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Abstract

We suggest a likelihood based approach to estimate an overall rate of horizontal gene

transfer (HGT) in a simplified setting. To this end, we assume that the number of

occurring HGT events within a given time interval follows a Poisson process. To obtain

estimates for the rate of HGT, we simulate the distribution of tree topologies for different

numbers of HGT events on a clocklike species tree. Using these simulated distributions,

we estimate an HGT rate for a collection of gene trees representing a set of taxa. As an

illustrative example, we use the “Clusters of Orthologous Groups of proteins (COGs)”.

We also perform a correction of the estimated rate taking into account the inaccuracies

due to gene tree reconstructions. The results suggest a corrected HGT rate of about 0.36

per gene and unit time. In other words, eleven HGT events have occurred on average

among the 44 taxa of the COG species tree. A software package to estimate an HGT rate

is available online (http://www.cibiv.at/software/hgt/).
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Introduction

It is well known that gene trees reconstructed for different genetic loci for the same

set of taxa do not necessarily agree. Their branching pattern may be different from each

other and different from the species tree (Pamilo and Nei, 1988). These discrepancies are

not always due to the uncertainty of the phylogenetic inference method, but rather due to

biological processes like hybridization, gene duplication and deletion, or horizontal gene

transfer (HGT) (Syvanen, 1994). In the following, we will focus on the latter of these

processes.

The effect of one HGT event is visualized in figure 1 which shows a species tree (fig.

1A) of the five taxa A, B, C, D and E. This tree indicates a close relation between A

and the cluster of B and C. In many cases, the species tree also explains the phylogeny of

single genes, but sometimes a gene has a different evolutionary history than the species

tree (Pamilo and Nei, 1988). For such a gene the gene tree is displayed in figure 1B.

One possible explanation for this kind of difference is HGT, in this case from A to D.

During such a process, a piece of DNA (e.g. a gene) is transferred from one organism

to another which is not its offspring. The genetic material is stably incorporated in the

acceptor genome, in contrast to the vertical inheritance of genes by descent from one’s

parents (Bushman, 2002). In the depicted case, the arrow shows gene transfer from species

A to species D. As a consequence, the gene tree for this gene shows a close relationship

between A (donor) and D (acceptor).

HGT is known as an important mechanism to shape the genomes of bacteria (Ochman

et al., 2000; Boucher et al., 2003), but recently there is also an accumulation of data

indicating that this process occurs in the evolution of eukaryotes (de la Cruz and Davies,

2000; Andersson, 2005) and archaea (Nelson et al., 1999; Diruggiero et al., 2000) too.

Several approaches have been published that discover single HGT events (Lerat et al.,

2003, 2005), whereas another kind of approach estimates the amount of genes that are ac-

quired through HGT for a given genome. The latter type of analysis is reviewed in Ochman

et al. (2000) for 19 completely sequenced genomes. In these species, the amount of adopted

genes varies between virtually none in organisms with small genome size, for example

3



Rickettsia prowazekii, Borrelia burgdorferi, and Mycoplasma genitalium, to nearly 17 %

in Synechocystis PCC6803 (Ochman et al., 2000). Another way of detecting horizontally

transferred genes uses bacterial genome sequences to examine the nucleotide composition

(GC content) and usage of different codons (Lawrence and Ochman, 1997).

In contrast to these approaches, we estimated an overall rate of HGT for a given

set of species based on simulating a likelihood curve for the reconstructed species tree.

We constructed a clocklike species tree reflecting the actual evolutionary pathways of

the investigated organisms (Pamilo and Nei, 1988) and simulated different numbers of

HGT events, implemented as series of subtree prune and regraft processes on the species

tree (Hillis et al., 1996). Simulations with different numbers of HGT lead to a distribution

of tree topologies that are comparable with the gene tree distribution to estimate an HGT

rate supported by a likelihood framework.

As the number of tree topologies increases exponentially with the number of leaves,

the probability to get a specific topology is very low. To overcome this, we worked

with quartet subtrees instead of the complete gene tree topologies (see the Materials and

Methods section).

To apply the method to real data, we used the “Cluster of Orthologous Groups of

proteins (COGs)” (Tatusov et al., 2001).

