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Abstract

This thesis proposes efficient and robust algorithms for solving linear constraints problems for
graphical user interface (GUI) layout. Constraints have been recognised as a powerful method
for the specification of GUI layouts for a long time. Most constraint problems encountered
in this area are sparse, i.e. most linear coefficients in the corresponding coefficient matrix are
zero. The numerical methods that have been proposed for solving layout problems so far are
mainly direct methods. The focus of this research is on investigating iterative methods for
solving these problems efficiently. The algorithms developed in this thesis are compared to
well-known direct and linear programming algorithms. The performance and convergence of
the proposed and existing algorithms were evaluated empirically using randomly generated Ul
layout specifications of various sizes.

Successive Over-Relaxation (SOR) is one of the most commonly used iterative methods for
solving linear problems, and this was the first algorithm investigated in this thesis. In contrast
to direct methods such as Gauss-elimination or QR-factorization, SOR is particularly efficient
for problems with sparse matrices, as they appear in GUI layout specifications. However, SOR
as described in the literature has its limitations: it works only with square matrices and does
not support soft constraints, which makes it inapplicable to UI layout problems. This research
extends SOR so that it can be used to solve non-square matrices and soft constraints.

Furthermore, different optimizations of SOR were investigated to speed up its convergence.
First, we propose a metric to measure the optimality of a constraint sequence and then a Sim-
ulated Annealing based algorithm, that optimizes the order in which constraints are solved.
Second, we propose Constraint-Wise Under-relaxation (CWU), a technique in which the relax-
ation parameters of individual constraints are adjusted during solving. Third, we investigate the
use of a warm start strategy, which reuses the solution of a previous layout to warm start the
solving of a new layout, taking into account that most layout changes during runtime are small.

Another contribution of this thesis is an investigation of the Kaczmarz method — an iterative
orthogonal projection algorithm — for solving GUI layout problems. This algorithm is more
efficient than the SOR algorithm and its convergence is guaranteed. However, to make it ap-
plicable to GUI problems some extensions were necessary, such as support for soft constraints.

We also investigate some approaches for least-squares solving and optimization in this context.
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Introduction

Graphical user interfaces (GUIs) are one of the most important modes to interact with a com-
puter. To use the screen real estate efficiently, developers need to specify the positions and sizes
of a GUIs widgets. Constraint-based approaches have long been seen as a desirable method in
the construction of GUIs, where they are mainly used to define the layout of a GUI [86]. Several
constraint-based GUI layout technologies have been developed and each of these technologies
has their own peculiarities and requires specific knowledge. The constraint idea was introduced
by Sutherland in 1960’s Sketchpad [116], the first interactive graphical interface that solved ge-
ometric constraints. Since then many constraint solvers have been developed and studied by the
research community [ 111[22,65,86,/127], and interest has increased with the recently introduced
constraint-based layout model in the Cocoa API of Apple’s Mac OS Xﬂ

One of the challenges of the last few decades has been the construction of fast numerical
algorithms for solving GUI layout problems. Recent developments in iterative methods have
improved their efficiency. As a consequence, the use of iterative methods has become ubiquitous
in recent years for solving sparse, real-world optimization problems where direct algorithms are
not suitable due to fill-in, i.e. coefficients change from an initial zero to a non-zero value during
the execution of the algorithm [[16]. Unlike direct algorithms, which try to solve the problems in
a finite number of steps, iterative methods start with a complete but preliminary approximation
that is not necessarily consistent. They improve this approximation in several iterative steps un-

til specified stopping criteria are satisfied. We can get good approximate solutions with iterative

ICocoa Auto Layout Guide, 2012: http://developer.apple.com
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methods, which is useful for practical applications especially if an efficient solution is required.

The linear problems arising in the domain of constraint-based layout are known to be sparse.
For sparse linear problems, iterative methods are known to perform very well. All current ap-
proaches use direct methods and linear programming techniques for solving GUI layout prob-
lems. The most used popular linear programming technique, the Simplex algorithm, typically
uses an iterative method along with one step of a direct method for each iteration. Direct meth-
ods suffer from fill-in effects when solving sparse systems, which generally makes them inferior
to iterative methods in these cases. This means when using a direct method with more complex
GUI specifications the responsiveness of the GUI decreases due to increasing computational
effort. To decrease the computational effort this research investigates the application of itera-
tive methods. Iterative methods are further classified into stationary, orthogonal projection and
Krylov subspace methods. Krylov subspace methods such as conjugate gradient are not imme-
diately applicable for solving the problems arising in GUI layout. Instead, this research limits
its focus to stationary iterative and orthogonal projection methods because these methods are
often simpler, faster and easy to implement than other methods for solving large sparse linear
constraint problems. Numerical results presented in this thesis are based on problems arising
from GUI layout applications, but the methods used in this thesis can also be used in other

application areas.

1.1 Constraint-based GUI Layout

GUIs are commonly created with the help of GUI toolkits, i.e. libraries which implement the
most common widgets and functions that are required in GUIs. In early GUI toolkits (e.g. Re-
sponsive web design (RWD)), developers needed to set the position and size of each widget
manually, and also compose code that manages these values during the runtime of an applica-
tion. For example, if the size of a window changes, the code would typically reposition and
resize the widgets in that window. This static approach can become very tedious during the
design process where GUI widgets are moved around frequently. In this case already placed
widgets have to rearranged when inserting a new widget.

Many modern GUI toolkits incorporate layout managers, which support developers in the
specification of resizable layouts. Rather than dealing with the position and size of each widgets
manually, developers can feed a layout manager with a more abstract layout specification, and
the layout manager then repositions and resizes the widgets automatically. It becomes easier for
developers to modify a GUI because individual widgets do not have to be rearranged manually.
GUIs can also become more consistent with the use of a layout manager; its use can help to
ensure proper alignment and consistent spacing between adjacent widgets.

