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Abstract

Reduction in computer science is the process of combining two or more elements into one.

This process is widely used by network based applications for integrating results from di�erent

computers of a network. It also seems reasonable to use the same mechanism in shared memory

applications that run on a single computer. That is, reducing the results that are obtained from

di�erent threads in a computer into the �nal result. However, there are not many libraries that

facilitate reduction on single computers, as the main focus has been on network based applications

thus far.

Considering the bene�ts of reduction for improving performance on shared memory applications,

developing assistant libraries in this scope is quite worthwhile. In this paper we have introduced

an extensive reduction library that has been developed for Java. Moreover, the object oriented

considerations of the design have been explained, and it has been clari�ed how users bene�t from

them. Also, we have compared the features provided by our design with a few others that are

available in this �eld. Further examples in this paper help with clearer understanding of the logic

of our design.

Key words: Reduction, ParallelIterator, Shared Memory

1 Introduction

Fast technological growth has improved the accuracy of computations substantially due to the large
amount of detailed data that we are able to collect now. Subsequently, the calculations that are
performed on data are now more expensive in terms of resources. That is, there are considerably more
resources required for performing computations than it used to be. Therefore, speed of computation
(i.e. performance) is limited by the boundaries set by our resources. On a single computer, the number
of CPU cycles can only be increased up to a certain extent due to physical limitations. Because of
the problem thereof, many applications are moving on cloud where a network of computers can work
on di�erent parts of a task; however there are still limitations regarding the number of machines and
data storage provided by a cloud network.

The limitations mentioned above encourage endeavors for more e�cient use of resources in order
to improve performance as much as possible, and that is where parallel processing becomes important.
That is, parallel contribution of di�erent processors (on a single computer), or di�erent computers (on
a cloud network) to a problem speeds the performance of a computational task up. In this procedure
each of the parallel components provides a partial result, which needs to be integrated with that of
other components in order to �gure out the �nal result. The stage of integrating the results from
di�erent components of a computation task is called reduction.

The concept of parallel processing has been vastly used in network based applications, but has
recently become an interest for shared memory applications (i.e. on single computers). A basic search
about reduction on internet provides us with numerous articles that are mostly focused on network
applications (e.g. Yang et al. [June 2007], Abouzeid et al. [August 2009]). For example, search based
algorithms used by Google and Hadoop exploit reductions extensively in order to integrate the search
results that are returned from several nodes (i.e. computers) in their network into one �nal result
(Lammel [2008], Hadoop [2014]).

However, as the potential for using reduction on shared memory applications is increasingly grow-
ing, the demand for rich assistant libraries has not been ful�lled reciprocally for di�erent programming
languages. OpenMP is one library which has been providing this feature for C/C++ and Fortran
programming languages. Nevertheless, its support for reduction is limited about which we have elab-
orately explained in later sections of this paper. Moreover, lack of such a library is even more obvious
for programming languages such as Java, as Java support for reduction is very primitive (Java [2014]).

We have integrated complex reduction approaches that are normally used by network applications
with simple trivial reductions, and have provided an extensive reduction library that can be used for
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both shared memory and network cases. Moreover, we have considered object oriented principles in
order to let programmers �exibly extend the reduction functionality and exploit code reusability.

In Section 2 we have discussed some of the common reduction approaches and their use-cases. In
Section 3 we have overviewed some of the related works, and have �gured out the important principles
in developing map-reduce operations. In Section 4 the reduction functionality provided by OpenMP
has been discussed. Our design approach has been explained elaborately in Section 5, and few examples
have been provided in order to clarify its advantages. In Section 6 the benchmarks that we implemented
to examine the e�ciency of our design have been discussed. Finally, in Section 7 we have wrapped up
conclusions by listing the outcomes of this paper.

2 Common Reduction Paradigms

Reductions are mainly used for �nding the answers to search or query tasks. In most reduction
algorithms the input and output are in the form of <Key, Value> pairs. Reduction always comes
with a mapping algorithm, where a big task is split into a set of smaller tasks. The smaller tasks are
performed in parallel via mappers, then the results from mappers are sent to reducers for integration
(HighlyScalableBlog [February 2012]). It is important to mention that reduction operations must be
commutative and associative (Lammel [2008], Hadoop [2014]). In the following paragraphs some of
the common reduction approaches have been discussed.

2.1 Counting

This approach is exploited for �guring out the total number of occurrence of a speci�c item or pattern
across multiple elements. In this approach di�erent mappers inspect di�erent documents/elements in
parallel; furthermore the summation of the results returned from the mappers are calculated in the
reducers (Lin et al. [April 30 2010]).

2.2 Collating

This approach involves grouping all values that are associated to the same key in the <Key, Value>
pairs that are sent from mappers to reducers. One of the most common use-cases of this approach
is in the concept of inverted indices, where a data structure (e.g. a map) relates certain data to the
locations in which it can be found (e.g. web page, database etc.). This approach is one of the most
important reduction methods that is widely used by large scale search engines such as Google (Lammel
[2008], Lin et al. [April 30 2010]).

The implementations for this approach are mainly application speci�c. That is, enterprises such as
Google or Hadoop implement this approach for their own applications. However, a generic implemen-
tation is yet not provided by any of the programming languages (Lammel [2008], OpenMP [July 2013]).
We have provided generic classes in our library to facilitate this method, which has been discussed in
details in Section 4.

2.3 Filtering

This approach is a more speci�c version of collating, where values that are associated to a key in
a <Key, Value> pair, are records from several documents that meet certain conditions (Afrati and
Ullman [2010], Lin et al. [April 30 2010]).
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2.4 Iterative Message Passing

In some networks (e.g. a network of computers), the status of each entity depends on the properties of
its adjacent entities. Therefore, frequent messages are passed to each network entity iteratively. Each
message is a set of <Key, Value> tuples, where the IDs of network entities are used as keys, and the
status of each entity is the value for its corresponding key. Receiving nodes group the messages on
arrival, and send them to reducers. Subsequently, the reducers calculate and update the state of the
corresponding node, using the information that they receive regarding the adjacent entities.

