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1 Abstract

Recently, numerous practical and theoretical studies in evolutionary biology aim at calcu-

lating the extent to which reticulation—for example horizontal gene transfer, hybridiza-

tion, or recombination—has influenced the evolution for a set of present-day species. It

has been shown that inferring the minimum number of hybridization events that is needed

to simultaneously explain the evolutionary history for a set of trees is an NP-hard and

also fixed-parameter tractable problem. In this paper, we give a new fixed-parameter

algorithm for computing the minimum number of hybridization events for when two

rooted binary phylogenetic trees are given. This newly developed algorithm is based on

interleaving—a technique using repeated kernelization steps that are applied throughout

the exhaustive search part of a fixed-parameter algorithm. To show that our algorithm

runs efficiently to be applicable to a wide range of practical problem instances, we apply

it to a grass data set and highlight the significant improvements in terms of running

times in comparison to an algorithm which has previously been implemented.
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2 Introduction

Molecular evolution (phylogenetics) is a lively field of research that is affected by a

variety of scientific disciplines. Viewing it from the perspective of computer science,

the NP-hardness of many fundamental problems in phylogenetics makes it a challenging

subject to study. The theoretically well-analyzed and widely-applied tree reconstruction

methods of maximum parsimony and maximum likelihood are prominent examples of

such NP-hard problems (Foulds and Graham, 1982; Chor and Tuller, 2005; Roch, 2006).

In this paper, we consider a particular NP-hard problem that is fundamental in the study

of reticulate evolution.

Evolutionary biologists often observe inconsistencies amongst phylogenetic trees that

represent the evolution of different parts of present-day species genomes. Such incon-

sistencies can essentially be caused either by reticulation events like horizontal gene

transfer, hybridization, and recombination, or by non-biological processes like sequenc-

ing errors or signals in the data that may yield trees whose branching patterns do not

always represent the correct evolutionary history. Here, we assume that hybridization

(as a representative of reticulation) has led to the observed inconsistencies. In this case,

it may be more appropriate to represent the evolutionary history of a set of species by a

phylogenetic network rather than a phylogenetic tree since the parents of a hybrid taxa

belong to two different species. It is consequently desirable to calculate a hybridiza-

tion network that simultaneously explains the evolutionary histories for a given set of

trees and minimizes the number of hybridization events. The reason for the latter is

that it quantifies the significance of hybridization for the evolution of the species un-

der consideration. However, computing this minimum number is NP-hard even for two

trees (Bordewich and Semple, 2007a). Known as Minimum Hybridization, it is this

two-tree problem that is the focus of this paper.

To overcome the computational burden of NP-hard problems, one frequently resorts

to approximation algorithms, heuristics, or solving polynomial-time restrictions of the
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problem. However, the solutions obtained from these approaches are not always accept-

able; for example, this may be due to complex and expensive processes that were needed

to generate certain data sets. In such cases, fixed-parameter algorithms have proven to

be a valuable tool to calculate the exact solution of a computationally-hard problem.

Mathematically speaking, a problem of size n, parameterized by k, is fixed-parameter

tractable if it can be computed in O(f(k)p(n)), where f is a computable function and p

is a fixed polynomial. The importance of this running time is in the separation of the

variables k and n. Thus, if k is small, the problem may be tractable in reasonable time

even if n is large. For a more detailed description of fixed-parameter tractability (FPT),

we refer the interested reader to Downey and Fellows (1998) and Flum and Grohe (2006).

Minimum Hybridization and various other problems in computational biology are

known to be fixed-parameter tractable (for example, Ávila et al., 2006; Bordewich and

Semple, 2007b; Gramm et al., 2008). However, practical fixed-parameter algorithms

that have been applied to biological data sets rarely exist. Recently, Bordewich et al.

(2007) implemented a fixed-parameter algorithm for Minimum Hybridization. By

applying this algorithm to a grass data set, the authors subsequently showed that many

problem instances were computable within a couple of minutes. However, there were

several instances to which the algorithm did not return the exact answer in reasonable

time. In particular, for three tree pairs, the running time to calculate the exact solution

was at least two days. Other studies in computational biology that have introduced

fixed-parameter algorithms and applied them to biological or synthetic data sets are for

example described in Dehne et al. (2006), and Gramm and Niedermeier (2002, 2003).

To keep up with the constant progress in molecular biology, which primarily originates

from the development of efficient DNA sequencing technologies, it is of importance to

develop new and to further improve existing fixed-parameter algorithms such that they

can cope with an increasing data set size. A common technique for obtaining a fixed-

parameter algorithm for a problem is kernelization. The aim of this technique is to shrink

the size of the initial problem instance to its difficult core by quickly resolving those
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parts of the problem that are easily dealt with. Kernelizaton is the technique used by

Bordewich et al. (2007) in their implementation for solving Minimum Hybridization.

To complement kernelization, interleaving has been introduced as a new method in the

design of fixed-parameter algorithms (Niedermeier and Rossmanith, 2000). Interleaving

refers to repeated kernelization steps while one systematically processes a bounded search

tree. Apart from Abu-Khzam et al. (2006) and Dehne et al. (2006), where the authors

showed that interleaving has a positive impact on the overall running time of a fixed-

parameter algorithm, this technique has so far attracted more attention in theoretical

analyses concerned with FPT than in practical studies.

