

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

STUDIES ON THE REDUCTION OF FORMALDEHYDE EMISSION FROM PARTICLEBOARD BY POLYMERS.

A Thesis

Submitted to the University of Auckland for Examination for the Degree of Doctor of Philosophy in Chemistry

by

Arnis A. R. Kazakevics, Auckland, NEW ZEALAND, February 1984

* * *

ABSTRACT

Formaldehyde is an important industrial chemical due to its unique properties, coupled with its low cost and the basic availability of the raw materials from which it is produced. It is generated principally by the catalytic oxidation of methanol using a heated stationary catalyst at approximately atmospheric pressure.

Formaldehyde is used in the manufacture of a wide variety of commercial products, the most significant of which in New Zealand, are the urea-formaldehyde resins. Such resins are used in the production of reconstituted wood products such as: particleboard; medium density fibreboard; plywood; laminated and fingerjointed wood products; and in the modification of textiles and papers. Insulating building foams have also been formulated using urea-formaldehyde resins.

Formaldehyde release from products containing urea-formaldehyde adhesives has been well documented in the literature over recent years. It has been shown that in some instances the levels of airborne formaldehyde inside dwellings and commercial premises may exceed various industrial threshold limit values for an eight hour working day. In New Zealand the current industrial permissible time weighted average value for formaldehyde in air is set at a maximum level of 2 ppm (2.4 mg of formaldehyde per metre³ of air). Natural levels of formaldehyde in air do exist and have been measured as being in the vicinity of 0.12 to 0.39 parts per billion.

In terms of being a health hazard, formaldehyde was found to be a primary irritant of the respiratory airways and a skin sensitizer in some individuals. Some suggestion has been made that formaldehyde can also be carcinogenic. This suggestion should be treated with caution as it derives from preliminary experiments on rats and mice exposed to very high formaldehyde levels.

i.

Over the years a variety of test methods have been applied to the measurement of formaldehyde which is released from formaldehydebearing materials. A dynamic testing method, in the form of a windtunnel was adopted in this study for measuring the emission rate of formaldehyde directly from the surfaces of urea-formaldehyde bonded particleboard. Emissions were quantified in terms of the weight of formaldehyde emitted in mg from one square metre of panel surface over one hour, under the prevailing climatic conditions.

It was observed that formaldehyde emissions were as great as about 12 mg h $^{-1}$ m $^{-2}$ from panels tested soon after manufacture. After five years of storage of the particleboard panels in ventilated conditions, the formaldehyde emission rates were measured as being between 0.1 and 1.1 mg $h^{-1} m^{-2}$. It was apparent that formaldehyde emissions from particleboard bonded with a urea-formaldehyde resin with a urea to formaldehyde molar ratio of 1 to 1.5, reached a basal level approximately 12 months from the time of manufacture. The formaldehyde emitted over the initial 12 month period was equated to the formaldehyde which was originally present dissolved in the resin solution and the formaldehyde which was cleaved from the urea-formaldehyde polymer network during high temperature pressing. Formaldehyde lost from the particleboard after the initial 12 month storage phase was probably due to hydrolysis of the resin under ambient conditions. The latter was termed "evaporable" formaldehyde as opposed to "free" . formaldehyde which was emitted in the first 12 month period.

The fluctuations in the basal emission rates of formaldehyde from particleboard were attributed to changes in the microclimate associated with the particleboard.

Particleboard panels with a higher density surface layer of wood tended to have higher formaldehyde emission rates in the early period of storage compared with particleboard having a lower density

ii.

of wood in the surface layer. Emissions of formaldehyde from the edges of freshly sawn particleboard tended to be as much as 30 to 60 times greater than emissions from the faces of the original panels. After extended storage, emissions from the edges of particleboard tended to approximate the levels of emissions from the faces of particleboard.

It was demonstrated that the presence of an air boundary layer adjacent to the particleboard surface has a significant effect on the formaldehyde emission rate from the panel surface. Below air speeds of 5 cm s⁻¹ over the panel surface, it appeared that the rate of diffusion of formaldehyde through the air boundary layer controlled the rate of diffusion of formaldehyde from the particleboard surface into the bulk air. At air velocities in excess of 5 cm s⁻¹ the effect of the air boundary layer diminished. It was estimated that within enclosed spaces, such as houses with a relatively low air-turnover rate, the diffusive resistance of air boundary layers to formaldehyde emissions from particleboard surfaces could be significant in lowering the formaldehyde levels inside the house.

The use of paints, paint-coated wallpaper and polymer-coated wallpaper to cover particleboard surfaces tended to reduce the emission rate of formaldehyde to below the detection threshold of the method of measurement ($0.01 \text{ mg h}^{-1} \text{ m}^{-2}$). Some building materials other than urea-formaldehyde bonded particleboard were shown to emit measureable quantities of formaldehyde. These materials were of cellulosic-origin and emitted as much as 0.3 mg of formaldehyde h⁻¹ m⁻². The latter were known to not contain urea-formaldehyde bonding agents.

The levels of formaldehyde inside a showhome containing urea-formaldehyde bonded particleboard as wall and floor cladding were measured as ranging from 1.2 to 7.2 mg m⁻³, but these air-borne concentrations of formaldehyde decreased to between 0.7 and 1.3 mg m⁻³.

iii.

after an interval of three months. A mathematical model was derived for the prediction of the maximum expected steady state levels of formaldehyde inside dwellings containing formaldehyde-emitting materials. The model took into account such parameters as: the emission rate of formaldehyde from the emitting surface; the surface area of the exposed emitting material; and the volumetric air flow rate through the dwelling. The model in general tended to indicate higher formaldehyde levels . when tested using the parameters derived from measurements taken in the showhome. This model could conceivably find use in the design of buildings in order to minimize the levels of formaldehyde in the indoor environment.