This approach is commonly used in applications that are related to graph analysis and web in-
dexing scopes. For example, in a graph the existence of a parent node may depend on the existence
of its children nodes. Therefore, once all children are removed, the parent node must be removed
consequently. Thus, frequent updates about the status of the children nodes must be performed on
the parent node (HighlyScalableBlog [February 2012]).

2.5 Distributed Task Execution

In this approach big tasks are broken down into smaller tasks, and small tasks are performed in parallel.
Furthermore, the results are sent to reducers to �gure out the �nal result. This method is widely used
in physical/engineering simulation, performance testing and mathematical computation application
domains.

Reducers normally use map data structures, thus the input data to the reducers are in the form of
<Key, Value> pairs. Therefore, the operations that are performed on the input data mainly involve
union, intersection, subtraction and selection on the values in maps (Lin et al. [April 30 2010]). This
method is one of the main focuses of our implementation, thus the operations thereof are also provided
as part of the remarkable contributions of our library, about which we have discussed in details in
Section 4.

Some algorithms suggests that reducers keep maps sorted based on their keys for more e�cient
performance. However, performance improvement is conditional to the data being large enough, so that
the overhead of insertion sort is compensated when accessing data from the results that are returned
by reducers (HighlyScalableBlog [February 2012]).

3 Related Work

Applications that exploit reduction operations can be divided into two major categories of distributed-
memory and shared-memory.

3.1 Distributed-Memory Applications

Distributed-memory applications are based on computer networks, where the data being processed is
scattered through di�erent machines on a cluster of computers. Map-reduce operations are widely used
by distributed-memory applications. The following paragraphs introduce a few well-known frameworks
that support map-reduce operations for the applications in this category.

3.1.1 Google Map-Reduce

Google widely exploits map-reduce in its daily search-based operations. As a matter of fact, more than
hundred thousand map-reduce tasks are performed on Google clusters everyday for operations such
as intensive graph processing, inverted indices, graph representation of the structure of a web-page,
reports on frequent queries, text processing and summarized reports on the web-pages visited at each
host. The calculations that are involved in the operations thereof are simple to a high extent; however
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the input and out data is enormously big. Therefore, Google breaks task down into smaller tasks,
and splits them across thousands of computers in order to increase performance (Dean and Ghemawat
[January 2008]).

Google performs map-reduce tasks in two di�erent phases of mapping and reducing. During the
mapping phase, several documents across di�erent computers or data-bases are processed, and the
intermediary <Key, Value> pairs are created. Google sorts intermediary results based on their keys
for faster grouping and access of data in later stages. During the reducing phase intermediary results
are integrated to form the �nal result. Google divides the reducing phase into two stages ofmerging and
combining. During the merging stage, di�erent sets of <Key, Value> tuples (i.e. map data-structures)
are merged into one set. This stage may include various set operations, such as union, intersection
or di�erence of the sets. During the combining stage, di�erent values that are associated to the same
key get combined. Programmers can specify their own merging and combining functions for the stages
mentioned above (Lammel [2008]).

3.1.2 Hadoop

Hadoop is mainly focused on processing large amount of data across cloud networks. For this purpose,
Hadoop uses parallel data-bases and map-reduce. Parallel data-bases perform well, as the approach is
based on shared-nothing architecture; therefore there is not a single point of contention between the
computers in a system. However, this approach only scales well when there is less than one hundred
nodes involved in a process. Moreover, parallel data-bases assume seldom failure in the system, thus
the approach does not consider fault tolerance. More importantly, this approach assumes that all
computers involved in the parallel processing are homogeneous, whilst this is nearly impossible in a
large computer network (Abouzeid et al. [August 2009]).

Because of the limitations mentioned above, Hadoop extends Google's map-reduce approach for
processing data on very large networks . Hadoop also exploits Distributed File Systems (DFS) for
map-reduce operations in order to minimize data transfer, and the e�ects of node-failures in a cluster.
That is, once a node-failure is detected, the tasks for that node are performed by other computers
without any need for transferring data thanks to DFS (Abouzeid et al. [August 2009], Shneider [2014]).

However, one weakness of Hadoop map-reduce approach is that input and output data is read
from and written to �les. This fact imposes unnecessary overhead on operations for processing data
streams, especially for intensive tasks that require working on large numbers of �les. Therefore,
Hadoop communicates with application servers for direct transmission of data in order to avoid �les
and improve performance. Instead, the application servers deal with input and output data streams
(Shneider [2014]).

Hadoop mad-reduce operations are performed on <Key, Value> pairs, and are done through three
di�erent phases of shu�e, sort and reduce. The tasks that are accomplished at each phase can be
listed as follows (Hadoop [2014]).

Shu�e. The outputs from all mappers are grouped and partitioned by the framework. Furthermore,
each reducer receives its relevant partition via HTTP connections.

Sort. The inputs to a speci�c reducer are sorted and grouped based on their keys. The main purpose
for this phase is to ensure that values returned from di�erent mappers associated to the same
key are grouped together before the actual reduction process. The �rst and second phases are
done simultaneously.

Reduce. The actual reduction is done in this phase, where values that are associated to the same key
get combined based on user speci�cations. That is, Hadoop provides a Reducer interface that
must be implemented by the programmer in order to complete the third phase. An instance of
Reducer provides a method called reduce that gets called once for each <Key, ListOfValues>
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pair in the grouped input for each reducer. This factor is considered as one of the drawbacks of
Hadoop.

Hadoop provides implementations for some common reduction operations, such as chaining multiple
mappers and reducers, �eld selection, long summation and combining values associated to the same
key (Hadoop [2014]).

3.1.3 Apache Spark

Apache Spark is a framework that provides high-level APIs for processing large data sets on computer
clusters and standalone desktops. Spark is focused on inheriting Hadoop map-reduce strengths and
improving the weaknesses of Hadoop that were mentioned in Section 3.1.2. In other words, Spark
introduces an enhanced version of Hadoop �le system called Resilient Distributed Data-set (RDD) to
become faster than Hadoop (Spark [2015e]).