Making use of interleaving, we present a fixed-parameter algorithm for solving Min-

imum Hybridization that performs significantly better than that given by Bordewich

et al. (2007). This improvement is highlighted by the fact that all instances of the grass

data set described above can be solved in less than eleven minutes. As an example of

the new algorithm’s performance, an instance for which the previously implemented al-

gorithm did not return the solution within two days, can now be calculated in less than

a minute.

The new algorithm—called HybridInterleave—has been implemented in Java and

is available for application at

http://www.math.canterbury.ac.nz/∼c.semple/software.shtml

or

http://wwwcsif.cs.ucdavis.edu/∼linzs/.

To start a calculation with HybridInterleave, the algorithm requires the two input

trees to be given in Newick format. As output, the program provides the user with the

minimum number of hybridization events that explain the two input trees.

This paper is organized as follows. The next section contains some preliminaries and
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formally states the decision problem Minimum Hybridization for which a previously

established fixed-parameter algorithm is summarized in Section 4. The new algorithm

HybridInterleave and its proof of correctness are given in Section 5, while Section 6

analyzes the running times of HybridInterleave when applied to a grass data set

and compares it with the running times of the recently implemented algorithm Hybrid-

Number (Bordewich et al., 2007). We end the paper with some concluding remarks in

Section 7. Unless otherwise stated, the notation and terminology follows Semple and

Steel (2003).
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3 Preliminaries

This section provides preliminary definitions which are used throughout the rest of this

paper and formally states the decision problem Minimum Hybridization.

3.1 Phylogenetic Trees

A rooted binary phylogenetic X-tree T is a rooted tree whose root has degree two while

all other interior vertices have degree three. The leaf set X is the label set of T and

frequently denoted by L(T ). Furthermore, a subset A of X is a cluster of T if there

is a vertex v whose set of descendants is precisely A. We view v as an ancestor and

descendant of itself.

In the course of this paper, two types of subtrees play an important role. Let X ′ be a

subset of X, and let T be a rooted phylogenetic X-tree. The minimal rooted subtree of

T that connects all leaves in X ′ is denoted by T (X ′). Furthermore, the subtree obtained

from T (X ′) by contracting all non-root degree-2 vertices is the restriction of T to X ′

and is denoted by T |X ′. Lastly, a subtree is pendant if it can be detached from T by

deleting a single edge.

3.2 Hybridization Networks

A hybridization network H on a set X is a rooted acyclic digraph with root ρ such that

the following properties are satisfied:

(i) X is the set of vertices of out-degree 0,

(ii) the out-degree of ρ is at least 2, and

(iii) for all vertices v with d+(v) = 1, we have d−(v) = 2,
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where d+(v) and d−(v) denote the out-degree and in-degree of v, respectively. The set

X represents a collection of present-day taxa, and vertices of in-degree two represent an

exchange of genetic information between their parents. Generically, we call these vertices

hybridization vertices. Figure1

To quantify the number of hybridization events, the hybridization number of H is the

total number of hybridization vertices. Observe that if H is a rooted binary phylogenetic

tree, then h(H) = 0. Ignoring the thickness of the arcs, the left-hand-side of Figure 1

shows a hybridization network H whose hybridization number is three.

Now letH be a hybridization network on X, and let T be a rooted binary phylogenetic

X ′-tree with X ′ ⊆ X. We say that T is displayed by H if T can be obtained from H by

deleting a subset of its edges and any resulting degree-0 vertices, and then contracting

edges. For example, the rooted binary phylogenetic tree T shown in Figure 1 is displayed

by the hybridization network H of the same figure. Intuitively, if H displays T , then

all of the ancestral relationships visualized by T are visualized by H. Extending the

definition of the hybridization number to two rooted binary phylogenetic X-trees S and

T , we set

h(S, T ) = min{h(H) : H is a hybridization network that displays S and T }.

With the above definition, we now formally state Minimum Hybridization.

Problem: Minimum Hybridization(S, T , k)

Instance: Two rooted binary phylogenetic X-trees S and T , and an integer k.

Question: Is h(S, T ) < k?
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3.3 Agreement Forests
Figure

2
Originating from an idea in Hein et al. (1996), Bordewich and Semple (2007a) showed

that Minimum Hybridization is NP-complete by using a characterization of the prob-

lem in terms of agreement forests. Such forests play a fundamental role in this paper.

For the purpose of the upcoming definitions, we regard the root of a rooted binary phy-

logenetic X-tree T as a vertex ρ at the end of a pendant edge adjoined to the original

root. For an example of two such trees, see Figure 2. Furthermore, we view ρ as an

element of the label set of T ; thus L(T ) = X ∪ {ρ}. Now, let S and T be two rooted

binary phylogenetic X-trees. An agreement forest F = {Lρ,L1,L2, . . . ,Lk} for S and T

is a partition of L(S) such that ρ ∈ Lρ and the following conditions are fulfilled:

(1) For all i ∈ {ρ, 1, 2, . . . , k}, we have S|Li
∼= T |Li.

(2) The trees in {S(Li) : i ∈ {ρ, 1, 2, . . . , k}} and {T (Li) : i ∈ {ρ, 1, 2, . . . , k}} are

vertex-disjoint subtrees of S and T , respectively.

As an example, two agreement forests for the two rooted binary phylogenetic trees S and

T shown in Figure 2 areF = {{ρ, 7}, {1, 2, 3}, {4, 5, 6}} and F ′ = {{ρ, 1, 2, 3, 7}, {4}, {5}, {6}}.

