22 THE UNIVERSITY
OF AUCKLAND

LIBRARIES AND LEARNING SERVICES

ResearchSpace@Auckland

Suggested Reference
Mehrabi, M. (2015). RedLib: A Lightweight Reduction Library for Java. Auckland,
New Zealand.

Copyright

Items in ResearchSpace are protected by copyright, with all rights reserved, unless
otherwise indicated. Previously published items are made available in accordance
with the copyright policy of the publisher.

https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm

https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm
https://researchspace.auckland.ac.nz/

RedLib: A Lightweight Reduction Library for Java,
Technical Report

Mostafa Mehrabi,
mmeh012@aucklanduni.ac.nz
Supervisor: Dr. Oliver Sinnen

Co-supervisor: Dr. Nasser Giacaman
Electrical and Computer Engineering Department

The University of Auckland
January 26, 2015

List of Figures

O O Ui Wi

MapUnion with SetUnion as its nested Reduction 15
MapUnion with FloatAverage as its nested Reduction 15
Merging two graphs intooneo 16
Unifying map of maps using nested reductions 17
Trends of Speedups and Runtimes in 16-Core — 32 Documents 20
Trends of Speedups and Runtimes in 16-Core — 16 Documents 21
Trends of Speedups and Runtimes in Quad-Core — 16 Documents 22
Trends of Speedups and Runtimes in Quad-Core — 8 Documents 22

List of Tables

O O Ui Wi

The Results for 16-Core Processor — 32 Documents (Seconds)
Standard Deviation, Medians, Means and Speedups for 16-Core — 32 Documents

The Results for 16-Core Processor —16 Documents (Seconds)
Standard Deviation, Medians, Means and Speedups for 16-Core — 16 Documents

The Results for Quad-Core Processor — 16 Documents (Seconds)
Standard Deviation, Medians, Means and Speedups for Quad-Core — 16 Documents . . .
The Results for Quad-Core Processor — 8 Documents (Seconds)
Standard Deviation, Medians, Means and Speedups for Quad-Core — 8 Documents

20
20
21
21
21
21
22

Abstract

Reduction in computer science is the process of combining two or more elements into one.
This process is widely used by network based applications for integrating results from different
computers of a network. It also seems reasonable to use the same mechanism in shared memory
applications that run on a single computer. That is, reducing the results that are obtained from
different threads in a computer into the final result. However, there are not many libraries that
facilitate reduction on single computers, as the main focus has been on network based applications
thus far.

Considering the benefits of reduction for improving performance on shared memory applications,
developing assistant libraries in this scope is quite worthwhile. In this paper we have introduced
an extensive reduction library that has been developed for Java. Moreover, the object oriented
considerations of the design have been explained, and it has been clarified how users benefit from
them. Also, we have compared the features provided by our design with a few others that are
available in this field. Further examples in this paper help with clearer understanding of the logic
of our design.

Key words: Reduction, ParallelIterator, Shared Memory

1 Introduction

Fast technological growth has improved the accuracy of computations substantially due to the large
amount of detailed data that we are able to collect now. Subsequently, the calculations that are
performed on data are now more expensive in terms of resources. That is, there are considerably more
resources required for performing computations than it used to be. Therefore, speed of computation
(i.e. performance) is limited by the boundaries set by our resources. On a single computer, the number
of CPU cycles can only be increased up to a certain extent due to physical limitations. Because of
the problem thereof, many applications are moving on cloud where a network of computers can work
on different parts of a task; however there are still limitations regarding the number of machines and
data storage provided by a cloud network.

The limitations mentioned above encourage endeavors for more efficient use of resources in order
to improve performance as much as possible, and that is where parallel processing becomes important.
That is, parallel contribution of different processors (on a single computer), or different computers (on
a cloud network) to a problem speeds the performance of a computational task up. In this procedure
each of the parallel components provides a partial result, which needs to be integrated with that of
other components in order to figure out the final result. The stage of integrating the results from
different components of a computation task is called reduction.

The concept of parallel processing has been vastly used in network based applications, but has
recently become an interest for shared memory applications (i.e. on single computers). A basic search
about reduction on internet provides us with numerous articles that are mostly focused on network
applications (e.g. Yang et al. [June 2007], Abouzeid et al. [August 2009]). For example, search based
algorithms used by Google and Hadoop exploit reductions extensively in order to integrate the search
results that are returned from several nodes (i.e. computers) in their network into one final result
(Lammel [2008], Hadoop [2014]).

