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Abstract

It has recently been shown that the NP-hard problem of calculating the minimum number of hybridization
events that is needed to explain a set of rooted binary phylogenetic trees by means of a hybridization network
is fixed-parameter tractable if an instance of the problem consists of precisely two such trees. In this paper,
we show that this problem remains fixed-parameter tractable for an arbitrarily large set of rooted binary
phylogenetic trees. In particular, we present a quadratic kernel.
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1. Introduction

Phylogenetic trees are a commonly used tool for representing evolutionary relationships. Let X be a
finite set representing for example biological species or, more generally, taza. A rooted phylogenetic X-
tree is a rooted tree that has no vertices of outdegree 1 and whose leaves are bijectively labeled by the
elements of X. Recently, rooted phylogenetic networks have become increasingly important in analyzing
evolutionary histories of sets of taxa whose past may include reticulate evolutionary events such as horizontal
gene transfer, hybridization, or recombination. Rooted phylogenetic networks are a generalization of rooted
phylogenetic X-trees to directed acyclic graphs. In particular, vertices of indegree at least two are called
reticulation vertices and represent events in which, in the context of hybridization, two distinct ancestral
species combine their genomes and form a new species. The number of reticulations specified by a reticulation
vertex is defined as its indegree minus one while the number of reticulations specified by a phylogenetic
network N is defined as the sum of the number of reticulations over all reticulation vertices in N. To
quantify the extent to which hybridization events have had an impact on the evolutionary history of a set
of present-day species, the following optimization problem has attracted much interest. Let 7 be a set of
rooted phylogenetic trees on the same set of taxa. What is the minimum number of reticulations specified
by any phylogenetic network that explains each of the trees in 77 The decision variant of this problem,
called HYBRIDIZATION NUMBER, as well as precise definitions are stated in Section 2. Since most of the
research that is concerned with this question has been done in the context of hybridization, we henceforth
refer to a phylogenetic network as a hybridization network and to reticulations specified by a network as
hybridizations.

Since HYBRIDIZATION NUMBER is APX-hard and, thus, NP-hard even for sets of rooted phylogenetic
trees consisting of precisely two binary such trees [6], many theoretical results as well as practical algorithms
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have been developed for this restricted case. In particular, it has been shown that the two-tree case is
fixed-parameter tractable (FPT), regardless of whether the two rooted phylogenetic trees are binary or
not [5, 15]. Roughly speaking, to establish these results, the authors used several reduction rules that shrink
each problem instance to a reduced (weighted) instance whose size is linear in the value of an optimal solution.
Subsequent to these results, practical algorithms have been developed that solve HYBRIDIZATION NUMBER
for two rooted binary phylogenetic trees [1, 8, 9, 16, 18]. Instead of calculating an optimal hybridization
network directly, all these algorithms make use of the concept of so-called agreement forests. Without going
into details, an agreement-forest for two rooted binary phylogenetic trees T' and T” on the same set of taxa is
a collection of disjoint subtrees that are common to T and T”. If such a collection is, in a certain sense, acyclic
and of minimum size, then its number of elements minus one equates to the solution of HYBRIDIZATION
NUMBER for T = {T,7"} [2]. However, this framework of agreement forests can only be applied to more
than two phylogenetic trees if one is solely interested in the minimum number of hybridization vertices, but
not the actual minimum number of hybridizations specified by any hybridization network that explains the
set of trees under consideration. These two numbers are equal in the two-tree case since each hybridization
vertex has exactly two parents [14]. Given this difficulty and the computational hardness of HYBRIDIZATION
NUMBER, it does not come as a surprise that, prior to this paper, there were no exact algorithms that
can solve HYBRIDIZATION NUMBER for more than two trees. The only available algorithms are described
in [7, 17, 8] and, in fact, are heuristics that compute lower and upper bounds for a given instance.

