

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

A STUDY OF GROUP VIII METAL-CARBON MULTIPLE BONDS

A thesis presented to the University of Auckland for the degree of Doctor of Philosophy in Chemistry

> Anthony H. Wright July 1983

ABSTRACT

Molecules containing transition metal-carbon multiple bonds have been recognised as active species in catalytic reactions and key intermediates in stoichiometric reactions. It is therefore important to gain an understanding of the reactivity of these functional groups.

The metal-carbon double bond is introduced in Chapter 1 with a literature review and the following two chapters are concerned with the synthesis and properties of a new class of Group VIII metal carbene complexes containing the prototype carbene ligand, $=CH_2$. The synthetic route to the first of these complexes involves a new low-valent osmium complex $OsCl(NO)(PPh_3)_3$. The synthesis of this complex from a reformulated complex containing the novel peroxycarbonyl ligand is discussed in Chapter 2, followed by simple reactions including the synthesis of a range of acetylene, allene and heteroallene π -adducts. The reactions establish that $OsCl(NO)(PPh_3)_3$ reacts as the osmium analogue of $IrCl(CO)(PPh_3)_2$.

The methylene-ligand synthesis involves the addition of diazomethane to $OsCl(NO)(PPh_3)_3$ to give the structurally characterised $Os(CH_2)Cl(NO)(PPh_3)_2$. The reaction has been extended to give the first isolable ruthenium and iridium methylene complexes. The reactions of these complexes establish the nucleophilicity of the double bond and two Lewis acid adducts, $Os(CH_2AuI)Cl(NO)(PPh_3)_2$ and $[Os(CH_2S(O)O)Cl(NO)(PPh_3)_2]ClO_4$, have been structurally characterised. The reaction with CO and isocyanides to form ketene and ketenimine ligands illustrates a different mode of reaction that is interpreted in terms of the non-innocent participation of the nitrosyl ligand.

The change from nucleophilicity to electrophilicity of the double bond with a reduction of metal electron density is illustrated by reactions of $Os(CH_2Cl)Cl_2(NO)(PPh_3)_2$ which implicate $[Os(CH_2)Cl_2(NO)(PPh_3)_2]^+$ as an intermediate. $Os(CH_2Cl)Cl_2(NO)(PPh_3)_2$ is formed by addition of Cl_2 to $Os(CH_2)Cl(NO)(PPh_3)_2$.

In Chapter 4 a different type of metal-carbon double bond is discussed. The complexes contain the relatively uncommon dichlorocarbene ligand and the synthesis of the first such iridium complex, $Ir(CCl_2)Cl_3(PPh_3)_2$ is described. The utility of the dichlorocarbene ligand in the synthesis of a range of carbene ligands including monochlorocarbene complexes is illustrated.

The most useful single reaction of the dichlorocarbene complexes is that forming a metal-carbon triple bond. A review of the literature concerning carbyne complexes is presented in Chapter 5 and the synthesis and reactions of a number of carbyne complexes is discussed in Chapter 6.

Like the methylene complexes, the carbyne complexes such as $Os(CPh)Cl(CO)(PPh_3)_2$ contain nucleophilic metal-carbon bonds and $Os(CHPh)Cl_2(CO)(PPh_3)_2$ resulting from HCl addition has been structurally characterised. However, just as the reactivity can be changed with the methylene complexes, the reduction of metal electron density in complexes such as $[Os(CR)Cl_2(CNR')(PPh_3)_2]ClO_4$ ($R = C_6H_4$ -4-NMe_2, $R' = C_6H_4$ -4-Me) makes the triple bond electrophilic. Two methods for synthesising these octahedral carbyne complexes are described. One, involving a reaction of complexes such as $Os(CPh)Cl(CO)(PPh_3)_2$ with oxygen and the formation of another peroxycarbonyl ligand, the other a reaction with iodine to give complexes such as $Ru(CPh)ClI_2(PPh_3)_2$. Reactions with chlorine by contrast lead to a group of reactive chlorophenyl carbene complexes.

Where appropriate, the reactivity of the complexes described is interpreted in terms of frontier-orbital and charge controlled reactions using the current models for the carbene and carbyne complexes.