A GUI toolkit in the present age often offers different layout managers, of which some

support very simplistic layouts while others support more sophisticated ones. A flow layout
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would, for example, simply take a list of controls and arrange them on a panel in rows, beginning
a new row when the current one has insufficient space. The Gridbag layout, which is a more
complex layout manager, arranges all controls in a table, possibly with additional constraints.
Constraint-based layout models specify layouts mathematically as constraint problems. They
are among the most powerful layout models. The Auckland Layout Model (ALM) [87] is an
example of a constraint-based layout models and is used in this thesis without loss of generality.
Constraints involve linear systems of equations and inequalities. Such system of linear
equations is a set of m linear equations and inequalities in n variables. Generally, such systems
can be written as
Ax =0,
Ax > b,
where A is a coefficient matrix, x is a variable and b is a right hand side vector. If m < n
then the system is called under-determined and there is no solution or infinitely many solutions.
If m = n then the system may have a unique solution and sometimes no solution. If m > n

then the system is called over-determined and may have no solution.

Constraints are a suitable mechanism for specifying the relationships among objects. They
are used in the area of logic programming, planning and other optimization problems. They can
be used to describe problems that are difficult to solve, conveniently decoupling the description
of the problems from their solution. Due to this property, constraints are a promising way of
specifying Ul layouts, where the objects are widgets and the relationships between them are
spatial relationships such as alignment and proportion. In addition to its relationships to other
widgets, each widget has its own set of constraints describing properties such as minimum,
maximum and preferred size. GUI layouts are often specified with linear constraints [86]. The
positions and sizes of the widgets in a layout translate to variables. Constraints about alignment
and proportions translate to linear equations, and constraints about minimum and maximum
sizes translate to linear inequalities.

In ALM, there are constraints for each widget that relate each of its four boundaries to an-
other part of the layout, or specify boundary values for the widget’s size, as shown in Figure[I.T]

X3

WX VX2 .
1—| Confirm Delete qmﬂﬁ Label/  Hard: x5 - x; = l.minwidth, y, - y; = l.minheight

Soft: x3 - x4 = l.prefwidth, y, - y; = |.prefheight
Button by Hard: x; - X; 2 by.minwidth, y; - y, > by.minheight

vl

Are you sure you want to delete "notes.txt"?
i

[ ! Soft: X, - X = by.prefwidth, y; - y, = by.prefheight

Yes i No Button by Hard: x; - X, = bpy.minwidth, y;- y, = bp.minheight

vs K I ——— £ : Soft: x4 - X, = bp.prefwidth, y, - y, = bp.prefheight
Button by Label / Button bp

Figure 1.1: Example constraint-based Ul layout with hard and soft constraints

A complete layout in ALM is defined by a set of areas (defined by a set of tabstops) and a

set of constraints. With a given set of constraints ALM layout manager has to solve a system
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of linear equalities and inequalities. It is often the case in layout specifications that the con-
straint system is over-specified. To cope with that problem ALM introduces the notion of soft
constraints [86].

In contrast to hard constraints, which cannot be violated, soft constraints may be violated
as much as necessary if no other solution can be found. To solve layouts which are defined
with soft constraints it is not sufficient to solve a system of linear equations and a type of op-
timization, namely minimization of the constraint-violation, must be introduced. The violation
is modelled with an introduced penalty parameter for each soft constraint.

The Auckland Layout Manager has a solid mathematical foundation. GUI developers can
specify a layout on different layers of abstraction. On the lowest level of abstraction, layouts
are specied by linear constraints and a linear objective function. Optimal layouts are calculated
using linear programming. This means that all layouts are ultimately specified in terms of linear
algebra.

The function of the next layer of abstraction is to manage rectangular areas of the GUI,
which may contain controls or other graphical elements. In this layer, ordinal constraints are
used to specify the topology of the elements in the GUI, and domain-specific parameters are
used for size constraints of an area. The layer of areas is on the top of layer of soft constraints.

On the top level, a layout specification offers abstractions for rows and columns in which
areas can be aligned, similar to common spreadsheet applications. This layer employs domain-

specific parameters for the alignment of areas in table cells.

1.2 Research Questions

The main aim of this thesis is to provide an efficient algorithm for solving linear constraints
for GUI layouts. We give an overview of existing algorithms for solving linear constraints.
The detailed review of these algorithms has motivated an investigation of well-known iterative
algorithms: Successive Over-Relaxation (SOR) and Kaczmarz. In this thesis we investigate the

following questions and provide possible answers for them.

Q1: How can non-square GUI layout specifications be solved with SOR? Most specifi-
cations in GUI layout are non-square. For example, when specifying GUI layout with linear
constraints, there are generally more constraints than variables. One of the most common iter-
ative methods used to solve sparse linear systems is SOR. However, SOR in its original form
does not work for solving non-square systems. To solve these systems we investigate three
pivot assignment algorithms that can be used with any problem matrix, regardless of its shape
or diagonal elements [71]. The first algorithm chooses pivot elements pseudo-randomly. In the
second algorithm pivot elements are selected deterministically by optimizing certain selection

criteria. The third algorithm chooses the “best” constraint for a variable and the “best” variable
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for a constraint according to some formal criteria. We evaluate convergence and performance

of these algorithms experimentally using randomly generated GUI layout specifications.