However, as the potential for using reduction on shared memory applications is increasingly grow-
ing, the demand for rich assistant libraries has not been fulfilled reciprocally for different programming
languages. OpenMP is one library which has been providing this feature for C/C++ and Fortran
programming languages. Nevertheless, its support for reduction is limited about which we have elab-
orately explained in later sections of this paper. Moreover, lack of such a library is even more obvious
for programming languages such as Java, as Java support for reduction is very primitive (Java [2014]).

We have integrated complex reduction approaches that are normally used by network applications
with simple trivial reductions, and have provided an extensive reduction library that can be used for

4

both shared memory and network cases. Moreover, we have considered object oriented principles in
order to let programmers flexibly extend the reduction functionality and exploit code reusability.

In Section 2 we have discussed some of the common reduction approaches and their use-cases. In
Section 3 we have overviewed some of the related works, and have figured out the important principles
in developing map-reduce operations. In Section 4 the reduction functionality provided by OpenMP
has been discussed. Our design approach has been explained elaborately in Section 5, and few examples
have been provided in order to clarify its advantages. In Section 6 the benchmarks that we implemented
to examine the efficiency of our design have been discussed. Finally, in Section 7 we have wrapped up
conclusions by listing the outcomes of this paper.

2 Common Reduction Paradigms

Reductions are mainly used for finding the answers to search or query tasks. In most reduction
algorithms the input and output are in the form of <Key, Value> pairs. Reduction always comes
with a mapping algorithm, where a big task is split into a set of smaller tasks. The smaller tasks are
performed in parallel via mappers, then the results from mappers are sent to reducers for integration
(HighlyScalableBlog [February 2012]). It is important to mention that reduction operations must be
commutative and associative (Lammel [2008], Hadoop [2014]). In the following paragraphs some of
the common reduction approaches have been discussed.

2.1 Counting

This approach is exploited for figuring out the total number of occurrence of a specific item or pattern
across multiple elements. In this approach different mappers inspect different documents/elements in
parallel; furthermore the summation of the results returned from the mappers are calculated in the
reducers (Lin et al. [April 30 2010]).

2.2 Collating

This approach involves grouping all values that are associated to the same key in the <Key, Value>
pairs that are sent from mappers to reducers. One of the most common use-cases of this approach
is in the concept of inverted indices, where a data structure (e.g. a map) relates certain data to the
locations in which it can be found (e.g. web page, database etc.). This approach is one of the most
important reduction methods that is widely used by large scale search engines such as Google (Lammel
[2008], Lin et al. [April 30 2010]).

The implementations for this approach are mainly application specific. That is, enterprises such as
Google or Hadoop implement this approach for their own applications. However, a generic implemen-
tation is yet not provided by any of the programming languages (Lammel [2008], OpenMP [July 2013]).
We have provided generic classes in our library to facilitate this method, which has been discussed in
details in Section 4.

2.3 Filtering

This approach is a more specific version of collating, where values that are associated to a key in
a <Key, Value> pair, are records from several documents that meet certain conditions (Afrati and
Ullman [2010], Lin et al. [April 30 2010]).

2.4 Iterative Message Passing

In some networks (e.g. a network of computers), the status of each entity depends on the properties of
its adjacent entities. Therefore, frequent messages are passed to each network entity iteratively. Each
message is a set of <Key, Value> tuples, where the IDs of network entities are used as keys, and the
status of each entity is the value for its corresponding key. Receiving nodes group the messages on
arrival, and send them to reducers. Subsequently, the reducers calculate and update the state of the
corresponding node, using the information that they receive regarding the adjacent entities.

This approach is commonly used in applications that are related to graph analysis and web in-
dexing scopes. For example, in a graph the existence of a parent node may depend on the existence
of its children nodes. Therefore, once all children are removed, the parent node must be removed
consequently. Thus, frequent updates about the status of the children nodes must be performed on
the parent node (HighlyScalableBlog [February 2012]).