Materials and Methods

Notation

In the following, we introduce some mathematical notation needed for the analysis.

For more detailed definitions, we refer the reader to Semple and Steel (2003).

A phylogenetic tree T = (V, E) is described by a set of vertices V (also called nodes)

and a set of edges E ⊂ {(x, y) : x 6= y, x, y ∈ V}. The degree of a vertex v, denoted by

deg(v), is the number of edges incident with v. Any node with deg(v) = 1 is called a leaf

and all other vertices are called internal. With L(T ) we denote the set of all leaves. An

unrooted phylogenetic tree T is called binary if each node v ∈ V is either a leaf or has
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deg(v) = 3. If the binary phylogenetic tree is rooted, this definition must be extended to

the most recent common ancestor of all leaves, which is called the root r. This vertex r

is the only one in a rooted binary phylogenetic tree with deg(r) = 2.

Let S = {s1, . . . , sn} be a set of n taxa and let X be an arbitrary subset of S. To

describe all binary tree topologies with leaves which are labeled with taxa of X, we use

T (X) whereas τ(X) denotes an element of T (X). The tree T (S) ∈ T (S) is the species

tree of s1, . . . , sn with a length function l, which defines the branch length of each edge

e ∈ ET (S). The size L(T (S)) of a tree is the sum over all branch lengths. We assume a

species tree T (S) to be binary, rooted, leaf-labeled, and clocklike (each species (leaf of

the tree) has the same distance to the root), and we interpret the distance between any

node and the root as time which has passed since the first split at the root. A gene tree

is a tree topology of a leaf-labeled tree which evolves within a species tree and comprises

at most all taxa of S.

The restriction of S to X, denoted by τ(S|X), is a tree topology derived from T (S)

where all leaves in S \ X are ignored and all vertices with deg(v) = 2 are suppressed,

except the root (fig. 1C).

Modeling Horizontal Gene Transfer

To model the process of HGT, we have to make some pivotal assumptions: 1. A binary,

leaf-labeled, rooted, and clocklike species tree T (S) is known, as well as all splitting times

along this tree. 2. Differences between a gene tree and T (S) are only caused by HGT

events. 3. The transfer rate λ is homogeneous per gene and unit time. 4. Genes are

transferred independently. 5. One copy of the transferred gene still remains in the donor

genome. 6. The transferred gene replaces any existing ortholog counterpart in the acceptor

genome.

As described before, the effect of HGT can result in a branching pattern of a gene

tree which differs from the species tree (fig. 1). From a computational point of view, we

model each HGT event as a subtree prune and regraft process (Hillis et al., 1996). This

means an HGT event is modeled in the following way: As we assume a homogeneous
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HGT rate λ, the transfer events are uniformly distributed along all branches of the tree.

For each HGT event, we randomly choose a starting point in the clocklike species tree,

determine the corresponding time in this tree, search for all branches that exist at that

point of time, and randomly select one as acceptor branch. Consequently, single transfer

events between species are only possible if they coexist in time in order to prevent gene

transfer from present-day species to fossils. This biologically motivated restriction is not

considered in most current research on HGT models (e.g. Suchard, 2005). Furthermore,

it is easily seen that not every single HGT event changes the branching pattern of the

species tree, for example, if the process takes place between branches that share the most

recent common ancestor.

For a given species tree with total length L(T (S)) and fixed λ, the tree topology τ(S)

occurs with a certain probability P (τ(S) | T (S), λ, L(T (S))). In the following, we write

P (τ(S) | λ) instead, because λ is the parameter of interest. As stated in the introductory

part, the number of HGT events is Poisson distributed with parameter Λ = λ · L(T (S))

for a fixed species tree. Thus, the probability for τ(S) given λ is

P (τ(S)|λ) =
∞∑

h=0

(
e−Λ · Λh

h!
· P (τ(S) | HGT = h)

)
. (1)

The Poisson distribution describes the probability for h HGT events to happen on the

species tree T (S) with L(T (S)) and λ, whereas the second factor is the probability to

observe τ(S) as tree topology after h HGT events. Although the Poisson distribution is

easy to calculate, the probability distribution of the gene trees for a fixed number of HGT

events appears hard to calculate, except for trivial cases like h ∈ {0, 1}. Moreover, for a

fixed arbitrary subset X ⊂ S, we can compute the probability for each subtree τ(X) as

follows:

P (τ(X)|λ) =
∑

τ(S)∈T (S)

(
δ(τ(X),τ(S|X)) · P (τ(S)|λ)

)
. (2)

The Kronecker delta δ(τ(X),τ(S|X)) is 1 if the topology of the induced subtree τ(S|X) with

respect to X ⊂ S is identical to τ(X), otherwise it is 0.