The lack of sufficient information in the literature relating to the mass transfer of formaldehyde through polymers prompted the investigation into the permeability characteristics of polymeric materials to formaldehyde.

The steady state transmission rates of formaldehyde through free polymer films, such as plastic films, free paint and free polyurethane varnish coatings, were measured using a diffusion cell operated at atmospheric pressure. The mass diffusion principle associated with this permeation testing device best paralleled the real-life situation where either polymer films (plastic films) or polymer coatings (paint or varnish coatings) may be in contact with formaldehyde and water vapour, at atmospheric pressure.

As a source of penetrant in these studies a dilute aqueous solution of formaldehyde was used to yield molecular formaldehyde. It was calculated that an aqueous solution containing 69 mg L^{-1} of formaldehyde gave rise to a concentration in air of formaldehyde, above the solution, of 1 mg m⁻³, at 30°C. A solution with such a concentration of dissolved formaldehyde was chosen arbitrarily for permeation studies. Levels of air-borne formaldehyde inside

iv.

enclosed airspaces such as in houses lined with urea-formaldehyde bonded particleboard, with a low air turn-over, could reasonably be expected to be in the region of 0.1 to 100 mg m⁻³.

The use of carbon-14 formaldehyde was favoured in this research over the use of carbon-12 formaldehyde. This gave rise to the possibility of permeability isotope effects. Based on the information presented in this thesis and on the experimental variability in test results, it appeared that the effects of a permeability isotope effect were negligible in comparison.

The transmission rates of formaldehyde through the following types of polymer films were measured: low density polyethylene; high density polyethylene; high density-low density polyethylene blended polymer; polypropylene; poly(ethylene terephthalate); poly(vinylidene dichloride)-coated poly(ethylene terephthalate); "Paraform", a multi-layered food packaging polymer film based on cellophane; poly(ethylene vinyl acetate), a multi-layered food packaging polymer film; plasticised poly(vinyl chloride); polystyrene; nylon-6; and cellophane. At 30°C transmission rates of formaldehyde ranged from 1.2 x $10^{-7} \mu g \text{ cm}^{-1} \text{s}^{-1}$ for cellophane to 1.2 x $10^{-12} \ \mu\text{g cm}^{-1}\text{s}^{-1}$ for poly(ethylene vinyl acetate) polymer films, respectively. There was some indication that the transmission rate of formaldehyde through low density polyethylene decreased with increasing film thickness. It also appeared that an increase in the water contents of nylon-6 and cellophane films lead to an increase in the transmission rate of formaldehyde. With the exception of the poly(ethylene terephthalate)-types of polymer films and the polystyrene film, all other polymer film types exhibited typical Fickian behaviour, in that the permeation of formaldehyde through each polymer film was steady state. The permeation of formaldehyde through

v.

poly (ethylene terephthalate)-type films and polystyrene film appeared to be anomalous in that the mass transfer process did not appear to show Fickian-type behaviour.

The transmission rates of formaldehyde through free alkyd-type paint films, free vinyl-based paint films and through free polyurethane varnish films, were measured at 30°C. The permeation of formaldehyde through free alkyd-type paint films and free polyurethane varnish films typified Fickian behaviour, in that after a short time-lag the steady state permeation of formaldehyde occurred. The transmission rates of formaldehyde through the free alkyd-types of paint film ranged from 1.8 x 10^{-9} µg cm⁻¹s⁻¹ to 3.2 x 10^{-9} µg cm⁻¹s⁻¹ whereas transmission rates of formaldehyde through free polyurethane varnish films ranged from 4.1 x 10⁻¹⁰ μ g cm⁻¹s⁻¹ to 2.4 x 10⁻⁸ μ g cm⁻¹s⁻¹. It appeared that the "two-pack" or "catalytic-curing" type of polyurethane varnish film had a lower permeability to formaldehyde compared with either "one-pack" ("air-curing") or "one-pack" ("moisture-curing") varieties of polyurethane varnish. By contrast the transmission rates of formaldehyde through the vinyl-based types of paint films tended to range from 3.7 x 10^{-7} µg cm⁻¹s⁻¹ to 6.2 x 10^{-7} µg cm⁻¹s⁻¹.

A study of the temperature dependency of the permeation of formaldehyde through the following polymer film types was made: low density polyethylene; plasticised poly(vinyl chloride); polystyrene; polypropylene; high density polyethylene; cellophane; and nylon-6. The transmission rates of formaldehyde through each of these polymer film types increased with increasing temperature, over the temperature range of 30° C to 50° C, thus typifying Arrhenius behaviour. The energies of activation for the permeation of formaldehyde were calculated as ranging from 16.1 kcal mol⁻¹ (67.4 kJ mol⁻¹) for plasticised poly(vinyl chloride) to 33.1 kcal mol⁻¹ (139 kJ mol⁻¹) for cellophane, respectively.

vi.

These activation energies were in general higher than the energies of activation for the permeation of other penetrants of similar molecular weight, through the same polymer types. The observed energies of activation for the permeation of formaldehyde through polymers were indicative of a strong interaction between formaldehyde and the various polymers.