2.5 Distributed Task Execution

In this approach big tasks are broken down into smaller tasks, and small tasks are performed in parallel.
Furthermore, the results are sent to reducers to figure out the final result. This method is widely used
in physical/engineering simulation, performance testing and mathematical computation application
domains.

Reducers normally use map data structures, thus the input data to the reducers are in the form of
<Key, Value> pairs. Therefore, the operations that are performed on the input data mainly involve
union, intersection, subtraction and selection on the values in maps (Lin et al. [April 30 2010]). This
method is one of the main focuses of our implementation, thus the operations thereof are also provided
as part of the remarkable contributions of our library, about which we have discussed in details in
Section 4.

Some algorithms suggests that reducers keep maps sorted based on their keys for more efficient
performance. However, performance improvement is conditional to the data being large enough, so that
the overhead of insertion sort is compensated when accessing data from the results that are returned
by reducers (HighlyScalableBlog [February 2012]).

3 Related Work

Applications that exploit reduction operations can be divided into two major categories of distributed-
memory and shared-memory.

3.1 Distributed-Memory Applications

Distributed-memory applications are based on computer networks, where the data being processed is
scattered through different machines on a cluster of computers. Map-reduce operations are widely used
by distributed-memory applications. The following paragraphs introduce a few well-known frameworks
that support map-reduce operations for the applications in this category.

3.1.1 Google Map-Reduce

Google widely exploits map-reduce in its daily search-based operations. As a matter of fact, more than
hundred thousand map-reduce tasks are performed on Google clusters everyday for operations such
as intensive graph processing, inverted indices, graph representation of the structure of a web-page,
reports on frequent queries, text processing and summarized reports on the web-pages visited at each
host. The calculations that are involved in the operations thereof are simple to a high extent; however

6

the input and out data is enormously big. Therefore, Google breaks task down into smaller tasks,
and splits them across thousands of computers in order to increase performance (Dean and Ghemawat
[January 2008]).

Google performs map-reduce tasks in two different phases of mapping and reducing. During the
mapping phase, several documents across different computers or data-bases are processed, and the
intermediary <Key, Value> pairs are created. Google sorts intermediary results based on their keys
for faster grouping and access of data in later stages. During the reducing phase intermediary results
are integrated to form the final result. Google divides the reducing phase into two stages of merging and
combining. During the merging stage, different sets of <Key, Value> tuples (i.e. map data-structures)
are merged into one set. This stage may include various set operations, such as union, intersection
or difference of the sets. During the combining stage, different values that are associated to the same
key get combined. Programmers can specify their own merging and combining functions for the stages
mentioned above (Lammel [2008]).

3.1.2 Hadoop

Hadoop is mainly focused on processing large amount of data across cloud networks. For this purpose,
Hadoop uses parallel data-bases and map-reduce. Parallel data-bases perform well, as the approach is
based on shared-nothing architecture; therefore there is not a single point of contention between the
computers in a system. However, this approach only scales well when there is less than one hundred
nodes involved in a process. Moreover, parallel data-bases assume seldom failure in the system, thus
the approach does not consider fault tolerance. More importantly, this approach assumes that all
computers involved in the parallel processing are homogeneous, whilst this is nearly impossible in a
large computer network (Abouzeid et al. [August 2009]).

Because of the limitations mentioned above, Hadoop extends Google’s map-reduce approach for
processing data on very large networks . Hadoop also exploits Distributed File Systems (DFS) for
map-reduce operations in order to minimize data transfer, and the effects of node-failures in a cluster.
That is, once a node-failure is detected, the tasks for that node are performed by other computers
without any need for transferring data thanks to DFS (Abouzeid et al. [August 2009], Shneider [2014]).

However, one weakness of Hadoop map-reduce approach is that input and output data is read
from and written to files. This fact imposes unnecessary overhead on operations for processing data
streams, especially for intensive tasks that require working on large numbers of files. Therefore,
Hadoop communicates with application servers for direct transmission of data in order to avoid files
and improve performance. Instead, the application servers deal with input and output data streams
(Shneider [2014]).

Hadoop mad-reduce operations are performed on <Key, Value> pairs, and are done through three
different phases of shuffle, sort and reduce. The tasks that are accomplished at each phase can be
listed as follows (Hadoop [2014]).