Equations 1 and 2 allow the estimation of λ in a likelihood framework. Therefore, we

assume that λ acts on each gene independently. If m gene trees τ1(S), . . . , τm(S) are
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reconstructed, the likelihood of λ is

lik(λ|τ1(S), . . . , τm(S)) =
m∏

i=1

P (τi(S)|λ). (3)

We maximize equation 3 with respect to λ, which is interpreted as the most likely transfer

rate.

This approach turns out to be computationally infeasible because a reliable estima-

tion of P (τ(S)|λ) is only possible for a small number of taxa. Hence, we resort to an

approximation of the likelihood. We consider a collection of subsets X1, . . . , Xm ⊆ S

together with the probability distribution induced by equation 2 and the simplified sit-

uation that the occurrencies of gene trees τ(X1), . . . , τ(Xm) are mutually independent

for different randomly chosen subsets X1, . . . , Xm. In this case, the joint probability of

τ(X1), . . . , τ(Xm) is given by

P (τ(X1), . . . , τ(Xm)) ≈
m∏

i=1

P (τ(Xi)|λ). (4)

Although equation 4 is an approximation to equation 3, the simulations show that it is

good enough for the practical application and we can also apply the described estimation

scheme to estimate λ̂ and Λ̂, respectively.

Estimating the Probability Distribution of Gene Trees

From the previous paragraph, it is obvious that it would be very difficult to find an

analytical expression for any of the equations. However, equation 1 suggests an efficient

simulation. For any fixed number h of HGT events, we can approximate the distribution

P (τ(S)| HGT = h) reasonably well. Therefore, we simulate N = 100, 000 times h HGT

events on the species tree with 0 ≤ h ≤ 60 and calculate how often each gene tree occurs

in the simulated trees. We end up with a probability distribution P ∗(·) in which each

column represents one gene tree and each row a fixed number of HGT events. The final

likelihood estimation is based on P ∗(·).

Although P (τ(S)|λ) can be estimated for small taxa sets, it gets intractable for bi-

ologically interesting numbers because too many tree topologies exist and it is almost

impossible to simulate enough trees for a reliable estimation within a reasonable time

7



span. In such situations, the probability for different subsets X ⊆ S proves more success-

ful. Thus, we reduce the calculated probability distribution P ∗(·) to a subset of randomly

chosen quartet topologies of the given set of gene trees.

The COG Data

The whole data set, which is available via the NCBI website (http://www.ncbi.nlm.nih.gov/),

comprises 3,167 protein families of 44 species (2 eukaryotes, 9 archaea, and 33 bacteria).

As we concentrated on single-copy genes up to now, we only extracted those families

which fulfill this criterion. To obtain enough phylogenetic information (Nei, 1996) to re-

construct the gene trees, we only used COG families with a minimum alignment length

of 100 amino acids for each of the corresponding proteins. We also required at least four

species per COG family. After applying these three criteria, 780 protein families still re-

mained (see Supplementary Material S1 and S2). For each of these families a gene tree was

reconstructed with tree-puzzle (Schmidt et al., 2002), using the Dayhoff substitution

model (Dayhoff et al., 1978).

Species Tree Reconstruction

To construct the species tree of the mentioned 780 protein families, we built all three

binary trees for all possible quartets (A, B, C, D) and computed the corresponding log-

likelihood values ` as sum of the log-likelihoods of the COG families (gi) each represented

by a gene tree.

`(AB|CD) =
780∑
i=1

`gi
(AB|CD)

`(AC|BD) =
780∑
i=1

`gi
(AC|BD) (5)

`(AD|BC) =
780∑
i=1

`gi
(AD|BC).

