj)}mj=1. Also, let p = (p1, · · · , pm)> be a point

in the (m− 1)-dimensional probability simplex

P ≡
{
p : p>1 = 1,p ≥ 0

}
,

where 0 = (0, · · · , 0)> and 1 = (1, · · · , 1)>. Define pj = F (sj) − F (sj−1) and δij = 1 if

sj ∈ (Li, Ri], and δij = 0 otherwise. Given p, the probability for the survival time to be in

Oi is

Pi ≡ Pi(p) =
m∑
j=1

δijpj.
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Thus, the log-likelihood function of p can be written as

`(p) =
n∑
i=1

log

(
m∑
j=1

δijpj

)
.

The NPMLE p̂ maximises `(p) among all p ∈ P (Gentleman and Geyer, 1994). For each

interval Oi, the different interpretation of each left and right endpoint can be open, semi-

open or closed. The continuous failure time T has no effect on how the likelihood function is

expressed, whereas the discrete failure time T has an influence. Therefore, in the case of a

discrete lifetime, one should pay attention to how the NPMLE assigns the probability masses

on R+. Consequently, failing properly to deal with them might lead to strange results (Ng,

2002).

The nonparametric inference in the case of interval-censored data is much more difficult to

handle than for right-censored data from both practical and theoretical perspectives. Specif-

ically, iterative algorithms are frequently used to find the NPMLE of a function because

there is no explicit solution for it. For computing the NPMLE of F , a number of algo-

rithms have been developed in the literature; e.g., the constrained Newton-Raphson method

(Peto, 1973), the self-consistency algorithm (Turnbull, 1976) being an earlier application of

the expectation-maximization (EM) algorithm (Dempster et al., 1977), the iterative convex

minorant (ICM) algorithm (Groeneboom and Wellner, 1992; Jongbloed, 1998), the hybrid

ICM-EM algorithm (Wellner and Zhan, 1997), the generalized Rosen (GR) and hybrid GR-

EM methods (Zhang and Jamshidian, 2004), the subspace-based Newton (Dümbgen et al.,

2006), the constrained Newton method (CNM) (Wang, 2007), the support reduction (SR)

algorithm (Groeneboom et al., 2008), and the hierarchical CNM (Wang and Taylor, 2013).

In addition, a general dimension reduction technique was suggested by Wang (2008) for effi-

cient computation of the NPMLE of a survival function. Numerical studies by Wang (2008)

showed that the dimension-reducing technique performs reasonably well, especially for purely

interval-censored data. The advantages and disadvantages of various algorithms have also

been discussed. For a review of methods for analysing interval-censored data, we direct the

reader to Gómez et al. (2009) and Zhang and Sun (2010).

Due to the difficulty of computing the NPMLE for interval-censored data, a common

approach is to utilize imputation technique in order to reduce the problem of analysing

interval-censored data to that of analysing right-censored data (see Sun, 2006, Chapter 2).

By substituting an interval-censored observation with one or more points from that interval,

the classical nonparamteric approaches can be used. However, the traditional nonparametric

techniques throw away some of the information available in the data, and, therefore, produce

biased estimates (Wang and Taylor, 2013).
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2.3.2 Smooth Estimation

Kernel-based Estimation

In order to recover some parts of lost information in the classical nonparametric estimators of

a function, the underlying function can often be assumed safely to be smooth. There is a rich

literature in the area of smoothing techniques for nonparametric estimation of a function.

Kernel-based methods are one of the most popular smoothing nonparametric approaches. The

earliest work on the problem of kernel-based density estimation in the case of no censoring

was investigated by Silverman (1986) (see also Simonoff, 1996). Assume that T1, · · · , Tn are

a random sample from a continuous univariate density f . The kernel-smoothed estimator of

f(t) in the case of no censoring is given by

f̂(t) =
1

nb

n∑
i=1

K

(
t− T(i)

b

)
,

where K(·) is the kernel function for which
∫
K(t) dt = 1 and b > 0 is called the bandwidth.

The kernel-based density estimation in the presence of censoring has been discussed in

Wand and Jones (1995) and Bowman and Azzalini (1997). In the case of right censoring, the

kernel density estimator can be obtained based on the KM estimator (2.4). Therefore, the

kernel density estimator is given by

f̂T (t; b) =
n∑
i=1

siKb(t−X(i)),

where Kb(u) = b−1K(u/b) and si denote the size of jump of the KM estimator at X(i) (see

Wand and Jones, 1995 and Bantis et al., 2012). The reader is referred to Wand and Jones

(1995) for a review of commonly used bandwidth selection methods. The downside of the

kernel smooth estimator in the case of censoring is the phenomenon that the last event time is

censored due to the fact that si = 0 if and only if X(i) corresponds to a censored observation.

Essentially, the kernel estimate is established by centering a kernel at each event time. In

essence, the density estimator can not be expanded beyond the tail of the kernel located at

the last event time, even if the last event tracked by censored data (Bantis et al., 2012).

The kernel hazard function estimator was firstly introduced by Watson and Leadbetter

(1964) for the case of uncensored data and then further developed by Ramlau-Hansen (1983)

and Tanner and Wong (1983) to right-censored data. The asymptotic properties of the kernel-

based hazard function estimator are investigated by many authors with different techniques;
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e.g., Rice and Rosenblatt (1976) for exact observations and Tanner and Wong (1983) for

censored data.

Let T1, · · · , Tn be a random sample of independent failure times with distribution F and

density f . The kernel-based estimator of the hazard function in the case of uncensored data

is given by

ĥ(t) =
1

b

n∑
i=1

K
(t− T(i)

b

)
(n− i+ 1)−1.

where T(i) be the i-th order statistic.

The fixed-bandwidth kernel-smoothed hazard function estimator for right-censored data

is described by

ĥ(t) =
1

b

n∑
i=1

K
(t−X(i)

b

) δ(i)

n− i+ 1
,

where X(i) is the i-th ordered time, K is a fix kernel function and b denotes the bandwidth

that determines the degree of smoothing (Ramlau-Hansen, 1983). The most well-known

kernels are the Epanechnikov, the Biweight, the Triweight, the Gaussian, the Triangular and

the Uniform. The choice of kernel function does not much effect on the results of estimates as

noted by Silverman (1986) (see also Wand and Jones, 1995 and Simonoff, 1996). In contrast,

the choice of smoothing or bandwidth parameter is a crucial factor in the performance of

the kernel-based estimator (Gefeller and Michels, 1992). Also, the idea of the presmoothed

procedure based on considering a smoother estimator of p(X(i)) instead of δ(i) for estimating

a density or a hazard function can be found in work of Cao and Jácome (2004) and Cao

and López-de Ullibarri (2007). A more detail description of this approach is investigated in

Chapter 4.

The popularity of the kernel smooth estimator is due to its simplicity and intuitive nature,

whereas its main drawback is the difficulty of determining the optimal bandwidth. The main

shortcoming of the fixed-bandwidth kernel estimators is caused by the constant bandwidth

which results in unpleasant effects whenever the data are not equally distributed throughout

the range of interest (Gefeller and Michels, 1992). In such situation, the fixed-bandwidth

kernel estimator tends to over-smooth in dense regions, while under-smooth in a sparse region

with many misleading peaks (Hess et al., 1999). To achieve a uniform degree of smoothing

over the range of data, one should choose a large bandwidth when the data are sparse, whereas

the bandwidth should be small when the data are dense (Gefeller and Michels, 1992). In order

to overcome this problem, one can apply the idea of the nearest neighbor into the definition

of the bandwidth (Gefeller and Dette, 1992) .
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Furthermore, the boundary effects problem arises when the kernel estimation near the

endpoints of the data is biased. These effects are aggregated when the hazard function has

high derivatives near the extremes of the data; e.g., bathtub-shaped hazard function (Müller

and Wang, 1994). Due to the incident of boundary effects, some authors have used different

kernels near the endpoints of the data; see e.g., Gray (1990) and Müller and Wang (1994). A

solution to removing boundary effects was developed by Hougaard (1988). Moreover, Müller

and Wang (1994) introduced a new class of the hazard function estimator with varying kernels

and varying bandwidths as follows

ĥ(t) =
1

b(t)

n∑
i=1

Kt

(t−X(i)

b(t)

) δ(i)

n− i+ 1
,

where the bandwidth b(t) and Kt depend on the point t where the estimate is to be assessed

(Müller and Wang, 1994). Some new boundary kernels and local and global bandwidth

choices can be found in R package muhaz (Hess and Gentleman, 2010).

Following notations in Section 2.2.3, the kernel hazard function estimator in the case of

interval-censored data is given by

ĥ(t) =
m∑
j=1

wj(t)ĥj,

where

wj(t) =
w?j (t, b)∑m
u=1w

?
u(t, b)

and

w?j = b−1K {(t− sj)/b} ,

for j = 1, · · · ,m. The reader is referred to Eubank (1999) and Sun (2006) for a more detailed

description. The kernel-based method is not likelihood-based and, therefore, straightforward

inferences and conclusions can not be made, as noted by Sun (2006).

Spline Estimators

Another type of approaches use splines functions to approximate hazard functions. The

hazard function is considered as a piecewise polynomial function of some spline functions
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joined at knots. A quadratic spline estimator with knots placed at each decile of the sample’s

distribution was first introduced by Bloxom (1985) in the case of exact observations. A linear

spline hazard function estimator where knots are placed at each unique failure time was also

developed by Whittemore and Keller (1986). The deficiency of the former model is due to

imposing constraints on parameters in order to determine the shape of the hazard function

and the limitation of the latter is that a large number of parameters are required to be

estimated (Herndon and Harrell, 1990).

An alternative class of methods for smooth hazard function estimation is the logspline

model. Logspline models have been studied by many authors; see e.g., Stone (1987, 1990)

and Kooperberg and Stone (1991). Kooperberg and Stone (1992) extended the idea of the

logspline density estimation for censored data (see also Koo et al., 1999). Basically, the

logspline approach models the logarithm of a density function as a spline function. A cubic

spline often is used, which is a twice-continuously differentiable function. Suppose that L

and U are some numbers such that −∞ ≤ L < U ≤ ∞ and the time line is partitioned

into K intervals (0, τ1], · · · , [τk,∞) where τi are knots. Then, the logspline density model is

written as

f(x;θ) = exp

(
p∑
i=1

θiBi(x)− C(θ)

)
, L < x < U,

where

C(θ) = log

{∫ U

L

exp(

p∑
i=1

θiBi(x)) dx

}
<∞

makes f(x;θ) a proper density function and θ = (θ1, · · · , θp)> is the parameter vector.

Also, the basis functions B1, · · · , Bp can be selected such that B1 and Bp are linear with

negative and positive slope on (L, τ1] and [τk, U), respectively, B2, · · · , Bp and B1, · · · , Bp−1

are constant on (L, τ1] and [τk, U), respectively, and we have a cubic polynomial in each

of the intervals [τ1, τ2], · · · , [τk−1, τk]. For specifying the number of knots, a stepwise knot

addition and deletion procedure based on the Wald statistic was applied by Kooperberg and

Stone (1992). For model selection, they suggested the Baysian Information Criteria (BIC).

The implementation of the knot addition and deletion algorithm can be found in R package

logspline (Kooperberg, 2007). It is noteworthy that in the case of heavily censored data, the

logspline estimation algorithm may fail to converge with an error message of “no convergence”

(Pan, 2000b).
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Likelihood-based Methods

Smooth estimation of hazard functions can also be obtained by using some likelihood-based

approaches such as penalized likelihood methods and local likelihood methods. Recall that T

denotes the survival time of interest in a survival study and an interval-censored observation is

represented by Oi = (Li, Ri], i = 1, · · · , n. An exact observation is indicated by Ti = Li = Ri.

For simplicity, we assume that the first n1 observations are exact and the rests are interval-

censored. Then the log-likelihood function has the form

L(h) =

n1∏
i=1

{
h(Ti)e

−H(Ti)
} n∏
i=n1+1

{
e−H(Li) − e−H(Ri)

}
.

Without further restrictions, the resulting estimate is not smooth, whereas the true haz-

ard function is often smooth. Assume that h(·) is a member of the class of continuous, twice

differentiable functions, and its second derivative is square integrable. For a smooth esti-

mate of h(t), the penalized likelihood approach which maximizes the log-likelihood function

adjusted by a penalty function is defined as follows

`p(h) = `(h)− kJ(h), k > 0,

where `(h) = logL(h), J(h) =

∫ {
h
′′
(u)
}2

du is a known penalty function that measures

the roughness of the hazard function and k is the smoothing parameter which controls the

balance between the fit to the observed data and the smoothness of the hazard function. A

combination of the penalized likelihood approach and the modeling of the hazard function

was also suggested by Rosenberg (1995). For a review of the penalized likelihood approach,

we direct the reader to Senthilselvan (1987) and Joly et al. (1998).

One can also use local likelihood methods for smooth estimation of a hazard function. In

this method, the hazard rate is estimated at each time point by some parametric functions,

e.g., linear function of times. Tibshirani and Hastie (1987) introduced the concept of using

local fitting for likelihood-based regression models to the class of generalized linear models,

which was further developed by Fan et al. (1998). A smooth hazard estimation using the

local likelihood method was also proposed by Betensky et al. (1999) for interval-censored

data. In the region of sparse data such as the right tail of the hazard function, numerical

instability is a disadvantage of this technique (Cai and Betensky, 2003; Sun, 2006).
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2.4 Cox Proportional Hazards Model

The proportional hazards or Cox model is one of the most popular methods for anlayzing

right-censored survival data in the presence of covariates. Basically, the Cox model is semi-

parametric since it explores the relationship between the survival time and the covariates

through an arbitrary baseline hazard function and the exponential of a regression function of

the covariates. Within the Cox model, the hazard function of the continuously distributed

survival time T with covariate vector Z ∈ Rp has the form

h(t;Z) = h0(t) exp (β>Z),

where h0(t) is an unspecified baseline hazard function and β ∈ Rp is the vector of the unknown

regression parameters. The Cox’s partial likelihood (PL) approach was developed by Cox

(1972, 1975) to estimate the regression coefficients of proportional hazard models, where the

baseline hazard function is not involved. The main advantage of the PL approach is that it

does not require estimation of the baseline hazard function h0 when the main interest is to

estimate the regression coefficients β. Moreover, the asymptotic properties of the maximum

partial likelihood β were well established by Tsiatis (1981) (see also Andersen and Gill, 1982).

Let Xi denote the event time with the corresponding censoring time Ci. Then, the

observed data consists of i.i.d. samples of the triple (Ti, δi,Zi) for i = 1, · · · , n, where Ti =

min(Xi, Ci) is the follow-up time, δi = I(Xi ≤ Ci), and Zi ∈ Rp denotes the covariate vector.

Also, the event time X and the censoring time C are assumed to be conditionally independent

given Z = z. The covariate vector Z is assumed to be time fixed. We also assume that the

survival time X, conditionally on Z = z, is continuous with density f(x | z). The simplified

likelihood function based on the baseline hazard h0 and the effect parameters β is given by

L(h0,β) =
n∏
i=1

{
h0(Ti)e

(β>Zi)
}δi

exp
{
−e(β>Zi)H0(Ti)

}
,

where H0(t) =
∫ t

0
h0(u) du denotes the baseline cumulative hazard function. Therefore, the

log-likelihood function can be written as

`(h0,β) =
n∑
i=1

{
δi log h0(Ti) + δiβ

>Zi − e(β>Zi)H0(t)
}
.

Let X(1) < X(2) < · · · < X(D) denote the ordered distinct event times and Z(j) the covariate

vector of the subject whose failure time is equal to X(j). Also let R(X(j)) define the risk set
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of individuals at time X(j), where all individuals who are still under study at a time just prior

to X(j). Assume that there are no ties between the event times. Cox (1975) showed that the

β̂ is the maximizer of the partial likelihood function

Lp(β) =
D∏
j=1

exp(β>Z(j))∑
i∈R(X(j))

exp(β>Z(i))
.

In the case of tied failure times, the partial likelihood is given by

Lp(β) =
D∏
j=1

exp(β>Z(j)){∑
i∈R(X(j))

exp(β>Z(i))
}dj ,

where dj is the number of individuals whose failure times are equal to X(j) (Breslow, 1974).

In practice, one may also be interested in estimating the baseline function. The estimated

baseline hazard function along with the estimation of regression coefficients can be obtained

by the Breslow estimator (Breslow, 1972). For a review of smooth estimation of a baseline

hazard function in the Cox model; see, e.g., Gray (1990) and Anderson and Senthilselvan

(1980) based the kernel and penalized likelihood smoothing methods, respectively. Others

who discussed the proportional hazards model in the case of right-censored data include Gray

(1994), Joly et al. (1998) and Cai and Betensky (2003).

In the Cox model with interval-censored data, the partial likelihood approach is not

available in a closed form as noted by Sun (2006), since h0 can not be easily removed. Let

the observed data be an i.i.d. sample {(Li, Ri],Zi; i = 1, · · · , n}, where (Li, Ri] denotes the

observation interval for the event time Ti and Zi ∈ Rp is the vector of covariates for subject

i. Then the likelihood function is

L(S0,β) =
n∏
i=1

{
S0(Li)

exp(β>Zi) − S0(Ri)
exp(β>Zi)

}
,

where S0(t) denotes the baseline survival function.

Finkelstein (1986) is one of the pioneers who investigated the fitting of the proportional

hazards model to interval-censored data by using a modified Newton-Raphson algorithm.

Huang (1996) proposed the fully semiparametric maximum likelihood analysis for current

status data, where he applied a monotone step function whose number of jumps increases

with sample size in order to estimate the baseline cumulative hazard function. Betensky

et al. (2002) investigated the use of the local likelihood method to simultaneously estimate

the regression coefficients and the baseline hazard function. Cai and Betensky (2003) derived



22 2.5 Shape-restricted Estimation of a Function

a smoothed estimate of the hazard function by maximizing the penalized likelihood through

a mixed model-based approach. They modeled the log-baseline hazard as a linear spline.

In order to avoid the complexity of analysing interval-censored data, one can employ the

(multiple) imputation approach to replace an interval-censored observation with one or more

points from that interval. Thus, the standard PL analysis could be used for imputed interval-

censored observations as for right-censored data. Some literature has already discussed the

multiple imputation procedures in order to change an interval-censored data problem to a

right-censored data one; see e.g., Satten (1996), Goggins et al. (1998) and Pan (2000a). In

spite of its simplicity, this approach can lead to biased results and invalid inferences (Lindsey

and Ryan, 1998).

We draw the attention of the reader to Lesaffre et al. (2005) for a review of different

approaches for fitting a proportional hazards model in the case of interval-censored data.

A general framework for semiparametric regression analysis of different censoring schemes

was also proposed by Zhang and Davidian (2008). Recently, Zhang et al. (2010) introduced

a spline-based semiparametric maximum likelihood approach within the Cox model with

interval-censored data by fitting the baseline cumulative hazard function via a monotone B-

spline function. As noted by Gómez et al. (2009), the available methods in the software for

the proportional hazards in the case of interval-censored data are rare. The implementation

of a modification of the ICM algorithm to the Cox model (Pan, 1999) for interval-censored

data is available in the R package intcox developed by Henschel and Mansmann (2009).

This package is not able to yield the standard errors for the estimated regression coefficients,

and they recommended computing bootstrap intervals.

2.5 Shape-restricted Estimation of a Function

Several general parametric models have been suggested to model the bathtub-shaped failure

rates; see e.g., Hjorth (1980), Haupt (1992), Mudholkar and Srivastava (1993). However,

one can totally remove the issue of model misspecification of parametric models and also

the problem of choosing the tuning parameters and penalty terms of smooth nonparametric

approaches by virtue of the shape constraint. Two popular approaches to nonparametric

estimation under shape constraints are maximum likelihood and least squares. The earliest

work on shape-constrained maximum likelihood estimation can be traced back to Grenander

(1956), who derived a maximum likelihood estimator (MLE) for a distribution function with

a nondecreasing hazard rate for uncensored data. Bray et al. (1967) extended it to the case

of a U-shaped hazard function. Some properties of distributions with monotone failure rates

were studied by Barlow et al. (1963). The MLE of a nondecreasing hazard function was

demonstrated by Marshall and Proschan (1965) to be a right-continuous step function which

is 0 before the first observation and jumps to infinity at the largest observation. Prakasa Rao
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(1969) also showed that these estimators are piecewise constant functions and converge at a

rate of n1/3.

For a sample of ordered observations T(1), · · · , T(n), the log-likelihood function as a function

of the hazard function h is given by

`(h) =
n∑
i=1

{
log h(T(i))−

∫ T(i)

0

h(u) du.

}
. (2.5)

Since h(T(n)) can be made arbitrarily large, Grenander (1956) considered that `(h) can be

maximised over a nondecreasing h which is bounded by some M > 0. Therefore, (2.5) reduces

to maximizing the following function

˜̀(h) =
n−1∑
i=1

{
log h(T(i))− (n− i)(T(i+1) − T(i))h(T(i))

}
,

subject to 0 ≤ h(T(1)) ≤ · · · ≤ h(T(n−1)) ≤ M (see Robertson et al., 1988, Chapter 7). The

MLE is then a right-continuous step function with values at the observations given by

ĥ(T(i)) = min
i≤x≤n−1

max
1≤s≤i

x− s+ 1∑x
j=s(n− j)(T(j+1) − T(j))

, for i = 1, · · · , n− 1,

(see Robertson et al., 1988, Chapter 1). The full MLE is then found by additionally letting

M →∞ such that ĥ(t) =∞ for t ≥ T(n).

The MLE of an increasing hazard function with right-censored data was first studied by

Padgett and Wei (1980). In addition, Mykytyn and Santner (1981) derived the NPMLE of

a hazard rate function based on monotonicity assumptions with different censoring schemes.

Huang and Zhang (1994) and Huang and Wellner (1995b) also provided the asymptotic

properties of the MLE of a monotone density and a monotone hazard respectively for right-

censored data. Nonparametric estimation for U-shaped or unimodal hazard function with

right censoring data was also investigated by Reboul (2005). In the case of right censoring

with no covariates, the limiting distribution of the likelihood ratio test has been derived by

Banerjee (2008). More recently, the nonparametric maximum likelihood estimator and the

least squares estimator of a convex hazard function was studied by Jankowski and Wellner

(2009b). An estimator of a convex hazard function was proposed by Jankowski and Wellner

(2009a) using the profile likelihood method. They showed that both estimators are consistent

and converge at rate n2/5. The MLE of a convex hazard function was proved to be a piecewise-

linear function as shown in Jankowski and Wellner (2009b). Therefore, it can be expressed
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as

h(t) = α +
k∑
j=1

νj(τj − t)+ +
m∑
j=1

µj(t− ηj)+,

where t+ ≡ max(0, t), α, νj, µj ≥ 0 denote the masses and the τj’s and ηj’s correspond to the

knots, or the support points of the corresponding nonnegative measures.