Shuffle. The outputs from all mappers are grouped and partitioned by the framework. Furthermore,
each reducer receives its relevant partition via HTTP connections.

Sort. The inputs to a specific reducer are sorted and grouped based on their keys. The main purpose
for this phase is to ensure that values returned from different mappers associated to the same
key are grouped together before the actual reduction process. The first and second phases are
done simultaneously.

Reduce. The actual reduction is done in this phase, where values that are associated to the same key
get combined based on user specifications. That is, Hadoop provides a Reducer interface that
must be implemented by the programmer in order to complete the third phase. An instance of
Reducer provides a method called reduce that gets called once for each <Key, ListOfValues>

7

pair in the grouped input for each reducer. This factor is considered as one of the drawbacks of
Hadoop.

Hadoop provides implementations for some common reduction operations, such as chaining multiple
mappers and reducers, field selection, long summation and combining values associated to the same
key (Hadoop [2014]).

3.1.3 Apache Spark

Apache Spark is a framework that provides high-level APIs for processing large data sets on computer
clusters and standalone desktops. Spark is focused on inheriting Hadoop map-reduce strengths and
improving the weaknesses of Hadoop that were mentioned in Section 3.1.2. In other words, Spark
introduces an enhanced version of Hadoop file system called Resilient Distributed Data-set (RDD) to
become faster than Hadoop (Spark [2015¢]).

Apache Spark support Java, Scala and Python programming languages, and is able to work with
all files storage systems that are supported by Hadoop. Moreover, Spark is the base of four frameworks
that utilize parallel processing in different aspects. The frameworks are listed as follows.

Spark SQL. Spark SQL is a framework that facilitates fast parallel processing of data queries over
large distributed data sets. For this purpose, Spark uses a query language called HiveQL which
is very similar to SQL (Spark [2015f]).

Spark Streaming. Spark Streaming allows programmers to stream tasks by writing batch-like pro-
cesses in Java and Scala. The framework enables integration between batch jobs and interactive
queries (Spark [2015d]).

MLIlib. MLIib is a framework for efficient parallelization of machine learning algorithms. The algo-
rithms are optimized and proven to perform fast (Spark [2015b]).

GraphX. GraphX provides efficient mechanisms for analysis and iterative computation of graphs on
a single system, as well as a cluster with RDDs (Spark [2015a]).

At the implementation level, Spark performs map-reduce operations on almost every parallel task.
Programmers are able to specify their own map and reduce operations using map, reduce and reduce-
ByKey methods. The functions that are supposed to be performed by the methods thereof could be
specified by lambda expressions in Java8. However, for older versions of Java, the functional interface
that is provided by org.apache.spark.api.java.function should be used, as they do not support lambda
expressions (Spark [2015¢]).

3.1.4 Scope

Scope is a framework that has been developed by a team of Microsoft engineers under C#. The
main motivation for this project was to develop a model that hides the complexity of the underlying
system that is involved in processing SQL queries, but at the same time provide enough flexibility for
the programmers to define customized functionalities for the system. The authors believe that their
proposed model is specifically helpful with application domains that involve detecting pattern changes
over time and detecting fundamental trends in large sets of data.

The model introduces a new data type that is inspired by SQL data rows. Each instance of the
proposed data type contains a set of rows, and each row consists of columns of different types. However,
the new data type highly resembles the concept of map collections in Java where collections can be
used to associate various types to a key, and keys play the role of indices for the rows. Hence, the data
model in this framework follows the same <Key, Value> pattern as the ones mentioned earlier.

8

As it was mentioned, The model provides the flexibility for the programmers to specify their own
map-reduce operations. In order to do so, a programmer must provide implementations for eztractor,
processor, reducer and combiner functions. The tasks that each of the functions are responsible for
can be listed as follows (Chaiken et al. [August 2008]).

Extractor. Extracting data from different documents, and converting them into data rows that con-
form the specified data format of the framework.

Processor. Processing the rows of data by different mappers in parallel, and providing the interme-
diary results.

Reducer. Grouping the intermediary data-rows based on user specifications, and sending the grouped
data to reducers.

Combiner. Combining each group of data-rows based on user specifications.