In this paper, we show that HYBRIDIZATION NUMBER remains fixed-parameter tractable if the input to
this problem consists of arbitrarily many rooted binary phylogenetic trees on the same set of taxa. This
generalization is of significant relevance for applications in (for example) evolutionary biology since biologists
usually construct phylogenetic trees for more than two different genes and are interested in the number of
hybridizations necessary to explain all reconstructed gene trees simultaneously. Our result shows that, as
in the two-tree case, this problem can be solved by using an FPT-algorithm. We hope that this result will
facilitate the development of practical algorithms in the same way as it has been the case for the restricted
two-tree version of the problem.

The paper is organized as follows. The next section contains some notation and terminology that is
used throughout this paper and formally states the decision problem HYBRIDIZATION NUMBER. Section 3
establishes the main result of this paper; thus showing that HYBRIDIZATION NUMBER is fixed-parameter
tractable by providing a quadratic kernel. We end this paper with some concluding remarks in Section 4.

2. Preliminaries

This section provides preliminary definitions that are used throughout this paper and formally states the
decision problem HYBRIDIZATION NUMBER for a set of rooted binary phylogenetic trees. Let X be a finite
set. We refer to the elements of X as taza.

Phylogenetic trees. A rooted binary phylogenetic X -tree T is a rooted tree whose root has degree two
while all other interior vertices have degree three, and whose leaves are bijectively labeled by the elements
of X. We identify each leaf with its label and thus refer to X as the leaf set of T. Furthermore, we regard
the edges of T' as being directed away from the root. Now let T" be a rooted phylogenetic X-tree, and let
X' be a subset of X. We define T'| X’ to be the rooted phylogenetic X’-tree obtained from T by taking the
minimal subtree of T' containing all leaves in X’ and suppressing all vertices with indegree 1 and outdegree 1.

Hybridization networks. A hybridization network N on X is a rooted acyclic digraph which has a
single root of indegree 0 and outdegree at least 2, has no vertex with indegree and outdegree both 1, and in
which the vertices of outdegree 0 are bijectively labeled with the elements of X. A vertex whose indegree is
at least 2 is called a hybridization vertex. A hybridization network is binary if all vertices have indegree and



outdegree at most 2 and each hybridization vertex has outdegree 1. Note that a rooted binary phylogenetic
X-tree is a binary hybridization network on X with no hybridization vertices.

Let N be a hybridization network on X. Furthermore, let X’ be a subset of X, and let T” be a rooted
phylogenetic X’-tree. Then T” is said to be a pendant subtree of N if it is a subtree that can be detached
from N by deleting a single edge. Furthermore, if (u,v) is an edge of N, we say that u is a parent of v and
v is a child of u. Note that these definitions hold in particular for rooted phylogenetic trees.

To quantify the number of hybridizations in a hybridization network N, the hybridization number of N
is given by
W(N) =Y (d"(v) = 1),

vEp
where d~ (v) is the indegree of v and p is the root of N.

Let N again be a hybridization network on X, and let T be a rooted binary phylogenetic X’-tree,
with X/ C X. We say that T is displayed by N if T can be obtained from N by deleting a subset of the
edges and vertices of N and suppressing vertices with indegree and outdegree both 1. In other words, N
displays T if there exist a subgraph of N that is a subdivision of T'. Intuitively, if N displays T, then all of
the ancestral relationships of T are visualized by N. Furthermore, for a set T of rooted binary phylogenetic
X'-trees, we say that N displays 7 if N displays each tree in T .

The problem HYBRIDIZATION NUMBER is to compute the minimum hybridization number of a set 7 of
rooted binary phylogenetic X-trees, which is defined as follows.

h(T) = min{h(N) : N is a hybridization network that displays 7 }.

This problem can formally be stated as the following decision problem.

Problem: HYBRIDIZATION NUMBER

Instance: A set T of rooted binary phylogenetic X-trees and a positive integer k.
Question: Is A(T) < k?

In the remainder of this paper, we will exclusively focus our attention on binary hybridization networks. To
see that this is sufficient, we need the following lemma [10, Lemma 3].

Lemma 1. Let N be a hybridization network on X that displays a set of rooted binary phylogenetic X -trees.
Then there exists a binary hybridization network N' on X that displays T such that h(N') = h(N).