A characterization of the minimum number h(S, T ) of hybridization events in terms

of agreement forests requires an additional condition. Without going into details, this

condition avoids the possibility of species inheriting genetic material from their own

descendants. Let F = {Lρ,L1,L2, . . . ,Lk} be an agreement forest for S and T . Let GF

be the directed graph that has vertex set F and an arc from Li to Lj precisely if i 6= j,

and either

(1) the root of S(Li) is an ancestor of the root of S(Lj) in S or

(2) the root of T (Li) is an ancestor of the root of T (Lj) in T .
Figure

3
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We call F an acyclic-agreement forest for S and T if GF has no directed cycle. Moreover,

if F contains the smallest number of parts over all acyclic-agreement forests for S and

T , we say that F is a maximum-acyclic-agreement forest for S and T , in which case, we

denote this number minus one by ma(S, T ). Figure 3 shows the two digraphs GF and

GF ′ that are associated with the agreement forests F and F ′, respectively, for the two

rooted binary phylogenetic X-trees S and T depicted in Figure 2. Note that, as GF ′ is

acyclic, F ′ is an acyclic-agreement forest for S and T while F is no such forest. Indeed,

F ′ is a maximum-acyclic-agreement forest for S and T . Baroni et al. (2005) established

the following characterization.

Theorem 1. Let S and T be two rooted binary phylogenetic X-trees. Then

h(S, T ) = ma(S, T ).

It is this characterization that was used to show that Minimum Hybridization is

NP-complete.
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4 Overview of a Known Fixed-Parameter Algorithm

for Minimum Hybridization

In this section, we summarize the basic ideas of the first fixed-parameter algorithm for

Minimum Hybridization. This algorithm is based on an earlier result that showed,

for a pair of rooted binary phylogenetic X-trees S and T , Minimum Hybridization

is fixed-parameter tractable with h(S, T ) being the parameter (Bordewich and Semple,

2007b). In establishing this result, the authors used two reductions—called the subtree

and chain reduction—that kernelize S and T to two smaller trees whose number of leaves

is linear in h(S, T ).

Before detailing these reductions, we need some additional definitions. Let T be a

rooted binary phylogenetic X-tree. An n-chain of T is an ordered tuple (a1, a2, . . . , an)

of elements in X such that the parent of a1 is either the same as the parent of a2 or a

child of the parent of a2 and, for all i ∈ {2, 3, . . . , n − 1}, the parent of ai is a child of

the parent of ai+1. For example, referring to Figure 2, (1, 2, 3, 4, 5, 6) and (4, 5, 6) are

chains of S. Furthermore, let S and T be two rooted binary phylogenetic X-trees, and

let P be a disjoint collection of 2-element subsets of X such that each pair {a, b} ∈ P

is a common 2-chain of S and T . Let the weight function w : P → Z
+ assign each

element of P a positive integer weight. We refer to S and T with an associated weight

function w as a pair of weighted phylogenetic trees on X. The set P is referred to as the

set of weighted 2-chains of S and T . Unless otherwise stated, we will use w to denote

the weighting of the 2-chains in P .

We now describe the reductions. Let S and T be two weighted rooted binary phylo-

genetic X-trees with weighted 2-chain set P .

Subtree reduction. Replace a maximal pendant subtree that is common to S and T

by a single leaf with a new label. Furthermore, delete all members in P whose elements

label leaves of the pendant subtree under consideration.
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Chain reduction. Replace a maximal n-chain (a1, a2, . . . , an) with n > 2 that occurs Figure

4identically in S and T by a 2-chain with new labels a and b. Furthermore, add the

2-element set {a, b} to P with an associated weight of

w({a, b}) = n− 2 +
∑

{ai, aj} ∈ P

and ai, aj ∈

{a1, . . . , an}

w({ai, aj}),

and delete all members in P whose elements are in {a1, a2, . . . , an}. An explicit example

of the chain reduction is shown in Figure 4, where the two rooted binary phylogenetic

trees S ′ and T ′ have been obtained from S and T , which are shown in Figure 2, by

replacing the 3-chain (1, 2, 3) with the 2-chain (a, b), and similarly, the 3-chain (4, 5, 6)

with (c, d). Note that w({a, b}) = w({c, d}) = 1.

The correspondence between the trees resulting from repeated applications of the

subtree and chain reductions, and the initial two trees is given in the next lemma. This

correspondence is done via a notion of agreement forests that extends acyclic-agreement

forests. An agreement forest F for two rooted weighted binary phylogenetic X-trees S

and T with weighted 2-chain set P is called legitimate if it is acyclic and the following

property holds:

(P) For each {a, b} ∈ P , either {a} and {b} are elements in F , or there exists an

element of F , say L, such that {a, b} ⊆ L.

Let F be a legitimate-agreement forest for S and T . Set

wc(F , P ) =
∑

{a, b} ∈ P ;

{a}, {b} ∈ F

w({a, b}),

we define the weight of F as

w(F) = |F| − 1 + wc(F , P )
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and set f(S, T ) to be the minimum weight of a legitimate-agreement forest for S and

T . Note that we always have f(S, T ) ≥ h(S, T ), and f(S, T ) = h(S, T ) whenever P is

empty. The next two lemmas are central to showing that Minimum Hybridization is

fixed-parameter tractable (Bordewich and Semple, 2007b).