Following the log-likelihood function (2.5), one could find the NPMLE ĥ for exact obser-

vations by maximising the modified log-likelihood function, since `(h) can be made arbitrarily

large by increasing the value of h at the largest observed value, as noted by Grenander (1956).

That is, one needs to maximise the modified log-likelihood

˜̀(h) =
n−1∑
i=1

log h(T(i))−
n∑
i=1

H(T(i)).

Jankowski and Wellner (2009a) proposed an iterative two-step optimization method. They

introduced a hybrid algorithm that iterates between the SR (Groeneboom et al., 2008) and

bisection algorithms, which we call SRB. In the first step, the SR algorithm is applied to

find the MLE over all convex hazard functions with a fixed minimum (anti-mode). In the

second step, the bisection method is employed in order to find the minimum of the convex

hazard function. Their double looping method makes the convergence of the algorithm very

slow. The implementation of the SRB algorithm can be found in the R package convexHaz

(Jankowski et al., 2009). Also, this package can not deal with the situation of tied event

times. It fails to handle the issue of duplicated largest observation, since it only removes one

largest observation, instead of all of them from the modified log-likelihood function. More

recently, the literature on shape-constrained estimation techniques has been upgraded by the

contributions of Meyer and Habtzghi (2011) who studied the NPMLE of a decreasing density

and also increasing, convex, and increasing and convex hazard functions using regression

splines. For recent work on smooth monotone hazard function estimation in the case of exact

observations, we refer the interested reader to Groeneboom and Jongbloed (2013).

Within the Cox model, Chung and Chang (1994) proposed a maximum likelihood estima-

tor for a baseline hazard function under nondecreasing shape constraint. Recently, Lopuhaä

and Nane (2013) derived a nonparametric maximum likelihood estimator for estimating a

monotone baseline hazard function and a decreasing baseline density in the Cox model with

right-censored observations. The asymptotic properties of their estimators were also stud-

ied. The computation of different shaped-constrained NPMLEs of a baseline hazard function

along with the estimation of regression coefficients within the Cox model for the case of

right-censored data is available in the R package CPHshape (Hui and Jankowski, 2011).
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This package can not provide the standard errors for the estimated regression coefficients.

In addition, their estimated baseline hazard function is piecewise linear and hence is not

smooth.





Chapter 3
Nonparametric Estimation of a

Convex Hazard Function

3.1 Introduction

The study of hazard functions is one of the major topics of interest in biomedical studies and

reliability engineering. Many parametric models have received considerable attention in this

regard, mainly for reasons of straightforward implementation and ease of analysis. To avoid

the strict assumptions associated with a parametric model that may lead to biased inference

and invalid conclusions, one could resort to nonparametric approaches for estimating a hazard

function. As a nonparametric maximum likelihood estimator, the renowned KM estimator

for a survival function has been widely used in the case of right-censored data.

In practice, some prior knowledge may be available regarding the shape of the underlying

hazard function; therefore, it may be natural to make use of this knowledge in estimation.

With respect to such information, a reliability engineer and a medical practitioner may assess

the necessity of applying some prevention or intervention action to save the mechanism or

patient from failing. In reliability contexts, the test statistic based on the total time on test

(TTT) plot can be used for testing if a random sample is generated from a life distriution

with constant versus bathtub. If the scale TTT curve changes from convex to concave in

(0, 1), then the hazard function has a bathtub hazard rate shape; see e.g., Bergman and

Klefsjo (1984) and Aarset (1987). For nonparametric estimation of increasing, decreasing,

monotone, U-shaped failure rates, we refer the reader to Grenander (1956), Proschan (1963),

Hall et al. (2001) and Reboul (2005) respectively. Two popular approaches to nonparametric

27
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estimation under shape constraints are maximum likelihood and least squares. Obtaining a

more acceptable, fruitful and rational nonparametric estimate of a hazard function subject

to shape constraints based on maximum likelihood methods is the main motivation of this

chapter.

The most important types of shape restrictions are monotonicity (increasing or decreasing)

and bathtub shapes or convex. In this thesis, a convex or bathtub-shaped hazard function

is particularly investigated. A bathtub-shaped hazard function consists of three periods,

including burn-in, useful, and wear-out periods. The configuration of the bathtub-shaped

hazard function starts at optimum burn-in time, followed by a gradual stabilization at a level

for a certain time in the useful period, and finally, a hazard rate rise during the wear-out

period. This kind of hazard is predominantly applied to the human population followed

from birth. An increasing hazard rate often arises when there is natural aging or wear. In

many practical applications, the producers frequently use a burn-in process of the products.

For preventing an early failure of defective items, the operation of products is investigated

before being shipped to the customers. However, after being sold, the intact released items

are subject to gradual aging. Decreasing hazards appear occasionally when there is an early

failure, such as modelling survival times after a successful medical treatment.

The most noticeable feature of time-to-event data is incompleteness such as censoring.

By censored data, we mean that the event of interest is never observed exactly, but only

known to occur to the right or left of a time boundary, or within a time interval. The

interval-censored data is a generalization of the exact, left-censored or right-censored data;

in such cases an interval can reduce to a single point, has a lower bound of zero, or is

unbounded on the right, respectively. A typical example of interval-censored data arises

often in medical, longitudinal studies, and clinical trials that entail periodic monitoring of

the progression or changes in a disease status. In such situations, many patients may miss

one or more predetermined observation times and then come back to clinical centres with

a changed status, or more likely have irregular visits. Accordingly, we only know that the

true event time is greater than the prior clinic visit time at which there was no symptom of

disease progression, and is less than or equal to the clinic visit time where the change was

observed to occur. Hence, it results in an interval which includes the real but unobservable

time of occurrence of the change. The readers are referred to Sun (2006) for different kinds

of examples in the case of interval-censored data. Despite the high incidence of the interval-

censored data in practice, literature on nonparametric estimation of a hazard function under

shape constraints is relatively sparse. Therefore, we also extend our study of nonparametric

hazard function estimation under convex shape constraint to the case of interval-censored

data.

Nonparametric estimation of a bathtub hazard function in the uncensored situation was

pioneered by Bray et al. (1967) and was extended to the case of right-censored data by Myky-

tyn and Santner (1981). We also urge the interested reader to see Tsai (1988), and Huang
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and Wellner (1995b). Banerjee (2008) presented pointwise confidence intervals for nonpara-

metric estimators of monotone, unimodal and U-shaped hazard functions for right-censored

data using nonparametric likelihood ratios. Recently, Jankowski and Wellner (2009a) studied

the estimator of a convex hazard function by the profile likelihood method. The estimate

is piecewise linear and has a local rate of convergence n2/5. More recently, a monograph on

NPMLE of a hazard function with increasing, convex, and increasing and convex via regres-

sion splines for both uncensored and right-censored observations was provided by Meyer and

Habtzghi (2011). They showed that the estimator converges at rate r = (p + 1)/(2p + 3)

where p is the degree of the polynomial spline.

Iterative algorithms have to be used to find the NPMLE of a bathtub-shaped hazard func-

tion since it is not explicitly available. An iterative two-step optimization method was intro-

duced by Jankowski and Wellner (2009a). Their method iterates between the SR (Groene-

boom et al., 2008) and the bisection algorithm. The former is used to find the MLE over

all convex hazard functions with a fixed minimum (anti-mode), and the latter is applied to

optimize over other possible minimum values of a convex hazard function. This approach

has drawbacks such as singling-out the minimum of a convex hazard function estimate and

having a very slow convergence speed as the result of a double-looping method. Solving these

problems is the motivation of this chapter.

Our new algorithm is an appropriate extension of the constrained Newton method (CNM)

(Wang, 2007), which was proposed for fitting a nonparametric mixture. The main idea

behind the new algorithm to overcome the above-mentioned problems is to always maintain

a constant hazard segment, even if its length is zero. Therefore, we consider two situations,

namely positive and zero length constant part, which are computationally interchangeable

during the computation of the algorithm. In each iteration, the extended algorithm finds

and adds all the global maxima of two gradient functions between every two neighbouring

support points to the support sets corresponding to the decreasing and increasing parts of a

convex hazard function. The procedure continues by finding a new support point that has

the maximum gradients value between the last support point of the decreasing and the first

support point of the increasing part of a convex hazard function. Then, we update all masses

under the convexity restriction. Finally, points with zero masses are removed straightaway

after each updating.

Essentially, two main aims in this chapter are to: (a) Study the nonparametric estimation

problem involving convex hazard function in the case of exact observations and develop a fast

computational algorithm to solve this problem, (b) Extend our algorithm to the situation

with interval-censored data, which naturally includes the cases with right-censored or left-

censored data, and to the mixed situation with both exact observations and interval-censored

data. The procedure can also be narrowed down to a monotone (increasing or decreasing)

shape.
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3.2 Nonparametric Maximum Likelihood Estimation

In this section, we derive a general form for shape-restricted estimation of a hazard rate

function based on maximum likelihood method from exact observations and interval censored

data. In order to obtain the likelihood for types of uncensored or censored data, it is necessary

to define the following terms.

Let T be a nonnegative random variable representing the time until some specified event

occurs. One of the informative functions which can characterize the distribution of T is the

hazard function. For a sample of times to an event with a continuous distribution function

F and density f , the hazard function of T is defined as

h(t) =
f(t)

S(t)
=

f(t)

exp {−H(t)}
,

where S(t) = 1− F (t) is the survival function and H(t) =
∫ t

0
h(u) du the cumulative hazard

function. Given h, other functions such as H,F, S and f can all be easily derived. For

example, one can express the density as

f(t) = h(t) exp {−H(t)} = h(t) exp

{
−
∫ t

0

h(u) du

}
.

We are interested in finding the NPMLE of h (or equivalently f), under the restriction of a

convex h.

In our general formulation, an observation T for each subject can be either exact or

interval-censored. By interval-censored, we mean that a random variable of interest is known

only to lie within an interval instead of being observed exactly. For an event time Ti (i =

1, · · · , n) that is interval-censored, we denote it by its censoring interval Oi = (Li, Ri], while

an exact observation is indicated by Ti = Li = Ri. To make representation simpler, let us

assume that the first n1 observations are exact. Hence, the log-likelihood function is given

by

`(h) =

n1∑
i=1

{log h(Ti)−H(Ti)}+
n∑

i=n1+1

log {S(Li)− S(Ri)} . (3.1)

As suggested by Grenander (1956) in the case when all the observations are exact, `(h)

can be made arbitrarily large by increasing the value of h at the largest observed value and a

modified log-likelihood should be maximized. In the mixed case with both exact and interval-

censored observations, following the same argument the modified log-likelihood should take
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the form of

˜̀(h) =

n1∑
i=1

Ti 6=Tmax

log h(Ti)−
n1∑
i=1

H(Ti) +
n∑

i=n1+1

log {S(Li)− S(Ri)} , (3.2)

where T(n1) = max {T1, · · · , Tn1}, Imax is the maximum of all the finite values of Li and Ri and

Tmax = max
{
T(n1), Imax

}
. Note that in the case of interval-censored data mixed with exact

observations, we make a comparison between T(n1) and Tmax to take a decision on whether

to choose the full or the modified log-likelihood function. If T(n1) < Tmax, then the full

log-likelihood (3.1) is used as a special case of the modified log-likelihood (3.2); otherwise,

we always work with the modified log-likelihood (3.2) and may even omit the adjective

“modified”. Therefore, the full NPMLE is obtained by additionally setting ĥ(T(n1)) = ∞
when T(n1) = Tmax.

Jankowski and Wellner (2009b) showed that the NPMLE of a convex hazard function is

piecewise linear. It can hence be expressed as a piecewise linear function with three parts as

follows,

h(t) = α +
k∑
j=1

νj(τj − t)+ +
m∑
j=1

µj(t− ηj)+, (3.3)

where α, νj, µj ≥ 0. Let us denote π = (α,ν,µ)>, the vector of positive masses, and

θ = (τ,η)>, the vector of support points, where ν = (ν1, . . . , νk), µ = (µ1, · · · , µm),

τ = (τ1, · · · , τk), and η = (η1, · · · , ηm). Note that a τj indicates a point of slope chang-

ing of h where h is decreasing and an ηj a point of slope changing where h is increasing.

Always, we let 0 < τ1 < · · · < τk ≤ η1 < · · · < ηm. Apparently, h is constant, being

α, on [τk, η1]. Since h is fully defined by its π and θ, with k and m always implicitly as-

sumed known, we treat h and (π,θ) interchangeably below and hence may write the modified

log-likelihood as ˜̀(π,θ).

3.2.1 Characterization

For both exact and censored observations, the NPMLE ĥ maximizes ˜̀(h) among all h in the

space of non-negative convex functions. Its characterization involves gradient functions of

the log-likelihood. Let e1,τ = (τ − t)+, and e2,η = (t − η)+. The two gradient functions are
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defined as, respectively,

d1(τ ;h) = lim
ε→0

˜̀(h+ εe1,τ )− ˜̀(h)

ε

=

n1∑
i=1

Ti 6=Tmax

(τ − Ti)+

h(Ti)
−

n1∑
i=1

τ 2 − (τ − Ti)2
+

2
+

n∑
i=n1+1

{
−
τ 2 − (τ − Li)2

+

2
−

(τ −Ri)
2
+ − (τ − Li)2

+

2
∆i(H)

}
,

for 0 < τ ≤ η1,

(3.4)

and

d2(η;h) = lim
ε→0

˜̀(h+ εe2,η)− ˜̀(h)

ε

=

n1∑
i=1

Ti 6=Tmax

(Ti − η)+

h(Ti)
−

n1∑
i=1

(Ti − η)2
+

2
+

n∑
i=n1+1

{
−

(Li − η)2
+

2
−

(Li − η)2
+ − (Ri − η)2

+

2
∆i(H)

}
,

for τk ≤ η < Tmax. (3.5)

Let us also set e0,α = 1. For the sake of complement, we can define

d0(α;h) = lim
ε→0

˜̀(h+ εe0,α)− ˜̀(h)

ε

=

n1∑
i=1

Ti 6=Tmax

1

h(Ti)
−

n1∑
i=1

Ti +

n∑
i=n1+1

{−Li − (Li −Ri) ∆i(H)} ,

for α ≥ 0,

where ∆i(H) = exp(H(Li) − H(Ri))/(1 − exp(H(Li) − H(Ri))). Note that d1 and d2 are

piecewise quadratic functions of τ and η, respectively.
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3.2.2 Theoretical Properties

Some of the characteristics of gradient functions and support point properties of the NPMLE

of a convex hazard function are established for exact observations in this section. For interval-

censored data or the case mixed with exact and interval-censored observations, these theo-

retical properties can be similarly derived, only by changing to more complicated notations

and employing the same idea as for exact observations.

Given a hazard function h and an i.i.d. sample of exact observations T1, . . . , Tn ∈ [0,∞),

the log-likelihood function is given by

`(h) =
n∑
i=1

{log h(Ti)−H(Ti)} .

As mentioned in Section 2.5, since h(T(n)) can be made arbitrarily large, Grenander (1956)

considered that `(h) can be maximised over a nondecreasing h which is bounded by some

M > 0. Instead, one should maximize the modified log-likelihood ˜̀(h)

˜̀(h) =
∑
i∈I

log h(Ti)−
n∑
i=1

H(Ti),

where I = {i : Ti 6= T(n)}.
Let us denote by K the space of all convex hazard functions defined on [0,∞). Jankowski

and Wellner (2009b) have shown that the MLE of a convex hazard function must be a

piecewise linear function. Hence, we only need to consider the following hazard function

h(t) = α +
k∑
j=1

νj(τj − t)+ +
m∑
j=1

µj(t− ηj)+,

for α, νj, µj ≥ 0. The cumulative hazard function is then

H(t) = αt+
1

2

k∑
j=1

νj{τ 2
j − (τj − t)2

+}+
1

2

m∑
j=1

µj(t− ηj)2
+.

Here any piecewise linear h ∈ K is determined by three parameters (h0, h1, h2): a nonnegative

scalar h0 ≡ α and two nonnegative measures h1 ≡ (ν, τ ) and h2 ≡ (µ,η), whose dimensions

k and m need to be estimated as well.
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Theorem 1. ˜̀ is concave on K and any non-empty level set K(c) ≡ {h ∈ K : ˜̀(h) ≥ c ≥

−∞} is convex.

Proof. For h, g ∈ K and ε ∈ (0, 1),

∂ ˜̀{(1− ε)h+ εg}
∂ε

=
∑
i∈I

g(Ti)− h(Ti)

(1− ε)h(Ti) + εg(Ti)
+

n∑
i=1

{G(Ti)−H(Ti)},

where G(t) =
∫ t

0
g(u) du. Further,

∂2 ˜̀{(1− ε)h+ εg}
∂ε2

= −
∑
i∈I

{g(Ti)− h(Ti)}2

{(1− ε)h(Ti) + εg(Ti)}2
,

which is negative, unless h(Ti) = g(Ti) for all i. If h, g ∈ K(c), then

˜̀{(1− ε)h+ εg} ≥ min{˜̀(h), ˜̀(g)} ≥ c,

meaning that (1− ε)h+ εg ∈ K(c), or K(c) is convex. �

Theorem 2. For all h ∈ K(c), c > −∞, maxi∈I{h(Ti)} is bounded above.

Proof. Denote by T(i) the i-th smallest value in the set of the unique values of Ti’s, i ∈ I.

Assuming that h is increasing at T(i) and that h(T(i))→∞, we have

lim
h(T(i))→∞

h(T(i))

eH(T(i+1))
≤ lim

h(T(i))→∞

h(T(i))

eh(T(i))(T(i+1)−T(i))
= 0.

Similarly, we can obtain that
h(T(i))

e
H(T(i))

→ 0, if h is decreasing at T(i) and h(T(i)) → ∞. This

means that if any h(Ti)→∞, i ∈ I, then ˜̀(h)→ −∞ < c and the limiting h /∈ K(c). �

Corollary 1. ˜̀ has a finite maximum on K.

Proof. This follows immediately from Theorems 1 and 2. �
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Corollary 2. For any h ∈ K(c), c > −∞,

|h|≡ h0 +

∫
dh1(τ) +

∫
dh2(η)

is bounded above.

Proof. Follows easily from Theorem 2 and the convexity of h. �

Letting e1,τ = (τ − t)+ and e2,η = (t − η)+, the two gradient functions are defined as,

respectively,

d1(τ ;h) ≡ ∂ ˜̀(h+ εe1,τ )

∂ε

∣∣∣∣∣
ε=0

=
∑
i∈I

(τ − Ti)+

h(Ti)
− 1

2

n∑
i=1

{τ 2 − (τ − Ti)2
+}

and

d2(η;h) ≡ ∂ ˜̀(h+ εe2,η)

∂ε

∣∣∣∣∣
ε=0

=
∑
i∈I

(Ti − η)+

h(Ti)
− 1

2

n∑
i=1

(Ti − η)2
+.

For purposes of completeness, let us define

d0(h) ≡ ∂ ˜̀(h+ εe0)

∂ε

∣∣∣∣∣
ε=0

=
∂ ˜̀(h)

∂α
,
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where e0 = 1. The directional derivative from h to g is given by

d(g;h) ≡ ∂ ˜̀{(1− ε)h+ εg}
∂ε

∣∣∣∣∣
ε=0

=
∑
i∈I

g(Ti)− h(Ti)

h(Ti)
+

n∑
i=1

{G(Ti)−H(Ti)}

= d0(h)(g0 − h0) +

∫
d1(τ ;h) d(g1 − h1)(τ)

+

∫
d2(η;h) d(g2 − h2)(η).

Lemma 1. For any g, h ∈ K,

˜̀(g) ≤ ˜̀(h) + d(g;h).

Proof. This follows easily from the concavity of ˜̀. �

Theorem 3 (Characterization). ĥ maximizes ˜̀(h) if and only if the following conditions are

satisfied:

(i) d0(ĥ) ≤ 0, if α̂ = 0;

(ii) d0(ĥ) = 0, if α̂ > 0;

(iii) d1(τ ; ĥ) ≤ 0, for τ ∈ [0, η̂1];

(iv) d1(τ ; ĥ) = 0, for τ ∈ {τ̂1, . . . , τ̂k̂};

(v) d2(η; ĥ) ≤ 0, for η ∈ [τ̂k̂, T(n)];

(vi) d2(η; ĥ) = 0, for η ∈ {η̂1, . . . , η̂m̂}.

Proof: Necessity can be established by contradiction. For any h that fails to satisfy any of

the six conditions, ˜̀ must have an ascent direction at h and a sufficiently small movement in

the direction will increase ˜̀. Hence this h does not maximize ˜̀.
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If the six conditions are satisfied, then d(g, ĥ) ≤ 0 for every g ∈ K. Sufficiency follows

from Lemma 1. �

The first derivatives of the modified log-likelihood are

∂ ˜̀

∂α
= d0(h) =

∑
i∈I

1

h(Ti)
−

n∑
i=1

Ti,

∂ ˜̀

∂νj
= d1(τj;h) =

∑
i∈I

(τj − Ti)+

h(Ti)
− 1

2

n∑
i=1

{τ 2
j − (τj − Ti)2

+},

∂ ˜̀

∂µj
= d2(ηj;h) =

∑
i∈I

(Ti − ηj)+

h(Ti)
− 1

2

n∑
i=1

(Ti − ηj)2
+.

The second derivatives are

∂2 ˜̀

∂α2
= −

∑
i∈I

1

h(Ti)2
,

∂2 ˜̀

∂α∂νj
= −

∑
i∈I

(τj − Ti)+

h(Ti)2
,

∂2 ˜̀

∂α∂ηj
= −

∑
i∈I

(Ti − ηj)+

h(Ti)2
,

∂2 ˜̀

∂νj∂νk
= −

∑
i∈I

(τj − Ti)+(τk − Ti)+

h(Ti)2
,

∂2 ˜̀

∂νj∂µk
= −

∑
i∈I

(τj − Ti)+(Ti − ηk)+

h(Ti)2
,

∂2 ˜̀

∂µj∂µk
= −

∑
i∈I

(Ti − ηj)+(Ti − ηk)+

h(Ti)2
.