Apache Spark support Java, Scala and Python programming languages, and is able to work with
all �les storage systems that are supported by Hadoop. Moreover, Spark is the base of four frameworks
that utilize parallel processing in di�erent aspects. The frameworks are listed as follows.

Spark SQL. Spark SQL is a framework that facilitates fast parallel processing of data queries over
large distributed data sets. For this purpose, Spark uses a query language called HiveQL which
is very similar to SQL (Spark [2015f]).

Spark Streaming. Spark Streaming allows programmers to stream tasks by writing batch-like pro-
cesses in Java and Scala. The framework enables integration between batch jobs and interactive
queries (Spark [2015d]).

MLlib. MLlib is a framework for e�cient parallelization of machine learning algorithms. The algo-
rithms are optimized and proven to perform fast (Spark [2015b]).

GraphX. GraphX provides e�cient mechanisms for analysis and iterative computation of graphs on
a single system, as well as a cluster with RDDs (Spark [2015a]).

At the implementation level, Spark performs map-reduce operations on almost every parallel task.
Programmers are able to specify their own map and reduce operations using map, reduce and reduce-

ByKey methods. The functions that are supposed to be performed by the methods thereof could be
speci�ed by lambda expressions in Java8. However, for older versions of Java, the functional interface
that is provided by org.apache.spark.api.java.function should be used, as they do not support lambda
expressions (Spark [2015c]).

3.1.4 Scope

Scope is a framework that has been developed by a team of Microsoft engineers under C#. The
main motivation for this project was to develop a model that hides the complexity of the underlying
system that is involved in processing SQL queries, but at the same time provide enough �exibility for
the programmers to de�ne customized functionalities for the system. The authors believe that their
proposed model is speci�cally helpful with application domains that involve detecting pattern changes
over time and detecting fundamental trends in large sets of data.

The model introduces a new data type that is inspired by SQL data rows. Each instance of the
proposed data type contains a set of rows, and each row consists of columns of di�erent types. However,
the new data type highly resembles the concept of map collections in Java where collections can be
used to associate various types to a key, and keys play the role of indices for the rows. Hence, the data
model in this framework follows the same <Key, Value> pattern as the ones mentioned earlier.
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As it was mentioned, The model provides the �exibility for the programmers to specify their own
map-reduce operations. In order to do so, a programmer must provide implementations for extractor,
processor, reducer and combiner functions. The tasks that each of the functions are responsible for
can be listed as follows (Chaiken et al. [August 2008]).

Extractor. Extracting data from di�erent documents, and converting them into data rows that con-
form the speci�ed data format of the framework.

Processor. Processing the rows of data by di�erent mappers in parallel, and providing the interme-
diary results.

Reducer. Grouping the intermediary data-rows based on user speci�cations, and sending the grouped
data to reducers.

Combiner. Combining each group of data-rows based on user speci�cations.

The framework has provided ready-to-use implementations for some of the commonly used map-reduce
approaches, such as projection and selection. The ready-to-use implementations are provided to avoid
error-prone user code, and to encourage code reuse. This framework is intertwined with another frame-
work developed by Microsoft, which is called COSMOS. COSMOS is speci�cally used for analyzing
large data sets in big data clusters (Chaiken et al. [August 2008]).

3.1.5 Simpli�ed Relational Data Processing

This research project was conducted by Yang et al. [June 2007] in order to propose a more e�cient
map-reduce approach for parallel processing of large relational data-sets. The authors believe that the
conventional map-reduce approach does not ease processing heterogeneous data which is very com-
mon in relational data-sets. Furthermore, they argue that considering relational algebraic operations
(e.g. union and intersection) helps with providing more comprehensive data, thus speeding up the
performance.

Therefore, the research proposes a model that adds a merging phase to map and reduce. The main
focus of this research is on separation of concerns in order to ease implementation, as well as improving
performance. According to this model the tasks for the map, reduce and merge phases can be speci�ed
as follows.

Map. User de�ned logic is applied to <Key, Value> data pairs in order to create the intermediary
<Key, Value> pairs.

Reduce. All data pairs with the same key are grouped together. Furthermore, each group of data is
sent to a reducer.

Merge. At each reducer di�erent values that are associated to the same key are merged in order to
form a <Key, ListOfValues> pair as the �nal result. The model also suggests that the key in
the �nal result can be of a di�erent type from the initial one. However, this de�nition is in
contradiction with the de�nition that is suggested by most other related works.

3.1.6 Summary

Considering contemporary projects and research studies in this �eld � from which we mentioned a few
in this section � most studies are unanimous about the following principles.

• Using <Key, Value> data pairs in order to allow more �exible, or even heterogeneous, data
processing.
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• Including relational algebraic operations (e.g. union and intersection of sets) in order to allow
more complex reductions.

• Considering separate and independent stages for grouping <Key, Value> data-sets returned by
di�erent mappers and combining the values that are associated to the same key.

• Providing implementations for common map-reduce operations in order to avoid error-prone
programmer code as much as possible.

• Encouraging quality software designs that ease code reuse and code modi�cation.

In the next section we have explained an existing map-reduce approach for shared-memory applications.
Furthermore, in Section 4 we have discussed accommodating the principles thereof in our design.

3.2 Shared-Memory Applications

Shared-memory applications run on desktop computers, where memory resources are shared between
di�erent components of a system. Applications in this category have to consider concurrency principles
(e.g. thread safety) when accessing memory. Therefore, map-reduce operations has recently become
an interest in share-memory applications. In this section we have introduced some of the frameworks
that support map-reduce operations in this categories.

3.2.1 OpenMP

The map-reduce operations that have been discussed thus far are speci�cally focused on network-based
operations. That is, a big task is broken down into smaller tasks and sent to di�erent computers across
a network for execution. Furthermore, the results returned from the computer are integrated in parallel
reducers until the �nal result is achieved.

Considering that parallel processing and concurrent applications on single computers follow the
same principle of dividing workload between processors, the concept of map-reduce has recently become
an interest on single desktops as well (Lin et al. [April 30 2010]).