Lemma 2. Let S and T be two weighted rooted binary phylogenetic X-trees, and let

S ′ and T ′ be two weighted rooted binary phylogenetic X ′-trees that have been obtained

from S and T , respectively, by applying the subtree or chain reduction. Then f(S, T ) =

f(S ′, T ′).

Lemma 3. Let S and T be two weighted rooted binary phylogenetic X-trees whose

weighted 2-chain set P is empty. Furthermore, let S ′ and T ′ be two weighted rooted

binary phylogenetic X ′-trees that have been obtained from S and T , respectively, by re-

peatedly applying the subtree and chain reduction until no further reduction is possible.

Then |X ′| ≤ 14h(S, T ).

Cluster reduction. Besides repeatedly applying the subtree and chain reductions to Figure

5kernelize a problem instance of Minimum Hybridization before exhaustively calculat-

ing a legitimate-agreement forest of minimum weight, we can use a third reduction that

breaks a problem instance of Minimum Hybridization into two smaller subproblems.

This reduction is depicted in Figure 5 and can be repeatedly intertwined with the other

two reductions before the inevitable exhaustive search part of the algorithm. How the

two smaller problem instances relate to the original instance is described in the next

corollary. Due to Linz (2008), this corollary generalizes the unweighted version given by

Baroni et al. (2006).

Corollary 4. Let S and T be two weighted rooted binary phylogenetic X-trees with

weighted 2-chain set P , and let A be a common minimal cluster of both S and T with

|A| ≥ 2. Then,

f(S, T ) = f(S|A, T |A) + f(Sa, Ta),

where Sa and Ta are the trees obtained from S and T , respectively, by replacing the

pendant subtree whose label set is precisely A with a new leaf labeled a.
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In the last corollary, the weighted 2-chain sets, PA and Pa say, of S|A and T |A, and Sa

and Ta, respectively, are

PA = {{ℓ, ℓ′} : {ℓ, ℓ′} ⊆ P and ℓ, ℓ′ ∈ A}

and

Pa = {{ℓ, ℓ′} : {ℓ, ℓ′} ⊆ P and ℓ, ℓ′ 6∈ A},

where, for both sets, the weight of each element {ℓ, ℓ′} is equal to the weighting of {ℓ, ℓ′}

in the weight function associated with P .

Remarks.

(i) Note that the cluster reduction can repeatedly be applied to break S and T into as

many smaller tree pairs as possible by setting A to be a minimal common cluster

of S and T with |A| ≥ 2, and resetting S and T to be Sa and Ta, respectively,

before applying this reduction again until S ∼= T .

(ii) We impose maximality on a common pendant subtree and a common n-chain and

minimality on a common cluster to guarantee that the corresponding label set of

any such common feature intersects each member of P in either both elements or

neither.
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5 A New Algorithm for Minimum Hybridization

In this section, we present our fixed-parameter algorithm HybridInterleave for Min-

imum Hybridization. It makes use of the subtree, chain, and cluster reductions, but

importantly, in terms of obtaining significantly decreased running times (see Section 6),

it additionally uses interleaving.

Before outlining HybridInterleave and giving its pseudocode, we state two lem-

mas that are central to its correctness and description. Let T be a rooted binary phylo-

genetic X-tree, and let ℓ and ℓ′ be elements of X. To ease reading in this section, we use

T [−ℓ] to denote T |(L(T )−{ℓ}) and T [−ℓ, ℓ′] to denote T |(L(T )−{ℓ, ℓ′}). Furthermore,

let S and T be two weighted rooted binary phylogenetic X-trees with weighted 2-chain

set P . If ℓ is contained in a member of P , we say that ℓ crosses P .

Lemma 5. Let S and T be two weighted rooted binary phylogenetic X-trees with weighted

2-chain set P . Suppose that S and T have no common pendant subtree whose leaf set

size is at least 2. Then, for each ℓ ∈ X, we have

f(S, T ) ≤ f(S[−ℓ, ℓ′], T [−ℓ, ℓ′]) + 2 + w({ℓ, ℓ′})

if ℓ crosses P with {ℓ, ℓ′} ∈ P , and

f(S, T ) ≤ f(S[−ℓ], T [−ℓ]) + 1

otherwise.

Proof. First assume that ℓ crosses P in an element {ℓ, ℓ′}. Let Fℓ be a legitimate-

agreement forest for S[−ℓ, ℓ′] and T [−ℓ, ℓ′] of minimum weight. Then it is easily checked

that

F = Fℓ ∪ {{ℓ}, {ℓ
′}}

is a legitimate-agreement forest for S and T . Moreover, we have |F| = |Fℓ| + 2 and
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wc(Fℓ, P − {ℓ, ℓ
′}) = wc(F , P )− w({ℓ, ℓ′}). Hence,

f(S[−ℓ,ℓ′], T [−ℓ, ℓ′]) + 2 + w({ℓ, ℓ′}) (1)

= |Fℓ| − 1 + wc(Fℓ, P − {ℓ, ℓ
′}) + 2 + w({ℓ, ℓ′})

= |F| − 1 + wc(F , P )

≥ f(S, T ).