Hence one can write

∂ ˜̀

∂π
= S>1 + β,

∂2 ˜̀

∂π∂π>
= −S>S,

where π = (α,ν>,µ>)>, β = −
∑n

i=1(Ti,
1
2
{τ 2

1 − (τ1 − Ti)
2
+}, . . . , {τ 2

k − (τk − Ti)
2
+}, (Ti −

η1)2
+, . . . , (Ti−ηm)2

+)>, s(i) = (1, (τ1−Ti)+, . . . , (τk−Ti)+, (Ti−η1)+, . . . , (Ti−ηm)+)>/h(Ti),

for i ∈ I, and S> is the matrix with columns being s(i).
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3.3 Computation

In this section, we discuss some computational aspects of a convex hazard function estimation

and then present an algorithm for computing the NPMLE. In Section 3.3.1, we will first

present the computational complication for estimating a convex hazard function and then

propose a novel idea for solving this problem. In the next two subsections, we describe how to

update π′ with θ fixed and then how to expand and contract θ appropriately. The algorithm

is summarized in Section 3.3.6.

3.3.1 Main Idea

From a computational perspective, a main difficulty is how to tackle the problem of finding

the minimum of a convex hazard function. A relevant work to our study is that of Jankowski

and Wellner (2009a). The authors considered a two-loops profile likelihood method. In the

inner loop, the support reduction algorithm is used to find the MLE over all convex hazard

functions with a fixed minimum. In the outer loop, the bisection algorithm is utilized to

optimize over all other possible minimum values of a convex hazard function. This approach

contains some deficiencies such as including single support point in each iteration of the inner

loop and using a time-consuming algorithm for finding the minimum of a convex hazard

function estimate in the outer loop.

The key idea of our solution is to sustain a constant hazard part, even if its length is zero.

Specifically, two cases of the constant hazard segment of, respectively, a positive and a zero

length are treated in such a way that they are computationally convertible into each other.

The resulting algorithm is remarkably faster and simpler than the profile likelihood method

because of its reduction from the double loop to a single loop and the inclusion of multiple

new support point to the support sets corresponding to the decreasing and increasing parts

of a convex hazard function rather than the inclusion of only one new support point in each

iteration.

3.3.2 Updating Masses

In order to update π to π′ with θ fixed, the second-order Taylor series expansion of the

modified log-likelihood function in the neighbourhood of π is applied. Denote the gradient

vector and Hessian matrix of the modified log-likelihood (3.2) (see Section 3.3.3) with respect
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to π by

g ≡ g(π,θ) =
∂ ˜̀

∂π
,

H ≡ H(π,θ) =
∂2 ˜̀

∂π∂π>
.

The following quadratic approximation can be obtained by using the Taylor series expan-

sion for ˜̀(π′,θ) around π

˜̀(π′,θ)− ˜̀(π,θ) ≈ g>(π′− π) +
1

2
(π′− π)>H(π′− π).

Therefore, in a small neighbourhood of π, the problem of maximizing ˜̀(π′,θ) can be ap-

proximated by the following least squares linear regression problem with non-negativity con-

straints:

minimize ‖Rπ′− (Rπ + b1)‖2, subject to π′ ≥ 0, (3.6)

where R ≡ R(π,θ) satisfies H = −R>R and b1 is the solution of R>b1 = g. In our

implementation, R is the upper triangular matrix of the Cholesky decomposition of −H (see

Section 3.3.4). Numerically, R may turn out to be singular when there exist very similar

support points. To overcome this numerical difficulty, we add a very small positive value to

each diagonal element of R, e.g., Rii × 10−10 to the ith diagonal element so the Cholesky

factorization can be confidently utilized. To solve problem (3.6), the non-negativity least

squares (NNLS) algorithm of Lawson and Hanson (1974) is applied.

A backtracking line search is conducted to ensure monotone increase of the log-likelihood.

Let π′ be the solution of problem (3.6). The updated vector π + σk(π′ − π) is chosen by

using the smallest k ∈ {0, 1, 2, · · ·} that satisfies the following inequality

˜̀(π + σk(π′− π),θ) ≥ ˜̀(π,θ) + ασkg>(π′− π), 0 < α <
1

2
. (3.7)

We use σ = 1
2
, as for the popular step halving, and α = 1

3
in our implementation. For

numerical reasons, similar support points are then collapsed, if after collapsing, the log-

likelihood value either increases or does not decrease by more than a small threshold value.

In the implementation, the threshold value used is 10−6.
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3.3.3 Derivatives of the Modified Log-likelihood Function

The first partial derivatives of the modified log-likelihood function (3.2) are derived as follows:

∂ ˜̀

∂α
=

n1∑
i=1

Ti 6=Tmax

1

h(Ti)
−

n1∑
i=1

Ti +
n∑

i=n1+1

{−Li − (Li −Ri)∆i(H)} ,

∂ ˜̀

∂νj
=

n1∑
i=1

Ti 6=Tmax

(τj − Ti)+

h(Ti)
−

n1∑
i=1

τ 2
j − (τj − Ti)2

+

2
+

n∑
i=n1+1

{
−
τ 2
j − (τj − Li)2

+

2
−

(τj −Ri)
2
+ − (τj − Li)2

+

2
∆i(H)

}
,

∂ ˜̀

∂µj
=

n1∑
i=1

Ti 6=Tmax

(Ti − ηj)+

h(Ti)
−

n1∑
i=1

(Ti − ηj)2
+

2
+

n∑
i=n1+1

{
−

(Li − ηj)2
+

2
−

(Li − ηj)2
+ − (Ri − ηj)2

+

2
∆i(H)

}
,

where ∆i(H) = exp(H(Li)−H(Ri))/(1− exp(H(Li)−H(Ri))).

The second derivatives of the modified log-likelihood function that form the Hessian

matrix H are given by

∂2 ˜̀

∂α2
=

n1∑
i=1

Ti 6=Tmax

{
− 1

h(Ti)
2

}
+

n∑
i=n1+1

{
−(Li −Ri)

2∆i(H)
}
,

∂2 ˜̀

∂µ2
j

=

n1∑
i=1

Ti 6=Tmax

{
−

(τj − Ti)2
+

h(Ti)
2

}
+

n∑
i=n1+1

{
−
(

(τj −Ri)
2
+ − (τj − Li)2

+

2

)2

∆i(H)

}
,

∂2 ˜̀

∂ν2
j

=

n1∑
i=1

Ti 6=Tmax

{
−

(Ti − ηj)2
+

h(Ti)
2

}
+

n∑
i=n1+1

{
−
(

(Li − ηj)2
+ − (Ri − ηj)2

+

2

)2

∆i(H)

}
,

∂2 ˜̀

∂νj∂α
=

n1∑
i=1

Ti 6=Tmax

{
−(τj − Ti)+

h(Ti)
2

}
+

n∑
i=n1+1

{
−(Li −Ri)

(
(τj −Ri)

2
+ − (τj − Li)2

+

2

)
∆i(H)

}
,
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∂2 ˜̀

∂µj∂α
=

n1∑
i=1

Ti 6=Tmax

{
−(Ti − ηj)+

h(Ti)
2

}
+

n∑
i=n1+1

{
−(Li −Ri)

(
(Li − ηj)2

+ − (Ri − ηj)2
+

2

)
∆i(H)

}
,

∂2 ˜̀

∂µj∂νj
=

n1∑
i=1

Ti 6=Tmax

{
−(Ti − ηj)+(τj − Ti)+

h(Ti)
2

}
+

n∑
i=n1+1

{
−
(

(τj −Ri)
2
+ − (τj − Li)2

+

2

)(
(Li − ηj)2

+ − (Ri − ηj)2
+

2

)
∆i(H)

}
,

where ∆i(H) = exp(H(Li)−H(Ri))/(1− exp(H(Li)−H(Ri))
2.

3.3.4 QR Factorization of D

The Hessian matrix H can be written as follows,

H = −D>D

where

D =



1
h(T1)

(τ1−T1)+
h(T1)

· · · (τk−T1)+
h(T1)

(T1−η1)+
h(T1)

· · · (T1−ηm)+
h(T1)

1
h(T2)

(τ1−T2)+
h(T2)

· · · (τk−T2)+
h(T2)

(T2−η1)+
h(T2)

· · · (T2−ηm)+
h(T2)

...
...

. . .
...

...
. . .

...
1

h(Tn1 )

(τ1−Tn1 )+
h(Tn1 )

· · · (τk−Tn1 )+
h(Tn1 )

(Tn1−η1)+
h(Tn1 )

· · · (Tn1−ηm)+
h(Tn1 )

αn1+1 βn1+1 · · · γn1+1 λn1+1 · · · δn1+1

αn1+2 βn1+2 · · · γn1+2 λn1+2 · · · δn1+2

...
...

. . .
...

...
. . .

...

αn βn · · · γn λn · · · δn


and

αi = (Li −Ri) ∆i(H),

βi =
(τ1 − Li)2

+ − (τ1 −Ri)
2
+

2
∆i(H),

γi =
(τk − Li)2

+ − (τk −Ri)
2
+

2
∆i(H),
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λi =
(Li − η1)2

+ − (Ri − η1)2
+

2
∆i(H),

δi =
(Li − ηk)2

+ − (Ri − ηk)2
+

2
∆i(H),

∆i(H) =

√
exp (H(Li)−H(Ri))

1− exp (H(Li)−H(Ri))
,

for i = n1 + 1, n1 + 2, · · · , n.

Therefore, we have the following Taylor series expansion about π with θ fixed:

˜̀(π′)− ˜̀(π) ≈ g>(π′− π) +
1

2
(π′− π)>H(π′− π)

= −1

2
‖D(π′− π)− d‖2 + c

= −1

2
‖R(π′− π)− b1‖2 − 1

2
‖b2‖2 + c, (3.8)

where D = QR by a QR decomposition and d = (R>)−1g>. In order to yield prob-

lem (3.6), we partition Q =

(
Q1

Q2

)
, where Q1 ∈ Rn×(1+k+m). Hence, Q>1 D =

(
R

0

)
, where

R ∈ R(1+k+m)×(1+k+m), and Q>b =

(
b1

b2

)
=

(
Q1
>d

Q2
>d

)
. The upper triangular matrix R

obtained this way is mathematically the same as by the Cholesky decomposition of −H, but

numerically more stable.

3.3.5 Expanding and Contracting Support Sets

One of the critical components of our new algorithm is enlarging and shrinking the two

support sets τ and η. The gradient functions d1(τ ;h) and d2(η;h) are applied as a great

tool to locate new elements for the support sets. As d1(τ ;h) and d2(η;h) are piecewise

quadratic functions of τ and η, it is simple to locate all global maxima between every two

neighbouring support points of these functions. A detailed description of the support sets

expansion technique is presented below.

The procedure of enlarging the two support sets corresponding to the decreasing and

increasing parts of a convex bathtub-shaped hazard function needs to be carried out on three

intervals: (i) the decreasing part on [0, τk), (ii) the constant part on [τk, η1]; and (iii) the

increasing part on (η1, Tmax).

Let us define an ordered set J = {0, τ1, · · · , τk, η1, · · · , ηm, Tmax}. In the first step of

the new algorithm, we expand the two support sets corresponding to the decreasing and

increasing parts of a convex hazard function by finding and adding one new support point

between every two neighbouring support points in set J . For the decreasing part [0, τk), we
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Figure 3.1: Schematic representation of a convex bathtub-shaped hazard function for the constant
part.

use the gradient function d1(τ ;h) (3.4). For the increasing segment [η1, Tmax), the gradient

function d2(η;h) (3.5) is applied. For the constant hazard interval [τk, η1], we employ the two

gradient functions d1(τ ;h) and d2(η;h) when τk 6= η1. This means that the greatest value of

d1 and d2 on [τk, η1] corresponds to the new support point added, to either set τ or set η,

depending on either d1 or d2 is greater at the point.

In the second step of the new algorithm, we update the mass vectors ν and µ by solving

problem (3.6). Then, we contract the support sets τ and η, by removing the elements of τ

and η that have zero masses. The length of the constant part can thus increase or decrease

after each iteration. This includes the situation when a positive length becomes zero, and the

opposite situation. This is because, e.g., if the updated mass of η1 becomes zero, the length

of the constant part increases, while if there is a new support point between [τk, η1] which

recieves a positive mass, then the length of constant segment decreases. With following these

two steps, this process is repeated until the final solution is found, which must be the global

maximum ĥ.

By implementing this new idea, the double loop needed by Jankowski and Wellner (2009a)

which finds the minimum of the convex hazard function by the bisection algorithm method

while computing the MLE of the hazard function with the minimum held fixed by the SR

algorithm, is reduced to a single loop. Thus, the convergence of our algorithm is much faster

and resulting in a remarkable reduction in computation time.

3.3.6 The Algorithm

In this section, we present our new algorithm for computing the nonparametric estimate of

a convex hazard function. It is a generalization of the CNM algorithm of Wang (2007, 2008)
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for computing the NPMLE of a mixing distribution. However, the new one does not need

to comply with the restriction that the sum of masses must be one. Moreover, two gradient

functions d1(τ ;h) and d2(η;h) instead of one are employed through computational steps of

the new algorithm.

Let us denote θ+ the extended support point vector by finding and including some new

support points, and π+ the corresponding mass vector enlarged on π by adding 0s for new

support points. Let π′ and θ′ be the updated mass vector and support point vector by

discarding the redundant points from θ+ with zero masses in π+. The new algorithm,

which we call CNMCH as an extension of CNM for computing a convex hazard function, is

summarized as follows.

Algorithm 3.1 (CNMCH). Choose a small γ > 0 and set s = 0. From an initial estimate

h0 with finite support and `(h0) > −∞, repeat the following steps.

Step 1 : compute all global maxima of gradients between every two adjacent points in set

J , as described above, hence giving τ ∗s1, · · · , τ ∗sk for the decreasing part, η∗s1, · · · , η∗sm for

the increasing part, and ρ∗s for the constant part.

Step 2 : set τ∗s = (τ ∗s1, · · · , τ ∗sk)>, η∗s = (η∗s1, · · · , η∗sm)>, θs+ = (τ>s , τ
∗>
s , ρ∗s,η

>
s ,η

∗>
s )> and

π+
s = (αs,ν

>
s ,0

>, 0,µ>s ,0
>)>. Find π−s+1 by solving problem (3.6), with R replaced by

R+
s = R(π+

s ,θ
+
s ) and b+

1s = (π+
s
>
,θ+

s
>

)>, followed by a backtracking line search.

Step 3 : discard all support points with zero masses in π−s+1, which gives hs+1 with θs+1

and πs+1. If |˜̀(hs+1)− ˜̀(hs)| ≤ γ stop; otherwise, set s = s+ 1.

3.4 Convergence

The theoretical justification for the convergence of the CNMCH algorithm for computing the

NPMLE of a convex hazard function in the case of exact observations is established in this

section. In fact, the proof below also holds true for the other similar situations, e.g., the case

of interval-censored data and the case mixed with exact and interval-censored observations.

Let K0 ≡ K(c0) and b = Rπ + b1, refer to (3.8).
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Lemma 2. Let π′ be obtained by minimizing ‖Sπ′ − b‖ in the algorithm. Then always

‖Sδ‖ ≤ u,

for some u <∞ independent of s.

Proof. Since minπ′≥0‖Sπ′ − b‖, it holds that ‖Sπ′ − b‖ ≤ ‖b‖ and hence ‖Sπ′‖ ≤ ‖Sπ′ −

b‖ + ‖b‖ ≤ 2‖b‖. Therefore, ‖Sδ‖ ≤ 2‖b‖ +
√
n. Because ‖b‖ only depends on h(Ti), for

i ∈ I, which is bounded away from zero for all h ∈ K0, the proof is completed. �

Lemma 3. The Armijo search used in the algorithm always succeeds in a finite number of

steps independent of s.

Proof. Since δ ≡ π′ − π maximizes

(S+>1 + β)>δ − 1

2
δ>S+>Sδ

under restriction π′ ≥ 0, we have

δ>S+>S+δ ≤ (S+>1 + β)>δ.

Noting the Taylor series expansion

˜̀(π + δ,θ)− ˜̀(π,θ)

= (S+>1 + β)>δ − 1

2
δ>S+>Sδ + o(‖Sδ‖2),

for any 0 < α < 1
2
, there is a λ > 0 such that if ‖Sδ‖ ≤ λ, then

˜̀(π + δ,θ)− ˜̀(π,θ) ≥ α(S+>1 + β)>δ,
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thus satisfying the Armijo rule.

If ‖Sδ‖ > λ, then ‖σkSδ‖ ≤ λ holds for some k > 0. Because ‖Sδ‖ ≤ u from Lemma 2,

we need at most

k̄ ≡ max

{⌈
logσ

(
λ

u

)⌉
, 0

}

steps for the Armijo rule to be satisfied in all situations. �

Theorem 4. Let {hs} be any sequence created by the algorithm. Then ˜̀(hs) → ˜̀(ĥ) mono-

tonically as s→∞.

Proof. Owing to its monotone increase, ˜̀(hs) will converge to a finite value no greater than

˜̀(ĥ). Further,

˜̀(hs+1)− ˜̀(hs) ≥ ασk̄(S+>
s 1 + βs)

>δs

≥ ασk̄
{

(S+>
s 1 + βs)

>δs −
1

2
δ>s S

+>
s S+

s δs

}
,

because of Armijo’s rule and the non-negative definiteness of S+>
s S+

s .

Consider all point-mass directions e ∈ {±e0,±e1,τ ,±e2,η} from hs, that are valid in the

meaning that there exists an ε > 0 such that hs+εe ∈ K. Denote the steepest ascent direction

by

e∗s = arg max
e

d(hs + e;hs)

and δ∗s the direction resulting from hs to hs+e
∗
s. Hence, from any ε ∈ R such that hs+εe

∗
s ∈ K,

we have

˜̀(hs+1)− ˜̀(hs) ≥ ασk̄
{
ε(S+>

s 1 + βs)
>δ∗s −

ε2

2
δ∗>s S+>

s S+
s δ
∗
s

}
,
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because of the optimality of δs.

Now, let us assume that d(hs + e∗s;hs) does not approach 0 as s→∞. There are, hence,

infinitely many s such that d(hs + e∗s;hs) ≥ τ , for some τ > 0. For such an s and noting that

d(hs + e∗s;hs) = (S+>
s 1 + βs)

>δ∗s ,

we have, with Lemma 2,

˜̀(hs+1)− ˜̀(hs) ≥ ασk̄
{
ετ − ε2u2

2

}
.

Without loss of generality, assume τ ≤ u2 and let ε = τ/u2. As a result,

˜̀(hs+1)− ˜̀(hs) ≥
ασk̄τ 2

2u2
,

a positive value that is independent of s. Since this violates the Cauchy property of a

convergent sequence, we must have d(hs + e∗s;hs) → 0 as s → ∞. Therefore, d(ĥ;hs) ≤

d(hs + e∗s;hs)(|hs|+|ĥ|)→ 0 from Corollary 2, and ˜̀(hs)→ ˜̀(ĥ) from Lemma 1. �

3.5 Real Data Examples

This section provides the results of our numerical studies of three real-world data sets. In the

case of all exact observations, we investigated and compared the performance of our proposed

CNMCH algorithm with the SRB algorithm to the same problem in the first and second real

data examples. In particular, we focused on the computational aspects of these algorithms.

In the situation of interval-censored data in the third example, we are interested in comparing

the estimates of the hazard function provided by the CNMCH algorithm for computing a

nonparametric estimation of a hazard function under convexity shape restriction with the

constrained Newton method (CNM) (Wang, 2008) without using any shape constraint.

In survival analysis, it is quite common for real data sets to consist of tied event times,

where a tie means that two or more subjects in the data set share the same time. For com-

putational efficiency, tied observations should better be grouped. Hence, we implemented
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two different versions of our algorithm CNMCH, namely ties grouped and ungrouped. The

SRB algorithm is available in the R package convexHaz (Jankowski et al., 2009) and unfor-

tunately does not handle this issue. As a result, it also fails to deal with duplicated largest

observations. Instead of removing all the greatest duplicated observations for maximising

the modified log-likelihood, it only takes out one, which leads to an incorrect likelihood max-

imization. Two different implementations of the SRB algorithm, gridded and gridless, for

finding the location of the minimum of the directional derivatives were used. In their imple-

mentation, [0, T(n)] was split into M intervals. We compare the performance of the algorithms

based on the number of iterations and running times. The number of iterations in the SRB

algorithm is attributed to the outer loop of an algorithm.

In our studies, the CNMCH algorithm was terminated when the following condition was

satisfied:

|˜̀(hs)− ˜̀(hs−1)| ≤ γ,

for γ = 10−6. All algorithms are performed in R (R Development Core Team, 2013), except

for the NNLS algorithm which is in Fortran and embedded in CNM and CNMCH for solving

a least squares problem with non-negativity constraint.

3.5.1 Canadian Human Mortality Data

We considered the Canadian human mortality table for the year 2008 (http://www.

mortality.org/). A random sample of size 1000 was extracted from the entire life table with

sample size 238612, so that a comparison with the observed hazard would be possible. The

histogram for the entire life table and a random sample of size 1000 are shown in Figure 3.2.

The observed hazard is computed by the number of people who died at time t over the num-

ber of people who were still alive at time t. The result of the NPMLE for lifetimes is shown

with a dashed line and the observed hazard with a solid line in the left panel of Figure 3.3.

The Canadian mortality data reveals the hazard rate is high in the infant mortality phase,

but decreases rapidly. Subsequently, the hazard rate stabilizes before the age of 70, followed

by an increasing hazard rate due to the natural aging process. As a desirable attribute,

the estimated turning point of the onset of late life observation remarkably corresponds to

the observed hazard point. Our proposed approach has a good performance after age 80.

However, the subplot in the left panel of Figure 3.3 demonstrates that the estimated hazard

function at the early infant mortality phase deviates from the observed hazard function. To

overcome the raised problem, one can employ the higher order smoothness of an estimator,

which will be studied in Chapter 4. For the complete mortality table, the resulting fitted

hazard functions for the total, females and males are also presented in the right panel of

http://www.mortality.org/
http://www.mortality.org/
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Figure 3.3. Obviously, the death rates of males were higher than those of females in 2008 at

any specified age.

Table 3.1 provides a brief summary of the estimation results for a random sample and the

entire life table. As mentioned above, we are unable to execute the SRB algorithm for the

entire life table since it does not tackle the problem of duplicated observations. In terms of

the modified log-likelihood, the CNMCH algorithm has an overall better performance than

the SRB algorithm for the random sample drawn from the entire life table. By looking at

the computation time, one can easily see that the SRB algorithm is far more expensive than

the CNMCH algorithm.
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Figure 3.2: Histograms of the entire and a random sample of Canadian life table for year 2008.

