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ABSTRACT

Formaldehyde is an important industrial chemical due to its
unique properties, coupled with its low cost and the basic availability
of the raw materials from which it is produced. It is generated
principally by the catalytic oxidation of methanol using a heated
stationary catalyst at approximately atmospheric pressure.

Formaldehyde is used in the manufacture of a wide variety of
commercial products, the most significant of which in New Zealand, are
the urea-formaldehyde resins. Such resins are used in the production
of reconstituted wood products such as: particleboard; medium density
fibreboard; plywood; laminated and fingerjointed wood products; and
in the modification of textiles and papers. Insulating building foams
have also been formulated using urea-formaldehyde resins.

Formaldehyde release from products containing urea-formaldehyde
adhesives has been well documented in the literature over recent years.
It has been shown that in some instances the levels of airborne formal-
dehyde inside dwellings and commercial premises may exceed various
industrial threshold limit values for an eight hour working day. 1In
New Zealand the current industrial permissible time weighted average
value for formaldehyde in air is set at a maximum level of 2 ppm ( 2.4
mg of formaldehyde per metre3 of air ); Natural levels of formaldehyde
in air do exist and have been measured as being in the vicinity of
0.12 to 0.39 parts per billion.

In terms of being a health hazard, formaldehyde was found to be
a primary irritant of the respiratory airways and a skin sensitizer in
some individuals. Some suggestion has been made that formaldehyde
can also be carcinogenic. This suggestion should be treated with caution
as it derives from preliminary experiments on rats and mice exposed to

very high formaldehyde levels.
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Over the years a variety of test methods have been applied to
the measurement of formaldehyde which is released from formaldehyde-
bearing materials. A dynamic testing method, in the form of a wind-
tunnel was adopted in this study for measuring the emission rate of
formaldehyde directly from the surfaces of urea-formaldehyde bonded
particleboard. Emissions were quantified in terms of the weight of
formaldehyde emitted in mg from one square metre of panel surface
over one hour, under the prevailing climatic conditions.

It was observed that formaldehyde emissions were as great
as about 12 mg h_1 m-2 from panels tested soon after manufacture.
After five years of storage of the particleboard panels in ventilated
conditions, the formaldehyde emission rates were measured as being
between 0.1 and 1.1 mg h_1 m_2 . It was apparent that formaldehyde
emissions from particleboard bonded with a urea-formaldehyde resin
with a urea to formaldehyde molar ratio of 1 to 1.5, reached a basal
level approximately 12 months from the time of manufacture. The
formaldehyde emitted over the initial 12 month period was equated to
the formaldehyde which was originally present dissolved in the resin
solution and the formaldehyde which was cleaved from the urea-formaldehyde
polymer network during high temperature pressing. Formaldehyde lost
from the particleboard after the initial 12 month storage phase was
probably due to hydrolysis of the resin under ambient conditions. The
latter was termed "evaporable" formaldehyde as opposed to "free"
formaldehyde which was emitted in the first 12 month period.

The fluctuations in the basal emission rates of formaldehyde
from particleboard were attributed to changes in the microclimate
associated with the particleboard.

Particleboard panels with a higher density surface layer of

wood tended to have higher formaldehyde emission rates in the early

period of storage compared with particleboard having a lower density
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of wood in the surface layer. Emissions of formaldehyde from the edges
of freshly sawn particleboard tended to be as much as 30 to 60 times
greater than emissions from the faces of the original panels. After
extended storage, emissions from the edges of particleboard tended to
approximate the levels of emissions from the faces of particleboard.

It was demonstrated that the presence of an air boundary layer
adjacent to the particleboard surface has a significant effect on the
formaldehyde emission rate from the panel surface. Below air speeds
of 5 cm s-1 over the panel surface, it appeared that the rate of
diffusion of formaldehyde through the air boundary layer controlled
the rate of diffusion of formaldehyde from the particleboard surface
into the bulk air. At air velocities in excess of 5 cm s—l the effect
of the air boundary layer diminished. It was estimated that within
enclosed spaces, such as houses with a relatively low air-turnover
rate, the diffusive resistance of air boundary layers to formaldehyde
emissions from particleboard surfaces could be significant in lowering
the formaldehyde levels inside the house.