Now assume that ℓ does not cross P . Let Fℓ be a legitimate-agreement forest for

S[−ℓ] and T [−ℓ] of minimum weight. Again, it is clear that

F = Fℓ ∪ {ℓ}

is a legitimate-agreement forest for S and T . Moreover, we have |F| = |Fℓ| + 1 and

wc(Fℓ, P ) = wc(F , P ). Thus

f(S[−ℓ], T [−ℓ]) + 1 = |Fℓ| − 1 + wc(Fℓ, P ) + 1 (2)

= |F| − 1 + wc(F , P )

≥ f(S, T ).

Inequalities (1) and (2) establish the lemma.

Lemma 6. Let S and T be two weighted rooted binary phylogenetic X-trees with weighted

2-chain set P . Suppose that S and T have no common pendant subtree whose leaf set

size is at least 2. Then there exists an element ℓ ∈ X such that either ℓ crosses P with

{ℓ, ℓ′} ∈ P and

f(S, T ) = f(S[−ℓ, ℓ′], T [−ℓ, ℓ′]) + 2 + w({ℓ, ℓ′}),

or ℓ does not cross P and

f(S, T ) = f(S[−ℓ], T [−ℓ]) + 1.

Proof. Let F = {Lρ,L1,L2, . . . ,Lk} be a legitimate-agreement forest for S and T of

minimum weight. First observe that, as GF is acyclic, it has a vertex Li with i ∈
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{ρ, 1, 2, . . . , k} whose out-degree is zero. Furthermore, since S and T have no common

pendant subtree whose leaf set size is at least 2, Li is a singleton in F . Since ρ is never

a singleton in F by Lemma 1 of Baroni et al. (2005), we may assume that Li = {ℓ},

where ℓ ∈ X.

First assume that ℓ crosses P in an element {ℓ, ℓ′}. Since F is legitimate, {ℓ′} ∈ F

as {ℓ} ∈ F , and so

Fℓ = F − {{ℓ}, {ℓ′}}

is a legitimate-agreement forest for S[−ℓ, ℓ′] and T [−ℓ, ℓ′]. Furthermore, we have |F| =

|Fℓ|+ 2 and wc(F , P ) = wc(Fℓ, P − {ℓ, ℓ
′}) + w({ℓ, ℓ′}). It now follows that

f(S, T ) = |F| − 1 + wc(F , P ) (3)

= |Fℓ|+ 2− 1 + wc(Fℓ, P − {ℓ, ℓ
′}) + w({ℓ, ℓ′})

≥ f(S[−ℓ, ℓ′], T [−ℓ, ℓ′]) + 2 + w({ℓ, ℓ′}).

Second assume that ℓ does not cross P . Since F is a legitimate-agreement forest for

S and T ,

Fℓ = F − {ℓ}

is such a forest for S[−ℓ] and T [−ℓ]. Furthermore, we have |F| = |Fℓ|+1 and wc(F , P ) =

wc(Fℓ, P ). It now follows that

f(S, T ) = |F| − 1 + wc(F , P ) (4)

= |Fℓ|+ 1− 1 + wc(Fℓ, P )

≥ f(S[−ℓ], T [−ℓ]) + 1.

Combining (3) and (4) with Lemma 5 gives the lemma.

We next give a brief outline of the algorithm HybridInterleave before detailing

its pseudocode. The algorithm takes as input two rooted binary phylogenetic X-trees

S and T , and an integer k, and outputs h(S, T ) precisely if h(S, T ) < k. It starts
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with initializing the variable P , the set of weighted 2-chains, that has previously been

obtained by applying a chain reduction to S and T . Recall that w is the weight function

associated with P . HybridInterleave then directly calls the subroutine Interleave

which contains the key features of this algorithm.

If k > 0, Interleave initially finds all maximal pendant subtrees that are common

to S and T . If the resulting two trees have a label set size of at most 3, then, as ρ ∈ L(S),

they are identical. Consequently, Interleave directly returns 0 as the minimum weight

for a legitimate-agreement forest of S and T . Otherwise, the algorithm proceeds with

replacing each maximal common n-chain, where n ≥ 3, with a 2-chain. Resetting S and

T to be the reduced weighted trees, they always have a cluster A with 2 ≤ |A| < |L(S)|

in common which allows for an application of the cluster reduction. This reduction

returns two new tree pairs. The second pair S ′′ and T ′′ has been obtained from S

and T by replacing S(A) and T (A), respectively, by a new leaf while the first pair is

S ′ = S|A and T ′ = T |A (viewing the root of S ′ and T ′, respectively, as a vertex ρ′

adjoined to the original root by a pendant edge). With P ′ = {{ℓ, ℓ′} ∈ P : {ℓ, ℓ′} ⊆ A}

whose associated weight function is w′, the algorithm next checks whether there exists a

legitimate-agreement forest for S ′ and T ′ with f(S ′, T ′) < k, where w′ is obtained from

w by restricting its domain to members that are subsets of A. To this end, the subroutine

branches into |A| computational paths, where each path corresponds to an element of A

and a call to Interleave. This guarantees that an element is found for which Lemma 6

holds. Furthermore, for each ℓ ∈ A, the algorithm successively resets the variable h,

which was originally initialized with k, to the minimum of the current value of h and the

return value of the associated recursive call to Interleave increased by 2 + w′({ℓ, ℓ′})

if ℓ crosses P ′ with {ℓ, ℓ′}, or increased by 1 otherwise. Thus, at each step, h equals k

or it contains the minimum weight over all legitimate-agreement forests for S ′ and T ′

that have previously been considered. After at most k iterations, Interleave(S, T , k)

declares h+Interleave(S ′′, T ′′, w′′, k − h), where w′′ is obtained from w by restricting

its domain to members that are not subsets of A. Eventually, HybridInterleave
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either returns h(S, T ) if h(S ′, T ′) = h < k and h(S ′′, T ′′) < k − h, or it returns k.