3.5.2 Air Conditioner Failure Data

The second real data set, studied by Proschan (1963) and Jankowski and Wellner (2009a),

concerns the successive failures of the air conditioning system from Boeing airplanes and the

interest is in the estimation of hazard rates of the intervals between successive failures. Ta-

ble 3.2 gives the 213 observations which are the number of operating hours between successive

failures of air conditioning equipment in 13 Boeing 720 jet aircrafts. Figure 3.4 provides a

couple of plots depicting the hazard function and the gradient curve at the initial, fourth, and

tenth iteration, respectively, and finally at convergence. Computationally, the conversion of
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Figure 3.3: NPMLE of the CNMCH algorithm for the Canadian lifetime data in 2008: the ob-
served hazard rates (solid line) compared with the NPMLE of the hazard function
(dashed line) based on the generated sample size of 1000 from the entire life table
(left); the fitted hazard rates of the total (solid line), males (dotted line) and females
(dashed line) for the complete life table (right).

Table 3.1: Results of the algorithms for the Canadian lifetime data in 2008.

Method #Iter. Time (s) Modified log-likelihood
Random sample

CNMCH - ties grouped 18 0.17 -4043.84
CNMCH - ties ungrouped 18 0.78 -4043.84
SRB (M = 100, GRIDLESS = 0) 5 233.02 -4068.83
SRB (M = 1000, GRIDLESS = 0) 9 1552.02 -4044.49
SRB (M = 100, GRIDLESS = 1) 8 391.14 -4096.98
SRB (M = 1000, GRIDLESS = 1) 11 1218.45 -4096.97

Entire life table
CNMCH - ties grouped 21 0.28 -963700.10
CNMCH - ties ungrouped 22 307.02 -963700.10

a positive-lengthed constant part of the convex hazard function to a zero-lengthed one can

be clearly observed in Figure 3.4. The intersection points between the last gradient function

and x -axis are the support points of the NPMLE.

The performance of the CNMCH and SRB algorithms is given in Table 3.3. We executed

the SRB algorithm for both the grid and gridless methods with different numbers of grid

points. It can be seen from the results that the CNMCH gave a slightly larger likelihood

value and was also significantly faster than the SRB algorithm, especially in the case of

treating data set by grouping tied observations.
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For this data set, the piecewise linear hazard function is given by

ĥ(t) = 0.00657 + 0.00003 (136.2989− t)+ + 0.00001 (376.5684− t)++

0.00003 (t− 376.5735)+ + 0.00001 (t− 396.1332)+.

Table 3.2: Air conditioner failure data of Boeing airplanes.

Plane Intervals between failures

7907 194 15 41 29 33 181

7908
413 14 58 37 100 65 9 169 447 184 36 201 118 34 31
18 18 67 57 62 7 22 34

7909
90 10 60 186 61 49 14 24 56 20 79 84 44 59 29
118 25 156 310 76 26 44 23 62 130 208 70 101 208

7910 74 57 48 29 502 12 70 21 29 386 59 27 153 26 326

7911 55 320 56 104 220 239 47 246 176 182 33 15 104 35

7912
23 261 87 7 120 14 62 47 225 71 246 21 42 20 5
12 120 11 3 14 71 11 14 11 16 90 1 16 52 95

7913
97 51 11 4 141 18 142 68 77 80 1 16 106 206 82
54 31 216 7 46 111 39 63 18 191 18 163 24

7914
50 44 102 72 22 39 3 15 197 188 79 88 46 5 5
36 22 139 210 97 30 23 13 14

7915 359 9 12 270 603 3 104 2 438

7916 50 254 5 283 35 12

7917 130 493

8044 487 18 100 7 98 5 85 91 43 230 3 130

8045
102 209 14 57 54 32 67 59 134 152 27 14 230 66 61
34

3.5.3 Angina Pectoris Survival Data

The third real-world data is the life table data set that has been studied by Lee and Wang

(2003). It is used here to particularly illustrate our motivation in the case of purely interval-

censored data. The survival data for 2418 males patients with angina pectoris is tabulated

in Table 3.5. Survival times are recorded as years from the time of diagnosis and collected

in each one year time interval for 16 intervals. Two cases were investigated: (i) exact data,

where the CNMCH algorithm applied to the midpoints of the time intervals for only those

who died during the study, (ii) purely interval-censored data, where we also included those
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Table 3.3: Performance of the algorithms on the air conditioner failure data.

Method #Iter. Time (s) Modified log-likelihood
CNMCH - ties grouped 15 0.13 -1169.983165
CNMCH - ties ungrouped 15 0.15 -1169.983165
SRB (M = 100, GRIDLESS = 0) 7 34.38 -1169.989235
SRB (M = 1000, GRIDLESS = 0) 7 122.73 -1169.983180
SRB (M = 100, GRIDLESS = 1) 7 222.50 -1169.983472
SRB (M = 1000, GRIDLESS = 1) 7 440.96 -1169.983177
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Figure 3.4: Column-wise plots correspond to the initial, fourth, and tenth iteration, and the
NPMLE of the hazard function and the gradient curve.

who are lost to follow-up during the study. We are interested in comparing the estimates of

these two cases.
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Table 3.4: Life table of 2418 males with angina pectoris.

Years after Number Number Lost
Diagnosis Died to Follow-up
0 456 0
1 226 39
2 152 22
3 171 23
4 135 24
5 125 107
6 83 133
7 74 102
8 51 68
9 42 64
10 43 45
11 34 53
12 18 33
13 9 27
14 6 23
15 0 30

In the case of all exact observations, we just carried out the CNMCH algorithm since the

R package convexHaz can not cope with the situation of repeated largest observations. The

top row of Figure 3.5 shows the NPMLE of the hazard function and the gradient curve at

the NPMLE, with solid points as the support points on the x -axis.

The dimension-reduced constrained Newton method (Wang, 2008) and the proposed CN-

MCH algorithm were used in the case of purely interval-censored data. The hazard function

at two NPMLE’s by the CNMCH and CNM algorithms are plotted in the bottom left panel

of Figure 3.5. The plots of the estimated hazard functions illustrate that the death rate is the

highest immediately after diagnosis. The hazard rate stays approximately constant between

the end of the first year and the beginning of the tenth year. After the tenth year, the hazard

rate gradually increases. It is intuitively obvious that the hazard function estimate based

on the convex shape restriction captures the gradual change of hazard over time far better

than its discrete competitor without shape constraint. The bottom right panel of Figure 3.5

shows the gradient curve at the NPMLE by the CNMCH algorithm.

The performance of the algorithms for males with angina pectoris for both the case of

exact data (in the upper panel) and the case of purely interval-censored data (in the lower

panel) is displayed in Table 3.5. In both cases, the CNMCH algorithm with ties grouped

took a far shorter computation time than the version without grouping ties.
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Figure 3.5: NPMLE for the life table of males with angina pectoris: the fitted hazard rates for the
exact observations by the CNMCH algorithm (top left); the gradient at the NPMLE
for the exact observations (top right); the fitted hazard function for the purely-interval-
censored data by the CNM algorithm (solid line) and the CNMCH algorithm (dashed
line) (bottom left); the gradient at the NPMLE for purely interval-censored data of
the CNMCH algorithm (bottom right). The solid dots represents the support points
at the NPMLE.

The estimated hazard function in the case of exact and purely interval-censored data are

given respectively as follows:

ĥ(t) = 0.185 + 0.082 (2.017− t)+ + 0.023 (t− 2.017)+ + 0.020 (t− 9.087)++

0.123 (t− 9.985)+,
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and

ĥ(t) = 0.102 + 0.069 (1.615− t)+ + 0.02 (2− t)+ + 0.004 (t− 2)+

0.004 (t− 8.36)+.

Table 3.5: Performance of the algorithms on the survival of males with angina pectoris.

Method #Iter. Time (s) Modified log-likelihood

Exact data

CNMCH - ties grouped 10 0.08 -3699.095
CNMCH - ties ungrouped 10 0.32 -3699.095

Purely interval-censored data

CNMCH - ties grouped 8 0.11 -4823.722
CNMCH - ties ungrouped 8 0.80 -4823.722
CNM 7 0.06 -4812.727

(Log-likelihood)

3.6 Simulation Study

3.6.1 Setup

A simulation study was carried out to investigate the performance of the CNMCH algorithm

in different scenarios. To generate random samples from a bathtub-shaped hazard function in

the simulation study, we used the exponentiated Weibull distribution, which was introduced

by Mudholkar and Srivastava (1993). The exponentiated Weibull distribution has cumulative

distribution function

F (x;α, θ) = {1− exp(−xα)}θ , x > 0,

and hence density

f(x;α, θ) = αθxα−1e−x
α {1− exp(−xα)}θ−1 , x > 0,
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where α > 0 and θ > 0 are the shape and scale parameters, respectively. As noted by

Nassar and Eissa (2003), the exponentiated Weibull distribution has a bathtub-shaped hazard

function when α > 1 and αθ < 1.

We performed a simulation study, which covers the situations of exact data, purely interval

censored data and interval-censored data mixed with exact observations. A scheme for data

generation similar to the one described in Wang (2008) was used. To create a data set, n

exact event times were first drawn from the exponentiated Weibull distribution. For this

purpose, we used R package reliaR (Kumar and Ligges, 2011) with shape parameters α = 4

and θ = 0.2. Afterwards, only r × n (0 ≤ r ≤ 1) observations chosen randomly remain

uncensored. A random sample of size 10 from the exponential distribution with mean 1

was taken for each censored observation, which divides the domain [0,∞) into 11 disjoint

subintervals. The subinterval that contains the exact event time replaces it. Obviously, when

r = 1, all observations are exact; when 0 < r < 1, the data are made up of both exact and

interval-censored observations; and when r = 0, all observations are purely interval-censored.

We also included the simulation results produced by the SRB algorithm in the case of exact

data. We had to give up the execution of this algorithm for a sample size of 1600 due to

extremely high computational costs.

3.6.2 Results

The performance of the CNMCH algorithm is investigated in these situations: (r, n) ∈
{0%, 50%, 100%} × {400, 1600}. The experimental results based on 10 replications in each

situation are summarized in Table 3.6, including the mean and standard deviation (in paren-

theses) of both the number of iterations and computation time (in seconds). From Table 3.6,

we can conclude that the computational cost reduces as the proportion of exact observations

increases. Apparently, from the simulation study, the SRB algorithm needed a much longer

computation time when it is applicable.

Table 3.6: Results of simulation studies for n = 400, 1600.

Method #Iter. Time (s) #Iter. Time (s) #Iter. Time (s)
n = 400

r = 0% r = 50% r = 100%

CNMCH 30.1 (2.52) 0.83 (0.12) 22.6 (3.83) 0.66 (0.14) 13.1 (1.52) 0.25 (0.06)
SRB 10 (1.33) 303.84 (25.57)

n = 1600

r = 0% r = 50% r = 100%

CNMCH 31.1 (2.07) 5.12 (1.17) 26.8 (2.59) 2.83 (0.61) 13.8 (2.54) 2.20 (1.03)
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3.7 Summary

In this chapter, we apply nonparametric approaches for estimating a hazard function under

convexity restriction. A new algorithm, CNMCH, is proposed for computing the NPMLE of a

convex hazard function, which can well deal with the situations of exact data, purely interval-

censored data, and interval-censored data mixed with exact observations. We suggested a

novel technique for expanding the support sets which avoids the problem of estimating the

minimum of a convex hazard function. Therefore, it helps reduce the double loop needed by

the SRB algorithm to a single loop and save a remarkable computation cost.

Through a simulation study and three real-world data sets, we have investigated and

compared the performance of our proposed approach with that of the state-of-the-art one to

the same problem. In comparison with the SRB algorithm, the CNMCH algorithm is compu-

tationally much faster. Furthermore, the CNMCH algorithm can also deal well with interval-

censored data and the case of mixed exact and interval-censored observations, whereas the

SRB algorithm can only apply to the case of exact observations. Also, the SRB algorithm

does not handle the problem of duplicated observations. Numerical studies in the case of

interval-censored data suggest that the shape-constrained method yields a more flexible and

adaptable estimator than the unconstrained one.

In order to obtain a smooth estimation of a hazard function, one can generalize the

NPMLE approach by applying a higher-order smoothness of an estimator. In addition,

one could also be interested in investigating the effects of covariates on the distribution of

the failure time data. We undertake detailed studies of these extensions in the subsequent

chapters.





Chapter 4
Nonparametric Smooth Estimation of

a Convex Hazard Function

4.1 Introduction

One of the primary goals of analyzing time to event data is to estimate the functions that

characterize the distribution of a lifetime variable. The hazard rate function is a very useful

tool to illustrate the instantaneous risk of observing the event of interest over time as one of

the functions. Estimating a hazard function has many feasible applications in various fields

such as clinical research, longitudinal and medical studies. For example, one may need to

estimate hazard functions to graphically compare several different treatments or processes,

or to predict hazard rates to clarify the way in which the process or treatment leaves the

stationary status. Parametric models, in particular the exponential and Weibull distributions,

have been widely used where the estimation of a hazard function is of interest. However,

in the case of interval-censored data, parametric approaches may lead to an inconsistent

estimator under model misspecification in which the corresponding asymptotic bias may

result in invalid statistical inference (Gómez et al., 2009). In order to avoid parametric

assumptions, one could employ nonparametric approaches for estimating a hazard function.

The merit of nonparametric models is that the bias, due to model misspecification, can be

reduced through nonparametric methods.

Traditional nonparametric estimators in the presence of right censoring were appropriately

described in the literature. The two most popular of this type of estimators are the KM

or product limit estimator of the survival function (Kaplan and Meier, 1958) and the NA

59
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estimator of the cumulative hazard function (Nelson, 1972; Aalen, 1978). The KM and

NA estimators are basically step functions with jumps at the observed event times. Apart

from their simplicity and ease of comprehension, they might lose some important information

about the true underlying hazard function. In the case of heavily censored data, the accuracy

of the estimation could not be reliable or even acceptable, since these estimators have only

a few jumps with increasing sizes and overestimate the survival probabilities (Murray, 2001;

López-de Ullibarri and Jácome, 2013b). With nonparametric shape constrained techniques

and using the concept of smoothing, one can facilitate generating estimators that better

adapt to a data set. Simulation studies by Pan (2000b) showed that smooth estimators, e.g.,

the kernel and logspline of a survival function, are more efficient than the classical NPMLE

approaches.

The gist of this chapter is to present an outline for nonparametric estimation of a haz-

ard function under convex shape restrictions and smoothness assumption. Our motivation

comes from the desire to produce a smooth estimation of a hazard, or equivalently, a density

function. We show that if the smoothness is introduced properly, it can help to increase

estimation efficiency and also provide a more pleasant graphical representation.

4.2 Smooth Estimation of a Hazard Function

There exist a number of nonparametric approaches, as briefly summarized below, that provide

smooth estimation of a hazard function. We first provide a broad overview of the existing

methods and then present our new approach for solving the problem of nonparametric smooth

estimation of a hazard function subject to the convex shape constraint.

4.2.1 Kernel-based Estimation

The simplest and well-known nonparametric approach is perhaps the kernel-based method.

Kernel-based techniques for nonparametric function estimation are widely used in the liter-

ature, particularly for density function. Silverman (1986) addressed the problem of kernel-

based density estimation in the case of no censoring. For issues of censoring, we refer the

interested reader to Wand and Jones (1995) and Bowman and Azzalini (1997). In the case

of interval-censored data, Braun et al. (2005) proposed the imputation method based on lo-

cal likelihood density estimation, which applied an extension of kernel smoothing where the

kernel weight is specified by the conditional expectation of the kernel over the interval.

Kernel estimation of the hazard function was first suggested by Watson and Leadbetter

(1964) in the uncensored situation. Ramlau-Hansen (1983) and Tanner and Wong (1983)
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extended the kernel hazard function estimator to the case of censored data and investigated

the properties of estimators.

Let T1, · · · , Tn denote i.i.d. lifetimes from the continuous distribution function F , and

C1, · · · , Cn be the i.i.d. corresponding censoring times from continuous distribution G. The

times Ti and Ci are usually assumed to be independent. It is not possible to observe both

Ti and Ci. Instead, the observed variables are Xi = min(Ti, Ci) and δi = I(Ti ≤ Ci). Let

(X(i), δ(i)) be the ordered paired observations. The general form of a fixed bandwidth kernel-

smoothed Tanner-Wong (TW) estimator of the hazard function in the case of right-censored

observations can be written as

ĥ(t) =
1

b

n∑
i=1

K
(t−X(i)

b

) δ(i)

n− i+ 1
,

where K(·) is a fixed kernel function, b > 0 is a specified bandwidth or window parameter that

determines the degree of smoothing and δ(i) denotes the censoring indicator corresponding to

the i-th order statistic X(i). Kernel functions are generally chosen to be symmetric probability

density functions. Many authors have demonstrated that the resulting estimates are not

greatly affected by the choice of the kernel function; see, e.g., Silverman (1986), Wand and

Jones (1995) and Simonoff (1996). A general choice for the kernel function is the so-called

“Epanechnikov” kernel (K(x) = 0.75(1 − x2) for −1 ≤ x ≤ 1) which is used in many

numerical studies.

The idea of the presmoothed approach based on considering a smoother estimator of

p(X(i)) instead of δ(i) for estimating a density or a hazard function can be traced back to the

work of Cao and Jácome (2004) and Cao and López-de Ullibarri (2007). The smoother

estimator is grounded on using the Nadaraya-Watson kernel estimator (Nadaraya, 1964;

Watson, 1964)

p̂b1(t) =

∑n
i=1 Kb1(t−X(i))δ(i)∑n
i=1Kb1(t−X(i))

.

Hence, the presmoothed TW estimator has the form

ĥPb1,b2(t) =
1

n

n∑
i=1

Kb2(t−X(i))p̂b1(X(i))

1−Hn(X(i)) + 1/n
.

This estimator relies on two parameters, the presmoothing bandwidth b1 and the smoothing

bandwidth b2. The presmoothed estimator can also be perceived as the convolution of the

TW estimator when b1 tends to zero. López-de Ullibarri and Jácome (2013b) proposed two



62 4.2 Smooth Estimation of a Hazard Function

bandwidth selection methods, namely plug-in and bootstrap bandwidth selectors, which are

available in R package survPresmooth (López-de Ullibarri and Jácome, 2013a).

The major advantage of the kernel-based estimation approach is its flexibility and inter-

pretative appeal. Nevertheless, the main difficulty with the kernel method is the problem

of determining the appropriate smoothing parameter or bandwidth parameter. As noted by

Gefeller and Michels (1992), a deficiency of the fixed bandwidth kernel estimators is that the

constant bandwidth results in unpleasant effects whenever the data are not equally distributed

throughout the range of interest. For uneven distributed data, the fixed bandwidth kernel

estimator tends to over-smooth dense regions and under-smooth sparse regions. Thus, the

bandwidth should be large when the data are sparse, whereas in regions with many observa-

tions, the bandwidth should become small. This problem can be remedied by incorporating

the concept of nearest neighbour, which originally introduced by Fix and Hodges (1989),

into the definition of the bandwidth (see Gefeller and Dette, 1992). In addition, the fixed

bandwidth kernel-based hazard function estimation is rather formidable due to the boundary

effects that occur near the endpoints of the support of the hazard function. These effects

are aggravated when the hazard rates are changing quickly near the endpoints of the data

such as with a bathtub-shaped hazard function. Müller and Wang (1994) have proposed the

solutions for boundary effects and balancing variance and bias problems by using a new class

of boundary kernels and data-adaptive variable bandwidths, respectively. The hazard func-

tion estimates based on the new boundary kernels, and local and global bandwidth choices

are available in R package muhaz (Hess and Gentleman, 2010). Nielsen (2003) considered

the numerical studies of several variable bandwidth kernel estimators (see also Bagkavos and

Patil, 2009). Another limitation of this approach is that it is not likelihood-based; therefore,

it is not easy to make inferences and draw conclusions.

4.2.2 Spline Estimators

An alternative class of methods applies spline functions to estimate hazard functions. In this

vein, hazard functions are piecewise polynomial functions of some spline functions jointed

in a distinct sequence of cut points or “knots”. For uncensored samples, Bloxom (1985)

introduced a quadratic spline with knots placed at each decile of the sample’s distribution.

Then the quadratic spline function which approximates the hazard function for the case of

uncensored data can be written as

ĥ(t) = β0 + β1t+ β2t
2 +

k∑
i=1

bi(t− ai)2
+,
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where 0 < a1 < · · · < ak are k knots. The necessity of this model is imposing constraints on

parameters to determine the shape of the hazard function. A cubic spline hazard model with

tails which are linearly constrained was proposed by Herndon and Harrell (1990). Recently,

Meyer and Habtzghi (2011) suggested cubic regression spline with the knots placed at equal

data quantiles for approximating a convex hazard function for both uncensored and right-

censored data.

In order to retrieve the lost information in the discrete NPMLE, one can also apply

the logspline model for smooth estimation of a hazard function which is a smooth estimate

directly from the data. In essence, the logspline density estimation models the logarithm of

a density function by using a polynomial spline. A number of papers have dealt with the

logspline density estimation; see e.g., Stone (1990) and Kooperberg and Stone (1991). The

logspline density estimation was developed for the case of censored data by Kooperberg and

Stone (1992).

Let the integer K ≥ 3 and t1, · · · , tK be a knot sequence such that −∞ ≤ L < t1 < · · · <
tK < U ≤ ∞ where L and U are some numbers. The K-dimensional natural cubic spline

space has a basis of the form B1, · · · , Bp, p = K−1. Then, the logspline density model based

on these basis functions has the form

f(x;θ) = exp

(
p∑
i=1

θiBi(x)− C(θ)

)
, L < x < U,

where C(θ) = log
{∫

exp(
∑p

i=1 θiBi(u)) du
}
< ∞ is the normalizing constant and θ =

(θ1, · · · , θp)> is the parameter vector.

The number of knots is selected based on a stepwise process of addition and deletion

of knots depending on Wald statistics, as suggested by Kooperberg and Stone (1992). The

final model is chosen that minimises the BIC. The knot addition and deletion algorithm is

available in R package logspline (Kooperberg, 2007).

4.3 Maximum Likelihood Estimation with Smoothness Assumption

Consider a sample of n subjects from a homogeneous population with survival function

S(t). In practice, the observed data for each individual under study is either an exact

survival time or, in the case of right censoring, a censoring time. In many clinical trials

and longitudinal studies that entail periodic follow-ups, instead of having the survival times

Ti observed directly, it is only known that the occurrence of the event of interest for each

individual lies in the interval between visits; e.g., the interval Oi = (Li, Ri], where Li <

Ti ≤ Ri. By convention, the exact failure time Ti is obtained when Li = Ri. For the sake

of simplicity, we assume that the first n1 observations are exact, and the rest are interval-
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censored data. Then the log-likelihood function for both the exact and interval-censored

observations can be written as

`(h) =

n1∑
i=1

{log h(Ti)−H(Ti)}+
n∑

i=n1+1

log {S(Li)− S(Ri)} . (4.1)

As mentioned in Chapter 3, the log-likelihood function can be made arbitrarily large by

increasing value of h at the largest observed value. We therefore maximise the modified

log-likelihood

˜̀(h) =

n1∑
i=1

Ti 6=Tmax

log h(Ti)−
n1∑
i=1

H(Ti) +
n∑

i=n1+1

log {S(Li)− S(Ri)} , (4.2)

where T(n1) = max {T1, · · · , Tn1}, Imax is the maximum of all the finite values of Li and Ri,

and Tmax = max
{
T(n1), Imax

}
.