Desorption studies of formaldehyde from polymer films tested after permeability measurement, indicated that formaldehyde was irreversibly sorbed either onto or into the following polymer film types: low density polyethylene; poly(ethylene vinyl acetate); polypropylene; polystyrene; and plasticised poly(vinyl chloride). Formaldehyde was found to desorb from nylon-6 and cellophane polymer film types, indicating a different type of interaction between formaldehyde and these two polymer film types.

The autoradiography of polymer films and free polymer coatings following permeability testing showed that the pattern of sorbed carbon-14 formaldehyde exhibited by each polymer film type or free polymer coating type, differed according to the type of polymer. Clustering of sorbed carbon-14 formaldehyde in polymer films containing polyethylene polymers may have been indicative of the formation of formaldehyde-formaldehyde polymers or perhaps could have been due to preferred pathways or sites for the diffusion of formaldehyde through the polymer film. The following types of polymer film tended to show a uniform sorption pattern of formaldehyde: nylon-6; cellophane; "Paraform"; free alkyd paint films, free vinyl-based paint films; and free polyurethane varnish films. The uniform appearance of the sorption pattern of carbon-14 formaldehyde may have been indicative of a higher solubility coefficient of permeation for formaldehyde in the latter polymer types. On the other hand, insufficient carbon-14

vii.

formaldehyde was sorbed by the poly(ethylene terephthalate)-type and polystyrene films in order to obtain autoradiographs. Both the poly(ethylene terephthalate)-types of films and the polystyrene film had a relatively low permeability to formaldehyde and appeared to also have a low solubilizing effect on formaldehyde.

The data presented in this thesis are discussed in relation to the practical problem that initiated the study. Sufficient detailed information has been collected to enable informed decisions to be taken over the choice of formaldehyde-emitting materials used in the building and the food packaging industries.

* * * * *

CONTENTS

			PAGE
ABST	RACT		i
LIST	OF FIG	URES	xiv
LIST	OF TAB	LES	ixx
CHAP	TER 1 :	FORMALDEHYDE	
1.1	Introduc	ction	1
1.2	Monomeri	ic formaldehyde	3
1.3	Polymers	s of formaldehyde	4
1.4	Aqueous	chemistry of formaldehyde	6
	1.4.1	Formaldehyde solution chemistry .	6
	1.4.2	Partial pressures above aqueous formaldehyde solu	itions 9
1.5	Chemical	l properties of formaldehyde .	13
	1.5.1	Chemical stability and decomposition .	13
	1.5.2	Oxidation and reduction .	14
	1.5.3	Reactions of formaldehyde with formaldehyde .	15
	1.5.4	Type reactions .	17
1.6	The uses	s of formaldehyde	20
	1.6.1	Phenolic-formaldehyde resins .	21
	1.6.2	Amino-formaldehyde resins .	25
1.7	The tox	icity of formaldehyde	31
1.8	Permiss	ible airborne levels of formaldehyde	36
1.9	REFEREN	NCES	40
CHAF	TER 2 :	THE STUDY OF THE EMISSION OF FORMALDEHYD	DE
		FROM UREA-FORMALDEHYDE-BONDED PARTICLEBO	DARD
2.1	The man	ufacture of particleboard .	45
	2.1.1	Introduction .	45
	2.1.2	Wood particle generation .	47
	2.1.3	Blending of adhesive and additives .	49
	2.1.4	Forming of the mat.	51
	2.1.5	Pressing	53
2.2	The "fo	ormaldehyde release problem", a summary.	55
	2.2.1	Formaldehyde emission from products containing	
		formaldehyde-based resins .	55
	2.2.2	Other sources of formaldehyde pollution .	61
	2 2 3	The "formaldehyde release problem"-in perspective	e 64

contd.

ix.

х.

CONTE	NTS Contd		PAGE
2.3	Formalde	hyde emission from particleboard .	67
	2.3.1	The origin of emitted formaldehyde	67
	2.3.2	Factors affecting the release of formaldehyde from	
		particleboard	70
	2.3.3	The analysis of formaldehyde .	74
	2.3.3/1	Physical methods for determining formaldehyde .	74
	2.3.3/2	Chemical methods for determining formaldehyde .	74
	2.3.3/3	The estimation of trace amounts of formaldehyde .	79
	2.3.4	Test methods for collecting formaldehyde released	
		from particleboard .	86
2.4	Experime	ntal section	
	2.4.1	The design and operation of a formaldehyde collection	
		apparatus .	95
	2.4.2	Analytical section	99
	2.4.2/1	The preparation and standardization of an aqueous	
		formaldehyde solution	99
	2.4.2/2	The preparation of a formaldehyde standard curve	
		using chromotropic acid .	99
	2.4.2/3	The technique for testing particleboard samples	
		for formaldehyde emissions	100
	2.4.2/4	The estimation of the maximum probable error	
		associated with the measurement of formaldehyde	
		emission rates	103
	2.4.3	The influence of aging on the emission rate of	
		formaldehyde from the faces of particleboard .	106
	2.4.3/1	Formaldehyde emissions from Type A particleboard, (14mm)	109
	2.4.3/2	Emission rates of formaldehyde with aging of Type A	
	÷.	particleboard, (14mm)	116
	2.4.3/3	Formaldehyde emissions from Type B particleboard, (22mm)	122
	2.4.3/4	Formaldehyde emissions from Type C particleboard, (13.5mm) 129
	2.4.3/5	Formaldehyde emissions from Type D particleboard, (9.5mm)	133
	2.4.3/6	Formaldehyde emissions from Type E particleboard, (3mm)	137
	2.4.3/7	Formaldehyde emissions from Type F particleboard, (4.75mm) 142
	2.4.3/8	Summary and conclusions	145
	2.4.4	The measurement of the rate of formaldehyde emission	
		from the edges of particleboard, (22 mm) .	151

xi.