The framework has provided ready-to-use implementations for some of the commonly used map-reduce
approaches, such as projection and selection. The ready-to-use implementations are provided to avoid
error-prone user code, and to encourage code reuse. This framework is intertwined with another frame-
work developed by Microsoft, which is called COSMOS. COSMOS is specifically used for analyzing
large data sets in big data clusters (Chaiken et al. [August 2008]).

3.1.5 Simplified Relational Data Processing

This research project was conducted by Yang et al. [June 2007] in order to propose a more efficient
map-reduce approach for parallel processing of large relational data-sets. The authors believe that the
conventional map-reduce approach does not ease processing heterogeneous data which is very com-
mon in relational data-sets. Furthermore, they argue that considering relational algebraic operations
(e.g. union and intersection) helps with providing more comprehensive data, thus speeding up the
performance.

Therefore, the research proposes a model that adds a merging phase to map and reduce. The main
focus of this research is on separation of concerns in order to ease implementation, as well as improving
performance. According to this model the tasks for the map, reduce and merge phases can be specified
as follows.

Map. User defined logic is applied to <Key, Value> data pairs in order to create the intermediary
<Key, Value> pairs.

Reduce. All data pairs with the same key are grouped together. Furthermore, each group of data is
sent to a reducer.

Merge. At each reducer different values that are associated to the same key are merged in order to
form a <Key, ListOfValues> pair as the final result. The model also suggests that the key in
the final result can be of a different type from the initial one. However, this definition is in
contradiction with the definition that is suggested by most other related works.

3.1.6 Summary

Considering contemporary projects and research studies in this field — from which we mentioned a few
in this section — most studies are unanimous about the following principles.

e Using <Key, Value> data pairs in order to allow more flexible, or even heterogeneous, data
processing.

e Including relational algebraic operations (e.g. union and intersection of sets) in order to allow
more complex reductions.

e Considering separate and independent stages for grouping <Key, Value> data-sets returned by
different mappers and combining the values that are associated to the same key.

e Providing implementations for common map-reduce operations in order to avoid error-prone
programmer code as much as possible.

e Encouraging quality software designs that ease code reuse and code modification.

In the next section we have explained an existing map-reduce approach for shared-memory applications.
Furthermore, in Section 4 we have discussed accommodating the principles thereof in our design.

3.2 Shared-Memory Applications

Shared-memory applications run on desktop computers, where memory resources are shared between
different components of a system. Applications in this category have to consider concurrency principles
(e.g. thread safety) when accessing memory. Therefore, map-reduce operations has recently become
an interest in share-memory applications. In this section we have introduced some of the frameworks
that support map-reduce operations in this categories.

3.2.1 OpenMP

The map-reduce operations that have been discussed thus far are specifically focused on network-based
operations. That is, a big task is broken down into smaller tasks and sent to different computers across
a network for execution. Furthermore, the results returned from the computer are integrated in parallel
reducers until the final result is achieved.

Considering that parallel processing and concurrent applications on single computers follow the
same principle of dividing workload between processors, the concept of map-reduce has recently become
an interest on single desktops as well (Lin et al. [April 30 2010]).

Despite the potentials for exploiting map-reduce operations in shared-memory (i.e. single computer)
applications, many programming languages have not considered providing adequate support for this
concept yet. OpenMP is one of the few APIs that has been supporting reduction as part of its support
for parallel processing in Fortran and C/C++ (OpenMP [July 2013]). In the following paragraphs of
this section we have have discussed the reduction clauses in OpenMP.

Reduction Clauses

OpenMP provides compiler directives to help programmers to specify blocks of sequential code that
they would like to parallelize. Subsequently, OpenMP compiler automatically converts that sequential
block into a parallelized region with efficient concurrent handling of the resources that are used in that
block.

On the other hand, the results that are returned from parallel threads require a mechanism to
integrate them into the final result. Therefore, OpenMP allows programmers to use reduction clauses
in their directives in order to specify how the final result should be calculated. Reduction clause in
OpenMP have the following syntax (BlaiseBarney [2014]).

reduction(operator:list) e.g. reduction(+:var)

In the example above, var is a shared variable in a parallelized region. Every thread that executes
the parallelized code, receives its own private copy of var where it saves the result of its operations.
Once all threads have finished execution, OpenMP integrates each thread’s copy of var using the
operator specified in the reduction clause (i.e. +), and stores the final result in the global version of

10

var. However, there are limitations on both the operator and the variables that can be specified in a
reduction clause. These limitations can be listed as follows (BlaiseBarney [2014]).

e Variables that are used in a reduction clause must be declared as shared for the parallel region.