All three log-likelihood values `gi
are set to 0 if at least one of the species A, B, C, or D

does not occur in the corresponding COG family gi.

Afterwards, we used tree-puzzle (Schmidt et al., 2002) to construct the species tree
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topology of the log-likelihood values of all
∑780

i=1

(
|gi|
4

)
=184,521,526 quartet topologies (|gi|

is the number of taxa represented by the COG family gi).

To assign branch lengths to this topology, we performed a clock test (Felsenstein, 1988)

for all 780 protein families. The result contained 443 clocklike and 337 non-clocklike COG

families. Only three of all families occurred in all 44 species (COG0013: Alanyl-tRNA

synthetase, COG0092: Ribosomal protein S3, COG0541: Signal recognition particle GT-

Pase Ffh), but none of them evolved clocklike. Therefore, we had to use an appropriate

set of gene trees which covers all 44 species. For each clocklike evolving COG family with

taxa set X, we reconstructed the corresponding subtree τ(SCOG|X) with a total branch

length measured in numbers of substitutions per site. Furthermore, we identified a set

G of subtrees fulfilling the following conditions: (a) G covers the species tree completely

and (b) each branching point is determined by at least one subtree. Such a coverage

was found for the three clocklike evolving families: COG0419 (ATPase involved in DNA

repair), COG0173 (Aspartyl-tRNA synthetase) and COG1242 (uncharacterized FeS ox-

idoreductases). As some of the splitting times are given by two or three of the named

families and each of them evolved with a different rate, we computed the ratio of these

rates to estimate the splitting times relative to one protein family, in this case COG0419.

Eventually, the reconstructed species tree T (SCOG) was used to simulate distributions

of tree topologies for different numbers of HGT events.

Comparing Trees

To compare the most frequent gene tree with the species tree, we extracted all quartet

topologies from the 780 gene trees and added up the information in a descending sorted

list representing each topology by the number of its occurrence. Afterwards, we built a

quartet set that finally consisted of 35.7 % of the initially extracted quartet topologies.

Starting with the most frequent topology, we put each one successively in the set if the

corresponding quartet tree does not contradict a quartet tree already in the current set.

For the final quartet set, we reconstructed a tree using tree-puzzle. To compare the

obtained tree topology with the COG species tree, we built a consensus tree using the
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program consense of the phylip package (Felsenstein, 1989).

Results

Quality Check

To obtain reliable simulation and estimation results, we repeated the procedure for

different parameter settings. Hence, we used a program that simulates an HGT rate λ

on a clocklike species tree. The corresponding number of HGT events was drawn from

the Poisson distribution. This kind of simulation generates a new data set, which is

comparable to the 780 gene trees of the COG data. As we know the true HGT rate λ, we

can check the reliability of the estimation procedure.

First of all, we estimated the probability P ∗(τ(X) | HGT = h) to get the tree topology

τ(X) if exactly h HGT events happened on the species tree T (S) with 44 taxa for the COG

data. Thus, we simulated N times h events on T (S) and assumed that P ∗(τ(X) | HGT =

h) is the relative occurrence of the topology τ(X).

To analyze the influence of the size of the quartet set, we generated 1,000 gene trees

for several HGT rates λ. We extracted all quartet topologies and used a randomly chosen

subset of these topologies to estimate the HGT rate λ. Repeating this for the quartet set

sizes 100, 1,000, and 10,000, we got the results visualized in figure 2 where the true HGT

rate λ to generate gene trees is plotted against the estimated rate. It turned out that a

set of 10,000 topologies was large enough to get reliable estimation results.

For a second test, we used 10,000 quartet topologies and varied the value of hmax

(the maximal number of simulated transfers on the species tree) while N (number of

simulations for a fixed hmax) was 100,000. Figure 3 displays the estimation based on

hmax ∈ {20, 30, 40, 60}. One can see that for each hmax exists a maximum rate which can

be estimated reliably while rates above get underestimated.