Q2: How can inconsistent GUI layout specifications be resolved? Most GUI layout speci-
fications are inconsistent (e.g. the preferred size constraints). To resolve inconsistent problems,
soft constraints are introduced. In contrast to the usual hard constraints, which cannot be vio-
lated, soft constraints may be violated if no other solution can be found. We investigate three
algorithms for solving soft constraints with the SOR method [71]. The first algorithm succes-
sively adds non-conflicting constraints in descending order of priority. The second algorithm
starts with all constraints and successively removes conflicting constraints in ascending order
of priority. The third algorithm is a mixture of both and adapts the binary search algorithm to
the problem of searching the maximum number of non-conflicting constraints. we present an

experimental evaluation of these algorithms for randomly generated GUI layout specifications.

Q3: How can the sequence of constraints be reordered to speed up the convergence of
SOR? The order of the constraints can have an effect on the speed of convergence of the
SOR method. Determining the optimal sequence of solving constraints could help speed up
the convergence. We propose an algorithm to optimise the sequence in which the constraints
are solved [73]. Our contribution consist of, first, a metric to measure the optimality of a
constraint sequence and, second, a simulated annealing based algorithm that optimizes the order
of constraints. As mentioned earlier, we use usual empirical evaluation methods for randomly

generated GUI layout specifications.

Q4: How can the convergence of iterative methods be improved, i.e. avoiding divergence?
SOR has a relaxation parameter that can be helpful in speeding up its convergence. We in-
vestigate whether the convergence of SOR can be improved if we choose different relaxation
parameters for each constraint. We show empirically that we can increase the computational
performance of an SOR-based constraint solver if we choose different relaxation parameters for

each constraint.

QS5: Can the Kaczmarz algorithm be applied for solving constraints in GUI layout prob-
lems? We present a variant of the Kaczmarz method for solving non-square matrices that can
be applied to GUI layout problems. In its original form the Kaczmarz algorithm cannot handle
soft constraints. Therefore we introduce several algorithms to solve soft constraints with Kacz-
marz [74]. If we use Kaczmarz during resizing of a window in a GUI then the system can also
be under-determined. In this case, space is not distributed in an asethetically pleasing way. To
distribute the space according to the preferred size of the layout, we introduce the least squares

Kaczmarz method to get the desired results. They are experimentally evaluated with regard to
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convergence and performance, using randomly generated Ul layout specifications.

Q6: When solving GUI layout problems what are the effects of warm starts on Kaczmarz
and SOR based constraint solvers? GUI specifications change very little while program-
ming is used during resizing of a window. The constraint solver has to calculate a new layout
every time a GUI is resized, so it needs to be efficient to ensure a good user experience. We
use Kaczmarz and SOR for solving GUI layout problems. We propose a warm start strategy
to increase the computational performance of Kaczmarz and SOR based constraint solvers. In
this strategy, we reuse the solution of a previous layout to warm start the solving of a new
layout [[72]. We measure experimentally the solving time of warm start strategy for randomly

generated GUI layout specifications of various sizes.

1.3 Structure of the Thesis

The thesis is organized as follows. In Chapter [2] we give a detailed overview of the different
numerical methods for solving linear constraint problems. These numerical methods are clas-
sified into several categories, each of which is described in detail. In Chapter [3| we extend
SOR for solving non-square matrices for GUI layout. In Chapter 4, we propose three conflict
resolution algorithms for solving systems of prioritized linear constraints with the SOR method.
Then in Chapter[5| we propose an algorithm to optimize the sequence of solving constraints to
speed up the convergence of the SOR method for conflict free non-square systems. This chapter
presents first, a metric to measure the optimality of a constraint sequence and, second, a Simu-
lated Annealing based algorithm, which optimizes the order of constraints. In the Chapter[6] we
show empirically that if we use Constraint-Wise Under-relaxation, then convergence of SOR
can be improved. We extend Kaczmarz for solving soft constraints for GUIs in Chapter|/| In
Chapter [8 we give a description of the warm start strategy that can be used to improve the
convergence behaviour of Kaczmarz and SOR-based constraint solvers for GUIs. In Chapter [J]
we give a brief overview of implementation details of ALM and algorithms used for solving
linear constraint problems. Chapter [I0]concludes this thesis by summarising the achievements

and providing some future guidelines.



Background: Solution Techniques for
Linear Constraints

In this chapter we present a brief overview of the various classes of solution techniques that
can be used to solve linear constraints. Linear problems are encountered in a variety of fields
such as engineering, mathematics and computer science and hence various numerical methods
have been introduced to solve them. These methods can be divided into direct and indirect,
also known as iterative, methods. Direct methods aim to calculate an exact solution in a finite
number of operations, whereas iterative methods begin with an initial approximation and usually
produce improved approximations in a theoretically infinite sequence whose limit is the exact
solution [[109].

Many linear problems are sparse, i.e. most of the linear coefficients in the corresponding
coefficient matrix are zero so that the number of non-zero coefficients is O(n), with n being
the number of variables [80] (see Fig [2.1)). Since it is useful to have efficient solving methods
specifically for sparse linear systems, much attention has been paid to iterative methods, which
are preferable for such cases [5]]. Iterative methods do not spend processing time on coefficients
that are zero. Direct methods on the other hand, usually lead to fill-in, i.e. coefficients change
from an initial zero to a non-zero value during the execution of the algorithm. In these methods
the sparsity property is therefore lost and a lot more coefficients are involved, which makes
processing slower. Although there are some techniques to minimize fill-in effects, iterative,

indirect methods are often faster than direct methods for large sparse problems [16].

7
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Linear constraints encountered in GUI layout are usually large and sparse, and numerous
numerical methods have been introduced to solve them. There is no single method that is best
for all situations. Methods should be appraised according to their speed and accuracy. Speed is
an important factor in solving large systems of equations because the volume of computations
involved is huge. Another issue is the accuracy of the round off errors involved in executing
these computations. The following sections give an overview of solution methods that can be
used to solve linear constraints, in order to set the stage and introduce fundamental terminology

used in this thesis.