PAGE

246 250

250

CONTI	ENTS Cont	d.	PAGE
	2.4.5	An investigation into the effects of sanding on the	
		emission rate of formaldehyde from the faces of	
		particleboard,(22 mm)	158
	2.4.6	The influence of air velocity on the emission rate of	
		formaldehyde from particleboard surfaces,(22 mm)	160
	2.4.7	The effect of surface treatments on the emission rate of	
		formaldehyde from particleboard, (9.5 mm) .	167
	2.4.8	The measurement of formaldehyde emissions from some	
		miscellaneous interior decorating and building materials	172
	2.4.9	The measurement of formaldehyde levels inside a house	179
	2.4.10	The prediction of formaldehyde levels inside dwellings	188
	2.4.10/1	. Test of method for predicting steady state levels, of	
		formaldehyde inside dwellings .	202
2.5	Conclusi	ons and summary	213
	2.5.1	The effects of aging and changes in climatic conditions	
		on the emission rate of formaldehyde	213
	2.5.2	The effect of surface ventilation on the emission rate	
		of formaldehyde from particleboard	217
	2.5.3	The effect of surface treatments on the emission rate	
		of formaldehyde from particleboard	217
	2.5.4	What is the potential for formaldehyde pollution inside	
		a dwelling lined with particleboard?	219
2.6	Suggesti	lons for further work	225
2.7	APPENDIX	2.1 Wet coverage rates of paint, size and paste.	226
2.8	REFERENC	CES	227
CHAP	TER 3 : 1	THE PERMEABILITY OF POLYMER FILMS AND POLYMER COATINGS	
	Ţ	TO FORMALDEHYDE	
3.1	Introduc	ction	234
	3.1.1	The theory of permeability	236
	3.1.2	The transport of penetrants	240
	3.1.3	Factors influencing permeability	241
	3.1.4	Methods used for the measurement of permeability	
		coefficients	246
3.2	The meas	surement of formaldehyde permeation	250
	3.2.1	The selection of a method for measuring formaldehyde	
		permeation.	250

3.2.2 The formaldehyde source . 256 . . 3.2.3 The use of carbon-14 labelled formaldehyde as a 262 penetrant . . . Υ. . 264 3.2.4 The measurement of radioactivity . *

xii.

ENTS Cont	d.	PAGE
3.2.5	Isotope effects in permeability testing .	270
		272
		277
3.3.1		277
3.3.2		
	permeability measurements	293
3.3.3	The redesign and use of a modified permeation cell	
	assembly for permeability measurements .	297
3.3.4	Modifications to the permeability apparatus for the	
	measurement of polymer film permeabilities using	
	an aqueous penetrant in continuous contact with the	
	polymer film surface	305
3.3.5	The permeability of various polymer film types to	
	carbon-14 formaldehyde	315
3.3.5/1	The permeability of polyolefin films to carbon-14	
	formaldehyde	321
3.3.5/2	The permeability of polyester-type polymer films	
	to carbon-14 formaldehyde	327
3.3.5/3	The permeability to carbon-14 formaldehyde of two	
	polymer film types designed for the packaging	
	of foodstuffs	332
3.3.5/4	The permeabilities of: poly(vinyl chloride);	
	polystyrene; nylon-6; and cellophane films to	
	carbon-14 formaldehyde	341
3.3.6	The temperature dependence of the permeability of	
	polymer films to carbon-14 formaldehyde.	352
3.3.7	The relative rates of desorption of carbon-14	
	formaldehyde from polymer films .	374
3.3.8	The autoradiography of polymer films after	
	permeability testing with carbon-14 formaldehyde.	390
The meas	surement of the permeabilities of polymer coatings to	
carbon-l	4 formaldehyde	406
3.4.1	Introduction - polymer coatings .	406
3.4.2	The preparation of polymer coatings for permeability	
	testing	409
3.4.3	The chemical and physical characteristics of paints	
	and polyurethane varnishes	426
	3.2.5 3.2.6 The meas formalde 3.3.1 3.3.2 3.3.3 3.3.3 3.3.4 3.3.5/1 3.3.5/1 3.3.5/2 3.3.5/2 3.3.5/2 3.3.5/4 3.3.5/4 3.3.5/4 3.3.5/4 3.3.5/4 3.3.5/4 3.3.5/4 3.3.5/4 3.3.5/4	 3.2.6 Polymer film types studied

xiii.