The pseudocode for HybridInterleave is given below. The pseudocodes for the

subtree, chain, and cluster reductions are given in Bordewich et al. (2007). Because of

this and the description given earlier, we have omitted their respective pseudocodes.
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Algorithm: HybridInterleave(S, T , k)

procedure Interleave(S, T , w, k)

if k ≤ 0

then return (k)

(S, T , w)← SubtreeReduction(S, T , w)

if |L(S)| ≤ 3

then return (0)

(S, T , w)← ChainReduction(S, T , w)

(S ′, T ′, w′,S ′′, T ′′, w′′)← ClusterReduction(S, T , w)

h← k

for each ℓ ∈ L(S ′)− {ρ′}

do



























































































if ∃ℓ′ ∈ L(S ′)− {ρ′, ℓ} such that {ℓ, ℓ′} ∈ domain w′

then



































S ′ ← S ′[−ℓ, ℓ′]

T ′ ← T ′[−ℓ, ℓ′]

h← min{h, Interleave(S ′, T ′, w′, h−

w′({ℓ, ℓ′})− 2) + 2 + w′({ℓ, ℓ′})}

else























S ′ ← S ′[−ℓ]

T ′ ← T ′[−ℓ]

h← min{h, Interleave(S ′, T ′, w′, h− 1) + 1}

return (h + Interleave(S ′′, T ′′, w′′, k − h))

main

P ← ∅

w : P → Z
+

k ← Interleave(S, T , w, k)

return (k)
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Remark. Let X ′ be the label set of the two rooted binary phylogenetic trees that

result from repeated applications of the subtree and chain reduction in the first call to

Interleave. By Lemma 3, we freely assume for the rest of the paper that the algorithm

directly returns k if |X ′| > 14k. Figure

6
To illustrate the reductions that are performed throughout the algorithm Hybrid-

Interleave, consider Figure 6 and the call HybridInterleave(S1, T1, k) with k > 2.

The algorithm first replaces the common pendant subtree S1|{1, 2} of S1 and T1 with

a single leaf labeled a. Since the resulting two trees S2 and T2 cannot be reduced fur-

ther under any of the three reductions, Interleave is recursively called, say for S2[−7]

and T2[−7]. Next interleaving comes into play as S3 and T3 have a common 3-chain

(4, 5, 6) that is replaced with the 2-chain (b, c). Again, S4 and T4 are fully reduced and

Interleave is called, say for S4[−3] and T4[−3]. The two obtained trees S5 and T5 are

identical and the algorithm ultimately returns h = 2 for the described computational

path of the search tree.

We next establish the correctness of HybridInterleave.

Theorem 7. Let S and T be a pair of rooted binary phylogenetic X-trees. Then the

output of HybridInterleave(S, T , k) is h(S, T ) if and only if h(S, T ) < k; otherwise

it is k.

Proof. The proof is by induction on k. If k = 0, then Interleave immediately returns 0,

and so the theorem holds. Now suppose that k ≥ 1 and that the theorem holds whenever

the input parameter is at most k − 1. Because of the structure of HybridInterleave

and Corollary 4, to establish this part of the induction, it suffices to show that the

first call to the for each loop correctly returns h+Interleave(S ′′, T ′′, w′′, k − h) with

h = f(S ′, T ′) if and only if f(S ′, T ′) < k, otherwise with h = k.

By Lemma 6, there is an ℓ ∈ L(S ′)− {ρ′} such that one of the following holds:
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(a) If ℓ does not cross P , then

f(S ′[−ℓ], T ′[−ℓ]) = f(S ′, T ′)− 1.

(b) If ℓ crosses P with {ℓ, ℓ′} ∈ P , then

f(S ′[−ℓ, ℓ′], T ′[−ℓ, ℓ′]) = f(S ′, T ′)− 2− w({ℓ, ℓ′}).

Moreover, by Lemma 5, for all ℓ ∈ L(S ′)− {ρ′}, we have

f(S ′[−ℓ], T ′[−ℓ]) ≥ f(S ′, T ′)− 1

if ℓ does not cross P and

f(S ′[−ℓ, ℓ′]), T ′[−ℓ, ℓ′]) ≥ f(S ′, T ′)− 2− w({ℓ, ℓ′})

if ℓ crosses P with {ℓ, ℓ′} ∈ P . It now follows by the induction assumption and

Lemma 5 that if f(S ′, T ′) ≥ k, then the first call to the for each loop correctly re-

turns k+Interleave(S ′′, T ′′, w′′, 0). Furthermore, by the induction assumption and

Lemma 6, if f(S ′, T ′) < k, then the first call to the for each loop correctly returns

h+Interleave(S ′′, T ′′, w′′, k−h), where h = f(S ′, T ′). This completes the proof of the

theorem.

We end this section by analyzing the running time of HybridInterleave and com-

paring it with the time complexity of a previous implemented algorithm to solve Mini-

mum Hybridization.