2.1 Direct Methods

Direct methods aim to calculate an exact solution in a finite number of operations. They are
suitable for dense matrices, i.e. where the number of coefficients is O(n?) where n is the number

of variables. The two best and widely used direct methods are described below:
e [.U-decomposition method

e QR-decomposition method

2.1.1 LU-decomposition Method

LU-decomposition [28] is based on the fact that a non-singular square matrix A can be written
as the product of lower triangular and upper triangular matrices. This method is also known as
the LU-factorization method.

LU-decomposition is actually a variant of the Gaussian elimination method [28]. Consider the

following linear systems of equations.

a11%1 + a12%2 + A13T3 0 Q1T = by
2171 + Qoa%9 + A23T3 -+ Qo Ty = by
Ap1T1 + ApaT2 + Ap3T3 -+ AppTp = bn

which can be written as follows
Az =10 2.1

Then A takes the form,
A= LU, (2.2)

where L is a lower triangular matrix and U is an upper triangular matrix. So equation (2.1)
becomes
LUx =10 (2.3)
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and we can write
Ur=y 2.4)

Thus the equation (2.3)) becomes
Ly=1b (2.5)

and it proceeds as follows: first solve y in (2.5 by using the forward stage and then solve z in
(2.4) by using the backward stage. The forward and backward stages are described as follows

1. Forward Stage

2. Backward Stage

1. Forward Stage: This involves the manipulation of equations in order to eliminate some
unknowns from the equations and constitute an upper triangular system or echelon form.
2. Backward Stage: This stage uses the back substitution process on the reduced upper trian-
gular system and produces the actual solution of the equation.

LU-decomposition is numerically unstable but its instability can be avoided by permuting

the rows of the matrix. The runtime complexity for LU-decomposition is O(n?).

2.1.2 QR-decomposition Method

QR-decomposition [53] is based on a matrix decomposition where a non-singular square matrix
A can be written as the product of A = ()R, where R is an upper triangular and () is an orthog-
onal one which satisfies Q7' Q = I, where Q7 is the transpose of () and [ is an identity matrix.
QR factorization requires that a matrix must be reduced to zero. There are various methods
that can be used for computing the QR-decomposition, the most common being Householder
reflections.

When applied to a given matrix, a Householder matrix can zero all elements in a column of
the matrix, situated below a given element. For the first column of matrix A the appropriate ma-
trix (), is evaluated, which zeroes all elements in the first column of A below the first element.
Similarly ()2 zeroes all elements in the second column below the second element and so on up
to (),,—1. Hence
R=Qp Q1A
Since the Householder matrices are orthogonal it follows:

Q=(Qu1-Q1) ' =Q1Qn1.
QR-decomposition is numerically stable without permuting the rows of the matrix The runtime

complexity of QR-decomposition is similar to LU-decomposition, i.e, O(n?).
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4 -1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0][y] [008]
14 -1 0 0 -10 0 0 0 0 0O 0 0 0 O0ffu,| 016
0 -1 4 -10 0 -10 00 0 0 0 0 0 O|u| |036
0 0 -1 4 0 0 0 -10 000 0 0 0 0|y |L64
-1 0 0 0 4 -1 0 0 -10 0 0 0 0 0 O0/fu| |016
0 -1 0 0 -1 4 -10 0 -10 00 0 0 0f|u| |00
0 0 -1 0 0 -14 -100-10 0 0 0 0|u| |00
0 00 -1 0 0 -14 00 0-10 0 0 0|y |20
0 0 0 0 -10 0 0 4 -10 0120 0 0]|u] |036
0 0 0 0 0 -1 0 0 -14-10 0 -10 0[|u,l|oO
0 00 0 0 0 -10 0 -14-10 0 -1 0/[u,| |0
0 0 0 00 0 0 -100-1420 0 0 -1]|u,| |10
0 0 0 000 0 0 -10 0 0 4 -1 20 0]|u,| |L64
0o 00 00 0 00 O -10 0 -1 4 -1 0/|u,| |20
0 00 00 0 0 0 0 0 -10 0 -1 4 -1|u,| |20
0 0 0 0 00 0 0 0 0 0 -10 0 -1 4]|u,l [20]

Figure 2.1: Sparse matrix example

2.2 Indirect Methods

The approximate methods that provide solutions for systems of linear constraints starting from
an initial estimate are known as iterative methods. Iterative methods are preferable for large
sparse matrices ( where the number of coefficients is O(n) ) because they solve sparse systems

without taking into account zeros.

Most of the research on iterative methods focuses on using them for solving linear systems
of equalities and inequalities for sparse square matrices, for which the most important method
is Successive Over-Relaxation (SOR). They start from an initial guess and improve the approx-

imation until the absolute error is less than the predefined tolerance.

The following subsections summarize some basic indirect methods.

2.2.1 Jacobi Method

The Jacobi method [70] is a simple technique to solve linear systems of equations with absolute
values in each row and column that are dominated by the diagonal element.

Suppose we have given system of n equations and n unknowns in the form

Ax = b, (2.6)
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we write the matrix A in the form

A=L+D+VU, 2.7)
then we have,
B;=-DYL+U) (2.8)
where L is a lower part, D 1s a diagonal part and U is an upper part
0 e 0 a; 0 -+ 0
I — 21 0 7 _ O 929 0
Api Gpp1 O 0 0 - am
0 ax A1n
. e an_Ln
,and U = )
0 -0

Now the Jacobi technique has the form.
" = Byah + by, (2.9)

where B is an iteration matrix for Jacobi and b; is the right hand side vector for Jacobi. This
equation (2.9) is used for theoretical purposes. We can rewrite the equation [2.6| for ith term as
follows. In practice this equation (2.10) is used for computation purposes.

n

1
k k
(I,'Z-—H = _{bz — Zaija:j} (210)
Qii Yy
J#i
To start the iterative procedure for the Jacobi method one has to choose the initial estimate
and then substitute the solution in the above equation. Iterations are repeated until the residual
difference is less than the predefined tolerance.

