Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
AEROBIOLOGY OF THE AUCKLAND REGION

IN RELATION TO

ALLERGIC ASTHMA AND RHINITIS

SYED MOHAMMED HASNAIN

A thesis submitted in partial fulfilment of the requirement for the degree of Doctor of Philosophy in the Department of Botany, University of Auckland, Auckland, New Zealand.

March 1983
TO MY PARENTS

WHO ALWAYS PRAY FOR MY HAPPINESS
The multitude of seeds produced by an Agaric or a Boletus is innumerable! It is astonishing! Yet not one in ten thousand answers the purpose of propagation. Is not the air we breathe charged with them all the declining part of the year? Do we not receive them into our lungs with every breath we draw? Whence proceed the quinsies, coughs and other complaints which prevail in autumn?

JAMES BOLTON: A History of British Ferns
(Huddersfield, 1790)

(Re-quoted from Hyde, H.A. (1972)
ACKNOWLEDGEMENTS

I sincerely wish to acknowledge the following for their kindness and help in bringing this work to the final stage:

First of all, my gratitude to my supervisors; Professor F.J. Newhook, for his kindness, encouragement, suggestions, constructive comments and, above all, patiently editing the manuscript of this thesis; Associate Professor J.D. Wilson, Department of Medicine, School of Medicine, for his supervision in biochemical and clinical aspects of the project, for his encouragement and constructive criticism; Dr J.B. Corbin, who supervised the early stages of the project before his retirement; Dr D.C. Sutherland, Department of Medicine, for his co-operation as acting supervisor during Professor J.D. Wilson's leave period;

I am grateful to Dr B.P. Segedin for her valuable assistance in the collection and identification of mycological specimens, and for guiding me in the forest;

Professor P.H. Lovell, Head of Department, for his general interest, suggestions, kindness and for all other project-related concern;

National Children's Health Research Foundation of New Zealand and Trustees of the Auckland Asthma Society Mackie Estates Research Fund, for financial support.

My thanks are due, also to;

Dr Shaun Pennycook and Dr Bill Hartill of the Department of Scientific and Industrial Research for their valuable suggestions on aerobiological problems;

Miss Jenny Hillas of the immunology section, School of Medicine, and Mrs Gillian McLeay of Wallace Laboratory Allergy Clinic, Auckland Hospital for their help in testing fungal extracts on allergic patients;
Dr Brian McArdle, Dr Corinne Locke and Miss Linda Nicholls for their help in statistical analysis and assistance in computing work;

Officers of the Department of Health, Environmental and Air Pollution Control Laboratories, Mt Eden; State Insurance Department, Henderson and Post Office Radio & Telephone Departments, Quinns Road, Waitakere, for their kind permission for me to install and operate equipment on top of their buildings;

Dr Eric McKenzie and Dr Peter Buchanan of the D.S.I.R. for providing herbarium specimens and dried fungal cultures;

Mrs G.M. Taylor for her assistance in mycolological collection;

Technical staff of the Department of Botany, especially Mr Neville Hutchinson for installing the spore traps and weather recording equipment at the Mt Eden, Henderson and Waitakere sites; Mr John Carter for microscopy and photographic assistance, and also Messrs John Cole and Amrut Patel.

Staff of the Reference Section, of the main library and Bio Sciences Library for their quick service in providing a large number of overseas and local references;

Mr Noel Turner and Robert for their assistance in protein analysis of the fungal extracts;

Meteorological Office, Victoria Street, Auckland for providing climatological data;

Mr J. Fraser, National Health Statistics Centre, Department of Health, Wellington for providing asthma death records for Auckland Hospital Board area;

Teaching staff, fellow graduate students and friends, especially Dr J. Nair, Dr David Klinac, and Miss Robyn Aimer for all their suggestions;
My parents and sister for their continuous encouragement in the continuation of the task;

And last, but not least, my special thanks to Miss Heather Kronast for her skill, willingness and patience in typing this thesis.
ABSTRACT

Auckland, the largest city in New Zealand, with a population of approx. 700,000, is notorious for its high incidence of respiratory allergies, particularly asthma. At a conservative estimate, one in every ten persons in the region suffers from allergic asthma and/or rhinitis (hay fever). In the Auckland Hospital Board area alone, there were 58 deaths from asthma in 1979 and 57 in 1980 (an average of 5 per month). Asthma and rhinitis affect people of all ages.

To investigate the reason for the high incidence of these respiratory allergies, an aerobiological study of the qualitative and quantitative composition of the air spora was thus undertaken. To include a reasonably representative cross section of the region for air sampling three localities from near the centre of the city to the western suburban fringe were chosen along a 20 km axis encompassing commercial, residential, agricultural, horticultural and forested environments.