Despite the potentials for exploiting map-reduce operations in shared-memory (i.e. single computer)
applications, many programming languages have not considered providing adequate support for this
concept yet. OpenMP is one of the few APIs that has been supporting reduction as part of its support
for parallel processing in Fortran and C/C++ (OpenMP [July 2013]). In the following paragraphs of
this section we have have discussed the reduction clauses in OpenMP.

Reduction Clauses
OpenMP provides compiler directives to help programmers to specify blocks of sequential code that
they would like to parallelize. Subsequently, OpenMP compiler automatically converts that sequential
block into a parallelized region with e�cient concurrent handling of the resources that are used in that
block.

On the other hand, the results that are returned from parallel threads require a mechanism to
integrate them into the �nal result. Therefore, OpenMP allows programmers to use reduction clauses
in their directives in order to specify how the �nal result should be calculated. Reduction clause in
OpenMP have the following syntax (BlaiseBarney [2014]).

reduction(operator:list) e.g. reduction(+:var)

In the example above, var is a shared variable in a parallelized region. Every thread that executes
the parallelized code, receives its own private copy of var where it saves the result of its operations.
Once all threads have �nished execution, OpenMP integrates each thread's copy of var using the
operator speci�ed in the reduction clause (i.e. +), and stores the �nal result in the global version of
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var. However, there are limitations on both the operator and the variables that can be speci�ed in a
reduction clause. These limitations can be listed as follows (BlaiseBarney [2014]).

• Variables that are used in a reduction clause must be declared as shared for the parallel region.

• Variables must be scalar, and cannot be any type of a data-structure or a reference to an object.

• The operator can only be one of the internally de�ned operators (e.g. +, -, *, /, &, ^, |, &&, ||).

• Reduction operations can only be used in work-sharing regions.

As it has been mentioned above, reduction operations are very limited to basic prede�ned operators
that are provided by the programming language. However, since the release of OpenMP 4.0 the API
supports the concept of reduction identi�ers, which allows programmers to de�ne their customized
reduction approach (OpenMP [July 2013]). The following paragraphs explain this feature into more
details.

Reduction Identi�ers
Since OpenMP 4.0 the API provides a directive for declaring new reduction identi�ers which can be
used in reduction clauses later in the code. Reduction identi�ers act as user-de�ned operators which
use customized reducing approaches. The syntax for de�ning a new reduction identi�er is as follows.

#pragma omp declare reduction (reduction-identifier: typeName-list: combiner) [initializer-clause]

In the syntax above, reduction-identi�er is the name of the new reduction operator that is intended
to be used in reduction clauses. A reduction-identi�er can be either a base language identi�er, or any
of internally de�ned operators (e.g. +, -, *, /, &, ^, |, &&, ||).

Furthermore, typeName-list is the list of all data-types that can be reduced by this reduction
approach. Finally, combiner is a logic expression that speci�es the reduction approach for combining
partial results.

Reduction identi�ers have remarkably increased the �exibility of reduction clauses in OpenMP.
However, there are still limitations that prevent this feature of OpenMP from being completely versa-
tile. These limitations can be listed as follows (OpenMP [July 2013]).

• A customized reduction identi�er can only be used in the same code as it is declared in.

• The data type used by a reduction identi�er cannot be a data structure (e.g. list), or a reference
to an object.

• Only omp_in and omp_out variables can be used within the combiner expression. Similarly,
the initializer clause can only use omp_priv and omp_orig variables.

• Reduction identi�ers are still not supported by some C/C++ compilers.

Compensating the limitations mentioned above can strongly encourage programmers to use the feature
more often. That is, providing a mechanism through which a programmer can reuse their customized
reduction approach will encourage investing more time for optimized implementations. Moreover,
being able to use reduction in areas that are not necessarily work-sharing will increase the versatility
of this feature.

Furthermore, the constraints that exist on the variables that can be used in the combiner and
initializer clauses can cause confusion and erroneous implementations. That is, according to OpenMP
documentation initializing or modifying variables in an incorrect region can lead to unde�ned behavior
of a custom reduction identi�er (OpenMP [July 2013]). Thus, enabling programmers to de�ne and use
their own variables in their implementations will ease creating clearer and more understandable codes.
In the next section, we have discussed our design, and have explained our considerations for avoiding
the limitations that exist in OpenMP.
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4 RedLib

Parallel Iterator is an ongoing project conducted by the Parallel and Recon�gurable Computing group
at the University of Auckland. Parallel Iterator aims at providing a convenient mechanism for par-
allelizing java loops and parallel iteration through java collections (see ParallelIT [2014]). Parallel
Iterator provides a comprehensive reduction library in order to facilitate integrating the partial results
returned from processes (or threads) that run in parallel.

The development of such a library was motivated to ful�ll the requisite of map-reduce operations
under Java, considering that Java support for reductions is very primitive (Java [2014]). Moreover, the
�nal goal is to implement a reduction library for shared-memory applications that is as powerful as
the frameworks available for distributed-memory applications (e.g. Hadoop, Google etc.), considering
their quality principles which we mentioned in Section 3.1.6. Furthermore, the object-oriented pattern
proposed for our design avoids the limitations of reduction identi�ers that were mentioned in Section
3.2.1 due to the procedural nature of OpenMP. In the following paragraphs we have elaborated how
these considerations are addressed in our implementation.

4.1 Modi�ability and Reusability

The library provides a class called Reducible which is based on a similar concept to ThreadLocal in
java.lang (Oracle [2014]). The Reducible class provides each thread with its own copy of the initialized
variable to which the �nal result is submitted. Threads can only manipulate their own copy of the
initial value through the provided get and set methods. Finally, when every thread has �nished its
tasks the Reducible object reduces the results based on the instance of Reduction that is passed to
its constructor. Therefore, every reduction class provided by the library is an implementation of the
base Reduction interface. This mechanism ensures that further custom implementations provided
by programmers follow the same standard. The following code snippet presents the body of our base
interface.

public interface Reduction<E>{

public E reduce (E first, E second);

}

This interface allows implementing very basic reduction operations, as well as extending an implemen-
tation such that it ful�lls complex reduction tasks. That is, simple reductions can be reused within
the structure of complex reductions while keeping the implementation understandable, easy to modify
and very �exible. We have proposed this feature as nested reductions which is discussed into more
details in Section 4.5.