Variables must be scalar, and cannot be any type of a data-structure or a reference to an object.
e The operator can only be one of the internally defined operators (e.g. +, -, *, /, &, ~, |, &&, ||).
e Reduction operations can only be used in work-sharing regions.

As it has been mentioned above, reduction operations are very limited to basic predefined operators
that are provided by the programming language. However, since the release of OpenMP 4.0 the API
supports the concept of reduction identifiers, which allows programmers to define their customized
reduction approach (OpenMP [July 2013]). The following paragraphs explain this feature into more
details.

Reduction Identifiers

Since OpenMP 4.0 the API provides a directive for declaring new reduction identifiers which can be
used in reduction clauses later in the code. Reduction identifiers act as user-defined operators which
use customized reducing approaches. The syntax for defining a new reduction identifier is as follows.

#pragma omp declare reduction (reduction-identifier: typeName-list: combiner) [initializer-clausel

In the syntax above, reduction-identifier is the name of the new reduction operator that is intended
to be used in reduction clauses. A reduction-identifier can be either a base language identifier, or any
of internally defined operators (e.g. +, -, *, /, &, 7, |, &&, ||).

Furthermore, typeName-list is the list of all data-types that can be reduced by this reduction
approach. Finally, combiner is a logic expression that specifies the reduction approach for combining
partial results.

Reduction identifiers have remarkably increased the flexibility of reduction clauses in OpenMP.
However, there are still limitations that prevent this feature of OpenMP from being completely versa-
tile. These limitations can be listed as follows (OpenMP [July 2013]).

e A customized reduction identifier can only be used in the same code as it is declared in.

e The data type used by a reduction identifier cannot be a data structure (e.g. list), or a reference
to an object.

e Only omp _in and omp _out variables can be used within the combiner expression. Similarly,
the initializer clause can only use omp _priv and omp _orig variables.

e Reduction identifiers are still not supported by some C/C++ compilers.

Compensating the limitations mentioned above can strongly encourage programmers to use the feature
more often. That is, providing a mechanism through which a programmer can reuse their customized
reduction approach will encourage investing more time for optimized implementations. Moreover,
being able to use reduction in areas that are not necessarily work-sharing will increase the versatility
of this feature.

Furthermore, the constraints that exist on the variables that can be used in the combiner and
initializer clauses can cause confusion and erroneous implementations. That is, according to OpenMP
documentation initializing or modifying variables in an incorrect region can lead to undefined behavior
of a custom reduction identifier (OpenMP [July 2013]). Thus, enabling programmers to define and use
their own variables in their implementations will ease creating clearer and more understandable codes.
In the next section, we have discussed our design, and have explained our considerations for avoiding
the limitations that exist in OpenMP.

11

4 RedLib

Parallel Iterator is an ongoing project conducted by the Parallel and Reconfigurable Computing group
at the University of Auckland. Parallel Iterator aims at providing a convenient mechanism for par-
allelizing java loops and parallel iteration through java collections (see ParallelIT [2014]). Parallel
Iterator provides a comprehensive reduction library in order to facilitate integrating the partial results
returned from processes (or threads) that run in parallel.

The development of such a library was motivated to fulfill the requisite of map-reduce operations
under Java, considering that Java support for reductions is very primitive (Java [2014]). Moreover, the
final goal is to implement a reduction library for shared-memory applications that is as powerful as
the frameworks available for distributed-memory applications (e.g. Hadoop, Google etc.), considering
their quality principles which we mentioned in Section 3.1.6. Furthermore, the object-oriented pattern
proposed for our design avoids the limitations of reduction identifiers that were mentioned in Section
3.2.1 due to the procedural nature of OpenMP. In the following paragraphs we have elaborated how
these considerations are addressed in our implementation.