Let (T, k) be an instance of HYBRIDIZATION NUMBER. We will show that two reduction rules described
below transform (7, k) into an equivalent instance (7, k) with a quadratic number of taxa. More precisely,
T’ is a collection of rooted binary phylogenetic X’-trees such that h(7’) < k if and only if h(7T) < k
and | X'| < 20k2.

To describe the reduction rules, we need some additional definitions. Let 7 be a set of rooted binary
phylogenetic X-trees and let X’ C X. A rooted phylogenetic X'-tree is a common pendant subtree of T if
it is a pendant subtree of each element in 7. Now, let 7' € T and let (x1, o, ...,z,) be a tuple of elements
of X with n > 2, and let p; be the parent of the leaf labeled z; in T, for each i € {1,2,...,n}. Then,
(x1,a,...,2,) is called a chain of T if either (p,,pn_1,...,p1) is a directed path in T, or (pn, pn—1,-.-,P2)
is a directed path in 7" and p; = pe. Furthermore, (21,22, ...,2,) is a common chain of T if it is a chain of
each element in 7.



Let (T, k) be an instance of HYBRIDIZATION NUMBER. We are now in a position to state two reduction
rules.

Subtree Reduction. For a common pendant subtree T of 7 with at least two leaves, replace, in each
element of T, the pendant subtree T by a single leaf labeled by a new taxon (that is not yet in X).

Chain Reduction. For a common chain (z1,z2,...,2z,) of T with n > bk, delete, in each element of
T, the leaves labeled with a member of {z5x11, Z5k+2,- .., Tn} and suppress all vertices with indegree and
outdegree both 1.

We remark that similar reductions have been published in the context of calculating the minimum hybridiz-
ation number as well as the so-called subtree prune and regraft distance for two phylogenies and proven to
be important to develop ‘efficient’ algorithms despite the NP-hardness of the underlying problems [3, 4, 5].

To obtain a proof of the kernelization for more than two trees, we need the following notion of generators.
A binary k-reticulation generator (with k € NT) is an acyclic directed multigraph with a single root (with
indegree 0 and outdegree 1), exactly k& hybridization vertices (with indegree 2 and outdegree at most 1)
and all other vertices have indegree 1 and outdegree 2. Let N be a binary hybridization network, with
h(N) = k, that has no pendant subtrees with two or more leaves. Then, a binary k-reticulation generator
is said to be the generator underlying N if it can be obtained from N in the following way. First, delete
all leaves of N and suppress each resulting vertex with indegree and outdegree both 1. Second, if the
root has outdegree 2, add a new root with an edge to the old root. For a formal proof showing that the
resulting directed multigraph is indeed a binary k-reticulation generator, we refer the reader to [12, Lemma
4]. Reversely, N can be reconstructed from its underlying generator by subdividing edges, adjoining a leaf
to each vertex that subdivides an edge, or has indegree 2 and outdegree 0 via a new edge, and deleting the
outdegree-1 root. The sides of a generator are its edges (the edge sides) and its vertices with indegree 2 and
outdegree 0 (the vertex sides). Thus, each leaf of N is on a certain side of its underlying generator. To be
more formal, let = be a leaf of N and let p be the parent of . If p is a hybridization vertex, then p is a vertex
side of the underlying generator and we say that x is on side p. If, on the other hand, p has indegree 1
and outdegree 2, then p is used to subdivide an edge side e of the underlying generator (because N has no
pendant subtrees with two or more leaves) and we say that x is on side e.

Let T be a set of rooted binary phylogenetic X-trees with no common pendant subtrees with two or
more leaves, and let N be a binary hybridization network on X that displays 7. Then, clearly, N has
no pendant subtrees with two or more leaves. Let G be the generator underlying N. A common chain
C = (z1,22,...,2y,) of T is said to survive in N if all elements of {z1, z2,...,z,} are on the same edge side
of G, and C is said to be atomized in N if no two elements of {1, x2,...,2,} are on the same side of G.