In another analysis (data not shown), we also checked that N = 100, 000 is a feasible

value for the number of simulations.
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The Most Frequent Gene Tree

To determine whether the most frequent gene tree is similar to the reconstructed

species tree, we compared both trees. We computed a quartet set of all quartet topologies

of the 780 COG gene trees which only consisted of those quartet topologies that did not

contradict each other. A comparison of this quartet set with the species tree T (SCOG)

comprising 44 taxa led to the consensus tree depicted in figure 4. Both trees support all

bifurcations except for two nodes indicated by multifurcations in the consensus tree. We

can conclude that T (SCOG) and the tree reconstructed of the quartet set – consisting of

not contradicting quartet topologies of the gene trees – are nearly equal. As the latter

quartet set represents the most frequent quartet topologies, we can also deduce that the

most common gene tree is very similar to T (SCOG).

Estimating the HGT Rate λ for the COG Data

The quality tests described above have shown that an HGT rate λ of 0.7 can be

estimated reliably if we extract 10,000 quartet topologies of the 780 COG gene trees and

set the parameters N = 100, 000 and hmax = 60.

We applied this procedure to the COG data, repeated the estimation for 50 sets of

quartet topologies, and obtained results for λ̂ between 0.43 and 0.48 and for Λ̂ between

12.86 and 14.35 presented in figure 5A. As Λ is the parameter of the Poisson distribution,

which describes the occurrence of HGT events in time, Λ̂ is the expected value for the

number of HGT events that happened on T (S), here T (SCOG). The estimated HGT rate λ̂

is relative to the number of substitutions in COG0419 (ATPase involved in DNA repair)

which were used to assign branch lengths to the species tree.

To test the reliability of the results, we checked if the estimated HGT rates differ

from those estimated of quartet sets randomly chosen from all quartet topologies of the

44 species tree organisms. Figure 5A shows the estimation results of quartet topologies

which could be found in the 780 gene trees and figure 5B represents estimations over all
(

44
4

)
· 3 quartet topologies. The graph indicates an estimated HGT rate λ̂, which is about

10 times higher, namely between 4.66 and 4.7. As these rates must be higher because the
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set consists of many quartet topologies (7 %) which are not part of the gene trees, so that

many more HGT events are necessary to get the distribution, the estimated rates for the

COG data seems quite acceptable.

Rate Correction Taking into Account the Inaccuracies of Gene

Tree Reconstructions

We performed a further analysis taking into account the inaccuracies and uncertain-

ties of gene tree reconstructions. For each protein family gi, representing a taxa set Xgi
,

we restricted T (SCOG) to Xgi
denoted by T (SCOG|Xgi

) and assigned branch lengths to all

of these tree topologies using tree-puzzle (Schmidt et al., 2002). Afterwards, we sim-

ulated protein sequences of the same size than the corresponding COG sequences with

seq-gen (Rambaut and Grassly, 1997) along the calculated trees, using the Dayhoff sub-

stitution model (Dayhoff et al., 1978). We repeated this step five times, then calculated

the corresponding gene trees, and repeated the estimation procedure. As the newly ac-

quired gene trees are based on trees which are subtrees of the species tree T (SCOG), we

expected to estimate an HGT rate λ̂ of about zero.

After the estimation of ten randomly chosen quartet sets for each of the five simulated

data sets, we got the distribution which is shown in the stacked histogram in figure 6. Each

of the five colors represents one data set. The estimation results are nearly constant, at

about 0.1 (0.1±0.01). This result could be interpreted as a kind of background noise due

to inaccuracies in the applied gene tree reconstruction procedure because in the setting

there should be no difference in the branching patterns of gene and species tree and

therefore, it leads to the conclusion that the estimated average HGT rate λ̂ of about 0.46

per gene and unit time is about 22 % too high. This would decrease the total amount of

HGT events which is necessary to transform the species tree topology into one gene tree

from 14 to 11 events per gene.
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Discussion

In the previous paragraph, we have described some results based on a new approach

to estimate an overall rate of HGT with the help of a likelihood framework. We are able

to estimate such a rate under the assumptions that all differences between a gene tree and

the corresponding species tree are caused by HGT and that the HGT rate is homogeneous

over the whole tree. Note that we did not make any statement about the probability if a

gene is transferred at all, but how many events have occurred within one COG family on

average. Thus, we are assuming that every gene is transferred with the same probability.