	3.4.3/1	Al	kyd-type pa	ints .		*		427
	3.4.3/2	Vi	nyl-type pa	ints .	.*			429
	3.4.3/3	Po	lyurethane-	-type varni	shes.			431
	3.4.4	The	measurement	c of the th	ickness of	polymer c	oatings	435
	3.4.5	The	measurement	c of the pe	rmeability	of free p	aint and	
		free	polyuretha	ane varnish	coatings	to carbon-	14	
		form	aldehyde					442
	3.4.5/1	Th	e permeabil	Lity of fre	e alkyd pa	int coatin	gs to	
		ca	rbon-14 for	rmaldehyde				445
	3.4.5/2	Th	e permeabi	lity of fre	e vinyl-ba	sed paint	coatings	
		to	carbon-14	formaldehy	de .	÷	•	453
	3.4.5/3	A	summary of	the permea	bilities o	of free pai	nt	
		cc	atings to :	formaldehyd	le .	•		457
	3.4.5/4	Th	e permeabi	lity of fre	e polyuret	hane varni	sh coatings	2
		to	carbon-14	formaldehy	vde .			464
3.5	Suggesti	ons f	or further	work .				474
3.6	APPENDIX	3.1	The estimation	ation of th	ne random e	error assoc	iated	
			with disp	ensing smal	l volumes	using the		
			"Eppendor:	f" pipette				476
	APPENDIX	3.2	Conversio	n of radioa	activity un	nits to uni	ts of	
			mass in r	elation to	carbon-14	formaldehy	rde and	
			carbon-12	formaldehy	, de	÷	*	478
	APPENDIX	3.3	The quenc	hing effect	of liquid	d scintilla	ition	
			counting	of 1 % (w/t) chromot:	ropic acid	dissolved	
			in concen	trated sulp	phuric acid	з.		479
3.7	REFERENC	ES.				, .	÷	481
CHAP	TER 4 : C	ONCLU	JDING REMAR	KS .		°≪	* ,	487
4.1	Introduc	tion	*	×			*	487
4.2	Formalde	hyde	emission f	rom partic	leboard			488
4.3	The perm	eabil	ity of pol	ymeric mate	erials to :	formaldehyd	le .	492
ACKN	OWLEDGEME	NTS.						500

* *

*

xiv.

LIST OF FIGURES

PAGE

		PAGE
CHAPTER 1	: FORMALDEHYDE	
FIGURE 1.1	Scheme showing equilibria between aqueous formaldehyde,	
	dissolved polymeric formaldehyde, and solution vapours.	9
FIGURE 1.2	Partial pressure and air concentration data for	
	aqueous formaldehyde at various temperatures	10
CHAPTER 2	: THE STUDY OF THE EMISSION OF FORMALDEHYDE	
	FROM UREA-FORMALDEHYDE-BONDED PARTICLEBOARD	
FIGURE 2.1	General steps of manufacture in flat-press particleboard	
	production.	48
FIGURE 2.2	Forming of a single-layer particleboard mat	52
FIGURE 2.3	Forming of a three-layer particleboard mat	52
FIGURE 2.4	Closed room conditions for unvented heater operation.	66
FIGURE 2.5	Typical ventilated room conditions for unvented heater	
	operation.	66
FIGURE 2.6	Photograph of wind-tunnel apparatus used for collection	
	of formaldehyde emissions from particleboard.	96
FIGURE 2.7	Diagram showing wind-tunnel apparatus for collecting	
	formaldehyde emitted from particleboard	97
FIGURE 2.8	Formaldehyde calibration curve using chromotropic acid.	101
FIGURE 2.9	The effect of aging on the formaldehyde emissions	
	from the faces of Type A particleboard (Resin 1)	120
FIGURE 2.10	The effect of aging on the formaldehyde emissions	
	from Type A particleboard (Resin 2)	121
FIGURE 2.11	The effect of aging on formaldehyde emissions from	
	Type B particleboard (Resin 1)	126
FIGURE 2.12	Semi-logarithmic graph showing decrease in	
	formaldehyde emissions with time for particleboard	
	Type B (Resin 1, Sample 1).	127
FIGURE 2.13	Decrease in formaldehyde emissions from Type C	
	particleboard with aging (Resin 1)	131
FIGURE 2.14	Semi-logarithmic graph of decrease in formaldehyde	
	emissions with aging of particleboard Type C (Resin 1).	132
FIGURE 2.15	A graph of the decrease in formaldehyde emissions	
	with aging for Type D particleboard (Resin 1).	136
FIGURE 2.16	Graph showing the decrease in formaldehyde emissions	
	from Type E particleboard with aging (Resin 1).	139

List of figure	s contd.	PAGE
FIGURE 2.17A	Semi-logarithmic graph showing decrease in formaldehyde	
	emissions with aging of particleboard Type E (Resin 1).	140
FIGURE 2.17B	Semi-logarithmic graph showing decrease in formaldehyde	
	emissions with aging of particleboard Type E,	
	Sample four (Resin 1)	140
FIGURE 2.18	Graph showing the decrease in formaldehyde emissions	
	from particleboard Type F with aging (Resin 1).	144
FIGURE 2.19	A comparison of the decreases in formaldehyde	
	emissions with storage, for representative	
	particleboard samples of different grades (Resin 1).	146
FIGURE 2.20	The decrease in formaldehyde emission rates from the	
	edges of Type B particleboard with age (Resin 1)	155
FIGURE 2.21	Graph of air velocity against formaldehyde emission	
	rate (Resin 1, Sample 8 edges).	164
FIGURE 2.22	Semi-logarithmic plot of diminution in CO ₂ levels	
	with time	181
FIGURE 2.23	Floor plan of showhome	185
FIGURE 2.24	Correlation of J.I.S. and Perforator methods against	
	climate chamber method	191
FIGURE 2.25	Diagram of Stirred Tank Reactor Model	195
FIGURE 2.26	Diagram of Modified Tank Reactor Model"	199
FIGURE 2.27	Graphs showing increase in calculated steady state	
	formaldehyde concentrations in air with time	208
<u>CHAPTER 3</u> :	THE PERMEABILITY OF POLYMER FILMS AND POLYMER	
	COATINGS TO FORMALDEHYDE	
FIGURE 3.1	A model for formaldehyde diffusion into a packaged	
	substrate from urea-formaldehyde bonded particleboard.	251
FIGURE 3.2	A model for formaldehyde diffusion through a polymer	
	coating from urea-formaldehyde bonded particleboard.	252
FIGURE 3.3	Cross-section of permeation cell	254
FIGURE 3.4	Analysis of penetrant gradient along permeation path	255
FIGURE 3.5	Semi-logarithmic plot of formaldehyde concentration in	
	solution against inverse of temperature (1/K) .	260
FIGURE 3.6	A typical quench correction curve as used in liquid	
	scintillation counting	267
FIGURE 3.7	Graph used to determine paralysis correction in	
	liquid scintillation counting	268