As a matter of fact, modi�ability is one of the greatest concerns in every software architecture (Paul
et al. [2003]). Using low-level reductions inside high-level implementations helps programmers to con-
centrate on implementing di�erent stages at a time, and easily modify minor parts of the functionality
without a�ecting the main body and vice versa. Moreover, the proposed mechanism encourages pro-
grammers to avoid code duplicate by reusing the reduction classes, and design reusable implementations
of the interface.

4.2 Ready-to-Use Reductions

RedLib o�ers a considerably large range of ready-to-use implementations of the Reduction interface. As
a matter of fact, implementations in RedLib can be divided into two main categories of high-level and
low-level reductions. Low-level reductions involve operations on primitive data types and containers
(i.e. sets and collections). Some of the low-level implementations can be listed as follows.
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• sum, subtraction, multiplication, average, minimum, maximum operations for Integer, Long,
Short, Float, Double, BigInteger and BigDecimal data types.

• BitWiseAND, BitWiseOR and BitWiseXOR operations for Boolean, Byte, Integer and Short
data types.

• AND, OR, XOR operations for Boolean data type.

• Union, Intesection and Di�erence operations for Collection and Set data types.

High-level reductions involve Union, Intersection and Di�erence operations on Map data types. Classes
in this category implement reductions in two stages. First, grouping elements that are associated to
the same key, and second, reducing those elements into the �nal result. High-level reductions can
use low-level reductions for the second stage, and form a comprehensive range of combinations. This
concept is proposed as nested reductions, which is discussed further in Section 4.5.

4.3 Support for Various Data Types

Map-reduce operations are implemented on a wide range of tasks; therefore they involve noticeable
variety of data types. On the contrary to OpenMP, we suggest using generic types for the base interface
as well as all of our implementations, to allow programmers to �exibly �t reduction operations within
their codes without any type restrictions.

Moreover, considering that map-reduce operations are dominantly based on search and query tasks
(HighlyScalableBlog [February 2012]) we have provided implementations for <Key, Value> data pairs
beside the basic implementations.

4.4 Ease of Use

The library is meant to easily integrate with programmers' codes, as well as IDEs such as Eclipse
without the complexity of frameworks such as Hadoop. As a matter of fact, running Hadoop map-
reduce applications on a single computer requires installing a third party software (i.e. Hadoop single
node cluster), and involves a number of con�guration steps that could appear confusing in the �rst
approach. The hurdles become even stronger when one intends to develop their Hadoop map-reduce
project in an IDE such as Eclipse � which is the prevailing Java IDE � since Hadoop has no o�cial
plug-ins, thus it requires programmers to do manual setups (Prakash [July 2014]).

Furthermore, in a Hadoop project programmers need to follow concrete conventions for inputs,
outputs, mappers and reducers of a system. For instance, the input to and the output from a Hadoop
map-reduce application are always in the form of �les (Pandya [December 2013], Prakash [July 2014]).
However, in many cases the �nal result from a group of computational tasks is ideally returned to the
main thread and used for further processes.

Reduction classes provided by Parallel Iterator can be used anywhere in a programmer's code, free
of the limitations of OpenMP and needless of the preliminary setup procedures of Hadoop. Reduction
operations are performed as the result of simple method calls on Reduction objects, without requiring
extra classes or boilerplate codes on the contrary to Hadoop and OpenMP (Prakash [July 2014],
OpenMP [July 2013]). Moreover, We have strictly avoided data sharing in our implementations of the
Reduction interface; therefore reduction operations can be used in both sequential and parallel regions
as opposed to OpenMP reduction identi�ers. However, the speci�cations thereof may not apply to
user-de�ned implementations of the interface.

Furthermore, following the recommendations in Section 3, the library also provides complex-
reduction implementations that involve relational algebraic operations (e.g. union and intersection) on
maps, as it was . Complex reductions can nest basic or complex reductions in order to ease reduction

13



operations that could be quite confusing and error-prone to implement otherwise. The examples in
Section 4.5 clarify the advantages of our model.

4.5 Nested Reductions

Most of map-reduce frameworks perform their reductions in two stages. That is, during the �rst
stage, the <Key, Value> pairs returned from mappers are grouped based on their keys, and then the
values for each group are combined into the �nal result during the second stage (see Section 3). For
this purpose we have proposed the concept of nested reductions, where a programmer can use an
instance of Reduction within another implementation of the Reduction interface.

For example, class IMP which is an implementation of the Reduction interface receives object R1
(an instance of Reduction) via its constructor. Class IMP is in charge of grouping data based on user
speci�cations; meanwhile IMP uses R1 to reduce every two elements that can be grouped, into one
element. The process continues until all elements that belong to the same group are reduced.

The frameworks that were discussed in Section 3, require users to implement separate functions or
classes for grouping and combining. However, function blocks cannot be reused later, neither using
di�erent classes for grouping and combining allows �exible nesting of these stages.

Thus, we have proposed implementing both grouping and combining stages simultaneously, but
keeping them (i.e. grouping and combining) as separate concepts at the same time while the entire
implementation is based on a single interface (i.e. Reduction interface). Therefore, the simplicity and
understandability of the design is improved, as independent objects are exploited for each stage. The
following example clari�es the advantages of this approach.

4.5.1 Example 1

MapUnion is one of the implementations provided by the library, which renders the union of two
di�erent maps (i.e. sets of <Key, Value> pairs). The speci�ed implementation for this class looks like
the following pseudo-code.

public MapUnion implements Reduction<Map> {

private Reduction reducer;

MapUnion (Reduction r) {reducer = r;}

public Map reduce (Map m1, Map m2){

// for every key in m2, if the same key exists

// in m1, then reduce V1 and V2 using reducer,

// and put the result back into m1.