The time complexity for Jacobi method is O(k) where k is the iteration number [34] .

2.2.2 Gauss-Seidel Method/ Successive Over-Relaxation

The best-known indirect method for solving linear constraints is the Gauss-Seidel (GS) method [[79].

Given a system of m equations and n variables of the form

Az = b, (2.11)
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Similarly to Jacobi method, we can split the matrix A in the form

A=D+L+U (2.12)
Then we have ,
Bgs = —(D+ L)"'U (2.13)
where D + L is the diagonal and lower parts and U is an upper part.
a 0 . 0 0 Aoy - ain,
a a 0 o --- C o Op—1n
D+ L= _21 .22 . ) ’and U = L
Ap1 Qo+ Qo o --.- -..0

Now the GS method has the form
"t = Baga® + bes, (2.14)

where Bggs is an iteration matrix for Gauss-Seidel and bgg is the right hand side vector
for Gauss-Seidel. This equation ( [2.14)) is used for theoretical purposes. We can rewrite the
equation ( [2.11]) for the ith term as follows

i—1
1
i =1

In Equation ([2.15), & is the iteration number and ¢ = (k mod m) + 1 (for deterministic
Gauss-Seidel). This equation( is similar to the equation ( [2.10) in Jacobi method but
the main difference is the linewise iteration. In Equation ( @]}, the variable z;, which is
brought onto the left side, is called the pivot variable, and a;; is the pivot coefficient or pivot
element chosen for row 7. An initial estimate for x is chosen, which usually does not fulfil the
equations. The algorithm refines the estimate by repeatedly replacing all individual x; so that
the ¢th equation becomes fulfilled. This is done in round-robin fashion, and one full run through
all n equations is one iteration, k being the iteration number. We can therefore write the process

as:

n

i—1
1
o= b= D ey = ) agef) —af. (2.16)
(2 ]:1

j=i+1

The algorithm iterates until the residual error is less than a pre-specified tolerance.
The Gauss-Seidel method is an improvement over the Jacobi method because it uses re-
cently calculated components of the variable = whereas Jacobi uses previous values throughout
the entire iteration. One iteration of Gauss-Seidel is equivalent to two Jacobi iterations but

the complexity for GS is similar to Jacobi i.e. O(k) because only constant term changes [34].
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X2 X2

Initial S~ Initial
guess ; guess “—

X1 X1

(a) Convergence behaviour (b) Divergence behaviour

Figure 2.2: Convergence and divergence behaviour of Gauss-Seidel

Convergence and divergence behaviour of Gauss-Seidel is shown in Figure[2.2]

Linear relaxation [[112], also known as Successive Over-Relaxation (SOR), is an improve-
ment of the Gauss-Seidel method. It is used to speed up the convergence of the Gauss-Seidel
method by introducing a parameter w, known as the relaxation parameter, so that

aitt =gk forj #i = (k mod m)+ 1

i—1 n
k1 Yy e ) 4 (—w)zk 2.17
i aii( ‘ ;%% Z a;j5) + (—w)z;. 217

j=i+1

This reduces to the Gauss-Seidel method if w = 1. w > 1 indicates over-relaxation and w < 1

under-relaxation.

2.2.3 Termination Criteria

Generally, the iterative method stops when the accuracy of the approximate solution is fulfilled.
A good termination criterion is very useful for an iterative method because the iterative method
should be stopped if the approximate solution is found. On the other hand, if the criterion is too
severe then iterative method never stops and cannot find an approximate solution.

The termination criterion that we used for the above explained iterative methods was the
difference between a computed iterate and the true solution of a linear system, measured in a

vector norm described as follows.
HrkHH =[|b— Aatng <e (2.18)

Thus the iterative method is terminated if the maximum of residual error is less than a pre-

specified tolerance. Here, ||r**!|| is a norm of the residual vector and b is a right hand side

vector. A is the left hand side and e is the prescribed tolerance. A good stopping criterion

should identify when the error is small enough to stop. It should stop if the error is no longer
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decreasing or decreasing too slowly, and limit the maximum amount of time spent iterating.

2.2.4 Advantages

Iterative methods such as SOR have certain advantages over direct methods. Iterative methods
are typically simpler to implement, resulting in smaller programs. Furthermore, they have less
round-off error than direct methods [5]. They start with an approximate answer and improve its
accuracy in each iteration, so that the algorithm can be terminated once a sufficient accuracy is
achieved.

Compared to direct methods, iterative methods are very efficient for sparse matrices, i.e.
matrices where the number of non-zero elements is a small fraction of the total number of
elements in the matrix. They are faster than direct methods because zero-coefficients are ignored
implicitly, whereas direct methods have to process the zero-coefficients explicitly [S]]. This
implies that iterative methods need not to store zero-coefficients explicitly, which leads to less
memory consumption than with direct methods [24]. Considering these advantages, it would

be useful if the limitations of SOR could be overcome.

2.2.5 Convergence

The convergence of the Gauss-Seidel method can be characterized by two related but quite
distinct approaches. The first approach, which is the best-known theorem in this domain, is

based on the coefficient matrix.

Definition 1. A matrix is called strictly diagonally dominant if for all ¢

Jail> >l (2.19)
J#i
If a coefficient matrix is strictly diagonally dominant, the problem is guaranteed to con-
verge [34]. However, this is only a sufficient condition, and a very strong condition that can be
easily violated.
The notion of diagonal dominance naturally gives rise to a more general quantity that de-

scribes the influence of a variable.