TABLE OF CONTENTS

PART ONE : THE METAL-CARBON DOUBLE BOND

CHAPTER ONE		CARBENE COMPLEXES - A SURVEY	
SECTION 1.1		INTRODUCTION	1
SECTION	1.2	THE RANGE OF CARBENE COMPLEXES	4
	1.2.1	Metals	4
	1.2.2	Structural types of carbene complex	4
	1.2.3	Carbene substituents	9
	1.2.4	Elaborate carbene complexes	14
SECTION	1.3	A MODEL FOR THE 18-ELECTRON CARBENE COMPLEX	17
	1.3.1	Step I: The carbene fragment	17
	1.3.2	Step II: Adding a metal	19
	1.3.3	Step III: Adding the spectator ligands	20
SECTION	1.4	STRUCTURAL CHARACTERISTICS	31
	1.4.1	18-electron complexes	31
	1.4.2	Co-ordinatively unsaturated complexes	39
SECTION	1.5	OTHER PHYSICAL PROPERTIES	44
	1.5.1	N.m.r. spectroscopy	44
	1.5.2	I.r. spectroscopy	45
	1.5.3	E.s.r. spectroscopy	45
SECTION	1.6	SYNTHESIS OF CARBENE COMPLEXES	47
	1.6.1	Using external reagents	47
	1.6.2	Ligand modification	50
	1.6.3	A special case - halocarbene complexes	54
SECTION	1.7	REACTIVITY OF CARBENE COMPLEXES	61
	1.7.1	Reactivity in 18-electron complexes	61
2	1.7.2	Nucleophilic attack at Ca	62
	1.7.3	β-proton abstraction	69
	1.7.4	Electrophilic attack at CO	69
	1.7.5	Carbyne formation	72
	1.7.6	Reactions of co-ordinatively unsaturated complexes	72
	1.7.7	Reactions with unsaturated organic molecules	74

	1.7.8	Ligand-migration reactions	82
	1.7.9	Insertion reactions	85
	1.7.10	Carbene complexes as olefin analogues	86
	1.7.11	Ligand-transfer reactions	87
	1.7.12	Decomposition of carbene ligands	87
SECTION	1.8	THE SPECIAL CASE - HALOCARBENE COMPLEXES	91
	1.8.1	Monohalocarbene complexes	91
	1.8.2	Dihalocarbene complexes	91
SECTION	1.9	CONCLUSION	97

CHAPTER TWO PREPARATION AND REACTIONS OF A LOW-VALENT OSMIUM COMPLEX

SECTION	2.1	INTRODUCTION	100
SECTION	2.2	IDENTIFICATION OF THE PEROXYCARBONYL LIGAND	101
	2.2.1	A re-examination of Os(CO3)Cl(NO)(PPh3)2	101
	2.2.2	Characterisation of the peroxycarbonyl ligand	101
	2.2.3	Synthesis of OsCl(NO)(PPh3)3	109
SECTION	2.3	REACTIONS OF OsCl(NO)(PPh3)3	114
	2.3.1	Reaction with Cl ₂	114
	2.3.2	Reaction with HCl	114
	2.3.3	Reaction with methyl iodide	114
	2.3.4	Adduct formation with O_2 , CH_2O , C_2H_4	118
	2.3.5	Reactions with acetylenes	123
SECTION	2.4	REACTIONS WITH ALLENES AND HETEROALLENES	126
	2.4.1	Reaction with CS2	126
	2.4.2	Allene adducts	128
	2.4.3	A ketene complex	131
SECTION	2.5	CONCLUSION	133
REACTION	N SCHEMI	ES AND DATA TABLES	134
GENERAL	EXPERI	MENTAL	140
EXPERIM	ENTAL		142

CHAPTER THREE SYNTHESIS AND REACTIONS OF METHYLENE COMPLEXES

SECTION	3.1	INTRODUCTION	149
SECTION	3.2	OSMIUM, RUTHENIUM AND IRIDIUM METHYLENE COMPLEXES	151
	3.2.1	Reaction of OsCl(NO)(PPh3)3 with diazomethane	151
	3.2.2	A ruthenium methylene complex	154
	3.2.3	The use of Vaska's complex	156
	3.2.4	H n.m.r. spectra	157
	3.2.5	I.r. spectra	158
	3.2.6	X-ray crystal structure	160
SECTION	3.3	ADDUCTS WITH ELECTROPHILIC REAGENTS	170
	3.3.1	Gold adducts	170
	3.3.2	Structure of the gold adduct	172
	3.3.3	Sulfene complexes	178
	3.3.4	Spectral data for adducts	186
	3.3.5	Reaction with chalcogens	189
SECTION	3.4	REACTIONS THAT FORM METAL-ALKYL COMPLEXES	191
	3.4.1	Reactions with HCl	191
	3.4.2	Halogen addition	194
	3.4.3	Reaction with mercuric chlorides	200
SECTION	3.5	REACTIONS WITH NUCLEOPHILIC REAGENTS	205
	3.5.1	The osmium methylene complex	206
	3.5.2	Reaction with isocyanides	209
	3.5.3	Reactions of ketenimine ligands	211
SECTION	3.6	LIGAND EXCHANGE VIA A CATIONIC METHYLENE COMPLEX	215
SECTION	3.7	PHOSPHINE MIGRATION	217
	3.7.1	Characterisation	217
	3.7.2	Reaction mechanism	220
	3.7.3	Related complexes and reactions	222
SECTION	3.8	CONCLUSION	225
REACTION	SCHEM	ES AND DATA TABLES	230
EXPERIME	EXPERIMENTAL 239		