// Otherwise, add <K2, V2> to m1.

}

}

For instance, in a speci�c case we would like to �nd the links in which words insomnia and matador

could be found. For this purpose, we use two parallel threads to search through a bunch of documents
separately, and return their own map of <Word, Link> data pairs. Finally, we instantiate an object
of MapUnion, and send an instance of SetUnion to its constructor. SetUinon is another instance of
Reduction, and provides the union of the values (i.e. sets) that are sent to it (see Figure 1).

Now if we want to count the average number of occurrences for the words insomnia and matador in
the documents that are inspected by the threads, all we need to change is the Reduction instance that
we send to the constructor of MapUnion. Thus, for this case we send an instance of FloatAverage to
the constructor. FloatAverage is an instance of Reduction which calculates and returns the average of
two �oat values (see Figure 2).
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Figure 1: MapUnion with SetUnion as its nested Reduction
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Thread1

Thread2
new MapUnion(FloatAverage);

Figure 2: MapUnion with FloatAverage as its nested Reduction

The main advantage of nesting reductions is that, very complex reductions which may require reduction
operations in multiple levels, can be implemented easily while the probability of confusion and error
is minimized. Furthermore, the number of reduction classes can be kept at minimum, while their
combinations result in many di�erent reduction approaches.

For example, MapUnion and MapIntersection are implemented only once; however their combina-
tions with lower-level reductions (e.g. SetUnion, FloatAverage etc.) can form a wide range of complex
reduction operations. Similarly, MapUnion or MapIntersection can be nested into higher-level imple-
mentations for reducing map of maps, or even more complex operations which are application-speci�c;
therefore we have not provided implementations for them.

4.5.2 Example 2

Lets consider a use-case in which two threads are engaged to explore a graph separately. Each thread
explores the connection between the nodes (i.e. edges), and the cost for transferring between one node
to the other (i.e. weights of edges). At the end the results returned from the threads are merged, and
the edges that are common between both results take the minimum weight. Figure 3 demonstrates
the process involved in this use-case.

A closer look at the implementation of this use-case suggests using map of maps as the data structure
which relates each node to its edges and the weights of those edges. That is, the outer map relates
each node to an inner map that relates an edge to its weight. In order to �gure out the �nal result,
the maps must be reduced through three steps (see Figure 4).

Implementing this procedure in one stage can be cumbersome, error-prone and hard to modify.
However, breaking the implementation down into separate stages makes it clearer and more �exible.
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Figure 3: Merging two graphs into one

For this example, the �rst stage uni�es the outer maps, such that all nodes explored by both threads
are included once in the �nal map. The second stage uni�es the inner maps, such that all edges of a
node explored by both threads are included once. Finally, the third stage takes the minimum weight
for the edges that are commonly explored by both threads.

The reduction approach in ParallelIterator enables implementing these stages by nesting three
di�erent instances of Reduction. In this approach the latter reductions are nested in the former
reductions. That is, an instance of IntegerMinimum is nested in an instance of MapUnion<String,

Integer>. IntegerMinimum reduces two integer values into the minimum one, and is used to reduce the
weights that are associated to the same edge when the union for two instances of Map<edge, weight>

is calculated. Furthermore, this instance of MapUnion is nested into an instance of MapUnion<String,

Map<String, Integer>�> to reduce the maps of edges that are associated to the same node when
unifying two instances of Map<node, map-of-edges>.

Thus, if we need to take the maximum value for an edge in the third stage, or to calculate the
intersection of the edges associated to the same node in the second stage, we only need to change the
instances of nested reductions. Therefore, the behavior of the reducer can be �exibly changed without
requiring any speci�c changes to the actual implementations. Figure 4 clari�es the steps involved in
this procedure.

4.6 Performance

Beside the implementation aspects discussed in this section, performance principles have been consid-
ered in the design as well. That is, reduction classes in ParallelIterator occupy the minimum possible
memory space, because the classes do not use state variables or shared data. For the same reason,
a reduction instance can be created only once, and used by di�erent threads without concerns about
thread safety.

Moreover, in our approach objects are passed to reducers only once, whereas in other approaches
such as Hadoop reducer methods are called once for every pair of data in a collection (Hadoop [2014]).
Therefore, applications such as Hadoop map-reduce impose considerable overheads on the system for
method calls and transferring and casting data objects. Furthermore, as we discussed in Section
3.1.2 Hadoop applications need to process input and output data in the form of �le streams. These
ine�ciency factors become even more noticeable when the amount of data to deal with grows bigger,
and become discouraging enough for using Hadoop in shared-memory applications.
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Thus, avoiding the ine�ciency factors of Hadoop and OpenMP (see Section 3.2.1) alongside other
concepts such as nested reductions and the Reducible class make our reduction library lightweight
and scalable. That is, the library will not impose extra overhead on the implementation; therefore it
will not degrade performance as the complexity of implementation increases. In the next section we
have discussed the benchmarks that we implemented in order to empirically examine the theoretical
arguments that we mentioned in this section.

5 Benchmarks

Performance has always been the main focus in concurrent and parallel processing applications. How-
ever, parallelization comes with its own concerns regarding safe manipulations of shared data. There-
fore, these techniques involve critical thread-safety and synchronization mechanisms that impose some
overhead, and if not implemented e�ciently, can counteract the bene�ts of parallelization. In RedLib,
the implementations that are provided for the Reduction interface have minimized data-sharing areas,
and we inspected if our approach would help keeping performance close to its expected level.

Thus, we implemented a PDF processor that given a list of string patterns, it would search through
a prede�ned list of PDF �les and would return the number of occurrences for each string pattern.
The processing times were measured with di�erent numbers of threads, and were used to estimate the
overhead of our implementation having our Reduction classes incorporated in it.

As a matter of fact, using a merely computational task without any I/O processing would provide
a clearer vision about the performance of our benchmark. However, we decided to simulate a more
practical case, in order to provide more realistic measures for the e�ciency of RedLib. The following
paragraphs describe the details of our experiments.