Kernels and fixed-parameter tractability. A kernelization of a parameterized problem is a polynomial-
time algorithm that maps an instance z with parameter k to an instance x’ with parameter k' such that
(1) (2', k') is a yes-instance if and only if (x, k) is a yes-instance, (2) the size of 2’ is bounded by a function f
of k, and (3) the size of k' is bounded by a function of k. A kernelization is usually referred to as a kernel
and the function f as the size of the kernel. Thus, a parameterized problem admits a quadratic kernel if
there exists a kernelization with f being a quadratic function. A parameterized problem is fized-parameter
tractable if there exists an algorithm that solves the problem in time O(g(k)|x|°)), with g being some
function of k and |z| the size of z. Such an algorithm is called an FPT-algorithm. It is well known that a
parameterized problem is fixed-parameter tractable if and only if it admits a kernelization and is decidable.
However, not for every fixed-parameter tractable problem a kernel of polynomial size is known. Kernels are
of particular interest because they can be used as a polynomial-time preprocessing which can be combined
with any algorithm solving the problem.



3. Fixed-parameter tractability of HYBRIDIZATION NUMBER
In this section, we establish the following theorem which is the main result of this paper.

Theorem 1. Let T be a set of rooted binary phylogenetic X -trees, let T’ be the set of rooted binary phylogen-
etic X'-trees obtained from T by applying the subtree reduction as often as possible and subsequently the chain
reduction as often as possible, and let k € N*. Then, h(T") < k if and only if h(T) < k and |X'| < 20k?.
In particular, HYBRIDIZATION NUMBER, parameterized by k, is fized-parameter tractable.

To establish Theorem 1, we need several lemmas. We start by showing that the subtree reduction does not
affect the solution of any instance (7, %) of HYBRIDIZATION NUMBER.

Lemma 2. Let 7y be a set of rooted binary phylogenetic X -trees and k € Nt. Furthermore, let T*° be the
set of trees that results from a single application of the subtree reduction to To. Then h(To) < k if and only

i h(T®) < k.

PROOF. Suppose that an application of the subtree reduction to 7y replaces a common pendant subtree S
by a leaf labeled s.

First, suppose that h(7y) < k. Let Ny be a hybridization network that displays 7y such that h(Ng) < k.
Furthermore, let (s1,82,...,$,) be an ordering on the elements of the leaf set of S. Obtain a network N;
from Ny by deleting the leaf labeled s;, and repeatedly deleting vertices with indegree 2 and outdegree 0,
suppressing vertices with indegree and outdegree both 1, replacing multiple edges with a single edge and
deleting vertices with indegree 0 and outdegree 1 until the resulting network is a hybridization network. Note
that the operation of deleting and suppressing vertices as described in the last sentence stops eventually.
Let 71 be the set of trees obtained from 7y by deleting the leaf labeled s; and suppressing the resulting
vertex with indegree and outdegree both 1 for each tree in 7y. Now, as Ny displays 7, it is easily checked
that N; displays 7;. Furthermore, we have h(N;) < h(Np) < k. We next repeat this process in order for
$2,83,...,5n,_1; thereby obtaining a hybridization network N,,_;. Finally, obtain a hybridization network
N* from N,,_1 by relabeling the leaf labeled s,, with s. Clearly, we have h(N?®) < k. Furthermore, since each
tree in 7° can be obtained from its associated tree in Ty by deleting all vertices labeled with an element
in {s1,82,...,8,-1}, suppressing vertices with indegree and outdegree both 1, and relabeling the vertex
labeled s,, with s, it now follows that N*® displays 7°.

Second, suppose that h(7°) < k. Then there exists a hybridization network N*® that displays 7° such
that h(N®) < k. Obtain a hybridization network Ny from N® by replacing the leaf labeled s with the tree S.
Since S is pendant in each element of 7y, it follows that Ny displays To. Moreover, as h(Ny) = h(N*®) < k
this establishes the lemma. O

As a result of this lemma, we can assume throughout the remainder of this paper that the set of input
trees T to HYBRIDIZATION NUMBER has no common pendant subtree. To establish a similar result for the
chain reduction (Lemma 5), we need two additional lemmas and some definitions.