Definition 2. The influence of the kth variable in the 7th constraint is

||

. 2.20
> Jas] (220

influence;;, =
All influences of variables in a constraint sum up to 1. If the constraints are normalized by
dividing by the denominator above, then the absolutes of the coefficients of the variables are

simply their influences.
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The following is a proof of convergence for Gauss-Seidel based on strict diagonal domi-

nance criteria.

Gauss-Seidel Convergence based on Strict Diagonal Dominance

Theorem 1. If the linear system Az = b has a coefficient matrix that is strictly diagonally

dominant then the Gauss-Seidel method will converge to z for any choice of x( and any

Proof. Let T = [T;...7T,|" be the exact solution of the system Ax = b. Then for all i €
{0...n}, we have
1
z " { ;ﬁ: ai;T;} (2.21)

The ith element of the ith row of the coefficient matrix is the row dominant element for
variable x; and serves as the pivot element.
According to the Gauss-Seidel method one iteration is performed with the equation
1 i—1 n
k k k
P = b =Y et = 3 a4yt (2.22)

j=1 j=i+1

With equations (2.21)) and (2.22) we can define the error of the approximation of the current

iteration by

ki
€

=7; — 2t (2.23)

By substituting the values of equation ([2.23) with equations ([2.22) and (2.21)), we get

1—1 n
1 1
= —{bi- > - —{bi - > agattt = > ayatl. (2.24)
[ (4 j=1

i j=it+1

After simplification, we get

i—1 n
—1
A= Dyl -+ Y eyl - ) 225)
13 le ]:l-‘rl

As we can see from the equation above the error of the current iteration depends on the error
of the previous calculations of the variable values (strictly speaking the error of the variables
whose constraint with its pivot element is less than ¢ from the current iteration (k 4 1) and the
error of the variables whose constraint with its pivot element is greater than ¢ from the previous
iteration (k)).

! The proof of the convergence of the Gauss-Seidel method is based on the formulation of Maron’s convergence
proof of the Jacobi method in the case of square coefficient matrices [[90]. We extended this formulation to the
Gauss-Seidel method.
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Hence we can write

i—1 n
—1
it =Dy + Y aye} (2:20)
(A J:1

j=it1

Since in the end we are interested in finding the exact solution of Z; we have to reduce
the absolute value of ¢;. Hence we can focus on the absolute values and change the equation
accordingly:

1 i—1 n

k1 — k+1 k

& = _{‘Z @ij€j+ + Z @ij€j|} (2.27)

Qi “— =

j=1 j=i+1

Because |¢"*!| is defined over the sum of all errors of all remaining variables, it has to be
smaller than the sum of all coefficients of the ith constraint. This value in turn is smaller than
the product of the maximum error times the fraction of the biggest difference between the pivot

coefficient and all remaining coefficients of this constraint.

1

lef < IEIZ!%HEWE 0|€maz| (2.28)
)

with

Ej;él‘aljl E#Q‘C@j‘ Zj;én‘an]"

a1 ’ |agz| o [

d = max{ }. (2.29)

From Equation ( [2.28)) it is clear that the error of ¥ is smaller than the maximum error of the
previous iterations by a factor of at least 0. The convergence will therefore be assured if 6 < 1.

If 6 < 1 in each iteration the error becomes smaller for all x; by a factor of at least . [

A proof for necessary and sufficient condition of Gauss-Seidel convergence is described as

follows.

A Necessary and Sufficient Condition for Gauss-Seidel Convergence

The second approach to characterizing convergence is based on a derived matrix, the iteration
matrix, and leads to a necessary and sufficient condition involving the spectral radius of the

iteration matrix that also applies for SOR, not only Gauss-Seidel.

Definition 3 (Iteration Matrix). The changes to the estimate z* in every step of the Gauss-
Seidel method for Ax = 0 are given by a linear function. The matrix M,,(A) of this function

with %1 = M, (A)z* is called the iteration matrix of Az = 0.

The Gauss-Seidel method converges for all initial values if and only if the spectral radius
of the iteration matrix is smaller than one. If that condition is not fulfilled, the problem will
diverge, except for some special initial values (such as the solutions itself). The smaller the

spectral radius of the iteration matrix, the faster the Gauss-Seidel method converges.
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An important characteristic of the Gauss-Seidel method with regard to convergence is trans-

lation invariance.

Lemma 1 (Translation Invariance). Let the Gauss-Seidel method for Az = b converge to T
starting with 2°. Then the Gauss-Seidel method for Ay = 0 starting with 3y = 2° — 7 will have

k —

the same convergence behaviour, i.e. for all 7, k we have yf = — Ij.

With Lemma [I| we can simplify the existing proof [[107]] of convergence based on the itera-

tion matrix.

Theorem 2. The Gauss-Seidel method for Az = b converge if the Iteration Matrix is non-

singular and M (A) has a spectral radius smaller than 1.

Proof. 1f the spectral radius is smaller than 1, then M (A)™ converges to the matrix 0. Hence
Gauss-Seidel for Ax = 0 converges to the correct solution 0. From translation invariance it
follows that the Gauss-Seidel method for Az = b converges. 0

Preconditioning

Preconditioning is important for the successful use of iterative methods. Preconditioning was
first considered by Censor et al. [19,27] for reducing the condition number in order to improve
the convergence of an iterative process. The convergence of the Gauss-Seidel method depends
strongly on the spectral radius of an iteration matrix. The Gauss-Seidel method shows best
convergence if all eigenvalues of an iteration matrix are less than one. Underrelaxation has
generally a better convergence behaviour than Gauss-Seidel, but convergence is usually not a
problem for Gauss-Seidel in practice.