The use of paints, paint-coated wallpaper and polymer-coated
wallpaper to cover particleboard surfaces tended to reduce the
emission rate of formaldehyde to below the detection threshold of the
method of measurement ( 0.01 mg h_l m“2 ). Some building materials
other than urea-formaldehyde bonded particleboard were shown to emit
measureable quantities of formaldehyde. These materials were of
cellulosic-origin and emitted as much as 0.3 mg of formaldehyde h_1 m-2.
The latter were known to not contain urea-formaldehyde bonding agents.

The levels of formaldehyde inside a showhome containing
urea-formaldehyde bonded particleboard as wall and floor cladding were
measured as ranging from 1.2 to 7.2 mg m_3, but thes= air-borne

concentrations of formaldehyde decreased to betwesn 0.7 and 1.3 mg m_3
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after an interval of three months. A mathematical model was derived

for the prediction of the maximum expected steady state levels of
formaldehyde inside dwellings containing formaldehyde-emitting materials.
The model took into account such parameters as: the emission rate of
formaldehyde from the emitting surface; the surface area of the exposed
emitting material; and the volumetric air flow rate through the dwelling.
The model in general tended to indicate higher formaldehyde levels

when tested using the parameters derived from measurements taken in

the showhome. This model could conceivably find use in the design

of buildings in order to minimize the levels of formaldehyde in the
indoor environment.

The lack of sufficient information in the literature relating
to the mass transfer of formaldehyde through polymers prompted the
investigation into the permeability characteristics of polymeric
materials to formaldehyde.

The steady state transmission rates of formaldehyde through
free polymer films, such as plastic films, free paint and free
polyurethane varnish coatings, were measured using a diffusion cell
operated at atmospheric pressure. The mass diffusion principle
associated with this permeation testing device best paralleled the
real-life situation where either polymer films (plastic films) or
polymer coatings (paint or varnish coatings) may be in contact with
formaldehyde and water vapour, at atmospheric pressure.

As a source of penetrant in these studies a dilute aqueous
solution of formaldehyde was used to yield molecular formaldehyde.

It was calculated that an aqueous solution containing 69 mg L._l of
formaldehyde gave rise to a concentration in air of formaldehyde,
above the solution,of 1 mg m—3, at 30°C. A solution with such a
concentration of dissolved formaldehyde was chosen arbitrarily

for permeation studies. Levels of air-borne formaldehyde inside




enclosed airspaces such as in houses lined with urea-formaldehyde
bonded particleboard, with a low air turn-over, could reasonably
be expected to be in the region of 0.1 to 100 mg m—3.

The use of carbon-14 formaldehyde was favoured in this
research over the use of carbon-12 formaldehyde. This gave rise to
the possibility of permeability isotope effects. Based on the
information presented in this thesis and on the experimental variability
in test results, it appeared that the effects of a permeability
isotope effect were negligible in comparison.

The transmission rates of formaldehyde through the following
types of polymer films were-measured: low density polyethylene;
high density polyethylene; high density-low density polyethylene
blended polymer; polypropylene; - poly(ethylene terephthalate);

poly(vinylidene dichloride)-coated Poly(ethylene terephthalate);
"Paraform”, a multi-layered food packaging polymer film based on
cellophane; pely(ethylene vinyl acetate), a multi-layered food
packaging polymer film; plasticised : poly(vinyl chloride);
polystyrene; nylon—-6; and cellophane. At 30°C transmission rates of

formaldehyde ranged from 1.2 x 10.—7 pg cm-]'s—l for cellophane to
12

1.2 x 10 pg cm s for poly(ethylene vinyl acetate) polymer
films, respectively. There was some indication that the transmission
rate of formaldehyde through low density polyethylene decreased with
increasing film thickness. It also appeared that an increase in

the water contents of nylon-6 and cellophane films lead to an increase
in the transmission rate of formaldehyde. With the exception of the
poly (ethylene terephthalate)-types of polymer films and the
polystyrene film, all other polymer film types exhibited typical

Fickian behaviour, in that the permeation of formaldehyde through each

polymer film was steady state. The permeation of formaldehyde through
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poly (ethylene terephthalate)-type films and polystyrene film appeared
to be anomalous in that the mass transfer process did not appear to
show Fickian—-type behaviour.