Given two vertices u and v of a hybridization network, we say that u is an ancestor of v if there is a
directed path from u to v. Furthermore, a vertex of a directed path P is called internal if it is not the first
or the last vertex of P. Lastly, two directed paths P; and P are called internally vertex-disjoint if there is
no vertex of P; and P, that is an internal vertex of P; and Ps.



Lemma 3. Let T be a set of rooted binary phylogenetic X -trees with no common pendant subtrees with at
least two leaves. Then there exists a binary hybridization network N on X with h(N) = h(T) that displays T
such that each common chain of T either survives or is atomized in N.

PROOF. Let Ny be a binary hybridization network that displays 7 such that h(Ng) = k(7). Note that
such a network exists by Lemma 1. We will construct a network N from Ny that satisfies the statement of
the lemma by considering each common chain ¢ of T that neither survives nor is atomized in Ny and making
changes to the network so that ¢ survives in V.

Let ¢ = (x1,22,...,2,) be a common chain of 7 that neither survives nor is atomized in Ny. Note
that n > 3, since any chain of two taxa that does not survive is, by definition, atomized, and that Ny has
no pendant subtrees of at least two leaves since 7 has no common pendant subtrees of at least two leaves.

Let Gy be the generator underlying Ny and, for convenience, let C = {z1,z3,...,z,}. Since ¢ is not
atomized, there exist taxa x and z’ in C' that are on the same side s of Gy. Note that s can only be an
edge side. Let p and p’ be the parents of x and 2/, respectively, and assume without loss of generality that p
is an ancestor of p’. Let e = (g,p) be the unique edge entering p. Hence, e is an edge of the path in Ny
corresponding to side s.

We move all taxa of C' to side s; thereby creating a network in which ¢ survives. More precisely, we
construct networks Ny and Ny from N as follows. First, delete all taxa of C' and clean up the resulting
network by repeatedly deleting unlabeled outdegree-0 vertices, deleting vertices with indegree 0 and outde-
gree 1, suppressing vertices with indegree 1 and outdegree 1, and replacing edges that are incident with the
same pair of vertices by a single edge until none of these operations is possible (and one has thus obtained
a valid hybridization network). Call this intermediate network N;. We remark that we delete unlabeled
outdegree-0 vertices because these arise whenever a leaf is deleted that is on a vertex side of Gy. However,
by moving such a leaf to an edge side, we reduce the hybridization number of the resulting network which
would lead to a contradiction at the end of the proof. Thus, no taxon of C' is on a vertex side of Gy. Now,
let e’ be the edge of N7 corresponding to edge e of Ny. Subdivide e’ by n vertices p1,ps,...,p,, creating a
directed path pp,pn—1,...,p1, and introduce a leaf labeled x; and an edge (p;, x;) for each i € {1,2,...,n}.
Call the obtained network Ns.

It remains to show that Ny displays 7. Consider any tree T € 7. Since Ny displays T, there exists
a subtree Ty of Ny that is a subdivision of T. Since ¢ is a chain of T, Ty contains a subdivision of a
caterpillar on C. In other words, there exist a directed path B in Ny and directed paths L,, L,_1,..., L1
in Ny that start on B (in that order) and lead to z,,x,—1,...,x1 respectively, such that the directed paths
B,L,Ls,...,L, are pairwise internally vertex-disjoint. Moreover, B is chosen such that the first vertex r,
of B is the first vertex of L,, and the last vertex of B is the first vertex of L; and the first vertex of Ly. We
next argue that p is a vertex of B. Since x and z’ are on the same side of Gy (and p is an ancestor of p’),
there is a unique directed path from p to p’. Hence, any path from 7. to p’ passes through p. Thus, B
passes through p and it follows that p is a vertex of B. If edge e = (g,p) is not an edge of B (i.e. if x = x,),
add g to B. Now, recall that N; was obtained from Ny by deleting and suppressing vertices. By deleting or
suppressing each vertex in Tj that has been deleted or suppressed in Ny to obtain N, we obtain a subtree T}
of N; that contains a subdivision of T|(X \ C). Hence, Ny displays T|(X \ C). Moreover, note that e’ is an
edge of T1. Recall that Ny was obtained from Nj by subdividing ¢’ and hanging leaves labeled by elements
of C below the vertices subdividing €', and observe that T can be obtained from T'|(X \ C) by applying the
same operations. Therefore, we consider the subtree T5 of Ny obtained by applying the same operations
to T1, and conclude that T contains a subdivision of T'. It follows that Ny displays T. Since the above
arguments hold for all 7' € T, it follows that Na displays 7.