5.1 Experimental Setups

The benchmarks were developed under Eclipse Kepler IDE, and the iText framework was used for
processing and parsing PDF �les. As a matter of fact, there are several frameworks for processing PDF
�les in java, from which we can name JPedal, Apache Lucene and iText. JPedal is a comprehensive
library for processing PDF �les and converting them to di�erent formats; however the library is not
available for free (JPedal [2014]). Lucene is also a fast and full-featured library provided by Apache for
searching and processing texts. The API for Lucene is not easy enough to use, such that Apache has
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implemented another framework called Solr, which provides a higher level API, but works with Lucene
on the background. However, Apache Solr is a web-based framework, and cannot be used for desktop
applications (Grainger and Potter [2014]). On the other hand, iText is a lightweight framework that
provides simple and easy-to-use methods, which can be easily incorporated into ordinary java projects,
and is ideal for processing PDF �les in desktop projects (Lowagie [2011]).

We ran the benchmarks on two systems, both with Linux (Ubuntu) 64-bits as their operating
systems, but with di�erent CPU speci�cations. One of the systems was a 16-Core remote server using
four Quad-Core Intel Xeon E7340 processors, with maximum 2.4 GHz CPU cycles and 64 GB of ram
memory. The other system was running on an i7-4470 Quad-Core Intel processor, with maximum
3.40 GHz CPU cycles and 8 GB of ram memory. We leveraged the di�erence between the processors
to obtain accurate estimations about the e�ciency of our Reduction classes by comparing the actual
performances of the systems when using RedLib, with the expected performance for each processor.

That is, the �rst CPU architecture does not support hyper-threading, thus it cannot run more
than one thread on a physical CPU core at a time. On the other side, the second CPU architecture
supports the technology; therefore each physical CPU core could be used as two logic cores, and run
two threads in parallel at a time (Intel [2015]). However, every two logic cores are still managed by one
physical core in the background. Therefore, logic cores introduce their own overhead on the system,
and they do not improve performance as much as physical cores do.

Moreover, the overheads from other factors such as converting and streaming PDF �les, as well as
managing and scheduling tasks would slow the process down. Therefore, speedups were not expected
to be analogous to that of absolute computational tasks. Considering the speci�cations thereof, we
expected the performance to increase proportionate to the number of threads, but not in a linear
fashion. Because, as the number of threads would increase, the overhead of multi-threading would
increase as well. Thus, performance gain would be counteracted by the overheads to some extent.
Moreover, switching to the logic cores in the Quad-Core system was expected to result in a smaller
speedup due to the overheads that we discussed above.

5.2 Methods

The search operations involved processing 32 PDF �les for the 16-Core and 16 PDF �les for the
Quad-Core, in order to guarantee that the workload for each core will compensate the overheads of
PDF streaming and multi-threading. In other words, we performed the benchmarks with 8 PDF �les
for both systems initially; however the overheads imposed by multi-threading and PDF streaming
outweighed the workload for each core, and processing �les would take a very short time such that the
speedups with respect to the sequential mode were very trivial.

Experiments were performed with single thread, two, four, eight and sixteen threads in the 16-Core
system. Similarly, we performed the experiments with single thread, two, four and eight threads in
the Quad-Core system. Considering that our experiments were replicated under reasonably constant
environmental conditions, we required three to ten replications to achieve accurate measurements
(SEMATECH [April 2012]). Therefore, we replicated our experiments for ten times in each system.

The experiments were run in random order of thread-numbers, in order to avoid possible caching
e�ects. For the same reason, we ran each experiment on a separate JVM run to avoid side e�ects of
JVM warmup and garbage collection. The PDF �les were identical copies of a PDF document. The
size of each document was big enough (i.e. 17MB) to ensure enough workload for each core, such that
the overhead of multi-threading and PDF streaming was outweighed. It should be mentioned that
we performed the experiments with smaller �les (i.e. 2MB) at the �st stage. However, the workload
for each core was too small, such that we were not able to observe noticeable di�erence between the
performances under di�erent numbers of threads.
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5.3 Results

The results demonstrate that performance becomes approximately two times faster when two threads
are used rather than a single thread. Similarly, performance improvement is continued when the
number of threads is increased to four, and then to eight. However, using sixteen threads did not
make remarkable changes to the performance, even in some cases slight performance degradations can
be observed. Tables 1 and 3 clarify close behavior of the system with both 32 and 16 documents.
Furthermore the trends shown in Figures 5 and 6 demonstrate the performance has gained slightly
better improvements with 32 document. This fact con�rms our hypothesis about using bigger �les for
balancing parallelization overheads with workload.

Moreover, Figures 7 and 8 demonstrate that system performance under the Quad-Core processor
continuously improves by proceeding to higher number of threads. However, similar to the 16-Core
system, we can observe that once the number of threads has reached the maximum number of cores,
performance becomes slower..

5.4 Discussion

The results demonstrated in the previous section con�rm that the actual performance of both systems
comply with our expectations. Especially, when the number of threads is increased within the bound-
aries of physical cores, the performance is proportionate to the number of cores. However, switching
to logic cores when using hyper-threading on i7 shows very slight improvements. Because, every two
virtual cores are still managed by one physical core in the underlying level, thus even though concur-
rency is improved, the overheads of the logic cores impose some extra processing on the physical cores,
such that performance cannot improve proportionately.

It should be remarked that during the experiments we were monitoring the cores in both systems.
We observed that while there were free cores which did not have PDF searching tasks assigned to
them, processing was faster and smoother. Moreover, we realized that the free cores would still do
small and minor jobs which were presumably for scheduling and managing the cores allocated to PDF
search tasks. However, when PDF search tasks were assigned to all cores in a system (including logic
cores), performance would become slower with more lagging. That is, minor jobs for scheduling and
managing threads had to be done by the same threads which were processing PDF �les, and this would
impose considerable penalties on performance.