A Burkard 7-day recording volumetric spore trap was operated continuously at each locality, from 1 September 1979 to 31 August 1980. Counting and identification of spores and pollen grains were undertaken within 5 random microscope fields along each of 12 traverses across the spore trap tapes representing alternate hours of the day on Mondays and Tuesdays. Data were converted to concentrations (numbers m$^{-3}$ of air). Of a total of 38 spore or pollen categories recorded, 24 displayed seasonal and circadian periodicities.

The survey revealed that there was considerable contamination of the atmosphere by spores of various fungi, particularly in summer and autumn with peaks at all sites in autumn. It is of interest that the admission rate of patients with "status asthmaticus" in the two year period
January 1979 - December 1980, was also high in summer and autumn with peaks in both years in April (autumn).

Fungal spores >3 µm constituted c. 99% of the Auckland air spora in all seasons, even spring, the chief pollen season. Basidiospores were the most abundant type of the region. Amongst identified basidiospores, Ganoderma and Coprinus predominated. Basidiospores ascribable to Hypholoma, "Calvatia-Bovista", Tilletiopsis, Entoloma and Thelephora were also recorded. Ascospores of various genera were also abundant at all sites. Among them, those ascribable to the genus Leptosphaeria were most common, followed by "Hypoxylon-Xyliaria", Pleospora and Venturia. Conidia of Cladosporium were one of the principal components. Other conidia recorded, although in small numbers, belonged to the genera Polythrincium (trifolii), Epicoccum, Pithomyces (chartarum), Stemphylium, Alternaria, Periconia, Torula, Helicomyces, Helminthosporium (Drechslera), Pestalotia, Cryptostroma, Tetraploa, Arthrinium and Monilia. Conidia of "Aspergillus-Penicillium" type were the most prevalent at the city site. A comparison of the air spora at the three localities revealed major quantitative but not qualitative differences. The suburban locality emerged with higher spore concentrations than the urban and forested sites.

The relationships between some meteorological factors and the 14 most prevalent categories of the air spora were analysed. Cladosporium and Polythrincium showed a significant correlation with temperature; unidentifiable ascospores were correlated with midnight temperature, humidity and, strongly, with rainfall; Leptosphaeria correlated with rainfall and midnight temperature. Unidentifiable coloured and hyaline basidiospores as well as Ganoderma and Coprinus were positively correlated with temperature. Coloured basidiospores and Ganoderma also showed a significant "negative" correlation with wind speed.
On the basis of the aerobiological findings and a potential link with asthma admissions to hospital a total of 67 aqueous and lyophilized extracts from basidiomycetous fungi collected in the Auckland region were prepared in buffered saline, with W/V standardized concentration, for immunological studies. 'Total protein' content of the extracts were estimated. A total of 129 allergic patients both "heterogeneous group" and diagnosed, attending hospital allergy clinic, were tested by the skin prick method. Over 10% of the patients reacted positively to the crude extracts of the following fungi: *Ganoderma mastoporum*, *Ganoderma applanatum*, *Scleroderma albidum*, *Coprinus micaceus*, *Lycoperdon compactum*, *Hydnum crocidens* var. *badius*, *Xeromphalina podocarpi*, *Auricularia polytricha*, *Agaricus bisporus*, *Bovista brunea*, *Panaeolina foenisecii*, *Hypholoma assutum*, *Calvatia* sp. *Pseudohydnwn gelatinosum*, *Trametes versicolor*, *Favolaschia calocera*, *Cortinarius*, *Tyromyces*** sp. and *Hydnum crocidens**. Allergenicity to many of these genera has rarely been investigated or reported.

The findings of the investigation suggest that fungal spores in general, and basidiospores in particular, may play an important role in the high incidence of allergic asthma and rhinitis in the Auckland region.

* spores alone extracted
** hymenial tissue extracted
*** whole sporophores extracted
CHAPTER IV QUALITATIVE AND QUANTITATIVE ANALYSIS OF THE AIR SPORA

4.1 Qualitative Composition of the Air Spora 74
4.2 Seasonal Periodicity of the Air Spora at Mt Eden, Henderson and Waitakere 78
 4.2.1 Total Air Spora 78
 4.2.2 Total Basidiospores 80
 4.2.3 Total Ascospores 81
 4.2.4 Total Conidia 83
 4.2.5 Total Pollen Grains 85
 4.2.6 "Others" 87