4.1 DModifiability and Reusability

The library provides a class called Reducible which is based on a similar concept to ThreadLocal in
java.lang (Oracle [2014]). The Reducible class provides each thread with its own copy of the initialized
variable to which the final result is submitted. Threads can only manipulate their own copy of the
initial value through the provided get and set methods. Finally, when every thread has finished its
tasks the Reducible object reduces the results based on the instance of Reduction that is passed to
its constructor. Therefore, every reduction class provided by the library is an implementation of the
base Reduction interface. This mechanism ensures that further custom implementations provided
by programmers follow the same standard. The following code snippet presents the body of our base
interface.

public interface Reduction<E>{
public E reduce (E first, E second);
}

This interface allows implementing very basic reduction operations, as well as extending an implemen-
tation such that it fulfills complex reduction tasks. That is, simple reductions can be reused within
the structure of complex reductions while keeping the implementation understandable, easy to modify
and very flexible. We have proposed this feature as nested reductions which is discussed into more
details in Section 4.5.

As a matter of fact, modifiability is one of the greatest concerns in every software architecture (Paul
et al. [2003]). Using low-level reductions inside high-level implementations helps programmers to con-
centrate on implementing different stages at a time, and easily modify minor parts of the functionality
without affecting the main body and vice versa. Moreover, the proposed mechanism encourages pro-
grammers to avoid code duplicate by reusing the reduction classes, and design reusable implementations
of the interface.

4.2 Ready-to-Use Reductions

RedLib offers a considerably large range of ready-to-use implementations of the Reduction interface. As
a matter of fact, implementations in RedLib can be divided into two main categories of high-level and
low-level reductions. Low-level reductions involve operations on primitive data types and containers
(i.e. sets and collections). Some of the low-level implementations can be listed as follows.

12

sum, subtraction, multiplication, average, minimum, maximum operations for Integer, Long,
Short, Float, Double, Biglnteger and BigDecimal data types.

BitWiseAND, BitWiseOR and BitWiseXOR operations for Boolean, Byte, Integer and Short
data types.

AND, OR, XOR operations for Boolean data type.

Union, Intesection and Difference operations for Collection and Set data types.

High-level reductions involve Union, Intersection and Difference operations on Map data types. Classes
in this category implement reductions in two stages. First, grouping elements that are associated to
the same key, and second, reducing those elements into the final result. High-level reductions can
use low-level reductions for the second stage, and form a comprehensive range of combinations. This
concept is proposed as nested reductions, which is discussed further in Section 4.5.

4.3 Support for Various Data Types

Map-reduce operations are implemented on a wide range of tasks; therefore they involve noticeable
variety of data types. On the contrary to OpenMP, we suggest using generic types for the base interface
as well as all of our implementations, to allow programmers to flexibly fit reduction operations within
their codes without any type restrictions.

Moreover, considering that map-reduce operations are dominantly based on search and query tasks
(HighlyScalableBlog [February 2012]) we have provided implementations for <Key, Value> data pairs
beside the basic implementations.

4.4 FEase of Use

The library is meant to easily integrate with programmers’ codes, as well as IDEs such as Eclipse
without the complexity of frameworks such as Hadoop. As a matter of fact, running Hadoop map-
reduce applications on a single computer requires installing a third party software (i.e. Hadoop single
node cluster), and involves a number of configuration steps that could appear confusing in the first
approach. The hurdles become even stronger when one intends to develop their Hadoop map-reduce
project in an IDE such as Eclipse — which is the prevailing Java IDE — since Hadoop has no official
plug-ins, thus it requires programmers to do manual setups (Prakash [July 2014]).

Furthermore, in a Hadoop project programmers need to follow concrete conventions for inputs,
outputs, mappers and reducers of a system. For instance, the input to and the output from a Hadoop
map-reduce application are always in the form of files (Pandya [December 2013], Prakash [July 2014]).
However, in many cases the final result from a group of computational tasks is ideally returned to the
main thread and used for further processes.

Reduction classes provided by Parallel Iterator can be used anywhere in a programmer’s code, free
of the limitations of OpenMP and needless of the preliminary setup procedures of Hadoop. Reduction
operations are performed as the result of simple method calls on Reduction objects, without requiring
extra classes or boilerplate codes on the contrary to Hadoop and OpenMP (Prakash [July 2014],
OpenMP [July 2013]). Moreover, We have strictly avoided data sharing in our implementations of the
Reduction interface; therefore reduction operations can be used in both sequential and parallel regions
as opposed to OpenMP reduction identifiers. However, the specifications thereof may not apply to
user-defined implementations of the interface.