The extent to which HGT has shaped the individual genomes is controversially dis-

cussed (Kurland et al., 2003). Although some research groups support the opinion that

HGT plays an important role in evolution and appears very frequently (Doolittle, 1999;

Eisen, 2000; Garcia et al., 2000), others think that the impact of HGT is overestimated

due to problems in the various inferring procedures (Brown, 2003). A recent publication

by Ge et al. (2005) also analyzed the COG data and detected HGT in 33 out of 297 protein

families. To do so, they used a novel test statistic based on tree topology comparisons.

Unfortunately, they did not say anything about how many HGT events happen in each of

the 33 detected COGs, which would be interesting in order to compare their results with

ours.

There are several other approaches trying to estimate an HGT rate. For exam-

ple, Huelsenbeck et al. (2000) developed a bayesian framework for the analysis of cospe-

ciation, which could also be used to estimate rates of genetic transfer. Suchard (2005)

published two stochastic models serving the same purpose. The first model, developed

by Suchard (2005), is based on subtree prune and regraft operations and is applicable if

the number of taxa under consideration is small, whereas the other approach is a ran-

dom walk over complete graphs and offers a solution for an increasing number of taxa.

In both publications, the fact that the corresponding framework can deal with gene and

species tree topologies which are not known without error is highlighted. But on the

other hand, both HGT models require that all gene and species trees are based on the

same set of present-day species. In contrast, the new approach, which we have introduced
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here, can incorporate gene families which are incomplete by using quartet subtrees and

we can estimate reliable rates even if the gene tree taxa sets are only subsets of the whole

species tree taxa set. As an example, the COG data set only comprises three gene families

which represent genes for all 44 taxa (see Supplementary Material). Furthermore, this

new framework also takes into account the inaccuracies in the gene tree reconstruction

method.

As genomes are not only shaped by HGT, but also by processes like hybridization, gene

loss, duplication, genesis and fusion/fission (Snel et al., 2002), it becomes clear that the

estimated rate of about 11 events per gene and unit time is a kind of upper bound because

we assume that all conflicts in the gene tree topologies are caused by HGT. However, it

remains as yet unclear, how the rate estimate changes if multi-copy genes were included

in the analysis. Nevertheless, the estimate seems to be quite high. This can be explained

by the fact that a lot of HGT events will not change the tree topology, for example events

between two nodes that share parents. This seems to be important because 71 % of the

total branch length of the COG species tree can be involved in HGT events which do not

change the branching pattern. As it is most likely that the majority of HGT events in

nature take place between closely related taxa it becomes clear that the number of these

events would be underestimated by just counting visible incongruences between two given

trees. Moreover, if one gene is transferred back and forth between two lineages, these

events will not be detected either. The importance to take unobservable HGT events into

account is supported by the fact that the topologies of 264 (34 %) of the 780 COG gene

trees are equal to the species tree, restricted to the corresponding gene tree taxa. This

means that the gene tree topology can be explained without any single HGT event. As

the number of taxa of these 264 trees differs widely, and even gene trees with up to 36

taxa are equal to the corresponding species tree restriction, we can assume that HGT

events happened during the evolution of the corresponding gene although we cannot see

any of them. This is also supported by the fact that it is still not proven if a core of non-

transferable genes exists (Nesbo et al., 2001). Summing up, the importance of simulating

HGT events on a given species tree, instead of just counting visible differences between a
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species and gene tree, becomes obvious and distinguishes our approach from some previous

work on estimating an HGT rate. To get an impression of the probability that an HGT

event does not change the tree topology, we counted the simulated trees which are equal

to the COG species tree. The result indicates that this probability is 9 % (0.9 %) for the

simulated trees after one (two) transfer(s). As our approach includes simulations on the

species tree which gave us a distribution of trees after different numbers of HGT events,

we automatically include unobservable HGT events and therefore, the estimated rate is

higher than in other approaches. But this high rate also indicates that HGT influences

the tree topologies strongly, as described by Doolittle (Doolittle, 1999).