Proposition 8. Let S and T be two weighted rooted binary phylogenetic X-trees whose

weighted 2-chain set P is empty. Furthermore, let k be an integer. Then the running

time of HybridInterleave(S, T , k) is O((14k)kn3), where n = |X|.

Proof. By repeatedly applying the subtree and chain reductions to S and T until no

further reduction is possible, it follows from Lemma 3 that the leaf set size of the ob-

tained weighted rooted binary phylogenetic X ′-trees S ′ and T ′ is at most 14h(S, T ).
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Furthermore, while the subtree and chain reduction can be computed in O(n3) (Bor-

dewich and Semple, 2007b), a single application of the cluster reduction results in an

O(2n) algorithm. Thus, calling all three reductions takes time O(n3).

Since HybridInterleave directly returns k if |X ′| > 14k, we may assume that

|X ′| ≤ 14k. The remaining part of this proof is by induction on k. If k = 0, then the

algorithm returns k in constant time. Now suppose that the running time of Hybrid-

Interleave is O((14k′)k′

n3) for all 0 ≤ k′ < k. Let A be a minimal common cluster

of S ′ and T ′. As 14k ≥ |A|, the algorithm makes at most 14k calls to Interleave for

the tree pair S ′|A and T ′|A with parameter of at most k − 1. Thus the running time is

O(n3 + 14k(14(k − 1))k−1n3) which is O((14k)kn3) as claimed.

Remark. The running time of HybridInterleave given in Proposition 8 is an im-

provable upper bound since it only considers the kernelization of the two inputted phy-

logenetic trees and not applications of the subtree and chain reductions to previously

reduced trees for which Interleave is recursively called from within the for each loop.

As a comparison, O((2 · 14k)k + n3) is the theoretical worst-case running time of Hy-

bridNumber (Bordewich and Semple, 2007b). Thinking of the exhaustive search part

of both algorithms HybridInterleave and HybridNumber as successively deleting

a set of edges to calculate the hybridization number, the difference in the two running

times is because the bounded search tree in HybridInterleave is only based on the

deletion of pendant edges of the trees under consideration and not all of the edges as

in HybridNumber. The fact that one needs only consider pendant edges follows from

Lemmas 5 and 6. An indication of how much better the theoretical worst-case running

time of HybridInterleave could possibly be is highlighted in the next section when

we compare the running times of both algorithms on a biological data set.
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6 Experimental Results

To evaluate the performance of HybridInterleave, we applied it to a grass (Poaceae)

data set that has previously been used for running-time analyses in the context of calcu-

lating the hybridization number (Bordewich et al., 2007) and the rooted subtree prune

and regraft distance (for details, see Section 7) which is frequently used to calculate the

dissimilarities between two phylogenies for when reticulation is not assumed to be its ma-

jor cause. The Poaceae data set was originally provided by the Grass Phylogeny Working

Group (2001) and contains DNA sequences for six genetic loci, each with up to 65 taxa.

Details about this data set and how a gene tree was reconstructed for each locus can be

found in Bordewich et al. (2007) (and references therein). Species of the Poaceae family

are subject to numerous natural hybridization events (Ellstrand et al., 1996). Therefore,

the conflicting signals in this data set are more likely to be due to hybridization than to

other processes causing inconsistencies.

For each of the 15 tree pairs, we restricted the two associated phylogenies to taxa

that are common to both (second column of Table 1) and calculated the hybridization

number of the resulting trees. The results are summarized in Table 1, where—beside

the hybridization numbers—the running times for HybridNumber and HybridInter-

leave are compared for each tree pair. A detailed description of the former algorithm,

is given by Bordewich et al. (2007). Note that we reran HybridNumber to guarantee

consistency among the obtained running times for both algorithms. While HybridNum-

ber computes the hybridization number for eight tree pairs within a couple of minutes,

HybridInterleave does so for all instances of the Poaceae data set and performs sig-

nificantly faster. The latter algorithm successfully completes each program run in less

than 8 minutes and calculates hybridization numbers as high as 19 for gene tree pairs

with up to 46 taxa. This seems remarkably quick since HybridNumber cannot calcu-

late the exact solution for three tree pairs (ndhF and ITS , rbcL and ITS, and rpoC2

and ITS ) within 48 hours. The running time of HybridInterleave mostly depends
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on the exhaustive search part of this algorithm since the reductions can be computed

in polynomial-time. Clearly, the running time primarily decreases with an increase in

the number of taxa that can be reduced by any of the three reductions. On the other

hand, if the reductions have little effect because the trees only share a limited amount

of common features such as subtrees, chains, or clusters, then the running time greatly

increases with the hybridization number.
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7 Concluding Remarks

In this paper, we presented the new algorithm HybridInterleave that exactly calcu-

lates the hybridization number for two rooted binary phylogenetic trees. The algorithm

can be applied to answer questions that consider the extent to which hybridization has

influenced evolution and, therefore, shaped the current diversity of species. However,

from a biological point of view, the results should carefully be interpreted since the al-

gorithm is based on the assumption that hybridization is the only cause of gene tree

inconsistencies. Moreover, it is possible that the real number of hybridization events

for two trees is underestimated because HybridInterleave minimizes this number

and the true biological scenario might be less parsimonious. Of course, calculating a

hybridization network that realizes this number is a desirable extension of our work.