By repeating the above construction for each common chain of 7 that does not survive and is not
atomized in Ny, we obtain a network NN that displays 7 such that each common chain of 7 either survives
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or is atomized. Moreover, the changes that turned Ny into N did not increase the reticulation number.
Hence, h(N) < h(No) = h(T). If h(N) < h(T), we would obtain a contradiction. Therefore, we conclude
that h(N) = h(T). a

The following lemma is implicit in [12, Theorem 3.2]. We include it here for reasons of completeness.

Lemma 4. Let N be a binary hybridization network with h(N) =k, and let G be its underlying generator.
Then G has at most 4k — 1 edge sides and at most k vertex sides. In particular, G has at most 5k — 1 sides.

PROOF. Let ng be the number of vertices in G with indegree 2 and outdegree 0, let n; be the number of
vertices in G with indegree 2 and outdegree 1, and let ny be the number of vertices in G with indegree 1
and outdegree 2. Then, the total indegree of G is ns + 2n1 + 2no while, considering the root vertex with
indegree 0 and outdegree 1, the total outdegree of G is 1 + 2ny + n1. Hence, by the Handshaking Lemma,
we have no + 2nq1 + 2ng = 1+ 2ns + nq and, therefore, no = nq + 2ng — 1. Since the number of edge sides
of G, denoted |E(G)], is equal to the total indegree of G and noting that ng + n; = k, we have

|E(G)| = ng + 2n1 + 2no = 3ny +4ng — 1 < 4k — 1.

Furthermore, since each vertex side of G is a vertex with indegree 2, G has at most k such sides; thereby
establishing the lemma. O

Lemma 5. Let T be a set of rooted binary phylogenetic X -trees and k € NT. Furthermore, let T¢ be the

set of trees that results from a single application of the chain reduction to T. Then h(T) < k if and only if
h(T®) <k.

PrROOF. Let ¢ = (z1,22,...,2,) be a common chain of 7 which has been reduced by a chain reduction to
a common chain ¢’ = (z1,22...,x5;) of T¢. Thus, n > 5k.

First, suppose that h(7) < k. Then, by Lemma 3, there exists a binary hybridization network N,
with h(N) < k, that displays 7 such that any common chain of T either survives or is atomized in N.
Furthermore, by Lemma 4, the generator underlying N has at most 5k — 1 sides. Hence, by the pigeonhole
principle, ¢ cannot be atomized in N and, therefore, survives in N. Now, let N’ be the network obtained
from N by replacing ¢ with ¢’. More precisely, delete all leaves labeled by taxa in {zsk41, Tsk12, - - -, Zn } and
suppress all resulting vertices of indegree and outdegree both 1. Then, as IV displays 7, it is easily checked
that N’ displays 7¢ and h(N’) < k. Thus, h(T°) < k.