xv.

contd.

xvi.

List of figures contd.		
FIGURE 3.8	Complex packaging films: Figure 3.8a - cross-sectional	
	view of "Paraform" film; Figure 3.8b - cross-sectional	
	view of poly(ethylene vinyl acetate) film	275
FIGURE 3.9	Permeation cell assembly	278
FIGURE 3.10	The permeability of low density polyethylene and	
	poly(ethylene terephthalate) to carbon-14 formaldehyde,	
	at 30 °C	283
FIGURE 3.11	Permeation cell manifold assembly	294
FIGURE 3.12	Cross-sectional view of permeation cell and permeation	
	cell holder	298
FIGURE 3.13	Modified permeation cell assembly	306
FIGURE 3.14	View of four permeation cells of "modified type",	
	in a water bath	308
FIGURE 3.15	View of double water bath assembly as used for	
	permeation testing with vapour phase permeant .	308
FIGURE 3.16	The permeability of polyolefin films to carbon-14	
	formaldehyde at 30 °C	323
FIGURE 3.17	Graph showing plot of average transmission rates of	
	formaldehyde versus polyolefin film thickness .	324
FIGURE 3.18	The permeability of "Paraform" film to aqueous	
	phase carbon-14 formaldehyde, at 30 $^{\circ}$ C	334
FIGURE 3.19	The permeability of "cellophane" film (ex."Paraform"	
	film) to aqueous carbon-14 formaldehyde at 30 $^{\circ}\mathrm{C}$.	336
FIGURE 3.20	The permeability of poly(ethylene vinyl acetate)	
	film to aqueous carbon-14 formaldehyde, at 30 $^{\circ}\mathrm{C}$.	338
FIGURE 3.21	The permeability of poly(vinyl chloride) film to	
	carbon-14 formaldehyde, at 30 °C	343
FIGURE 3.22	The permeability of polystyrene film to aqueous	
	phase carbon-14 formaldehyde, at 30 $^{\circ}\mathrm{C}$	345
FIGURE 3.23	The permeability of nylon-6 film to carbon-14	
	formaldehyde, at 30 °C.	347
FIGURE 3.24	The permeability of cellophane films to carbon-14	
	formaldehyde, at 30 °C.	349
FIGURE 3.25	The temperature dependence of the permeability of	
	30 μ m low density polyethylene to aqueous carbon-14	
	formaldehyde	358
FIGURE 3.26	The temperature dependence of the permeability of	
	various polymer films to aqueous carbon-14 formaldehyde	363

List of figures contd.

xvii.

PAGE

FIGURE 3.27	Schematic view of the apparatus utilized to measure the	
	desorption of carbon-14 formaldehyde from polymer films	375
FIGURE 3.28	Graph showing the desorption of carbon-14 formaldehyde	
	from various polymer films with accumulated time .	386
FIGURE 3.29	Graph showing the desorption of carbon-14 formaldehyde	
	from cellophane film and from "Whatman Number One"	
	filter paper	387
FIGURE 3.30	Autoradiographs showing radioactive: plasticised poly-	
	(vinyl chloride) and poly(ethylene vinyl acetate) films	394
FIGURE 3.31	A schematic view of the permeation cell assembly having	
	an aqueous permeant to polymer membrane interface .	398
FIGURE 3.32	Autoradiographs showing radioactive: low density	
	polyethylene; polypropylene; and high density poly-	
	ethylene films .	400
FIGURE 3.33	Weight changes of paint and polyurethane varnish	
	coatings with aging	411
FIGURE 3.34	Scanning electron microscope photomicrographs showing	
	surfaces of alkyd-type paint films	415
FIGURE 3.35	Scanning electron microscope photomicrographs showing	
	surfaces of vinyl-based paint films	417
FIGURE 3.36	Scanning electron microscope photomicrographs showing	
	surfaces of polyurethane varnish films	421
FIGURE 3.37	Scanning electron microscope photomicrographs showing	
	surfaces of low density polyethylene film	424
FIGURE 3.38	Polyester backbone of an oil-alkyd resin .	427
FIGURE 3.39	Formation of polyester polymer by cross-linking of	
	active sites	428
FIGURE 3.40	Figure 3.40 <u>i</u> shows a polymethacrylate,general formula	429
	Figure 3.40 <u>ii</u> shows polyacrylate,general formula .	429
FIGURE 3.41	Formation of a vinyl-based paint film from a colloidal	
	dispersion of polymers	430
FIGURE 3.42	Schematic view of the apparatus utilized for the	
	measurement of beta particle absorption by free	
	polymer coatings	436
FIGURE 3.43	A graph showing the logarithm of count rate versus	
	the areal density of polypropylene film	438

contd.