CHAPTER FOUR SYNTHESIS AND REACTIONS OF MONO- AND DIHALOCARBENE COMPLEXES

SECTION 4.1	INTRODUCTION	249
SECTION 4.2	PREPARATION OF AN IRIDIUM DICHLOROCARBENE COMPLEX	251
4.2.1	Crystal structure	254
SECTION 4.3	REACTIONS OF DICHLOROCARBENE COMPLEXES	259
4.3.1	Simple reactions of Ir(CCl ₂)Cl ₃ (PPh ₃) ₂	259
4.3.2	Reactions with nitrogen nucleophiles	261
4.3.3	Preparation of chloroaminocarbene complexes	264
4.3.4	Reactions with sulfur nucleophiles	266
4.3.5	Reactions with oxygen nucleophiles	269
4.3.6	Discussion	271
SECTION 4.4	REACTIONS OF CHLOROAMINOCARBENE COMPLEXES	274
4.4.1	Cation formation	274
4.4.2	Reactions involving the carbene chloride	276
SECTION 4.5	13 C N.M.R. DATA FOR CARBENE COMPLEXES	282
SECTION 4.6	CONCLUSION	283
REACTION SCHEM	ES AND DATA TABLES	284
EXPERIMENTAL		295

PART TWO : THE RELATIONSHIP BETWEEN THE METAL-CARBON DOUBLE AND TRIPLE BONDS

CHAPTER FIVE A SURVEY OF CARBYNE COMPLEXES

SECTION	5.1	INTRODUCTION	308
SECTION	5.2	SCOPE AND VARIETY	311
	5.2.1	Metals	311
	5.2.2	Geometries	311
	5.2.3	Carbyne substituents	316
	5.2.4	Elaborate carbyne complexes	316
SECTION	5.3	A MODEL FOR THE CARBYNE COMPLEX	318
	5.3.1	The carbyne fragment	318
	5.3.2	Complex formation	319

SECTION	5.4	STRUCTURAL PROPERTIES	324
	5.4.1	The carbyne ligand	324
	5.4.2	The spectator ligands	328
SECTION	5.5	OTHER PHYSICAL PROPERTIES	331
	5.5.1	¹³ C n.m.r. spectroscopy	331
	5.5.2	I.r. and Raman studies	333
SECTION	5.6	SYNTHESIS OF CARBYNE COMPLEXES	335
	5.6.1	Direct formation	335
	5.6.2	Modification of existing ligands	337
	5.6.3	Modification of existing carbyne complexes	352
SECTION	5.7	REACTIVITY OF THE METAL-CARBON TRIPLE BOND	357
	5.7.1	Nucleophilic addition	357
	5.7.2	Electrophilic addition	362
	5.7.3	Ligand-ligand hydrogen transfer	363
	5.7.4	Reactions of co-ordinatively unsaturated carbyne complexes	367
	5.7.5	Reactions with metal complexes	369
	5.7.6	Reactions involving cleavage of the metal-carbon bond	375
SECTION	5.8	CONCLUSION	379
CHAPTE	R SIX	SYNTHESIS AND REACTIONS OF CARBYNE COMPLEXES	
SECTION	6.1	INTRODUCTION	380
SECTION	6.2	THE ARYL LITHIUM REACTION	381
SECTION	6.3	REACTIONS OF THE METAL FRAGMENT	384
	6.3.1	Cationic carbyne complexes	384

388 6.3.3 Cleavage of the peroxycarbonyl ligand 390 6.3.4 Spectroscopic properties 392 6.3.5 X-ray crystal structures 398 REACTIONS INVOLVING THE CARBYNE LIGAND SECTION 6.4 398 6.4.1 Reactivity of the osmium(II) carbyne complex 400 6.4.2 Formation of Lewis acid adducts 403 6.4.3 Reactions with protic acids 6.4.4 Structure of the carbene complex 406

6.3.2 Reactions with oxygen

385

SECTION	6.5	HALOGEN ADDITION TO CARBYNE COMPLEXES	413
	6.5.1	Chlorine and bromine addition	414
	6.5.2	Reaction with phenyl lithium	417
	6.5.3	Iodine addition	419
	6.5.4	Reactions of a cationic carbyne complex	421
SECTION	6.6	COMPARISON OF REACTIONS OF CARBYNE COMPLEXES	423
REACTION	SCHEM	ES AND DATA TABLES	425
EXPERIM	ENTAL		431

CHAPTER SEVE	N CONCLUSIONS	
SECTION 7.1	SYNTHETIC ACHIEVEMENTS	442
SECTION 7.2	CONTRIBUTIONS TO THE UNDERSTANDING OF METAL-CARBON MULTIPLE BONDS	444

REFERENCES

ACKNOWLEDGEMENTS

459

446

ABBREVIATIONS

Me	:	methyl
Et	:	ethyl
Pr	:	propyl
Bu	:	butyl
Ph	E.	phenyl
Cp	:	cyclopentadienyl
cod		cyclooctadiene
dppe p p	:	bisdiphenylphosphinoethane
dmpe	:	bisdimethylphosphinoethane
ETPO	:	4-ethyl-2,6,7-trioxa-l-phosphabicyclo[2.2.2]octane
TDPME	:	1,1,1-trisdiphenylphosphinomethylethane
dam	:	bisdiphenylarsinomethane
tmeda	:	tetramethylethylenediamine
HMPA	:	hexamethylphosphoramide
THF	:	tetrahydrofuran
TMS	:	tetramethylsilane
PPN		[(Ph ₃ P) ₂ N] ⁺
ру	:	pyridine