To obtain a smooth estimator of a hazard function, we describe it as a continuous piecewise

quadratic function

h(t) = α0 + α1 t+ α2 t
2 +

k∑
j=1

νj(τj − t)2
+ +

m∑
j=1

µj(t− ηj)2
+, (4.3)

where, for example,

(τj − t)2
+ =

{
(τj − t)2, if t < τj,

0, if t ≥ τj.

and θ = (τ,η)> is a support point vector of h with its corresponding mass vector π =

(α0, α1, α2,ν,µ)>, all are positive except α0 and α1 which are free parameters, and ν =

(ν1, . . . , νk), µ = (µ1, · · · , µm), τ = (τ1, · · · , τk), and η = (η1, · · · , ηm). Notationally, h is

exchangeable with its mass vector π and support point vector θ, namely ˜̀(h) ≡ ˜̀(π,θ). One

of the properties of this model is that its first derivative is continuous. The main advantage

of the smoothed approach rather than the non-smoothed one is that the smoothness, if

introduced correctly, should help increase estimation efficiency, and it also gives an intuitively

pleasant graphical presentation. The smooth nonparametric maximum likelihood problem

of estimating the unknown hazard function h, owing to the imposition of convex shape

restriction, is an optimization problem defined as

maximize ˜̀(h) (4.4)

subject to h ∈ K,
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where K is a convex set of hazard functions with a decreasing first derivative and the modified

log-likelihood ˜̀(h) is a concave function on K. By maximizing the modified log-likelihood

function (4.2) over all hazard functions h in K, we obtain the smooth nonparametric max-

imum likelihood estimate (SNPMLE) of (π,θ), denoted by (π̂, θ̂). This problem has no

closed-form solution, and hence iterative methods must be used.

Let us define the following two gradient functions in aid of the basis functions e1,τ =

(τ − t)2
+, and e2,η = (t− η)2

+:

d1(τ ;h) = lim
ε→0

˜̀(h+ εe1,τ )− ˜̀(h)

ε

=

n1∑
i=1

Ti 6=Tmax

(τ − Ti)2
+

h(Ti)
−

n1∑
i=1

τ 3 − (τ − Ti)3
+

3
+

n∑
i=n1+1

{
−
τ 3 − (τ − Li)3

+

3
−

(τ −Ri)
3
+ − (τ − Li)3

+

3
∆i(H)

}
,

for 0 < τ ≤ η1,

(4.5)

and

d2(η;h) = lim
ε→0

˜̀(h+ εe2,η)− ˜̀(h)

ε

=

n1∑
i=1

Ti 6=Tmax

(Ti − η)2
+

h(Ti)
−

n1∑
i=1

(Ti − η)3
+

3
+

n∑
i=n1+1

{
−

(Li − η)3
+

3
−

(Li − η)3
+ − (Ri − η)3

+

3
∆i(H)

}
,

for τk ≤ η < Tmax. (4.6)

where ∆i(H) = exp(H(Li) − H(Ri))/(1 − exp(H(Li) − H(Ri))). Note that d1 and d2 are

piecewise cubic functions of τ and η, respectively. For the purpose of completeness, let us
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also define

d0(α0;h) = lim
ε→0

˜̀(h+ εe0)− ˜̀(h)

ε

=

n1∑
i=1

Ti 6=Tmax

1

h(Ti)
−

n1∑
i=1

Ti +
n∑

i=n1+1

{−Li − (Li −Ri) ∆i(H)} ,

for −∞<α0<∞,

d1(α1;h) = lim
ε→0

˜̀(h+ εe1)− ˜̀(h)

ε

=

n1∑
i=1

Ti 6=Tmax

Ti
h(Ti)

−
n1∑
i=1

T 2
i

2
+

n∑
i=n1+1

{
−L2

i − (Li −Ri)
2

2
∆i(H)

}
,

for −∞<α1<∞,

and

d2(α2;h) = lim
ε→0

˜̀(h+ εe2)− ˜̀(h)

ε

=

n1∑
i=1

Ti 6=Tmax

T 2
i

h(Ti)
−

n1∑
i=1

T 3
i

3
+

n∑
i=n1+1

{
−L3

i − (Li −Ri)
3

3
∆i(H)

}
,

for α2 ≥ 0,

where e0 = 1, e1 = t, and e2 = t2.

4.3.1 Computational Algorithm

In this section, we discuss some computational aspects of the smooth nonparametric convex

hazard function estimator and then present an algorithm for computing the SNPMLE of

a convex hazard function. Similar to the CNMCH algorithm, this algorithm involves two

main phases. The first phase entails expanding and contracting θ, and the second consists

of updating π. With θ fixed, π can be efficiently updated to π′ as follows. Denoting the

gradient vector and Hessian matrix of the modified log-likelihood (4.2) (see Section 4.3.2) as
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follows

g ≡ g(π,θ) =
∂ ˜̀

∂π
,

H ≡ H(π,θ) =
∂2 ˜̀

∂π∂π>
.

By using the Taylor series expansion to second order, one obtains the following quadratic

approximation to ˜̀(π′,θ) around π:

˜̀(π′,θ)− ˜̀(π,θ) ≈ g>(π′− π) +
1

2
(π′− π)>H(π′− π). (4.7)

With known θ, the problem of maximizing (4.7) can be turned into a least squares linear

regression problem as follows. Let H = −R>R, where the upper triangular matrix R ≡
R(π,θ) can be attained by the Cholesky decomposition of −H (see Section 4.3.3). Then

maximising ˜̀(π′,θ) can be approximated by

minimize

∥∥∥∥∥R
(
π′1

π′2

)
−R

(
π1

π2

)
− b1

∥∥∥∥∥
2

, (4.8)

where π′1 ∈ R2,π′2 ∈ R1+k+m
+ , and b1 the solution of the lower triangular system R>b1 = g.

As problem (4.8) has only non-negativity constraints on π′2, this problem can be solved

using the NNLS algorithm of Lawson and Hanson (1974) by leaving π′1 unconstrained. Also,

the popular step-halving backtracking is conducted to ensure monotone increase of the log-

likelihood function.

To find the smoothed NPMLE of a convex hazard function, one needs to locate all its

new support points by incorporating the gradient functions. At each iteration, the new algo-

rithm expands the two support sets τ and η corresponding to the decreasing and increasing

parts of a convex hazard function by including all local maxima of the gradient functions

d1(τ ;h) (4.5) and d2(η;h) (4.6). In order to locate all these local maxima, we replace the

combined Newton-bisection method, basically applied in Wang (2007), with the combined

secant-bisection method which has the merit of not computing the second derivative of the

gradient functions. For the constant hazard part, the global maximum of the gradient func-

tions d1(τ ;h) and d2(η;h) is chosen and then added to the support set to which it corresponds.

The redundant support points with zero masses are discarded after updating π by optimising

the quadratic approximation (4.8).

This modified algorithm, which we call CNMSCH for computing a smooth convex hazard

function, is outlined as follows.
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Algorithm 4.1 (CNMSCH). Set s = 0 and choose an initial estimate h0 with finite support

such that `(h0) > −∞. Repeat the following steps:

Step 1 : compute all local maxima of gradients, hence giving τ ∗s1, · · · , τ ∗sk for the decreasing

part, η∗s1, · · · , η∗sm for the increasing part, and ρ∗s for the constant part of the convex

hazard function.

Step 2 : set τ∗s = (τ ∗s1, · · · , τ ∗sk)>, η∗s = (η∗s1, · · · , η∗sm)>, θs+ = (τ>s , τ
∗>
s , ρ∗s,η

>
s ,η

∗>
s )> and

π+
s = (α0s, α1s, α2s,ν

>
s ,0

>, 0,µ>s ,0
>)>. Find π−s+1 by solving problem (4.8), with R

replaced by R+
s = R(π+

s ,θ
+
s ) and b+

1s = (π+
s
>
,θ+

s
>

)>, respectively, followed by con-

ducting a backtracking line search.

Step 3 : discard all support points with zero masses in π−s+1, which gives hs+1 with θs+1

and πs+1. Stop if converged; otherwise, set s = s+ 1.

For testing convergence in step 3, the criterion

|˜̀(hs+1)− ˜̀(hs)| ≤ γ

can be used, for some small γ > 0, e.g., γ = 10−6.
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4.3.2 Derivatives of the Modified Log-likelihood Function

The first partial derivatives of the modified log-likelihood function is given as follows:

∂ ˜̀

∂α0

=

n1∑
i=1

Ti 6=Tmax

{
1

h(Ti)

}
−

n1∑
i=1

Ti +
n∑

i=n1+1

{−Li − (Li −Ri)∆i(H)} ,

∂ ˜̀

∂α1

=

n1∑
i=1

Ti 6=Tmax

{
Ti

h(Ti)

}
−

n1∑
i=1

T 2
i

2
+

n∑
i=n1+1

{
−L

2
i

2
− (L2

i −R2
i )

2
∆i(H)

}
,

∂ ˜̀

∂α2

=

n1∑
i=1

Ti 6=Tmax

{
T 2
i

h(Ti)

}
−

n1∑
i=1

T 3
i

3
+

n∑
i=n1+1

{
−L

3
i

3
− (L3

i −R3
i )

3
∆i(H)

}
,

∂ ˜̀

∂νj
=

n1∑
i=1

Ti 6=Tmax

{
(τj − Ti)2

+

h(Ti)

}
−

n1∑
i=1

τ 3
j − (τj − Ti)3

+

3
+

n∑
i=n1+1

{
−
τ 3
j − (τj − Li)3

+

3
−

(τj −Ri)
3
+ − (τj − Li)3

+

3
∆i(H)

}
,

∂ ˜̀

∂µj
=

n1∑
i=1

Ti 6=Tmax

{
(Ti − ηj)2

+

h(Ti)

}
−

n1∑
i=1

(Ti − ηj)3
+

3
+

n∑
i=n1+1

{
−

(Li − ηj)3
+

3
−

(Li − ηj)3
+ − (Ri − ηj)3

+

3
∆i(H)

}
,

where ∆i(H) = exp(H(Li)−H(Ri))/(1− exp(H(Li)−H(Ri))).
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The second derivatives of the modified log-likelihood function that form the Hessian ma-

trix H are given by

∂2 ˜̀

∂α2
0

=

n1∑
i=1

Ti 6=Tmax

{
− 1

h(Ti)
2

}
+

n∑
i=n1+1

{
−(Li −Ri)

2∆i(H)
}
,

∂2 ˜̀

∂α2
1

=

n1∑
i=1

Ti 6=Tmax

{
− T 2

i

h2(Ti)
2

}
+

n∑
i=n1+1

{
−
(
L2
i −R2

i

2

)2

∆i(H)

}
,

∂2 ˜̀

∂α2
2

=

n1∑
i=1

Ti 6=Tmax

{
− T 4

i

h(Ti)
2

}
+

n∑
i=n1+1

{
−
(
L3
i −R3

i

3

)2

∆i(H)

}
,

∂2 ˜̀

∂µ2
j

=

n1∑
i=1

Ti 6=Tmax

{
−

(τj − Ti)4
+

h(Ti)
2

}
+

n∑
i=n1+1

{
−
(

(τj −Ri)
3
+ − (τj − Li)3

+

3

)2

∆i(H)

}
,

∂2 ˜̀

∂ν2
j

=

n1∑
i=1

Ti 6=Tmax

{
−

(Ti − ηj)4
+

h(Ti)
2

}
+

n∑
i=n1+1

{
−
(

(Li − ηj)3
+ − (Ri − ηj)3

+

3

)2

∆i(H)

}
,

∂2 ˜̀

∂α0∂α1

=

n1∑
i=1

Ti 6=Tmax

{
− Ti

h(Ti)
2

}
+

n∑
i=n1+1

{
−(Li −Ri)

(
L2
i −R2

i

2

)
∆i(H)

}
,

∂2 ˜̀

∂α0∂α2

=

n1∑
i=1

Ti 6=Tmax

{
− T 2

i

h(Ti)
2

}
+

n∑
i=n1+1

{
−(Li −Ri)

(
L3
i −R3

i

3

)
∆i(H)

}
,

∂2 ˜̀

∂α1∂α2

=

n1∑
i=1

Ti 6=Tmax

{
− T 3

i

h(Ti)
2

}
+

n∑
i=n1+1

{
−
(
L2
i −R2

i

2

)(
L3
i −R3

i

3

)
∆i(H)

}
,

∂2 ˜̀

∂νj∂α0

=

n1∑
i=1

Ti 6=Tmax

{
−

(τj − Ti)2
+

h(Ti)
2

}
+

n∑
i=n1+1

{
−(Li −Ri)

(
(τj −Ri)

3
+ − (τj − Li)3

+

3

)
∆i(H)

}
,

∂2 ˜̀

∂νj∂α1

=

n1∑
i=1

Ti 6=Tmax

{
−

(τj − Ti)2
+ Ti

h(Ti)
2

}
+

n∑
i=n1+1

{
−
(
L2
i −R2

i

2

)(
(τj −Ri)

3
+ − (τj − Li)3

+

3

)
∆i(H)

}
,

∂2 ˜̀

∂νj∂α2

=

n1∑
i=1

Ti 6=Tmax

{
−

(τj − Ti)2
+ T 2

i

h(Ti)
2

}
+

n∑
i=n1+1

{
−
(
L3
i −R3

i

3

)(
(τj −Ri)

3
+ − (τj − Li)3

+

3

)
∆i(H)

}
,
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∂2 ˜̀

∂µj∂α0

=

n1∑
i=1

Ti 6=Tmax

{
−

(Ti − ηj)2
+

h(Ti)
2

}
+

n∑
i=n1+1

{
− (Li −Ri)

(
(Li − ηj)3

+ − (Ri − ηj)3
+

3

)
∆i(H)

}
,

∂2 ˜̀

∂µj∂α1

=

n1∑
i=1

Ti 6=Tmax

{
−

(Ti − ηj)2
+ Ti

h(Ti)
2

}
+

n∑
i=n1+1

{
−
(
L2
i −R2

i

2

)(
(Li − ηj)3

+ − (Ri − ηj)3
+

3

)
∆i(H)

}
,

∂2 ˜̀

∂µj∂α2

=

n1∑
i=1

Ti 6=Tmax

{
−

(Ti − ηj)2
+ T 2

i

h(Ti)
2

}
+

n∑
i=n1+1

{
−
(
L3
i −R3

i

3

)(
(Li − ηj)3

+ − (Ri − ηj)3
+

3

)
∆i(H)

}
,

∂2 ˜̀

∂µj∂νj
=

n1∑
i=1

Ti 6=Tmax

{
−

(Ti − ηj)2
+ (τj − Ti)2

+

h(Ti)
2

}
+

n∑
i=n1+1

{
−
(

(τj −Ri)
3
+ − (τj − Li)3

+

3

)(
(Li − ηj)3

+ − (Ri − ηj)3
+

3

)
∆i(H)

}
,

where ∆i(H) = exp(H(Li)−H(Ri))/(1− exp(H(Li)−H(Ri))
2.

4.3.3 QR Factorization of D

The Hessian matrix H can be rewritten

H = −D>D
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where

D =



1
h(T1)

T1
h(T1)

T 2
1

h(T1)

(τ1−T1)2+
h(T1)

· · · (τk−T1)2+
h(T1)

(T1−η1)2+
h(T1)

· · · (T1−ηm)2+
h(T1)

1
h(T2)

T2
h(T2)

T 2
2

h(T2)

(τ1−T2)2+
h(T2)

· · · (τk−T2)2+
h(T2)

(T2−η1)2+
h(T2)

· · · (T2−ηm)2+
h(T2)

...
...

...
...

. . .
...

...
. . .

...

1
h(Tn1 )

Tn1
h(Tn1 )

T 2
n1

h(Tn1 )

(τ1−Tn1 )2+
h(Tn1 )

· · · (τk−Tn1 )2+
h(Tn1 )

(Tn1−η1)2+
h(Tn1 )

· · · (Tn1−ηm)2+
h(Tn1 )

α0n1+1 α1n1+1 α2n1+1 βn1+1 · · · γn1+1 λn1+1 · · · δn1+1

α0n1+2 α1n1+2 α2n1+2 βn1+2 · · · γn1+2 λn1+2 · · · δn1+2

...
...

...
...

. . .
...

...
. . .

...

α0n α1n α2n βn · · · γn λn · · · δn


and

α0i = (Li −Ri) ∆i(H),

α1i =

(
L2
i −R2

i

2

)
∆i(H),

α2i =

(
L3
i −R3

i

3

)
∆i(H),

βi =
(τ1 − Li)3

+ − (τ1 −Ri)
3
+

3
∆i(H),

γi =
(τk − Li)3

+ − (τk −Ri)
3
+

3
∆i(H),

λi =
(Li − η1)3

+ − (Ri − η1)3
+

3
∆i(H),

δi =
(Li − ηk)3

+ − (Ri − ηk)3
+

3
∆i(H),

∆i(H) =

√
exp (H(Li)−H(Ri))

1− exp (H(Li)−H(Ri))
,

for i = n1 + 1, n1 + 2, · · · , n.
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Therefore, the Taylor series expansion about π with θ fixed gives

˜̀(π′)− ˜̀(π) ≈ g>(π′− π) +
1

2
(π′− π)>H(π′− π)

= −1

2
‖D(π′− π)− d‖2 + c

= −1

2
‖R(π′− π)− b1‖2 − 1

2
‖b2‖2 + c

= −1

2

∥∥∥∥∥R
(
π′1

π′2

)
−R

(
π1

π2

)
− b1

∥∥∥∥∥
2

− 1

2
‖b2‖2 + c,

where D = QR by a QR decomposition, d = (R>)−1g>, and π′1 ∈ R2,π′2 ∈ R1+m+k
+ .

To obtain the least squares linear regression problem (4.7) with only nonnegativity con-

straints, we partitioned Q =

(
Q1

Q2

)
, where Q1 ∈ Rn×(3+k+m), Q>1 D =

(
R

0

)
, where

R ∈ R(3+k+m)×(3+k+m), and Q>b =

(
b1

b2

)
=

(
Q1
>d

Q2
>d

)
. Note that the R obtained by

the QR decomposition of D is the same as by the Cholesky decomposition of −H.

4.4 Simulation Studies

4.4.1 With Exact Observations

Setup

For the case of exact data, we carried out a simulation study to compare the performance of

four nonparametric density estimators: the logspline (LS) density estimator of Kooperberg

and Stone (1992), the presmoothed (PS) density estimator of López-de Ullibarri and Jácome

(2013b) and our piecewise linear convex hazard (LCH) and smooth convex hazard (SCH)

estimators. To compute the parameter estimates of the LS approach, we used the knot

addition and deletion algorithm described in Stone et al. (1997), which is available by the

function logspline in R package logspline (Kooperberg, 2007). For the PS density estimator,

a presmoothed estimate of a density function is computed by using the biweight kernel

function, which is available by the function presmooth in R package survPresmooth (López-

de Ullibarri and Jácome, 2013a). Throughout the study, we implemented a plug-in bandwidth

selection according to Cao and López-de Ullibarri (2007) and Jácome et al. (2008) in the case

of density and hazard function estimation.
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Table 4.1 lists two different distributions with bathtub-shaped hazard functions, namely

the exponentiated Weibull (EW) (Nassar and Eissa, 2003) and the bathtub (BT) (Haupt and

Schäbe, 1997) distributions, used in this simulation study. It is worth pointing out that the

BT distribution has convex hazards for all values of β > − 1/2. These distributions were

studied by Wang (2000) and Jankowski and Wellner (2009b). The appealing feature of the

former distribution is the capability of describing the bathtub-shaped failure rate lifetime data

of a mechanical or electronic component; the latter will be able to model lifetime behaviour

appropriately. The upper panel of Figure 4.1 displays the plots of the hazard functions from

the EW distribution with α = 4, 3 and θ = 0.2, 0.3, respectively; whereas, the lower panel of

Figure 4.1 shows the hazard functions from the BT distribution with β = 0, 0.2 and α = 1, 3,

respectively.

Table 4.1: Distributions for the simulation study.

Distribution Notation Density Function Parameters

Exponentiated Weibull EW(α, θ) αθxα−1e−x
α {1− exp(−xα)}θ−1 α > 0, θ > 0

Bathtub BT(β, α) 1+2β

2α
√
β2+(1+2β)x/α

0 ≤ x ≤ α, −1/3<β<1

Performance Measures

Given a convex function f : [0,∞) → R such that f(1) = 0. The f -divergence between two

probabilities densities p(x) and q(x) over a probability space X is defined by

Df (p, q) =

∫
X
pf

(
p(x)

q(x)

)
dx.

Two popular divergences such as the Kullback-Leibler (KL) divergence and the Hellinger

distance (HD) are special cases of f -divergence by choosing f function x log(x) and (
√
x−1)2,

respectively. In our simulation study, we occasionally obtain the KL values as infinite when

p is not absolutely continuous with respect to q, which means that there exists a measurable

set A such that p(A) 6= 0 and q(A) = 0. Therefore, it is often more convenient to work with

the HD which is a symmetric and non-negative distance. Moreover, the HD provides a lower

bound for the KL divergence (see Tsybakov, 2004, page 73).
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Figure 4.1: Hazard plots from the distributions used in the simulation study: exponentiated
Weibull (top) and bathtub (bottom).

In order to assess the performance of a density estimator, two loss functions, namely, the

integrated squared error (ISE) and HD are used, which are given by, respectively,

ISE(f, f̂ ) =

∫
R

{
f(x)− f̂(x)

}2

dx,

HD(f, f̂ ) =

∫
R

{
f(x)

1
2 − f̂(x)

1
2

}2

dx,
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where f̂ is an estimator of the true density f . The expectation of a loss function with regard

to the true density f is then applied to evaluate the performance of an estimator. For each

entry in the table, we compute the ISE and HD values respectively for each combination of

estimator and replication. The mean integrated squared error (MISE) and mean Hellinger

distance (MHD) are eventually estimated by the average of these ISE and HD values.

Results

For each distribution, the results of the simulation study based on 100 replications with

sample sizes 100 and 1000 are summarized in Table 4.2. Each entry in the table is one of the

empirical MISE and MHD values with their corresponding standard errors in parentheses.