List of figures contd.

xviii.

PAGE

FIGURE 3.44	The permeability of alkyd-primer paint films to aqueous	
	carbon-14 formaldehyde, at 30 °C	447
FIGURE 3.45	The permeability of free alkyd-undercoat paint films	
	to aqueous carbon-14 formaldehyde, at 30 °C.	450
FIGURE 3.46	The permeability of free alkyd-topcoat paint films	
	to aqueous carbon-14 formaldehyde, at 30 °C.	452
FIGURE 3.47	The permeability of free polyurethane varnish films	
	to aqueous carbon-14 formaldehyde, at 30 °C.	468

*

*

*

ixx.

LIST OF TABLES

		PAGE
		FAGL
	: FORMALDEHYDE	
TABLE 1.1	Equilibrium constants for the hydration of dissolved	7
	formaldehyde.	1
TABLE 1.2	Permissible threshold limit values for airborne	27
	formaldehyde.	37
CHAPTER 2	: THE STUDY OF THE EMISSION OF FORMALDEHYDE	
	FROM UREA-FORMALDEHYDE-BONDED PARTICLEBOARD	
TABLE 2.1	Levels of formaldehyde vapour in indoor environments	58
TABLE 2.2	Lower limits for direct and indirect detection of	
	formaldehyde	85
TABLE 2.3	Particleboard designations and production conditions	107
TABLE 2.4	Formaldehyde emissions from the faces of Type A	
	particleboard bonded using Resin 1,(14 mm)	110
TABLE 2.5	Formaldehyde emissions from the faces of Type A	
	particleboard made using Resin 2, (14 mm)	112
TABLE 2.6	Formaldehyde emissions with aging of Type A particleboards	
	made using Resin 1, (14 mm).	118
TABLE 2.7	Formaldehyde emissions with aging of Type A particleboards	
	made using Resin 2, (14 mm).	119
TABLE 2.8	Formaldehyde emissions from stored samples of Type B	
	particleboard made from Resin 1, (22 mm)	123
TABLE 2.9	Formaldehyde emissions from the faces of stored samples	
	of Type C particleboard made using Resin 1, (13.5 mm)	130
TABLE 2.10	Formaldehyde emissions from the faces of aged Type D	
	particleboard (Resin 1), (9.5 mm).	135
TABLE 2.11	Formaldehyde emissions from the faces of stored Type E	
	particleboard made using Resin 1, (3 mm).	138
TABLE 2.12	Formaldehyde emissions from the faces of Type F	
	particleboard (Resin 1), (4.75 mm).	143
TABLE 2.13	Formaldehyde emissions from the edges of Type B	
	particleboard with aging (Resin 1), (22 mm).	152
TABLE 2.14		
	sanded and unsanded particleboard (Type B, Resin 1),(22 mm).	159
TABLE 2.15	in the second	
	formaldehyde from the surface of Type B particleboard,(22 mm	ı) 162
TABLE 2.16	Surface treatments applied to faces of Type D	
	particleboard (Resin 1),(9.5 mm)	168

XX.

List of tab	bles contd.	PAGE
TABLE 2.17	Formaldehyde emission rates before and after surface	
	treatments of particleboard, (Type D, 9.5 mm) .	170
TABLE 2.18	Emission of formaldehyde from miscellaneous consumer	
	products.	173
TABLE 2.19	Formaldehyde air concentrations inside a house	183
TABLE 2.20	The relationship between perforator value and the	
	steady state concentration of formaldehyde inside a	
	climate chamber.	190
TABLE 2.21	The correlation between the Japanese Industrial	
	Standard and the dynamic modified method	192
TABLE 2.22	Parameters used for the calculation of steady state	
	formaldehyde levels inside a showhome	204
TABLE 2.23	Upper and lower limits of long-term formaldehyde	
	emissions from different grades of particleboard.	216
TABLE 2.24	Parameters used for the calculation of formaldehyde	
	levels inside a room.	221
TABLE 2.25	Contributions of floor lining and wall cladding to	
	total air concentration of formaldehyde, (Type B, 22 mm &	
	Type D, 9.5 mm).	222
CHAPTER	3 : THE PERMEABILITY OF POLYMER FILMS AND POLYMER	
	COATINGS TO FORMALDEHYDE	
TABLE 3.1	Dimensions of permeability constant, P	239
TABLE 3.2	Dimensions of transmission rate, Q	239
TABLE 3.3	Air concentrations of formaldehyde over aqueous	
	formaldehyde solutions at various temperatures .	259
TABLE 3.4	List of polymer film types studied	273
TABLE 3.5	The permeation of carbon-14 formaldehyde through 12 μ m	
	and 125 µm low density polyethylene,and 20 µm poly(ethylene)
	terephthalate, at 30 °C	282
TABLE 3.6	Analysis of the permeability data derived for the	
	permeation of carbon-14 formaldehyde through 12 μm and	
	125 µm low density polyethylene, and 20 µm poly(ethylene	
	terephthalate) films	284
TABLE 3.7	The calculation of the transmission rate of carbon-14	
	formaldehyde through 12 µm and 125 µm low density poly-	
	ethylene, and 20 µm poly(ethylene terephthalate)	287
TABLE 3.8	Thickness tolerances for low density polyethylene films	
	made by the "blowing process"	290

xxi.