To show the other direction, suppose that h(7¢) < k. Then, by Lemma 3, there exists a binary hybrid-
ization network N’ with A(N') < k, that displays 7°¢ such that any common chain of T¢ either survives
or is atomized in N’. By again using the pigeonhole principle, ¢’ cannot be atomized in N’ since it has 5k
taxa while the generator underlying N’ has at most 5k — 1 sides. Hence, ¢’ survives in N’. Now, let N be
the network obtained from N’ by replacing ¢’ with c. To be precise, let e be the edge entering the parent,
say psk, of the vertex labeled x5, in N/, Since ¢’ survives in N’, note that e is unique. Subdivide e by n — 5k

new vertices psk41, Dsk+2, - - - » Pn, Creating a directed path p,,pn—1,...,0s5k+1, and add a leaf labeled z; and
an edge (p;,x;) for each ¢ € {5k + 1,5k 4+ 2,...,n}. Then, as N’ displays T¢, it is easily checked that N
displays 7 and has h(N) < k. Thus, h(T) < k. m|

We next show that the subtree and chain reduction can be applied to a collection of rooted binary
phylogenetic X-trees until the leaf set of the resulting collection of trees has size bounded by a quadratic
function of h(T). For the proof, we follow an approach similar to the one taken by Kelk et al. [12, Lemma
3.2].



Lemma 6. Let T be a set of rooted binary phylogenetic X -trees, let T' be the set of rooted binary phylo-
genetic X'-trees obtained from T by applying the subtree and chain reduction until no further reduction is
possible, and let k € NT. If h(T) < k, then | X'| < 20k?.

PROOF. As h(T) < k, it follows from Lemmas 2 and 5 that h(7’) < k. Let N be a binary hybridization
network that displays 7' such that h(N) < k. Furthermore, let G be its underlying binary h(N)-reticulation
generator.

Observe that N has no pendant subtrees of size at least 2, since otherwise 7' would have a common
pendant subtree; thereby contradicting that the subtree reduction has been applied as often as possible.
Furthermore, N does not have more than 5k leaves that are on the same side of G, since otherwise 7~
would have a common chain of size greater than 5k, thereby contradicting that the chain reduction has been
applied as often as possible.

Thus, N has one leaf per vertex side of G and at most 5k leaves per edge side of G. By Lemma 4 (and
because h(N) < k), G has at most 4k — 1 edge sides and at most k vertex sides. Thus, the total number of
leaves is at most 5k - (4k — 1) + k = 20k? — 4k < 20k2. It now follows that |X'| < 20k2. ]

Now, Theorem 1 follows from Lemmas 2, 5, and 6.

4. Concluding remarks

We remark that if one allows weighted chains, as in [5], then a slightly modified chain reduction can be
used to obtain a linear kernel for a modified problem, where each common chain is associated with a weight.

While Theorem 1 proves the existence of an FPT-algorithm to solve HYBRIDIZATION NUMBER, it does not
describe an explicit algorithm to do so. In order to obtain such an algorithm, one needs an exponential-time
exact algorithm to solve an instance of HYBRIDIZATION NUMBER after it has been kernelized. One possible
way to design an FPT-algorithm for HYBRIDIZATION NUMBER is the following. Theorem 2 of [13] establishes
an algorithm—called CLUSTISTIC—that, given a set of rooted binary phylogenetic trees and an integer k,
finds all binary hybridization networks that represent all clusters of the trees (in the so-called softwired
sense, see e.g. [10]) and have hybridization number at most k. Since any network that displays a given set
of rooted binary phylogenetic trees also represents all clusters of those trees, CLUSTISTIC finds it. Thus, an
exponential-time exact algorithm for HYBRIDIZATION NUMBER can be obtained by using CLUSTISTIC and
checking for each returned network if it displays the input trees (e.g. using the algorithm in [11], which
is exponential in the number of hybridizations of a given hybridization network). In combination with the
presented kernelization, this leads to an FPT-algorithm for HYBRIDIZATION NUMBER. We omit the details
of this algorithm as its theoretical worst-case running time is not necessarily the best and we expect that
methods are possible that are much faster in practice. Indeed, an important challenge is the development
of an exponential-time exact algorithm that can be applied to reasonable-size instances.

Another major open problem is to show whether or not it is also fixed-parameter tractable to compute
the minimum hybridization number of a set of arbitrary rooted phylogenetic trees; thus allowing for trees
that are nonbinary.
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