Preconditioners can be used to speed up the convergence of the Gauss-Seidel method but
they do not guaranty its convergence. Good preconditioners for iterative methods are scaling
algorithms [105]] and bipartite matching algorithms [36]. These algorithms scale the infinity
norm of both rows and columns in a matrix to 1 and permute large entries to the diagonal of
a sparse matrix. There are usually well-conditioned coefficient matrices in a constraint-based
UI layout problem for which the Gauss-Seidel method converges quickly if appropriate pivot

elements are chosen.

2.3 Linear Programming

Linear programming [13] deals with the optimization (minimization or maximization) of an

objective function that satisfies a set of constraints.

2We treat inequalities as equalities or ignore them if they are fulfilled.
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A specification as a linear program is trivially in general more expressive than a specification
as a system of linear equations and inequalities. The specification as a system of linear equations

and inequalities is a special case of linear programming with the trivial objective function 0.

Definition 4. Linear Programming is a problem which can be formulated in standard form as:

Minimize ¢’z

Subject to Az = b,z > 0,

T

where ¢’ z is a linear objective function.

Ax = bis a set of linear constraints and x > 0 requires non-negativity conditions.

In the maximization case, minimizing ¢’z is equivalent to maximizing —c’z. Inequality
constraints are included because A'z < bor A"z > bis equivalent to Az = b by including
slack and surplus variables as required.

Linear Programming is mostly used in constrained optimization. A large number of op-
timization problems are LPs having hundred of thousands of variables and thousands of con-
straints. With the recent advancement in computer technology these problems can be solved in
practical amounts of time. The most common algorithm to solve linear programming problems

is called the simplex method, which is described below.

2.3.1 Simplex Method

The simplex method [33]] also known as the simplex technique or simplex algorithm was devel-
oped in 1947 by the American mathematician George B.Dantzig. It is an iterative method and
makes use of Gauss-Jordan elimination techniques. It has the advantage of being universal, i.e.
any linear model for which a solution exists can be solved by it. It is defined as an algebraic
process for solving linear programming problems.

The simplex method is an iterative process that starts at a feasible corner point(normally the
origin) and systematically moves from one feasible extreme point to another, until an optimal
point is eventually reached.

The simplex method usually has two stages, called phase-I and phase-II.

In phase-I, the algorithm finds a basic feasible solution.

In phase-II, the algorithm searches for an optimal solution. In phase-I, slack variables(a slack
variable is added to a constraint to turn an inequality into an equation) are introduced to find
a value of the decision variables where all the constraints are satisfied. Once a basic feasible
solution is found, the search for an optimal solution can start. In phase-II, the algorithm moves
from one extreme point to another to find the optimal solution. The next extreme point will be
chosen such that the search direction is in the steepest feasible direction. This process continues

until the optimum solution is reached. The complexity for simplex is O(n?).



2.4 Summary

19

2.4 Summary

This chapter introduced some basic numerical methods for solving linear constraints. In the
case of solving linear constraints we have presented (¢) direct methods: LU-decomposition,
QR-decomposition and (i) the iterative methods: Jacobi, Gauss-Seidel, SOR and the linear
programming method, the simplex method. Direct methods become impractical for a sparse,
large linear systems in three-dimensional space. The complexity of the direct method becomes
O(n?) and storage requirement can be up to O(n?) due to fill-in. whereas iterative methods
are designed to solve large sparse linear systems of equations efficiently. The complexity of an
iterative method is O(n).

As large sparse problems are encountered in GUI layout we prefer iterative methods over
direct methods. Linear programming method, simplex, is also an iterative method but it uses
one Gauss-Jordan elimination step per iteration, i.e. using a direct method which makes them
slower than other iterative methods. Our main goal of this chapter is to provide the reader
with sufficient information on each algorithm that we used for comparison purposes with our

proposed algorithms in this thesis.
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Extending Successive Over-Relaxation
for Non-Square Matrices

3.1 Introduction

Successive Over-Relaxation (SOR) is a common method for solving linear problems as they
occur in the science and engineering. In contrast to direct methods such as Gaussian elimination
or QR-factorization, SOR is inherently efficient for problems with sparse matrices as they are
often encountered, for instance, in the application domain of constraint-based user interface
(UD) layout.

One domain where sparse problems frequently occur is user interface (UI) layout. This
chapter describes the common properties of this domain, and delineates the solving approaches
that have been proposed for it. The contributions of this chapter were motivated by and were
evaluated for the constraint-based UI layout problem.

One of the most common iterative methods used to solve sparse linear systems is SOR.
Starting with an initial guess, SOR repeatedly iterates through the constraints of a linear spec-
ification, refining the solution until a sufficient precision is reached. For each constraint, it
chooses a pivot variable and changes the value of that variable so that the constraint is satis-
fied. Despite its efficiency for sparse systems, SOR is currently not used for constraint-based
Ul layout, for the reasons explained in the following.

A common property of many linear problems including constraint-based Ul layout is that the

21
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matrices corresponding to these linear problems are non-square. For example, when specifying
UI layout with linear constraints, there are generally more constraints than variables. This is a
problem for the common SOR method, which assumes that the problem matrix is square and
has a non-zero diagonal.

The problem for non-square matrices is that of pivot assignment, i.e. the choosing of a pivot
variable for each constraint during solving. The standard SOR algorithms choose the pivot
variable on the diagonal of the coefficient matrix. In case of square matrices with non-zero
diagonals, this is an easy way to ensure that every constraint has a pivot variable, and that every
variable is chosen once so that its value can be approximated. However, in the general case the

diagonal approach has several problems:

1. Not every constraint contains an element on the diagonal of the problem matrix if there

are more constraints than variables.
2. Diagonal elements may be zero, making them infeasible as pivot elements.