Many other approaches (e.g. see Hao and Golding, 2006; Dagan and Martin, 2007)

exist which also estimate an HGT rate. All those methods are quite different from one

another and it is difficult to compare their results with ours. The two mentioned pub-

lications are based on gene present and absent patterns, whereas the method that we

have introduced here, uses the information of reconstructed gene trees to calculate an

HGT rate. Dagan and Martin (2007) have presented a method in which they inferred

a conservative lower bound estimate of about 1.1 HGT events per gene family and gene

family lifespan considering the genome size of present day species. As already explained

above, the estimates represented here are a kind of upper bound and therefore, they are

much higher. As both methods (Hao and Golding, 2006; Dagan and Martin, 2007) are

tested on different data sets, it would be interesting to see how much the results really

differ when both are applied to the same data set.

Certainly, this newly developed method to estimate a rate of HGT is based on a

number of key assumptions (as described in the Materials and Methods paragraph) and

we are aware of the fact that probably some of them are not reasonable from a more

biological point of view. Nevertheless, we started with such a simplified model to get a

first impression about the overall rate of HGT for a set of present-day species and we

intend to consider more biological relevant aspects of HGT in the future. For example,

like Suchard (2005), we would like to include heterogeneous HGT rates in the analysis

because such rates are important to take into account that genes belonging to different
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functional categories have different transferabilities (Nakamura et al., 2004). Another

interesting and important extension for the simulation would be to include uncertainties

of the species tree branch lengths. So far, we assume that these lengths are exactly known.

Furthermore, the species tree represents the evolutionary history of all 780 examined

COG families and is therefore slightly different from a tree obtained from 16/18 S rDNA

sequences which are often used to reconstruct a species tree for a set of given taxa (Woese,

2000). Probably we would even estimate a higher HGT rate if we used such a species tree

because that one would not consider the information of the COG data, which would lead

to more differences between species and gene trees. Therefore, the estimation of an HGT

rate with the help of a different species tree would be a further interesting task.

Currently, the newly developed method only deals with trees representing a single

gene copy per species. Since phylogenies often present several distantly related copies for

a given organism, the HGT estimates based on orthologs only could be too low. We intend

to include multi-copy genes into the analysis to overcome this problem in the future.

Supplementary Material

Supplementary tables S1 and S2 are available at Molecular Biology and Evolution

online (http://www.mbe. oxfordjournals.org/). The first table S1 is a summary of all

780 COG gene trees that were used in the described analysis. For each gene tree, the

corresponding COG, the maximum likelihood value of the reconstructed gene tree, the

number of taxa, whether or not the gene evolved clocklike, and the species names are given.

As we used abbreviations for the exact species names, table S2 provides a translation table

assigning each species name such an abbreviation. A software package to estimate an

HGT rate is available online (http://www.cibiv.at/software/hgt/). It consists of several

C/C++ programs, Perl scripts, and a short user manual.
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Fig. 1: Comparison of the species tree (A) and one corresponding gene tree (B) after

a single HGT event. The arrow indicates a gene transfer from species A (donor) to species

D (acceptor). To check whether the gene tree is a subtree of the species tree, we compute

the tree topology τ(S|X) (C) derived from the species tree.

Fig. 2: Quality of the rate estimation in dependence on the number of quartet

topologies: (A) 100, (B) 1,000 and (C) 10,000. N = 100, 000 and hmax = 60 are fixed.

Fig. 3: Quality of the rate estimation as a function of the maximum number of

simulated HGT events with N = 100, 000 and 10, 000 quartet topologies. Each displayed

value is based on one estimation.

Fig. 4: Consensus tree of the COG species tree and the tree reconstructed of the

quartet set which represents the most frequent quartet subtrees of the 780 gene trees. Only

two multifurcations exist which indicate incongruity between both input trees. This tree

was reconstructed with the strict consensus mode of the consense program (Felsenstein,

1989).

Fig. 5: Distribution of the estimated HGT rates λ̂ for the COG data for randomly

chosen quartet sets (A) of the 780 gene trees, and (B) over all 44 species tree taxa with

N = 100, 000 and hmax = 60

Fig. 6: Distribution of the estimated HGT rates λ̂ for five simulated data sets. Each

data set is based on the 780 protein families and their corresponding subtrees in T (SCOG).

For each data set ten randomly chosen quartet sets have been estimated.
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(A) species tree T (S)

S={A,B,C,D,E}

(B) gene tree topology τ(X)

X={A,B,D,E}

(C) tree topology τ(S|X)
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