Indeed, given a maximum-acyclic-agreement forest, there is straightforward algorithm

for doing this (Semple, 2007). However, such a network is typically not unique and it

is part of ongoing research to implement an algorithm that calculates all possible hy-

bridization networks that display two rooted binary phylogenetic trees and minimizes

the hybridization number. Nevertheless, we believe that HybridInterleave provides

an important first step towards analyzing the occurrence of hybridization within a data

set and, additionally, is remarkably quick.

We have shown that interleaving is an advantageous technique to speed-up the previ-

ously implemented fixed-parameter algorithm HybridNumber. Referring back to the

running time results summarized in Table 1, it is likely that HybridInterleave can

also compute the exact hybridization number in a reasonable short amount of time for

problem instances that either contain bigger trees or have a greater hybridization number

than those of the Poaceae data set. In conclusion, interleaving has proven to be most

effective for our purpose of providing an exact algorithm to compute the hybridization

number for two phylogenies of biologically relevant size, and we look forward to seeing

whether interleaving has the same positive impact when applied to other fixed-parameter
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tractable problems.

We end this paper with a remark on how interleaving can also be applied to cal-

culate the rooted subtree prune and regraft (rSPR) distance. Loosely speaking, the

graph-theoretic operation of rSPR cuts (prunes) a subtree and reattaches (regrafts) it to

another part of the tree. The rSPR distance between two arbitrary rooted binary phy-

logenetic X-trees S and T is the smallest number of rSPR operations that transforms S

into T . We denote this distance by drSPR(S, T ) and note that it is well-defined since one

can always transform S into T via a sequence of single rSPR operations. Like Minimum

Hybridization, calculating drSPR(S, T ) is NP-hard and fixed-parameter tractable (Bor-

dewich and Semple, 2004). Furthermore, the following theorem was central to obtaining

these results.

Theorem 9. Let S and T be two rooted binary phylogenetic X-trees, and let m(S, T )

denote the smallest number of elements among all agreement forests for S and T minus

one. Then

drSPR(S, T ) = m(S, T ).

Given the strong similarities between the characterizations of h(S, T ) and drSPR(S, T )

(see Theorems 1 and 9), it is not surprising that interleaving can also be applied to cal-

culate the latter distance. However, while it is sufficient to exclusively consider 1-element

subsets in the for each loop of HybridInterleave, for calculating the rSPR distance,

we need to iterate through all proper subsets of the label set under consideration, and

thus, subsequently apply analogous subtree, chain, and cluster reductions to possibly

more than one tree pair. This is due to the missing acyclic property in the context of

calculating drSPR(T , T ′). A detailed description of how interleaving can be applied in

order to speed-up the computation of drSPR(T , T ′) is given by Collins (2009).
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Table 1: Running time comparison of HybridInterleave with HybridNumber (Bor-

dewich et al., 2007) for the Poaceae data set (Grass Phylogeny Working Group, 2001).

Pairwise combination #Taxa Hybridization number RT
a

of HybridNumber RT
a

of HybridInterleave

ndhF phyB 40 14 5.9 h 23 s

ndhF rbcL 36 13 5.3 h 3 s

ndhF rpoC2 34 12 13 h 6 s

ndhF waxy 19 9 150 s < 1 s

ndhF ITS 46 19 > 48 h 258 s

phyB rbcL 21 4 < 1 s < 1 s

phyB rpoC2 21 7 90 s < 1 s

phyB waxy 14 3 < 1 s < 1 s

phyB ITS 30 8 10 s < 1 s

rbcL rpoC2 26 13 15.2 h 8 s

rbcL waxy 12 7 132 s < 1 s

rbcL ITS 29 14 > 48 h 612 s

rpoC2 waxy 10 1 < 1 s < 1 s

rpoC2 ITS 31 15 > 48 h 57 s

waxy ITS 15 8 330 s < 1 s
a

Running time (RT) on a 2.66 GHz CPU, 2 GB RAM machine measured in seconds (s) and hours (h), respectively.
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Figure 1: A hybridization network H with h(H) = 3, and a rooted binary phylogenetic

tree T that is displayed by H (indicated by the thicker arcs in H).
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Figure 2: Two rooted binary phylogenetic X-trees S and T with their roots labeled ρ.
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Figure 3: Two agreement forests F and F ′ and their associated digraphs GF and GF ′,

respectively, for S and T shown in Figure 2.
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Figure 4: Two rooted binary phylogenetic X-trees S ′ and T ′ that have been obtained

from S and T depicted in Figure 2 by repeated applications of the chain reduction.
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Figure 5: A cluster reduction applied to the two rooted binary phylogenetic trees S and

T , where Sa and Ta have been obtained from S and T , respectively, by replacing the

pendant subtree whose label set is A with a new leaf labeled a.

37



Interleave

ρ

a 4 5 7 6 3

T2

ρ

a 3 4 5 6 7

S2

a b c

S5

ρ

ρ

1 2 3 4 5 6 7

ρ

1 2 4 5 7 6 3

S1 T1

a a

ρ

a b c 3

a 3 4 5 6

ρ

a 4 5

ρ

6 3

S3 T3

b, c b, c

T4S4

ρ

a 3 b c

ρ

a b c

T5

SubtreeReduction

ChainReduction

Interleave

Figure 6: The intermediate tree pairs of a computational path in the search tree generated

by a call to HybridInterleave(S1, T1, k) with k > 2. Note that the cluster reduction

is omitted here since the second tree pair which is returned from this reduction always

consists of two identical trees. For details, see text.

38