4.3 Proportion of Various Components in the Air Spora 87

4.4 Seasonal and Circadian Periodicities of the Components of the Air Spora 94
 4.4.1 Basidiospores 94
 Ganoderma 94
 Coprinus 98
 Hypholoma 100
 "Calvatia-Bovista" 102
 Tilletiopsis 104
 Entoloma 106
 Telephora 108
 Teleutospores 110
 Basidiospores - coloured group 111
 Basidiospores - hyaline group 114
 4.4.2 Ascospores 117
 Leptosphaeria 117
 "Hypoxylon-Xylaria" 119
 Ascospores-Pusiform, 3-Septate-Coloured 121
 Ascospores-Pusiform, 3-Septate-Hyaline 123
 Ascospores-Filiform Group 126
 Pleospora 128
 Venturia 128
 Ascospores - Unidentified Group 128
 4.4.3 Conidia 130
 Cladosporium 130
 Polythricium 133
 Epicoccum 135
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section/Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedication</td>
<td>ii</td>
</tr>
<tr>
<td>Monologue</td>
<td>iii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iv</td>
</tr>
<tr>
<td>Abstract</td>
<td>vii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>x</td>
</tr>
<tr>
<td>CHAPTER I Introduction to Basic Aspects of Aerobiology and Allergy</td>
<td></td>
</tr>
<tr>
<td>1.1 Aerobiology, Scope and Objectives</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Air Spora and its Components</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Common Sources of Fungal Air Spora</td>
<td>5</td>
</tr>
<tr>
<td>1.4 Fungal Spores and their Properties</td>
<td>8</td>
</tr>
<tr>
<td>1.4.1 Definition of Spores</td>
<td>8</td>
</tr>
<tr>
<td>1.4.2 Properties of Spores</td>
<td>8</td>
</tr>
<tr>
<td>1.5 Liberation, dispersal and survival of Spores</td>
<td>11</td>
</tr>
<tr>
<td>1.6 Allergenic Criteria of Spores and Thomenn's Postulates</td>
<td>12</td>
</tr>
<tr>
<td>1.6.1 Allergenic Criteria of Spores</td>
<td>12</td>
</tr>
<tr>
<td>1.6.2 Thomenn's Postulates</td>
<td>13</td>
</tr>
<tr>
<td>1.7 Allergenic Factor in Spores</td>
<td>13</td>
</tr>
<tr>
<td>1.8 The Aeroallergens</td>
<td>15</td>
</tr>
<tr>
<td>1.9 Threshold or Critical Levels of Aeroallergens</td>
<td>16</td>
</tr>
<tr>
<td>1.10 Fungi or Moulds</td>
<td>18</td>
</tr>
<tr>
<td>SECTION B Allergy</td>
<td></td>
</tr>
<tr>
<td>1.11 Allergy - Definition and Meaning</td>
<td>19</td>
</tr>
<tr>
<td>1.12 Allergen, Atopen, Antigen and Antibody</td>
<td>20</td>
</tr>
<tr>
<td>1.13 Classification of Allergens</td>
<td>20</td>
</tr>
<tr>
<td>1.14 Importance of Fungi as Allergens</td>
<td>22</td>
</tr>
<tr>
<td>1.15 Manifestations of Allergy</td>
<td>23</td>
</tr>
<tr>
<td>1.16 Asthma and Rhinitis</td>
<td>24</td>
</tr>
<tr>
<td>1.16.1 Asthma</td>
<td>24</td>
</tr>
<tr>
<td>1.16.2 Classification of Asthma</td>
<td>25</td>
</tr>
<tr>
<td>1.16.3 Rhinitis</td>
<td>26</td>
</tr>
<tr>
<td>1.17 Aspects of Clinical Ecology</td>
<td>26</td>
</tr>
<tr>
<td>1.18 Types of Allergic Response</td>
<td>26</td>
</tr>
<tr>
<td>1.19 Breathing in Still Air and Wind</td>
<td>28</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION TO BASIC ASPECTS OF AEROBIOLOGY AND ALLERGY

SECTION A AEROBIOLOGY

1.1 Aerobiology, scope and objectives
1.2 Air spora and its components
1.3 Common sources of fungal air spora
1.4 Fungal spores and their properties
 1.4.1 Definition of spores
 1.4.2 Properties of spores
1.5 Liberation, dispersal and survival of spores
1.6 Allergenic criteria of spores and Thommen's Postulates
 1.6.1 Allergenic Criteria of spores
 1.6.2 Thommen's Postulates
1.7 Allergenic factor in spores
1.8 The aeroallergens
1.9 Threshold or critical levels of aeroallergens
1.10 Fungi or moulds

SECTION B ALLERGY

1.11 Allergy - definition and meaning
1.12 Allergen, atopen, antigen and antibody
1.13 Classification of allergens
1.14 Importance of fungi as allergens
1.15 Manifestations of allergy
1.16 Asthma and rhinitis
 1.16.1 Asthma
 1.16.2 Classification of asthma
 1.16.3 Rhinitis
1.17 Aspects of Clinical Ecology
1.18 Types of allergic response
1.19 Breathing in still air and wind
1.20 Intake and Deposition of Aeroallergen
1.21 Mechanism of Allergy
1.22 Medical and Economic Aspects of Allergy