The transmission rates of formaldehyde through free alkyd-type
paint films, free vinyl-based paint films and through free polyurethane
varnish films, were measured at 3OOC. The permeation of formaldehyde
through free alkyd-type paint films and free polyurethane varnish films
typified Fickian behaviour, in that after a short time-lag the steady
state permeation of formaldehyde occurred. The transmission rates of
formaldehyde through the free alkyd-types of paint film ranged from
1.8 =% 10—9 JiLs cm-ls_l te 3.2 x 10-9 P9 cm s = whereas transmission
rates of formaldehyde through free polyurethane varnish films ranged

10 g cm_]'s—l to 2.4 x 10—8 g cm_ls-1 . It appeared
P E

from 4.1 x 10
that the "two-pack" or "catalytic-curing" type of polyurethane varnish
film had a lower permeability to formaldehyde compared with either
"one-pack" ("air-curing") or "one-pack" ("moisture-curing") varieties
of polyurethane varnish. By contrast the transmission rates of
formaldehyde through the vinyl-based types of paint films tended to
range from 3.7 x 10_7 P9 cm-ls-l to 6.2 x 10—7 pg cm_ls-l >

A study of the temperature dependency of the permeation of
formaldehyde through the following polymer film types was made:
low density polyethylene; plasticised poly(vinyl chloride);
polystyrene; polypropylene; high density polyethylene; cellophane;
and nylon-6. The transmission rates of formaldehyde through each of
these polymer film types increased with increasing temperature, over
the temperature range of 309 to SOOC, thus typifying Arrhenius
behaviour. The energies of activation for the permeation of formaldehyde
were calculated as ranging from 16.1 kcal mol_l (67.4 kJ mol_l) for

plasticised poly(vinyl chloride) to 33.1 kcal mol_l (139 kJ mol—l) for

cellophane, respectively.
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These activation energies were in general higher than the energies

of activation for the permeation of other penetrants of similar

molecular weight, through the same polymer types. The observed

energies of activation for the permeation of formaldehyde through polymers
were indicative of a strong interaction between formaldehyde and the
various polymers.

Desorption studies of formaldehyde from polymer films tested
after permeability measurement, indicated that formaldehyde was
irreversibly sorbed either onto or into the following polymer film
types: low density polyethylene; ° poly(ethylene vinyl acetate);
polypropylene; polystyrene; and plasticised poly(vinyl chloride ).
Formaldehyde was found to desorb from nylon-6 and cellophane polymer
film types, indicating a different type of interaction between
formaldehyde and these two polymer film types.

The autoradiography of polymer films and free polymer coatings
following permeability testing showed that the pattern of sorbed
carbon-14 formaldehyde exhibited by each polymer film typeor free
polymer coating type, differed according to the type of polymer.
Clustering of sorbed carbon-14 formaldehyde in polymer films containing
polyethylene polymers may have been indicative of the formation of
formaldehyde-formaldehyde polymers or perhaps could have been due
to preferred pathways or sites for the diffusion of formaldehyde through
the polymer film. The following types of polymer film tended to show
a uniform sorption pattern of formaldehyde: nylon-6; cellophane;
"Paraform"; free alkyd paint films; free vinyl-based paint films;
and free polyurethane varnish films. The uniform appearance of the
sorption pattern of carbon-14 formaldehyde may have been indicative
of a higher solubility coefficient of permeation for formaldehyde in

the latter polymer types. On the other hand, insufficient carbon-14
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formaldehyde was sorbed by the poly(ethylene terephthalate)-type and
polystyrene films in order to obtain autoradiographs. Both the
poly(ethylene terephthalate)-types of films and the polystyrene film had
a relatively low permeability to formaldehyde and appeared to also have
a low solubilizing effect on formaldehyde.

The data presented in this thesis are discussed in relation to the
practical problem that initiated the study. Sufficient detailed information
has been collected to enable informed decisions to be taken over the
choice of formaldehyde—emitting materials used in the building and the

food packaging industries.
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