Also, the best expected loss value among density estimators for a given density is highlighted

in boldface.

It can be seen from the results that the performance of the SCH estimator dominates the

others, except in one case where the LCH is the best. Broadly speaking, the LCH and SCH

estimators perform better than their LS and PS density estimators’ competitors in terms

of the MISE and MHD. For the case of the PS density estimator, this can be relatively

attributed to the problem of bandwidth selection methods that involve different performance

measures. Furthermore, one should also notice that the shape-constrained estimators obvi-

ously outperform their unconstrained counterparts in terms of both loss functions.

4.4.2 With Exact and Interval-censored Observations

Another simulation study is conducted to illustrate the performance of three different non-

parametric density estimators for various ways of treating the censoring in the training set.

Sometimes, to avoid the difficulty with dealing with interval-censored data, one can employ

an imputation technique in order to reduce the problem of analysing interval-censored data

to one of analysing exact observations along with right-censored data. For this purpose, we

can replace an interval-censored observation with one point from that interval; e.g., its left

endpoint or middle point.

In this simulation study, two different ways with which the data can be observed were

considered: purely interval-censored data without any imputations and imputation approach

for the analysis of interval-censored data where the two common choices of imputation, the

left endpoint and midpoint of a censoring interval, were used. Each data set is generated from

a two-component Weibull mixture with shape parameters k = 0.8, 4 and scale parameters

λ = 1, 10, respectively, where the mixing proportion for the first component is p = 0.1. For

the simulation study here, 100 random samples, each of size 500, were generated from the

mentioned mixture model. In order to construct the model, the training sets can be obtained
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Table 4.2: Simulation results for two distributions in terms of the MISE and MHD, with standard
error given in parentheses.

Estimator
Density

EW(4, 0.2) EW(3, 0.3) BT(0, 1) BT(0.2, 3)

n = 100

MISE

PS 0.0888 (0.0028) 0.0517 (0.0019) 2.8408 (0.0142) 0.0465 (0.0012)

LS 0.1235 (0.0050) 0.0910 (0.0041) 2.7753 (0.0183) 0.0561 (0.0027)

LCH 0.0894 (0.0097) 0.0497 (0.0045) 1.8743 (0.0813) 0.0432 (0.0042)

SCH 0.0768 (0.0087) 0.0439 (0.0043) 1.8400 (0.0317) 0.0338 (0.0030)

MHD

PS 0.0222 (0.0008) 0.0184 (0.0007) 0.0593 (0.0015) 0.0236 (0.0007)

LS 0.0291 (0.0012) 0.0278 (0.0012) 0.0525 (0.0014) 0.0322 (0.0014)

LCH 0.0162 (0.0011) 0.0146 (0.0011) 0.0250 (0.0009) 0.0185 (0.0011)

SCH 0.0145 (0.0011) 0.0140 (0.0013) 0.0228 (0.0008) 0.0162 (0.0010)

n = 1000

MISE

PS 0.0562 (0.0009) 0.0271 (0.0006) 2.6753 (0.0057) 0.0284 (0.0004)

LS 0.0150 (0.0005) 0.0105 (0.0004) 2.4905 (0.0252) 0.0077 (0.0002)

LCH 0.0103 (0.0007) 0.0052 (0.0003) 1.3491 (0.0211) 0.0056 (0.0004)

SCH 0.0089 (0.0007) 0.0046 (0.0003) 1.3461 (0.0157) 0.0045 (0.0003)

MHD

PS 0.0104 (0.0002) 0.0073 (0.0002) 0.0304 (0.0003) 0.0118 (0.0002)

LS 0.0029 (0.0004) 0.0030 (0.0001) 0.0229 (0.0006) 0.0042 (0.0004)

LCH 0.0019 (0.0004) 0.0015 (0.0001) 0.0044 (0.0004) 0.0031 (0.0004)

SCH 0.0017 (0.0004) 0.0014 (0.0001) 0.0048 (0.0004) 0.0025 (0.0004)

by rounding generated real values to their nearest integer values as in human mortality data.

However, to evaluate the performance of each approach more precisely, we use a test set that

directly uses the generated real values without rounding.

The results of the simulation study are given in Table 4.3, which includes the case of left

endpoint imputation (in the top panel), midpoint imputation (in the middle panel), and the

case of purely interval-censored data without any imputations (in the bottom panel). From

the results, we can draw the following conclusions: First, it is clear that the best way of

treating this kind of simulated data is the case of purely interval-censored data. The SCH

estimator is superior to its competitors in terms of both loss functions in all cases studied.
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Second, the SCH has an overall better performance than the LCH, in terms of the MISE and

MHD, suggesting that the introduction of smoothness is indeed helpful.

Table 4.3: Simulation results for a mixture of two Weibull distributions. Standard errors are
included in parentheses.

Method MISE MHD

Left Endpoint

LS 0.00806 (0.00061) 0.02584 (0.00134)
LCH 0.04660 (0.00199) 0.05148 (0.00112)
SCH 0.03208 (0.00162) 0.04095 (0.00105)

Midpoint

LS 0.00833 (0.00055) 0.02149 (0.00110)
LCH 0.00140 (0.00005) 0.00568 (0.00021)
SCH 0.00119 (0.00003) 0.00465 (0.00014)

Interval-censored

LS 0.02240 (0.00700) 0.04023 (0.01032)
LCH 0.01005 (0.00142) 0.01524 (0.00139)
SCH 0.00108 (0.00005) 0.00461 (0.00019)

4.4.3 When Hazard May Become Zero

Setup

We performed the third simulation study to emphasize that our approach also works when

hazard, as well as its estimate, can become zero. The failure times were generated from

the density f(t) = (1 − t)4 exp {−(t− 1)5/5− 1/5} with the convex hazard function h(t) =

(1 − t)4. We employed the inverse transform method to draw a sample with size 500. Note

that the hazard is 0 at t = 1.

The left panel of Figure 4.2 displays five nonparametric hazard estimates, whereas the

right panel of Figure 4.2 shows nonparametric density estimates. Although, the PS, LS, and

the Müller-Wang kernel (MWK) estimates roughly correspond to the true hazard function

until failure time t = 2.5, they perform poorly in those regions near corners or edges. Instead,

the SCH and LCH estimators gave better performance than the other estimators near the

edges and also lied closely to the true one.
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Figure 4.2: Comparisons of hazard and density estimates for the simulated data. The solid dots
and triangles represent the support points of the non-smoothed and smoothed NPMLE
of a bathtub-shaped hazard function, respectively.
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4.5 Real Data

In order to make a further investigation into the performance of different smooth and non-

smooth nonparametric estimators of a hazard function, we consider two real examples in

this section. In particular, we estimate the hazard and density functions from the kidney

transplant data in Section 4.5.1, and the estimation of the hazard and density functions for

the Canadian mortality lifetime data set for the year 2008 is given in Section 4.5.2.

The first real data set is a case mixed with exact and right-censored observations. We

compare the performance of three nonparametric estimators: the PS, LCH, and SCH. The

presmoothed density estimator used the plug-in bandwidth selection method introduced by

Cao and López-de Ullibarri (2007) and Jácome et al. (2008). We also intended to include

the result produced by the LS approach for density estimation, but had to give up due to

the failure of the R package muhaz (with an error message “no convergence”) for heavily

censored samples. Also, the Müller-Wang adaptive kernel estimator (Müller and Wang, 1994)

based on the local bandwidth selection algorithm and the boundary kernel formulations is

implemented and available in R package muhaz (Hess and Gentleman, 2010). However, this

implementation only provides hazard values estimated at the prespecified points that are

used for computing the estimate, not those at any new testing points, nor any estimated

density values. Thus, we can not include it in the performance comparison.

For the second real data example, we treated the entire life table data in three different

ways, namely left endpoint imputation, midpoint imputation, and interval-censored data

without any imputation. We compared the performance of three nonparametric models: LS,

LCH, and SCH. We had to quit the execution of the PS density estimator due to extremely

high computational costs.

In the empirical studies based on real-world data, we do not have the knowledge of the

true underlying density function, and thus we can not exactly utilize the loss functions given

in Section 4.4.1. As a substitute, we replace the true density f with the empirical probability

mass function f̂n based on a test set of size n. Two loss functions, the ISE and KL, are

computed below; these are given for the case of exact data and interval-censored data by,

respectively,

ISE(f̂n, f̂ ) =

∫
R

{
f̂(x)

}2

dx− 2

n

n∑
i=1

f̂(xi),

KL(f̂n, f̂ ) = − 1

n

n∑
i=1

log
{
f̂(xi)

}
,
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and

ISE(f̂n, f̂ ) =

∫
R

{
f̂(x)

}2

dx− 2

∫
R
f̂n(x)f̂(x) dx

=

∫
R

{
f̂(x)

}2

dx− 2

∫
R
f̂(x)

1

n

n∑
i=1

1(Li ≤ x < Ri)

Ri − Li
dx

=

∫
R

{
f̂(x)

}2

dx− 2

n

n∑
i=1

F̂ (Ri)− F̂ (Li)

Ri − Li
,

KL(f̂n, f̂ ) = − 1

n

n∑
i=1

log
{
F̂ (Ri)− F̂ (Li)

}
,

where f̂n denotes the empirical mass function from a test set of size n and f̂ the density

estimate is obtained from a training set. In addition, additive constants are excluded from

the above formulas.

4.5.1 Kidney Transplant Data

The first data set described in Klein and Moeschberger (2003) in Section 1.7 contains the times

to death of 863 kidney transplant patients treated at the Ohio State University Transplant

Center between 1982 and 1992. The observations were considered as right-censored data when

the patients moved away from Columbus or were still alive at the end of the study. There

were 140 exact and 723 right-censored observations. Klein and Moeschberger (2003) showed

the effects of varying bandwidths on the smooth estimation of the hazard rate function.

Four nonparametric hazard function estimates are plotted in Figure 4.3. Visual inspection

of Figure 4.3 indicates that there is an early high risk of death in the first year after transplant.

After around six years, our estimators show that the estimated hazard rate increases, whereas

their unconstrained contenders reveal that the risk of death decreases.

To assess the performance, we ran 10-fold cross-validation, with results produced by

averaging over 10 replications. Table 4.4 provides a brief summary of the estimation results

for the three nonparametric approaches. Overall, the SCH estimator appears to provide

the best fit to this data set by having the smallest values in terms of both criteria: MISE

and MKL. It seems the shape-constrained estimators are more accurate and outperform the

unconstrained one for estimation of the hazard function. The PS density estimator gives

apparently an improper estimate.



82 4.5 Real Data

Table 4.4: Cross-validation results for the three nonparametric density estimators for kidney trans-
plant data. Standard errors are given in parentheses.

Method MKL MISE

PS 4.5045 (0.0302) −0.0568 (0.0002)
LCH 4.0684 (0.0081) −0.0920 (0.0007)
SCH 4.0669 (0.0078) -0.0933 (0.0009)
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Figure 4.3: Hazard rate function estimates for the kidney transplant data set, with support points
shown as solid points and triangles for the non-smoothed and smoothed NPMLE of a
hazard function, respectively.

4.5.2 Canadian Lifetime Data

The Canadian mortality table for year 2008 which was utilized in Example 3.5.1 is considered

again. Indeed, we used this data set to highlight the comparison of different ways of treating

censoring. In particular, three cases were investigated: (i) left endpoint imputation, where

the three nonparametric density estimators were applied for the left endpoint of the time
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intervals, (ii) midpoint imputation, where the midpoint of the time intervals was used, and

(iii) integers in years were interpreted as purely interval-censored data as they should be.

We used the holdout method for evaluation of our procedures since we have a large data

set (n = 238612). Our data was randomly partitioned into two independent sets: a training

set (2/3) for model construction and a test set (1/3) for accuracy assessment. In this study, we

applied interval-censored data for evaluation. The top part of Table 4.5 reports the results of

comparison of density estimates in terms of the KL and ISE for the case of left endpoint data;

the results of density estimates for the cases of midpoint imputation and interval-censored

data are shown in the middle and bottom parts, respectively. Of the three nonparametric

density estimators, the SCH estimator in the case of purely interval-censored data is superior

to the others in terms of the KL. It also works better in terms of the ISE than the other two

approaches in the case of midpoint imputation, while the differences between the SCH and

LCH in both midpoint imputation and no imputation cases are reasonably small.

Four nonparametric hazard function estimates are depicted in the left panel of Figure 4.4,

along with bar plots for the observed hazards obtained directly from the data. The right panel

of Figure 4.4 shows their density estimates, together with standardized histograms for the

data. As shown in Figure 4.4, imputation with left endpoint is somehow inappropriate,

especially in the infant mortality phase. In contrast, the midpoint imputation and interval-

censored cases work reasonably well in the early mortality phase. As can be seen in the

subplots of Figure 4.4, the best way for modelling the infant mortality data is perhaps

treating them as purely interval-censored data as they should be.

Table 4.5: Summary of three nonparametric density estimation results for the Canadian mortality
table.

Method KL ISE

Left Endpoint

LS 4.08064 -0.02096
LCH 4.07232 -0.02097
SCH 4.07225 -0.02094

Midpoint

LS 4.08037 -0.02098
LCH 4.07172 -0.02099
SCH 4.07208 -0.02101

Interval-censored

LS 4.08540 -0.02092
LCH 4.07175 -0.02100
SCH 4.07169 -0.02099
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Figure 4.4: Smoothed hazard rate and density function estimates for the Canadian mortality data
set for the year 2008. The solid points and triangle indicate the support points of the
non-smoothed and smoothed NPMLE of a hazard function, respectively.
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4.6 Summary

In this chapter, we study the smooth nonparametric estimation of a hazard function under

convexity shape constraint. Through simulation studies and two real-world data sets, we

have investigated and compared the performance of our proposed approaches with that of

the logspline and presmoothed kernel-based approaches. As seen in this chapter, the empirical

results indicate that the smooth shape-restricted estimator provides a better fit to human

mortality data than the piecewise linear continuous estimator and the logspline estimator,

particularly in the estimation of infant mortality rates. We also generally achieve a better

graphical representation of a hazard function estimation through the use of shape restriction

and smoothness assumption than the unconstrained nonparametric estimators. Moreover,

numerical studies suggest that the shape-restricted estimators generally outperform their

unconstrained competitors.

It is worth pointing out that our method also works very well with a small sample size or

heavily censored data, whereas the logspline technique may suffer from convergence problems

in these situations. In addition, some issues of the presmoothed kernel-based method can be

partially associated with their bandwidth selection methods. In contrast, our nonparametric

hazard estimation is void of the bandwidth selection problems that are associated with the

presmoothed kernel method, by imposing a convex shape restriction on the true underlying

hazard function.





Chapter 5
Nonparametric Estimation of a

Convex Baseline Hazard Function in

the Cox Proportional Hazards Model

5.1 Introduction

In failure time data analysis, the subjects under study might have some additional character-

istics that can effect the failure times. Therefore, one is often tempted to analyze how different

features of subjects such as age, gender, smoking history, physical activity level, heart rate, or

treatment indicator influence the distribution of the event of interest. These features are gen-

erally referred to as covariates, which are time-independent and usually recorded at the start

of the study. The most renowned method of investigating the effects of covariates on lifetime

distribution is the Cox proportional hazards model (Cox, 1972). Its appeal resides mainly

in its framework that enables us to efficiently estimate the regression coefficients; whereas,

the baseline distribution is completely unknown (Efron, 1977). The proposed estimator was

shown by Cox (1975) to be a maximum partial likelihood, and its asymptotic properties were

extensively studied by Tsiatis (1981). Breslow (1972) also proposed a different approach that

yields the same maximum partial likelihood estimator along with an estimator of the baseline

cumulative hazard function.

For the case of right-censored data, the crucial feature of the partial likelihood method is

that one can yield the estimates of the regression coefficients without involving the estima-

87
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tion of the underlying baseline function; see e.g., Kalbfleisch and Prentice (2002) and Klein

and Moeschberger (2003). In contrast, the estimates of the regression coefficients and the

derivation of its asymptotic properties for the case of interval-censored data is a more chal-

lenging issue to be investigated due to the fact that we are not able to remove the baseline

hazard function. Regression analysis for interval-censored data was first studied by Finkel-

stein (1986), who considered a parametric method for approximating the baseline hazard

distribution together with regression coefficients by maximizing the full likelihood of the ob-

served data. Pan (1999) achieved the NPMLE of covariates along with that of the piecewise

constant baseline survival function by extending the ICM algorithm. Others who discussed

the proportional hazards model in this case include Huang and Wellner (1997), Pan (2000a),

Betensky et al. (2002), and Cai and Betensky (2003).

One of the important problems in survival analysis is to predict the distribution of the

time to some event of interest from a set of covariates, although the baseline hazard function

is completely unspecified. In practice, there is some additional information about the baseline

distribution function which is available from prior studies. Therefore, it is often reasonable

to assume a shape for it. Regression analysis of different types of censoring data have been

studied in numerous literature, while the nonparametric estimates of the baseline distribution

function subject to shape constraints is relatively sparse. Chung and Chang (1994) suggested

a maximum likelihood estimator of a nondecreasing baseline hazard function in the Cox

proportional hazards model by imposing the assumption that all censoring times were equal

to their former observed failure times. Recently, Lopuhaä and Nane (2013) proposed a

nonparametric maximum likelihood estimator and a Grenander-type estimator for estimating

a monotone baseline hazard function and a decreasing baseline density within the Cox model

from right-censored observations.

In this chapter, our aims are two-fold: to derive the nonparametric estimator of a convex

baseline hazard function based on the maximum likelihood method for right-censored data,

interval-censored data, and the situation with both exact and censored data. Moreover, we

propose a hybrid algorithm for simultaneously computing the NPMLE of a convex baseline

hazard function and the estimates of the effects of covariates in the Cox model. The shaped-

constrained estimators are shown to have similar results compared to the traditional Cox

partial likelihood (PL) estimator and the fully semiparametric maximum likelihood estima-

tor (Pan, 1999) using some real and simulated data set in the case of right-censored and

interval-censored data, respectively. Our proposed algorithm directly employs the CNMCH

or CNMSCH algorithm combined with only an optimization method that can cope with lower

bound constraints, e.g., limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS).



5.2 Nonparametric Estimation of a Convex Baseline Hazard in the Cox Model 89

5.2 Nonparametric Estimation of a Convex Baseline Hazard in the

Cox Model

Consider the Cox proportional hazards model, in which the conditional hazard of the event

time T with covariate vector Z ∈ Rp is proportional to the baseline hazard. In terms of the

hazard or cumulative hazard functions, the proportional hazards model is given by

h(t | Z) = h0(t) exp(β>Z) or H(t | Z) = H0(t) exp(β>Z),

where h0(t) and H0(t) represent the unknown baseline hazard and baseline cumulative hazard

functions, respectively, which are assumed to be continuous and β denotes the vector of

unknown regression coefficients.

5.2.1 Maximum Likelihood Estimation of a Proportional Hazards Model

Let the observed data consist of i.i.d. sample {(Li, Ri],Zi; i = 1, · · · , n}, where (Li, Ri] denotes

the censoring interval within which the event time T for the ith subject is observed to occur

and Zi is a p-dimensional vector of covariates of subject i. As usual we assume that Ti and

(Li, Ri] are conditionally independent given Z = z. An exact failure time Ti is obtained, if

Li = Ri. Then, the simplified log-likelihood function can be written as

`(h0,β) =

n1∑
i=1

{
− exp (β>Zi)H0(Ti) + log h0(Ti) + β>Zi

}
+

n∑
i=n1+1

log
{

[S0(Li)]
exp (β>Zi) − [S0(Ri)]

exp (β>Zi)
}
, (5.1)

where S0(t) correspond to the baseline survival function. Since h0(T(n)) can become arbitrarily

large, Grenander (1956) suggested that `(h0,β) can be maximised over a nondecreasing h0

which is bounded by some M . Thus, to handle such situations, one can simply use the
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following modified log-likelihood function

`(h0,β) = −
n1∑
i=1

exp (β>Zi)H0(Ti) +

n1∑
i=1

Ti 6=Tmax

{
log h0(Ti) + β>Zi

}

+
n∑

i=n1+1

log
{

[S0(Li)]
exp (β>Zi) − [S0(Ri)]

exp (β>Zi)
}
, (5.2)

where Tmax is the maximum of exact observations and finite censoring values. When T(n1) =

Tmax, the full NPMLE is then achieved by setting ĥ0(T(n1)) =∞ for all T ≥ T(n1).

The NPMLE of a convex baseline hazard function can be expressed as a piecewise lin-

ear (3.3) or quadratic (4.3) function. Therefore, h0 can be written in the general form as

follows:

h0(t; q) =

q−1∑
i=0

αi t
i +

k∑
j=1

νj(τj − t)q+ +
m∑
j=1

µj(t− ηj)q+, for q = 1, 2.

One can also add the term α2t
2 in order to facilitate the computational procedure for non-

parametric estimation of a convex baseline hazard function under smoothness assumption.

A piecewise linear or quadratic convex hazard function is supported at θ = (τ,η)>, where

τ = (τ1, · · · , τk) and η = (η1, · · · , ηm). The support point vector θ has a corresponding mass

vector π, where π = (α0,ν,µ)> is a positive mass vector in the case of piecewise linear and

π = (α0, α1,ν,µ)> is the corresponding positive mass vector except the first two elements

which can be real numbers in the case of piecewise quadratic.

Of critical importance for computing a nonparametric MLE is the gradient function, in

particular, for locating new support points. Let us define e1,τ = (τ − t)q+ and e2,η = (t− η)q+,

q = 1, 2. The two gradient functions are defined as, respectively,

d1(τ ;h0,β) = lim
ε→0

˜̀(h0 + εe1,τ )− ˜̀(h0)

ε

=

n1∑
i=1

Ti 6=Tmax

(τ − Ti)q+
h0(Ti)

−
n1∑
i=1

exp (β>Zi)

(
τ q+1 − (τ − Ti)q+1

+

q + 1

)
+

n∑
i=n1+1

− exp (β>Zi)

(
τ q+1 − (τ − Li)q+1

+

q + 1

)
−

n∑
i=n1+1

exp (β>Zi)

(
(τ −Ri)

q+1
+ − (τ − Li)q+1

+

q + 1

)
∆i(H0),

for 0 < τ ≤ η1, (5.3)
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and

d2(η;h0,β) = lim
ε→0

˜̀(h0 + εe2,η)− ˜̀(h0)

ε

=

n1∑
i=1

Ti 6=Tmax

(Ti − η)q+
h0(Ti)

−
n1∑
i=1

exp (β>Zi)
(Ti − η)q+1

+

q + 1
+

n∑
i=n1+1

{
− exp (β>Zi)

(Li − η)q+1
+

q + 1
− exp (β>Zi)

(
(Li − η)q+1

+ − (Ri − η)q+1
+

q + 1

)
∆i(H0)

}
,

for τk ≤ η < Tmax, (5.4)

where

∆i(H0) =
(exp(H0(Li)−H0(Ri)))

exp (β>Zi)

(1− (exp(H0(Li)−H0(Ri)))
exp (β>Zi))

.