Furthermore, following the recommendations in Section 3, the library also provides complex-
reduction implementations that involve relational algebraic operations (e.g. union and intersection) on
maps, as it was . Complex reductions can nest basic or complex reductions in order to ease reduction

13

operations that could be quite confusing and error-prone to implement otherwise. The examples in
Section 4.5 clarify the advantages of our model.

4.5 Nested Reductions

Most of map-reduce frameworks perform their reductions in two stages. That is, during the first
stage, the <Key, Value> pairs returned from mappers are grouped based on their keys, and then the
values for each group are combined into the final result during the second stage (see Section 3). For
this purpose we have proposed the concept of nested reductions, where a programmer can use an
instance of Reduction within another implementation of the Reduction interface.

For example, class IMP which is an implementation of the Reduction interface receives object R1
(an instance of Reduction) via its constructor. Class IMP is in charge of grouping data based on user
specifications; meanwhile IMP uses R1 to reduce every two elements that can be grouped, into one
element. The process continues until all elements that belong to the same group are reduced.

The frameworks that were discussed in Section 3, require users to implement separate functions or
classes for grouping and combining. However, function blocks cannot be reused later, neither using
different classes for grouping and combining allows flexible nesting of these stages.

Thus, we have proposed implementing both grouping and combining stages simultaneously, but
keeping them (i.e. grouping and combining) as separate concepts at the same time while the entire
implementation is based on a single interface (i.e. Reduction interface). Therefore, the simplicity and
understandability of the design is improved, as independent objects are exploited for each stage. The
following example clarifies the advantages of this approach.

4.5.1 Example 1

MapUnion is one of the implementations provided by the library, which renders the union of two
different maps (i.e. sets of <Key, Value> pairs). The specified implementation for this class looks like
the following pseudo-code.

public MapUnion implements Reduction<Map> {

private Reduction reducer;

MapUnion (Reduction r) {reducer = r;}

public Map reduce (Map ml, Map m2){
// for every key in m2, if the same key exists
// in ml, then reduce V1 and V2 using reducer,
// and put the result back into mi.
// Otherwise, add <K2, V2> to ml.

}

For instance, in a specific case we would like to find the links in which words insomnia and matador
could be found. For this purpose, we use two parallel threads to search through a bunch of documents
separately, and return their own map of <Word, Link> data pairs. Finally, we instantiate an object
of MapUnion, and send an instance of SetUnion to its constructor. SetUinon is another instance of
Reduction, and provides the union of the values (i.e. sets) that are sent to it (see Figure 1).

Now if we want to count the average number of occurrences for the words insomnia and matador in
the documents that are inspected by the threads, all we need to change is the Reduction instance that
we send to the constructor of MapUnion. Thus, for this case we send an instance of FloatAverage to
the constructor. FloatAverage is an instance of Reduction which calculates and returns the average of
two float values (see Figure 2).

14

Threadl

Map1
word link
Insomnia www.ab.com Mapl
Hypersomnia | www.cd.com word link
. www.ab.com
new MapUnion(SetUnion); Insomnia www‘aetf). C(())m
Thread2 | www.cd.com
Hypersomnia www.gh.com
Map2
word link
Insomnia www.ef.com
Hypersomnia | www.gh.com

Figure 1: MapUnion with SetUnion as its nested Reduction

Threadl
Map1
word occurrence
Insomnia 10
Hypersomnia 5 Map1
_ word occurrence
Thread2 new MapUnion(FloatAverage); Insomnia - 8.5
Hypersomnia 4
Map2
word occurrence
Insomnia 7
Hypersomnia 3

Figure 2: MapUnion with FloatAverage as its nested Reduction

The main advantage of nesting reductions is that, very complex reductions which may require reduction
operations in multiple levels, can be implemented easily while the probability of confusion and error
is minimized. Furthermore, the number of reduction classes can be kept at minimum, while their
combinations result in many different reduction approaches.

For example, MapUnion and MapIntersection are implemented only once; however their combina-
tions with lower-level reductions (e.g. SetUnion, FloatAverage etc<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>