List of tal	bles contd.	PAGE
TABLE 3.9	The effects of air flow rate on the permeability of 12 μm	
	low density polyethylene to carbon-14 formaldehyde, at 30 °C	296
TABLE 3.10	Area occluded by inner edges of each permeation cell	
	half	300
TABLE 3.11	The effect of air flow rate through the permeation cell	
	on the transmission rate of carbon-14 formaldehyde through	
	12 μ m low density polyethylene, at 30 $^{\circ}$ C	302
TABLE 3.12	The permeation of vapour phase carbon-14 formaldehyde	
	versus aqueous phase carbon-14 formaldehyde through 12 μ m	
	low density polyethylene film	312
TABLE 3.13	A key to the format used in the tables summarizing	
	permeability data of polymer films in Section 3.3.5 .	319
TABLE 3.14	A summary of experimental conditions	320
TABLE 3.15	The permeability of polyolefin films to carbon-14	
	formaldehyde, at 30 °C	322
TABLE 3.16	A summary of the transmission rates of formaldehyde	
	through polyolefin films, at 30 °C	326
TABLE 3.17	The permeability of polyester-type films to carbon-14	
	formaldehyde, at 30 °C	328
TABLE 3.18	A summary of the transmission rates of formaldehyde	
	through "Mylar" and "Melinex" films, at 30 ^O C	330
TABLE 3.19	The permeability of "Paraform" and poly(ethylene vinyl	
	acetate) films to formaldehyde at 30 $^{\circ}$ C	333
TABLE 3.20	A summary of the permeability of "Paraform" and	
	poly(ethylene vinyl acetate) films to formaldehyde at 30 $^{\circ}\mathrm{C}$	339
TABLE 3.21	The permeabilities of: poly(vinyl chloride); polystyrene;	
	nylon-6; and cellophane films to carbon-14 formaldehyde,	
	at 30 °C	342
TABLE 3.22	A summary of the transmission rates of formaldehyde	
	through:poly(vinyl chloride); polystyrene; nylon-6; and	
	cellophane films, at 30 °C	351
TABLE 3.23	The effect of temperature on the permeability of 30 μ m	
	low density polyethylene to carbon-14 formaldehyde .	356
TABLE 3.24	The effect of temperature on the permeability of :	
	plasticised poly(vinyl chloride) ; polystyrene; poly-	
	propylene; high density polyethylene; cellophane; and	
	nylon-6, to carbon-14 formaldehyde	361
TABLE 3.25	A summary of the temperature dependence of polymer film	
	permeabilities to carbon-14 formaldehyde	364

xxii.

List of tab	les contd.	PAGE
TABLE 3.26	Glass transition temperatures for polymers .	369
TABLE 3.27	Desorption of carbon-14 formaldehyde from 30 µm low	
	density polyethylene film	377
TABLE 3.28	Desorption of carbon-14 formaldehyde from 80 µm	
	poly(ethylene vinyl acetate) film	378
TABLE 3.29	Desorption of carbon-14 formaldehyde from 25 µm	
	polypropylene film.	379
TABLE 3.30	Desorption of carbon-14 formaldehyde from 50 µm	
	polystyrene film	380
TABLE 3.31	Desorption of carbon-14 formaldehyde from 20 µm	
	plasticised poly(vinyl chloride) film	381
TABLE 3.32	Desorption of carbon-14 formaldehyde from 30 µm nylon-6	
	film	382
TABLE 3.33	Desorption of carbon-14 formaldehyde from 25 µm	
	cellophane film	383
TABLE 3.34	Desorption of carbon-14 formaldehyde from "Whatman	
	Number One" filter paper	384
TABLE 3.35	Designation of polymer coatings	408
TABLE 3.36	Weight changes of polymer coatings with aging	410
TABLE 3.37	Densities of polymer coatings as measured by flotation	
	at 20 °C	440
TABLE 3.38	A key to the format used in the tables summarising	
	permeability data of free paint and free varnish films	
	in Section 3.4.5	444
TABLE 3.39	The permeability of free alkyd-type paint films to	
	carbon-14 formaldehyde	446
TABLE 3.40	The permeability of free vinyl-type paint films to	
	carbon-14 formaldehyde, at 30 °C	454
TABLE 3.41	A summary of the permeabilities of free paint coatings	
	to formaldehyde at 30 $^{\circ}$ C	458
TABLE 3.42	Diffusion and solubility coefficients of carbon-14	
	formaldehyde in alkyd paint coatings at 30 $^{\circ}\mathrm{C}$.	460
TABLE 3.43	The permeability of free polyurethane varnish films	
	to carbon-14 formaldehyde at 30 $^{\circ}$ C	466

contd.

xxiii.

List of tal	bles contd.	PAGE
TABLE 3.44	A summary of the diffusion and solubility coefficients	
	of permeation, and the transmission rates of formaldehyde	
	through free polyurethane varnish coatings, at 30 $^{\circ}$ C .	470
TABLE 3.45	The quenching effect of 1 $%$ (w/v) chromotropic acid in	
	concentrated sulphuric acid on liquid scintillation	
	counting	480
TABLE 3.46	The quenching effect of 1 % (w/v) chromotropic acid in	
	concentrated sulphuric acid on liquid scintillation	
	counting	480

*

*