Note that in the case of piecewise linear convex baseline hazard function estimator, d1 and

d2 are piecewise quadratic functions of τ and η, while they are cubic functions of τ and η in

the situation of piecewise quadratic estimator.

5.2.2 Computation

We first discuss some computational characteristics of the convex baseline hazard function

and then present a new algorithm for simultaneously computing the nonparametric estimate

of a baseline hazard function under convexity constraint and the regression coefficients in

proportional hazard models.

Recently, three general algorithms for computing the semiparametric maximum likeli-

hood estimates (SPMLEs) of parameters in semiparametric mixtures were proposed by Wang

(2010). All of the algorithms combine the CNM with an unconstrained optimization algo-

rithm; e.g., a quasi-Newton method. According to the results of experimental studies, the

algorithm based on modifying the support set of the mixing distribution has superior perfor-

mance compared to the others. This premier algorithm, called CNM-MS, is a hybrid between

the CNM method and the standard BFGS method. Our new algorithm is inherently similar

to the CNM-MS, as it comprises two alternative main steps in each iteration: (i) apply one

iteration of the CNMCH or CNMSCH to provide an efficient update of the support points

and masses (π,θ), (ii) update all parameters (π,θ,β) using the BFGS method with lower

bound constraints.

Given π, we can easily compute a new estimate π′ by employing the second-order Taylor

series expansion of the modified log-likelihood function in the neighbourhood of π. Let us
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denote

g ≡ g(π,θ) =
∂ ˜̀

∂π
,

H ≡ H(π,θ) =
∂2 ˜̀

∂π∂π>
,

(see Section 5.2.3). Thus, the quadratic approximation is given by

˜̀(π′,θ)− ˜̀(π,θ) ≈ g>∆π +
1

2
∆π>H∆π. (5.5)

where ∆π = π′ − π indicates a direction away from π. Let R be the upper triangular

Cholesky factor of −H (see Section 5.2.4) and b1 the solution of the lower triangular system

R>b1 = g. Let ‖·‖ denote the L2-norm. In order to maximise ˜̀(π,θ) over π with θ fixed,

one can repeatedly solve the following least squares linear regression problem:

minimize ‖Rπ′− (Rπ + b1)‖2, subject to π′ ≥ 0, (5.6)

if we assume a piecewise linear baseline hazard function, while maximising ˜̀(π,θ) in the

neighbourhood of π can be approximated by solving the least squares linear regression prob-

lem with non-negativity constraints:

minimize

∥∥∥∥∥R
(
π′1

π′2

)
−R

(
π1

π2

)
− b1

∥∥∥∥∥
2

, subject to π′1 ∈ R2,π′2 ∈ R1+m+k
+ (5.7)

if we assume a piecewise quadratic one, where π partitioned into two vectors π1 = (α0, α1)

and π2 = (ν,µ). Both least square problems (5.6) and (5.7) can be solved by the NNLS

algorithm of Lawson and Hanson (1974).

The gradient functions d1(τ ;h0,β) (5.3) and d2(η;h0,β) (5.4) are utilized to obtain new

candidate support points. Specifically, in each iteration the two support point vectors τ and η

corresponding to the decreasing and increasing parts of a convex baseline hazard function are

expanded by including all local maxima of the gradient functions. For the constant hazard

interval [τk, η1], the global maximum of the gradient functions is also found and then added

to the support point vector to which it corresponds.

The extensions of CNM-MS for computing a convex baseline hazard function without

or with smoothness assumption is called CNMCH-MS and CNMSCH-MS, respectively. The

resulting algorithms can be formally described as follows.



5.2 Nonparametric Estimation of a Convex Baseline Hazard in the Cox Model 93

Algorithm 5.1 (CNMCH-MS/CNMSCH-MS). Set s = 0, and choose β0 ∈ Rp and h0 with

finite support such that `(h0,β0) > −∞. Repeat the following steps.

Step 1 : update (πs,θs) to (π+
s ,θ

+
s ) with β = βs fixed, by using one iteration of the

CNMCH or CNMSCH method.

Step 2 : update (π+
s ,θ

+
s ,βs) to a local maximum (πs+1,θs+1,βs+1), by using the BFGS

method with lower bound constraints, followed by a line search.

Step 3 : set s = s+ 1. If converged, stop.

Note that applying one iteration of the CNMCH or CNMSCH in the first step of the

algorithm certifies that: (i) the support point vector θ is continuously updated with ex-

panding it by including new potential support points and then probably contracting it by

discarding those with zero entries in π, (ii) h0
+
s containing of (π+

s ,θ
+
s ) is not far from being

the NPMLE of h0βs ; and (iii) the log-likelihood value is definitely increased from (πs,θs,βs)

to the provisional solution (π+
s ,π

+
s ,βs) since it has been followed by a line search.

In order to update all parameters in the second step of the CNMCH-MS or CNMSCH-MS

algorithm, we applied the BFGS method with lower bound constraints only on π′ and π′2

in the case of piecewise linear continuous and smooth baseline hazard function estimation,

respectively. This method has been described by Nash (1979), which is available using the

function Rvmmin in R package Rvmmin (Nash, 2011). A line search is then conducted

to guarantee monotone increase and global convergence of the log-likelihood function. Sub-

sequently, all zero-massed support points are removed after being found redundant by the

bound-constrained optimization method. The above procedure is repeated until the solu-

tion has converged to a local maximum (πs+1,θs+1,βs+1). Convergence of the algorithm to a

global maximum can be assured as the log-likelihood increases continually through computing

each iteration of the algorithm.

5.2.3 Derivatives of the Modified Log-likelihood Function

The first derivatives of the modified log-likelihood function (5.2) are given by

∂ ˜̀

∂α0

=

n1∑
i=1

Ti 6=Tmax

{
1

h(Ti)

}
−

n1∑
i=1

exp (β>Zi)Ti+

n∑
i=n1+1

{
− exp (β>Zi)Li − exp (β>Zi) (Li −Ri) ∆i(H0)

}
,
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∂ ˜̀

∂α1

=

n1∑
i=1

Ti 6=Tmax

{
Ti

h0(Ti)

}
−

n1∑
i=1

{
exp (β>Zi)

T 2
i

2

}
+

n∑
i=n1+1

{
− exp (β>Zi)

L2
i

2
− exp (β>Zi)

(
(L2

i −R2
i )

2

)
∆i(H0)

}
,

∂ ˜̀

∂νj
=

n1∑
i=1

Ti 6=Tmax

{
(τj − Ti)q+
h0(Ti)

}
−

n1∑
i=1

{
τ q+1
j − (τj − Ti)q+1

+

q + 1

}
+

n∑
i=n1+1

{
− exp (β>Zi)

τ q+1
j − (τj − Li)q+1

+

q + 1
− exp (β>Zi)

(
(τj −Ri)

q+1
+ − (τj − Li)q+1

+

q + 1

)
∆i(H0)

}
,

∂ ˜̀

∂µj
=

n1∑
i=1

Ti 6=Tmax

{
(Ti − ηj)q+
h(Ti)

}
−

n∑
i=1

exp (β>Zi)

{
(Ti − ηj)q+1

+

q + 1

}
+

n∑
i=n1+1

{
− exp (β>Zi)

(Li − ηj)q+1
+

q + 1
− exp (β>Zi)

(
(Li − ηj)q+1

+ − (Ri − ηj)q+1
+

q + 1

)
∆i(H0)

}
,

where q = 1, 2 in the case of piecewise linear and piecewise quadratic convex hazard function

estimators, repectively, and

∆i(H0) =
(exp(H0(Li)−H0(Ri)))

exp (β>Zi)

(1− (exp(H0(Li)−H0(Ri)))
exp (β>Zi))

.

The second derivatives of the modified log-likelihood function that form the Hessian ma-

trix H are given by

∂2 ˜̀

∂α2
0

=

n1∑
i=1

Ti 6=Tmax

{
− 1

h0(Ti)
2

}
+

n∑
i=n1+1

{
−exp (β>Zi)(Li −Ri)

2∆i(H0)
}
,

∂2 ˜̀

∂α2
1

=

n1∑
i=1

Ti 6=Tmax

{
− T 2

i

h0(Ti)
2

}
+

n∑
i=n1+1

{
−exp (β>Zi)

(
L2
i −R2

i

2

)2

∆i(H0)

}
,
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∂2 ˜̀

∂µ2
j

=

n1∑
i=1

Ti 6=Tmax

{
−(τj − Ti)q+

h0(Ti)
2

}
+

n∑
i=n1+1

{
−exp (β>Zi)

(
(τj −Ri)

w
+ − (τj − Li)w+
w

)2

∆i(H0)

}
,

∂2 ˜̀

∂ν2
j

=

n1∑
i=1

Ti 6=Tmax

{
−(Ti − ηj)q+

h0(Ti)
2

}
+

n∑
i=n1+1

{
−exp (β>Zi)

(
(Li − ηj)w+ − (Ri − ηj)w+

w

)2

∆i(H0)

}
,

∂2 ˜̀

∂α0∂α1

=

n1∑
i=1

Ti 6=Tmax

{
− Ti

h0(Ti)
2

}
+

n∑
i=n1+1

{
−exp (β>Zi)

(
(Li −Ri)

(
L2
i −R2

i

2

))
∆i(H0)

}
,

∂2 ˜̀

∂νj∂α0

=

n1∑
i=1

Ti 6=Tmax

{
−(τj − Ti)p+

h0(Ti)
2

}
+

n∑
i=n1+1

{
−exp (β>Zi)

(
(Li −Ri)

(
(τj −Ri)

w
+ − (τj − Li)w+
w

))
∆i(H0)

}
,

∂2 ˜̀

∂νj∂α1

=

n1∑
i=1

Ti 6=Tmax

{
−

(τj − Ti)2
+ Ti

h0(Ti)
2

}
+

n∑
i=n1+1

{
−exp (β>Zi)

((
L2
i −R2

i

2

)(
(τj −Ri)

3
+ − (τj − Li)3

+

3

))
∆i(H0)

}
,

∂2 ˜̀

∂µj∂α0

=

n1∑
i=1

Ti 6=Tmax

{
−(Ti − ηj)p+

h0(Ti)
2

}
+

n∑
i=n1+1

{
−exp (β>Zi)

(
(Li −Ri)

(
(Li − ηj)w+ − (Ri − ηj)w+

w

))
∆i(H0)

}
,

∂2 ˜̀

∂µj∂α1

=

n1∑
i=1

Ti 6=Tmax

{
−

(Ti − ηj)2
+ Ti

h0(Ti)
2

}
+

n∑
i=n1+1

{
−exp (β>Zi)

((
L2
i −R2

i

2

)(
(Li − ηj)3

+ − (Ri − ηj)3
+

3

))
∆i(H0)

}
,

∂2 ˜̀

∂µj∂νj
=

n1∑
i=1

Ti 6=Tmax

{
−(Ti − ηj)p+ (τj − Ti)p+

h0(Ti)
2

}
+

n∑
i=n1+1

{
−exp (β>Zi)

((
(τj −Ri)

w
+ − (τj − Li)w+
w

)(
(Li − ηj)w+ − (Ri − ηj)w+

w

))
∆i(H0)

}
,



96 5.2 Nonparametric Estimation of a Convex Baseline Hazard in the Cox Model

where q = 2, 4, w = 2, 3, and p = 1, 2 in the case of piecewise linear and piecewise quadratic

hazard function estimators, respectively, and

∆i(H0) =
(exp(H0(Li)−H0(Ri)))

exp (β>Zi)(
1− (exp(H0(Li)−H0(Ri)))

exp (β>Zi)
)2 .

Also, the first and second derivative of the modified log-likelihood function with respect

to β are given by

∂ ˜̀

∂βj
=

n1∑
i=1

Ti 6=Tmax

zij −
n∑
i=1

{
zije

(β>Zi)H0(Ti)
}

+

n∑
i=n1+1

{
−zije(β>Zi)H0(Li)−

zije
(β>Zi)(H0(Li)−H0(Ri))(e

(H0(Li)−H0(Ri)))e
(β>Zi)

1− (e(H0(Li)−H0(Ri)))
e(β
>Zi)

}
,

∂2 ˜̀

∂β2
j

= −
n∑
i=1

{
zijzij

>e(β>Zi)H0(Ti)
}

+
n∑

i=n1+1

{
−zijzij>e(β>Zi)H0(Li)− A

}
,

for j = 1, · · · , p and

A =
(
zijz

>
ije

(β>Zi)(H0(Li)−H0(Ri))
(
e(H0(Li)−H0(Ri))

)e(β>Zi)
+ zijz

>
ij

(
e(β>Zi)

)2

(H0(Li)−H0(Ri))
2

(
e(H0(Li)−H0(Ri))

)e(β>Zi) )
B +

(
zijz

>
ij

(
e(β>Zi)

)2

(H0(Li)−H0(Ri))
2
(
e(H0(Li)−H0(Ri))

)2e(β
>Zi)

)
B,

where B = 1/

(
1−

(
e(H0(Li)−H0(Ri))

)e(β>Zi))2

.

The information matrix is obtained based on the second derivative of the modified log-

likelihood function with respect to β. The standard errors of the estimator, β̂, are just the

square roots of the diagonal elements in the variance-covariance matrix, i.e., the inverse of

the information matrix.

5.2.4 QR Factorization of D

In the case of piecewise linear hazard function, the Hessian matrix H can be written as

follows,

H = −D>D,
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where

D =



1
h0(T1)

(τ1−T1)+
h0(T1)

· · · (τk−T1)+
h0(T1)

(T1−η1)+
h0(T1)

· · · (T1−ηm)+
h0(T1)

1
h0(T2)

(τ1−T2)+
h0(T2)

· · · (τk−T2)+
h0(T2)

(T2−η1)+
h0(T2)

· · · (T2−ηm)+
h0(T2)

...
...

. . .
...

...
. . .

...
1

h0(Tn1 )

(τ1−Tn1 )+
h0(Tn1 )

· · · (τk−Tn1 )+
h0(Tn1 )

(Tn1−η1)+
h0(Tn1 )

· · · (Tn1−ηm)+
h0(Tn1 )

αn1+1 βn1+1 · · · γn1+1 λn1+1 · · · δn1+1

αn1+2 βn1+2 · · · γn1+2 λn1+2 · · · δn1+2

...
...

. . .
...

...
. . .

...

αn βn · · · γn λn · · · δn


and

αi =
√

exp (β>Zi)(Li −Ri) ∆i(H0),

βi =
√

exp (β>Zi)
(τ1 − Li)2

+ − (τ1 −Ri)
2
+

2
∆i(H0),

γi =
√

exp (β>Zi)
(τk − Li)2

+ − (τk −Ri)
2
+

2
∆i(H0),

λi =
√

exp (β>Zi)
(Li − η1)2

+ − (Ri − η1)2
+

2
∆i(H0),

δi =
√

exp (β>Zi)
(Li − ηk)2

+ − (Ri − ηk)2
+

2
∆i(H0),

where

∆i(H0) =

√
(exp(H0(Li)−H0(Ri)))

exp (β>Zi)

(1− (exp(H0(Li)−H0(Ri)))
exp (β>Zi))

,

for i = n1 + 1, n1 + 2, · · · , n.

Therefore, we have the following Taylor series expansion about π with θ fixed:

˜̀(π′)− ˜̀(π) ≈ g>(π′− π) +
1

2
(π′− π)>H(π′− π)

= −1

2
‖D(π′− π)− d‖2 + c

= −1

2
‖R(π′− π)− b1‖2 − 1

2
‖b2‖2 + c

where D = QR by a QR decomposition and d = (R>)−1g>. In order to yield problem (5.6),

we partition Q =

(
Q1

Q2

)
, where Q1 ∈ Rn×(1+k+m). Thus, Q>1 D =

(
R

0

)
, where R ∈
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R(1+k+m)×(1+k+m), and Q>b =

(
b1

b2

)
=

(
Q1
>d

Q2
>d

)
. The upper triangular matrix R obtained

this way is mathematically the same as by the Cholesky decomposition of −H, while it is

numerically more stable.

In the case of piecewise quadratic hazard function, the Hessian matrix H is given by

H = −D>D,

where

D =



1
h0(T1)

T1
h0(T1)

(τ1−T1)2+
h0(T1)

· · · (τk−T1)2+
h0(T1)

(T1−η1)2+
h0(T1)

· · · (T1−ηm)2+
h0(T1)

1
h0(T2)

T2
h0(T2)

(τ1−T2)2+
h0(T2)

· · · (τk−T2)2+
h0(T2)

(T2−η1)2+
h0(T2)

· · · (T2−ηm)2+
h0(T2)

...
...

...
. . .

...
...

. . .
...

1
h0(Tn1 )

Tn1
h0(Tn1 )

(τ1−Tn1 )2+
h0(Tn1 )

· · · (τk−Tn1 )2+
h0(Tn1 )

(Tn1−η1)2+
h(Tn1 )

· · · (Tn1−ηm)2+
h(Tn1 )

α0n1+1 α1n1+1 βn1+1 · · · γn1+1 λn1+1 · · · δn1+1

α0n1+2 α1n1+2 βn1+2 · · · γn1+2 λn1+2 · · · δn1+2

...
...

...
. . .

...
...

. . .
...

α0n α1n βn · · · γn λn · · · δn


and

α0i =
√

exp (β>Zi)(Li −Ri) ∆i(H0),

α1i =
√

exp (β>Zi)

(
L2
i −R2

i

2

)
∆i(H0),

βi =
√

exp (β>Zi)
(τ1 − Li)3

+ − (τ1 −Ri)
3
+

3
∆i(H0),

γi =
√

exp (β>Zi)
(τk − Li)3

+ − (τk −Ri)
3
+

3
∆i(H0),

λi =
√

exp (β>Zi)
(Li − η1)3

+ − (Ri − η1)3
+

3
∆i(H0),

δi =
√

exp (β>Zi)
(Li − ηk)3

+ − (Ri − ηk)3
+

3
∆i(H0),
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where

∆i(H0) =

√
(exp(H0(Li)−H0(Ri)))

exp (β>Zi)(
1− (exp(H0(Li)−H0(Ri)))

exp (β>Zi)
) .

for i = n1 + 1, n1 + 2, · · · , n.

Therefore, the Taylor series expansion about π with θ fixed gives

˜̀(π′)− ˜̀(π) ≈ g>(π′− π) +
1

2
(π′− π)>H(π′− π)

= −1

2
‖D(π′− π)− d‖2 + c

= −1

2
‖R(π′− π)− b1‖2 − 1

2
‖b2‖2 + c

= −1

2

∥∥∥∥∥R
(
π′1

π′2

)
−R

(
π1

π2

)
− b1

∥∥∥∥∥
2

− 1

2
‖b2‖2 + c,

where D = QR by a QR decomposition, d = (R>)−1g>, and π′1 ∈ R2,π′2 ∈ Rm+k
+ . To

obtain the least squares linear regression problem (5.7) with only nonnegativity constraints,

we partitioned Q =

(
Q1

Q2

)
, where Q1 ∈ Rn×(2+k+m). Hence, Q>1 D =

(
R

0

)
, where R ∈

R(2+k+m)×(2+k+m), and Q>b =

(
b1

b2

)
=

(
Q1
>d

Q2
>d

)
. Note that the upper triangular matrix

R obtained by the QR decomposition of D is mathematically the same as by the Cholesky

decomposition of −H and also numerically more stable than that.

5.3 Simulation Study

A simulation study was conducted to evaluate the efficiency of the proposed piecewise linear

baseline convex hazard within the Cox model (LCHCOX) and the smoothed baseline convex

hazard in the Cox model (SCHCOX) estimators and compare them to its conventional fully

semiparametric maximum likelihood estimation method in the case of interval-censored data.

For each subject, all n exact event times T are first generated independently based on the

Cox model with a BT distribution (Haupt and Schäbe, 1997) baseline hazard function, where

α = 5 and β = 0.1. For each censored observation, a random sample of size 10 is drawn

from the exponential distribution with mean 0.5, which divides the domain [0,∞) into 11

disjoint subintervals. Then, the subinterval that includes the exact event time replaces it.

In this study, there exist three covariates Z = (Z1, Z2, Z3), following Z1 ∼ uniform(−1, 1),
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Z2 ∼ normal(0, 1) and Z3 ∼ Bernoulli(0.5), whose true coefficients are β = (−0.5, 0.5, 1)>.

Pan (1999) extended the ICM algorithm proposed by Groeneboom and Wellner (1992) and

Joly et al. (1998) for computing the nonparametric maximum likelihood estimates to the Cox

model with interval-censored data. This approach was implemented in the R package intcox

developed by Henschel and Mansmann (2009).

The results of the simulation study of over 100 replications with sample size 200 and

500 are summarized in Table 5.1. We assessed the performance of different β estimates

by examining their empirical mean of the β estimates, the bias of β̂, and the standard

deviations and mean squared errors (MSEs) of β̂. Also, Figure 5.1 shows the box plots for the

squared errors over 100 replications using the LCHCOX, SCHCOX, and fully semiparametric

maximum likelihood (INTCOX ) estimators. According to Figure 5.1, our shape-constrained

estimators generally outperform the unconstrained competitor.

Based on the results of Table 5.1 and Figure 5.1, we have the following conclusions. First,

the proposed shape-constrained approaches generally perform better than the INTCOX in

terms of the MSE for both sample sizes. Second, the biases of the SCHCOX approach is

generally smaller than the others that were considered. Third, the bias and variance decrease

as the sample size increases in all cases studied.

Table 5.1: Proportional hazard model, simulation results for interval-censored data.