Thus, the performance of the processors comply with our theoretically expectations that were
discussed in Section 5.1. Therefore, considering that throughout the implementation, Reduction classes
were created for each thread, increasing the number of threads would result in more Reduction classes.
Therefore, if the reducers had imposed excessive overhead at runtime, the benchmarks would have
deviated from the expected performance as the number of threads was increased. However, all attempts
that were run under both processors consistently followed our expectation, and con�rm the lightweight
and e�ective implementations provided by RedLib. The tables and �gures that are provided in the
following pages provide the details of our experiments in both systems.
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No. Threads Exp1 Exp2 Exp3 Exp4 Exp5 Exp6 Exp7 Exp8 Exp9 Exp10

1 135.8 135 136.15 135.35 135.6 134.9 136.3 139.9 136.31 134.33

2 77.44 72.62 79.62 73.06 73.9 72.2 74.7 72.25 72.5 72.67

4 45 41 46.8 46.55 46.12 40.5 46.52 43.48 46.42 44.84

8 33 32.9 32.5 32.4 31.7 32.71 31.64 31.57 31.76 31.3

16 34.7 34.48 34.74 34.02 33.5 33.9 34.12 33.52 33.21 33.17

Table 1: The Results for 16-Core Processor � 32 Documents (Seconds)

No. Threads Std. Deviation Medians Means Speedups (Median) Speedups (Means)

1 1.45 135.7 135.96 1 1
2 2.39 72.86 74.1 1.86 1.83
4 2.21 45.56 44.72 2.98 3.0
8 0.59 32.08 32.15 4.23 4.23
16 0.55 33.96 33.94 4.0 4.0

Table 2: Standard Deviation, Medians, Means and Speedups for 16-Core � 32 Documents
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Figure 5: Trends of Speedups and Runtimes in 16-Core � 32 Documents

No. Threads Exp1 Exp2 Exp3 Exp4 Exp5 Exp6 Exp7 Exp8 Exp9 Exp10

1 71.41 70.8 71.16 71.44 72.18 71.14 70.43 71.19 71.06 71.13

2 38.36 38.61 38.93 38.5 39.43 39.46 43 41.82 39.11 38.7

4 25.02 22.6 25.09 25.11 25.42 25.02 24.8 23.48 22.4 23.1

8 18 17.67 17.97 17.76 17.65 17.83 17.63 17.58 17.5 17.76

16 19.07 18.67 19.2 19.87 19.23 19.41 19.58 19.87 19.2 19.46

Table 3: The Results for 16-Core Processor �16 Documents (Seconds)
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No. Threads Std. Deviation Medians Means Speedups (Median) Speedups (Means)

1 0.43 71.15 71.19 1 1
2 1.47 39.02 39.6 1.82 1.8
4 1.11 24.91 24.20 2.86 2.94
8 0.15 17.71 17.73 4.0 4.01
16 0.35 19.32 19.36 3.68 3.68

Table 4: Standard Deviation, Medians, Means and Speedups for 16-Core � 16 Documents
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Figure 6: Trends of Speedups and Runtimes in 16-Core � 16 Documents

No. Threads Exp1 Exp2 Exp3 Exp4 Exp5 Exp6 Exp7 Exp8 Exp9 Exp10

1 27.25 27.62 27.94 27.89 27.83 27.84 27.9 27.5 27.9 27.88

2 15.56 15.52 15.16 15.82 16.16 15.08 16.22 15.91 15.9 15.91

4 11.14 11.01 11.04 11.37 11.21 11.69 11.08 11.19 11.15 11.19

8 10.86 10.86 11.02 10.97 10.83 10.86 10.93 10.96 10.91 10.89

Table 5: The Results for Quad-Core Processor � 16 Documents (Seconds)

No. Threads Std. Deviation Medians Means Speedups (Median) Speedups (Means)

1 0.21 27.86 27.56 1 1
2 0.37 15.86 15.72 1.76 1.77
4 0.19 11.17 11.2 2.49 2.48
8 0.06 10.9 10.9 2.55 2.54

Table 6: Standard Deviation, Medians, Means and Speedups for Quad-Core � 16 Documents

No. Threads Exp1 Exp2 Exp3 Exp4 Exp5 Exp6 Exp7 Exp8 Exp9 Exp10

1 14.84 14.82 14.83 14.63 14.93 14.82 14.53 15.1 14.6 14.72

2 8.44 8.72 8.4 8.7 8.2 8.91 8.98 8.24 9.43 8.78

4 6.57 6.14 6.4 6.4 6.73 6.41 6.06 6.3 6.58 6.31

8 6.05 6.48 6.19 6.4 6.38 6.42 6.42 6.49 6.23 6.23

Table 7: The Results for Quad-Core Processor � 8 Documents (Seconds)
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Figure 7: Trends of Speedups and Runtimes in Quad-Core � 16 Documents

No. Threads Std. Deviation Medians Means Speedups (Median) Speedups (Means)

1 0.16 14.82 14.78 1 1
2 0.36 8.71 8.68 1.7 1.7
4 0.19 6.4 6.39 2.32 2.31
8 0.14 6.39 6.33 2.32 2.34

Table 8: Standard Deviation, Medians, Means and Speedups for Quad-Core � 8 Documents
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Figure 8: Trends of Speedups and Runtimes in Quad-Core � 8 Documents
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6 Conclusion

In this paper we ful�lled the following objectives.

• Summarized some of the commonly used reduction operations and their use-cases.

• Introduced some of the current applications and projects that use map-reduce for their operations,
and summarized their common methods and preferences.

• Overviewed OpenMP as a framework that supports map-reduce for desktop applications, and
summarized its advantages and its drawbacks.

• Introduced a lightweight reduction library that is implemented by the Parallel and Recon�gurable
Lab at the University of Auckland.

• Theoretically discussed the advantages o�ered by our reduction library, and further explained
how the pitfalls of frameworks such as OpenMP and Hadoop are avoided in our implementations.

• Proposed a new concept of �exible and nestable reductions, and clari�ed its advantages with
intuitive examples.

• Provided empirical benchmarks to practically prove our theoretical arguments.

• Consolidated the claim that our reduction library helps with preventing boilerplate and erroneous
code, without any negative e�ects on the performance.
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