Method Coefficient Estimate Bias SD MSE
n = 200

β1 = −0.5 −0.4480 0.0500 0.1394 0.0217
INTCOX β2 = 0.5 0.4680 −0.0320 0.0822 0.0077

β3 = 1 1.1853 0.2061 0.1515 0.0571

β1 = −0.5 −0.4706 0.0294 0.1367 0.0194
LCHCOX β=0.5 0.4953 −0.0047 0.0898 0.0080

β3 = 1 1.0162 0.0162 0.1152 0.0233

β1 = −0.5 −0.4699 0.0301 0.1370 0.0195
SCHCOX β2 = 0.5 0.4983 −0.0017 0.0912 0.0082

β3 = 1 1.0141 0.0141 0.1532 0.0234

n = 500
β1 = −0.5 −0.4675 0.0314 0.0954 0.0051

INTCOX β2 = 0.5 0.4657 −0.0291 0.0482 0.0019
β3 = 1 1.1729 0.1780 0.1063 0.0299

β1 = −0.5 −0.4850 0.0048 0.0985 0.0055
LCHCOX β2 = 0.5 0.4972 0.0012 0.0456 0.0008

β3 = 1 0.9957 −0.0008 0.1082 0.0043

β1 = −0.5 −0.4840 0.0052 0.0983 0.0054
SCHCOX β2 = 0.5 0.4973 0.0005 0.0448 0.0008

β3 = 1 0.9921 −0.0003 0.1077 0.0046
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Figure 5.1: Box plots of the squared errors versus each of the covariates over 100 replications for
n = 200 (upper panel) and n = 500 (lower panel) simulated data.
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5.4 Real Data Examples

In a further investigation on the performance of different proposed estimators and the tra-

ditional partial likelihood estimator, we consider two real data sets named, respectively in

our study, “Kidney Transplant” and “Larynx Cancer”. The first data set can be obtained

from R package OIsurv (Diez, 2012) that includes two categorical covariates, gender and

race, and one continuous covariate, age at the time of a transplant. The second real data

is available in R package KMsurv (Yan, 2010) including four variables, namely stage of

cancer at the time of the first treatment, death time on study in terms of months, age at

diagnosis and death indicator. For the traditional partial likelihood estimator, the Efron’s

partial likelihood estimator is available by function coxph in R package survival (Therneau

and Lumely, 2009).

5.4.1 Kidney Transplant Data

For illustration and comparison, we apply the proposed methods for the time to death of 863

patients after kidney transplant. In this study, we have one continuous variable age at time

of transplant and two categorical variables, namely race and gender as follows:

Z1 = 1 if the patient is female, 0 otherwise

Z2 = 1 if the patient is black, 0 otherwise

Table 5.2 reports the results of comparison between our proposed constrained approaches and

the conventional partial likelihood method in terms of the standard error. As can be seen

from Table 5.2, our proposed LCHCOX and SCHCOX approaches and the PL model yield

very similar regression coefficients which implies that all methods are successful on this data

set. Furthermore, the LCHCOX and SCHCOX approaches provide a piecewise linear and a

smooth baseline hazard estimate, respectively. Moreover, the results indicate that the age

of the patient at time of transplant has a highly significant effect on the time of death of a

patient after kidney transplant surgery, leading to a p-value of around 1.5×10−12. The test of

the proportional hazards assumption for two covariates gender and race was non-significant

with p-values around 0.88 and 0.53, respectively.

The LCHCOX and SCHCOX for this data set are, respectively,

ĥ0(t) = 0.002 + 0.023 (0.040− t)+ + 0.003 (0.356− t)+ + 0.019 (0.473− t)++

0.001 (1.464− t)+ + 0.001 (4.477− t)+ + 0.001 (t− 4.477)+,
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and

ĥ0(t) = 0.0003 + 0.0004 t+ 0.0198 (0.5842− t)2
+ + 0.0107 (0.5846− t)2

++

0.0004 (1.6665− t)2
+ + 0.0001 (5.5483− t)2

+.

Table 5.2: Analysis of variance table for race, gender, and age for the kidney transplant patients.

Method Variables Estimates Standard Error t-value p-value

Z1 : Female 0.0265 0.1749 0.1515 0.8796
PL Z2 : Black 0.1164 0.2115 0.5504 0.5822

Z3 : Age 0.0510 0.0071 7.1831 0

Z1 : Female 0.0202 0.1488 0.1358 0.8920
LCHCOX Z2 : Black 0.1185 0.1867 0.6349 0.5257

Z3 : Age 0.0511 0.0050 10.32 0

Z1 : Female 0.0199 0.1488 0.1337 0.8937
SCHCOX Z2 : Black 0.1204 0.1866 0.6452 0.5190

Z3 : Age 0.0512 0.0050 10.24 0

5.4.2 Larynx Cancer Data

The larynx cancer data set, descried fully in Kardaun (1983), consists of 90 male patients

with larynx cancer, during the period from 1970 to 1978 at a Dutch hospital. In this study,

the time variable is the interval, in years, between the fist treatment of the laryngeal cancer

and the time of death of the patient or the end of the study (January 1, 1983). For each

patient, the age at the time of diagnosis of the cancer, the year of diagnosis, and the stage

of the larynx cancer were reported. There are four stages of cancer disease based on the

T.N.M. (primary tumor (T), nodal involvement (N) and distant metastasis (M) grading)

classification used by the American Joint Committee for Cancer Staging. The stages also

denoted by I, II, III and IV which are ordered from the least to the most serious. The three

dummy variables are defined as follows.

Z1 = 1 if the patient is in stage II, 0 otherwise

Z2 = 1 if the patient is in stage III, 0 otherwise

Z3 = 1 if the patient is in stage IV, 0 otherwise
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We first fitted a Cox proportional hazard model using the proposed models as well as the

conventional PL approach and then compared the estimated baseline survival function for

each of the four stages of cancer at the ages of 60 and 70. According to our estimations,

the risk of death among stage II, III, and stage IV patients are approximately 1.16, 1.91, and

5.64 times higher than that of stage I patients who are similar with respect to age at time

of diagnosis. By looking at the p-value of the covariate Stage IV, one can easily find there

is a significant difference between stage I and IV patients. In addition, a one-year increase

in age at time of diagnosis is related to around 2% greater risk of death among patients

who are similar with respect to disease staging. Also, the estimated survival probabilities of

the smooth approach for a patient at age 60 and 70 at one, three, five, and ten years after

diagnosis of larynx cancer is summarized in Table 5.4. Obviously, the survival probability of

a patient at different stages of the larynx cancer reduces as the age of the patient advances.

In addition, the survival of a patient at different stages of disease decreases as the years after

diagnosis of the cancer increase.

The estimated survival curves of mentioned strategies for all cancer stages at the patient

age 60 and 70 are shown in Figure 5.3. As expected from Figure 5.3, it is clear that the

survival probabilities decrease as the stage increases. Particularly, the estimated survival

curve of stage IV of the cancer disease is significantly lower than all the other stages, whilst

the estimated survival probabilities of the stage I and stage II have smaller differences. More-

over, our proposed approaches can also provide a piecewise linear continuous and a smooth

baseline hazard function estimate, respectively, while the traditional method only yields a

step function estimate.

For this data set, the estimated piecewise linear continuous and smooth baseline hazard

functions are given respectively as follows:

ĥ0(t) = 0.019 + 0.002 (2.616− t)+ + 0.004 (t− 2.616)+,

and

ĥ0(t) = 0.012 + 0.003 t+ 0.001 (3.092− t)2
+.
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Table 5.3: Analysis of variance table for stage of the laryngeal cancer patients.

Method Variables Estimates Standard Errors t-Value p-Value

Z1: Stage II 0.1400 0.4625 0.3027 0.7628
PL Z2 : Stage III 0.6420 0.3561 1.804 0.0747

Z3 : Stage IV 1.7060 0.4219 4.0436 0.0001
Z4 : Age 0.019 0.0143 1.3287 0.1874

Z1: Stage II 0.1786 0.4456 0.3281 0.7436
LCHCOX Z2 : Stage III 0.6553 0.3427 1.9158 0.0586

Z3 : Stage IV 1.7661 0.3978 4.0321 0.0001
Z4 : Age 0.0200 0.0110 1.8181 0.0724

Z1 : Stage II 0.1795 0.4453 0.4031 0.6879
SCHCOX Z2 : Stage III 0.6531 0.3431 1.9035 0.0602

Z3 : Stage IV 1.7671 0.3970 4.4510 2.4× 10−5

Z4 : Age 0.0202 0.0112 1.8035 0.0747

Table 5.4: Estimated survival probabilities for a 60- and 70-year-old patient at different years after
diagnosis.

Year

Age Stage 1 3 5 10

60

I 0.9349 0.8219 0.7025 0.4015
II 0.9226 0.7908 0.6553 0.3356
III 0.8786 0.6859 0.5073 0.1732
IV 0.6742 0.3171 0.1265 0.0048

70

I 0.9209 0.7866 0.6491 0.3274
II 0.9061 0.7504 0.5963 0.2629
III 0.8536 0.6305 0.4359 0.1170
IV 0.6173 0.2454 0.0797 0.0015
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Figure 5.2: Survival estimates of the LCHCOX approach (solid curves), the SCHCOX approach
(dashed curves), and the conventional KM estimator (step functions) for each stage
of larynx cancer at the ages of 60 and 70.
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Figure 5.3: Estimated baseline hazard and cumulative hazard functions for larynx cancer data.
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5.5 Summary

In this chapter, we study nonparametric estimation of a baseline hazard function under shape

constraints as well as the estimation of the effects of covariates on failure times with right

censoring, interval censoring and the mixed case with exact observations. Based on maximiz-

ing the likelihood function with or without incorporating the smoothness assumption, two

different estimators are proposed for a convex baseline hazard function. In addition, a new

algorithm was developed for computing the nonparametric estimation of a convex baseline

hazard function along with the estimation of the regression coefficients in the Cox propor-

tional hazard models. The new algorithm applies alternately the CNMCH or CNMSCH

method and an optimization method that deals with lower bound constraints like L-BFGS.

Through a simulation study and two real-world data sets, we have investigated and com-

pared the performance of our proposed approaches with that of the PL based method for

the case of right censoring data and the fully semiparametric maximum likelihood estimation

method for the case of interval-censored data. Empirical studies using simulated and real data

sets indicate that our shape-constrained approaches generally dominate the unconstrained

counterparts. In addition, our shape-constrained techniques provide either a piecewise linear

continuous or a smooth baseline hazard estimate subject to convex constraint. The results of

simulation study also reveal that our shape-constrained approaches generally perform better

than its competitor in terms of the MSE. Furthermore, the shape-constrained baseline haz-

ard function estimators commonly give a slightly smaller bias. Also, the bias and variance

decrease as the sample size increases in all cases of simulation study.



Chapter 6

Summary and Future Works

6.1 Summary

Estimation of the distribution of the event times of interest is one of the primary tasks in

survival analysis. The major characteristic of the event of interest is the existence of cen-

soring. In survival analysis and reliability applications, one often has a former knowledge

about the shape of the underlying function. To eliminate some issues such as bandwidth

or tuning parameter selection of the other popular nonparametric approaches, it may be

reasonable to make use of this knowledge for estimating a function by imposing natural qual-

itative constraints on it. Our main research problem is to find the nonparametric estimation

of a function under shape restrictions. In order to solve this problem, our methodologies

is allocated to nonparametric maximum likelihood approach. Our survival analysis studies

is dedicated to the problem of hazard function estimation since, practically, it can be more

sensible to enforce certain shape restrictions on it than on, for example, the survival function.

Due to various forms of censored data that may arise in survival analysis, we confine our stud-

ies to cases with exact observations, general interval-censored data, which naturally includes

the cases with right-censored or left-censored data, and interval-censored data mixed with

exact observations. Moreover, depending on whether a smoothness assumption is enforced,

two different convex shape-constrained hazard function estimators are proposed. In general,

there is no explicit solution available for the problem of finding the NPMLE of a function and

the most popular approach is to use numerical optimisation through an iterative algorithm.

Therefore, two different computational algorithms are also developed to solve these problems.

109
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In Chapter 2, a review of the most popular non-smooth and smooth nonparametric ap-

proaches is presented. Although these methods can be utilized to handle the problem of

function estimation, the shape-constrained techniques have a potential to provide more ac-

curate estimates than their unconstrained counterparts.

In Chapter 3, the problem of estimating a hazard function subject to convex shape restric-

tions is studied. A new idea to overcome the difficulty of choosing the minimum of a convex

hazard function estimate is proposed. On a computational side, we saved a remarkable com-

putation cost due to reducing the needed double loop method to a single loop. A new fast

algorithm is developed for computing the NPMLE of a convex hazard function that cope

well with the situations of both exact and interval-censored observations in any proportions.

In addition, theoretical justification for the convergence of the new algorithm in the case of

exact observations is established, which can be easily extended to other similar situations.

Numerical studies using simulation and real-world data sets reveal that our estimator tends

to give a more accurate estimate in terms of the maximum likelihood value compared to

the state-of-the-art one. In the case of exact observations, our proposed algorithm is sig-

nificantly faster than its counterpart. Furthermore, it can also handle both the situation of

interval-censored data and the situation mixed with exact and interval-censored observations.

In Chapter 4, the nonparametric maximum likelihood estimator of a hazard function

under convexity shape constraint and smoothness assumption is derived. A new algorithm

for computing the smooth nonparametric maximum likelihood of a convex hazard function

is also developed. Empirical studies indicate that our shape-restricted estimators generally

outperforms the presmoothed kernel-based and the logspline density estimators in the sense of

minimising the mean integrated squared error and the Kullback-Leibler or the Hellinger risk.

The results of our numerical studies also show that the smooth shape-restricted estimator

has a greater capability to model human mortality data than the piecewise linear continuous

estimator does, specifically in the infant mortality phase thanks to the smoothness provided

by the former. Furthermore, our proposed estimators can easily deal with the situation of

heavily censored data, whereas the logspline technique may suffer from convergence problems

in this situation.

In Chapter 5, we investigate the problem of simultaneous estimation of the underlying

regression coefficients of the covariates and the convex baseline hazard function using the

nonparametric maximum likelihood method. We further propose a new hybrid algorithm

for simultaneously computing the nonparametric maximum likelihood estimates of a convex

baseline hazard and the effects of covariates on survival times. Although the traditional

partial likelihood can address the problem of estimating the regression coefficients, our pro-

posal provides piecewise linear, continuous and/or smooth convex baseline hazard function

estimates as well. A simulation study reveals that our proposed estimators generally dom-

inates the fully semiparametric maximum likelihood estimation method in the Cox model

with interval-censored data.
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6.2 Future Works

The main problem in this thesis is to investigate the effect of applying shape restrictions in

survival analysis. There are, of course, interesting issues that can be further investigated in

this direction. In the following paragraphs, we list a number of topics for further studies.

More Sophisticated Characteristics of Survival Data

Although, in this thesis, we only focus on exact observations, interval-censored data, and

the case mixed with exact and interval-censored observations, it should be a straightforward

task to extend the research to more complex situations like truncation and double censoring.

Some related work on estimation of a survival function for left-truncated and interval-censored

data subject to monotone hazards can be found in Pan and Chappell (1998). In the case of

unconstrained nonparametric estimation problems based on the interval-censored and left-

truncated, one can also see the discussion in Hudgens (2005). Moreover, some recent works

in this area have been done by Shen (2011), and Shen (2012), who studied the NPMLEs of

the distribution function of the lifetime with doubly censored and truncated data and then

interval-censored and doubly truncated data, respectively.

Multivariate Survival Data

Our present work has been concentrated on univariate survival data analysis. The literature

on the analysis of bivariate or multivariate failure time data is relatively sparse. There are

still many issues that need to be investigated for the analysis of such failure time data. Our

shape-constrained maximum likelihood estimation method seems easily extendable to solve

the problem of nonparametric estimation of a joint distribution or survival function, and

to regression analysis when several correlated survival times of interest exist. We draw the

attention of the reader to Chen et al. (2013) for a discussion of the analysis of multivariate

interval-censored failure time data without shape-restricted assumptions.

Other Semiparametric Regression Models

In this thesis, we focused on studying the simultaneous estimation of a shape-constrained

baseline hazard function and the regression coefficients in the Cox proportional hazards

model. It is also worthwhile to apply the presented methods to other semiparametric re-

gression models such as the proportional odds regression and the additive hazard model. For

the unconstrained method, further investigations in this regard can be found in Chen et al.
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(2007) and Wang et al. (2010). In addition, the confidence band for an estimated hazard or

survival function needs to be further studied in the future.

Informative Censoring and Time-dependent Covariates

The main assumption for establishing our likelihood function is that the censoring mecha-

nism is independent of the event of interest, and furthermore, is noninformative. Also, the

covariates are assumed to be time-independent. However, the distribution of censoring time

can involve some parameters of interest in the distribution of lifetime. Further study can

consider the case of informative censoring and time-dependent covariates. Some related work

in these directions are Lu and Zhang (2012) and Sparling et al. (2006).

Test Statistic

One may also be interested in testing the hypothesis that the failure times are a random

sample from a population with a parametric hazard rate against a shape-restricted alternative

one. In order to conduct such a hypothesis test, one can apply the resampling bootstrap

method. We urge the interested reader to see Habtzghi and Datta (2012).

Other Theoretical Justifications

In this thesis, we have established some theoretical properties of our nonparametric max-

imum likelihood estimator of a convex hazard function. Further theoretical justifications

that concern, for example, consistency and efficiency of the shape-restricted hazard function

estimators need to be established.



References

Aalen, O. O. (1978). Nonparametric inference for a family of counting processes. Annals of Statis-

tics 6 (4), 701–726.

Aarset, M. V. (1987). How to identify a bathtub hazard rate. IEEE Transactions on Reliability R-

36 (1), 106–108.

Andersen, P. K. and R. D. Gill (1982). Cox’s regression model for counting processes: a large sample

study. Annals of Statistics 10 (4), 1100–1120.

Anderson, J. A. and A. Senthilselvan (1980). Smooth estimates for the hazard function. Journal of

the Royal Statistical Society, Series B 42 (3), 322–327.

Ayer, M., H. D. Brunk, G. M. Ewing, W. T. Reid, and E. Silverman (1955). An empirical distribution

function for sampling with incomplete information. Annals of Mathematical Statistics 26 (4), 641–

647.

Bagkavos, D. and P. Patil (2009). Variable bandwidths for nonparametric hazard rate estimation.

Communications in Statistics - Theory and Methods 38 (7), 1055–1078.

Balabdaoui, F. and J. A. Wellner (2007). Estimation of a kmonotone density: Limit distribution

theory and the spline connection. Annals of Statistics 35 (6), 2536–2564.

Banerjee, M. (2008). Estimating monotone, unimodal and U-shaped failure rates using asymptotic

pivots. Statistica Sinica 18 (2), 467–492.

Bantis, L. E., J. V. Tsimikas, and S. D. Georgiou (2012). Survival estimation through the cumulative

hazard function with monotone natural cubic splines. Lifetime Data Analysis 18 (3), 364–396.

113



114 REFERENCES

Barlow, R. E., A. W. Marshall, and F. Proschan (1963). Properties of probability distributions with

monotone hazard rate. Annals of Mathematical Statistics 34 (2), 375–389.

Bergman, B. and B. Klefsjo (1984). The total time on test concept and its use in reliability theory.

Operations Research 32 (3), 596–606.

Betensky, R. A., J. C. Lindsey, L. M. Ryan, and M. P. Wand (1999). Local EM estimation of the

hazard function for interval-censored data. Biometrics 55 (1), 238–245.

Betensky, R. A., J. C. Lindsey, L. M. Ryan, and M. P. Wand (2002). A local likelihood proportional

hazards model for interval censored data. Statistics in Medicine 21 (2), 263–275.

Bloxom, B. (1985). A constrained spline estimator of a hazard function. Psychometrika 50 (3),

301–321.

Bowman, A. and A. Azzalini (1997). Applied Smoothing Techniques for Data Analysis : The Kernel

Approach with S-Plus Illustrations. Oxford University Press, Oxford.

Braun, J., T. Duchesne, and J. E. Stafford (2005). Local likelihood density estimation for interval

censored data. Canadian Journal of Statistics 33 (1), 39–60.

Bray, T. A., G. B. Crawford, and F. Proschan (1967). Maximum Likelihood Estimation of a U-shaped

Failure Rate Function. Defense Technical Information Center.

Breslow, N. (1974). Covariance analysis of censored survival data. Biometrics 30 (1), 89–99.

Breslow, N. E. (1972). Contribution to the discussion of the paper by D. R. Cox. Journal of the

Royal Statistical Society, Series B 34 (2), 216–217.

Cai, T. and R. A. Betensky (2003). Hazard regression for interval-censored data with penalized

spline. Biometrics 59 (3), 570–579.
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Cao, R., I. López-de Ullibarri, P. Janssen, and N. Veraverbeke (2005). Presmoothed Kaplan-Meier

and Nelson-Aalen estimators. Journal of Nonparametric Statistics 17 (1), 31–56.

Chen, M. H., X. Tong, and J. Sun (2007). The proportional odds model for multivariate interval-

censored failure time data. Statistics in Medicine 26 (28), 5147–5161.

Chen, M. H., X. Tong, and L. Zhu (2013). A linear transformation model for multivariate interval-

censored failure time data. Canadian Journal of Statistics 41 (2), 275–290.

Chung, D. and M. N. Chang (1994). An isotonic estimator of the baseline hazard function in Cox’s

regression model under order restriction. Statistics and Probability Letters 21 (3), 223–228.

Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical Society. Series

B 34 (2), 187–220.

Cox, D. R. (1975). Partial likelihood. Biometrika 62 (2), 269–276.

Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). Maximum likelihood from incomplete data

via the EM algorithm. Journal of the Royal Statistical Society: Series B 39, 1–38.

Diez, D. M. (2012). R package OIsurv: Survival analysis supplement to OpenIntro guide. http:

//cran.r-project.org/web/packages/OIsurv/index.html.
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López-de Ullibarri, I. and M. A. Jácome (2013b). SurvPresmooth: An R package for presmoothed

estimation in survival analysis. Journal of Statistical Software 54 (11), 1–26.
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Oller, R., G. Gómez, and M. L. Calle (2004). Interval censoring: Model characterizations for the

validity of the simplified likelihood. Canadian Journal of Statistics 32 (3), 315–326.

Padgett, W. J. and L. J. Wei (1980). Maximum likelihood estimation of a distribution function

with increasing failure rate based on censored observations. Biometrika 67 (2), 470–474.

http://cran.r-project.org/web/packages/Rvmmin/index.html


REFERENCES 123

Pan, W. (1999). Extending the iterative convex minorant algorithm to the Cox model for interval-

censored data. Journal of Computational and Graphical Statistics 8 (1), 109–120.

Pan, W. (2000a). A multiple imputation approach to Cox regression with interval-censored data.

Biometrics 56 (1), 199–203.

Pan, W. (2000b). Smooth estimation of the survival function for interval censored data. Statistics

in Medicine 19 (19), 2611–2624.

Pan, W. and R. Chappell (1998). Estimating survival curves with left-truncated and interval-

censored data under monotone hazards. Biometrics 54 (3), 1053–1060.

Peto, R. (1973). Experimental survival curves for interval-censored data. Journal of the Royal

Statistical Society, Series C 22 (1), 86–91.

Prakasa Rao, B. L. S. (1969). Estimation of a unimodal density. Sankhyā: The Indian Journal of
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