3. Diagonal elements may be small compared to the other elements on the same row of the

matrix, making them a bad choice that may cause the solving process to diverge.

The standard SOR algorithms usually assume that a pivot assignment has been performed
and that the chosen pivot elements are placed on the diagonal of the problem matrix. In square
matrices this can always be achieved by simple matrix transformations. However, in the case of
non-square matrices, the problem number 1 above cannot be mitigated this way.

In this chapter we describe how the SOR method can be extended to deal with the above-
mentioned problems. We propose three pivot assignment algorithms that can be used with any
problem matrix, regardless of its shape or diagonal elements. The first algorithm selects pivot
elements pseudo-randomly. The second algorithm selects pivot elements deterministically by
optimizing certain selection criteria. The third algorithm selects the best constraint for a vari-
able and the best variable for a constraint. The problem of pivot assignment in the case of
non-square matrices and the three algorithms is explained in detail in Section[3.3]

In GUI layout mixed systems occur that contain both equality and inequality constraints.

We extend SOR for solving linear inequalities that is described in Section[3.2]

3.2 Inequalities

SOR supports both linear equalities and linear inequalities. Inequalities are handled similarly
to equalities [2,52,94]: in each iteration, inequalities are ignored if they are satisfied, and
otherwise treated as if they were equalities. However, there are potential practical problems,

which are described below using the following definitions.
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Definition 5. Mixed system: A system containing equalities as well as inequalities is called a

mixed system.

Definition 6. Maximum equality subsystem: A subsystem that consists of all the equations in

a system of linear constraints is called maximum equality subsystem.

A mixed system with a square coefficient matrix cannot have a unique solution because this
is only possible if there is an equality for each variable. In a typical mixed system, as it occurs
for instance in constraint-based Ul layout specifications, the maximum equality subsystem is
under-determined, i.e. there are fewer equalities than variables, and the whole system has more
constraints than variables. This means that for typical mixed systems the standard SOR algo-
rithm, which only works on a square matrix, is insufficient. To use SOR for such mixed systems

we have to extend it, e.g. by applying the algorithms proposed in this chapter.

3.3 Non-Square Matrices

As pointed out in Section [3.2] mixed systems usually have a non-square matrix with more
constraints than variables. Furthermore, they may have zero-coefficients on the diagonal. In
some cases, they may also have more variables than constraints (under-determined). In all these
cases, the standard SOR algorithm cannot be applied. In this section, we briefly present some
related work on constraint problems with non-square coefficient matrices and propose three
pivot assignment algorithms. All these three algorithms help to overcome the limitations of the
standard SOR algorithm.

3.4 Related Work

Linear systems with non-square matrices are typically solved using direct methods, such as the
QR-factorization method [34]. The QR-factorization method is used to solve linear systems of
equations. Several methods can be used to compute QR-factorization, e.g. the Gram-Schmidt
process, Householder transformations, or Givens rotations [[34]]. These methods require the cal-
culation of a significant number of matrix norms, which makes them slower than other methods
such as the normal equations method.

The normal equations method [59], which is also a direct method, is used to solve linear
systems of the form AT Az = ATb. It is fairly simple to program, but suffers from numerical
instability when solving ill-conditioned problems. The condition of the normal equation matrix
AT A is worse than that of the original matrix A. When an original matrix is converted into
a normal equation matrix and a right hand-side vector, information can be lost. The normal
equations method is the most common method despite the loss of information because it has

been shown that its accuracy can be improved if iterative refinement is applied [45]. Some
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iterative methods like Gauss-Seidel use normal equations to solve non-square linear systems of
equations [34].

There are some iterative methods [[10] that can be used to solve systems of linear equations
that are over-determined. These methods include the simplex, the conjugate gradient and gen-
eralized minimal residual methods. They have some limitations that make them inapplicable
for some problems, however, and these are described below.

The simplex algorithm [33] is a well-known method used to solve linear programming prob-
lems. It is an iterative method, but one linear solving step per iteration is required, which means
this method cannot be faster than linear solving alone. It moves from one feasible corner point
to another and continues iteration until an optimal solution is reached. The revised simplex
method [117] is a variant of the simplex algorithm which is computationally more efficient for
large sparse problems.

While the simplex algorithm tries to find an optimal solution according to an arbitrary linear
objective function, there are other methods that try to find a least squares solution to an over-
determined system of linear equations. These methods find a solution whose sum of squared
errors is minimal. Ul methods that work on squared errors exists such as [91]] but there are also
methods using absolute value [11] which is currently the basis for all layouts in Apple,s Cocoa
layout engine.

The generalized minimal residual method [[108] is considered the most efficient method for
solving least squares problems. One of the shortcomings of this method is its instability and
poor accuracy of the computed solution due to the possible high ill-conditioning of the normal
equations system. This method is unstable because a non-square matrix is converted into a
square matrix by applying normal equations.

The conjugate gradient method [62] can solve linear systems of equations if the matrix
is symmetric and positive definite. However, it only works for well-conditioned problems as it
cannot converge otherwise. Several methods for iteratively solving linear least squares problems
— so called Krylov subspace methods — are surveyed in [53]].

The Jacobi and Gauss-Seidel algorithms [35]] are extended to solve non-square matrices in
the least squares sense by applying a hierarchical identification principle and by introducing
block matrix inner-products.

The numerical difficulties encountered for under-determined problems are the same for
over-determined problems, however round-off errors accumulated in the under-determined case

are more complicated than in the over-determined case because the solution is not unique.

3.5 Pivot Assignment

Since the diagonal elements do not lend themselves naturally as pivot elements if the matrix is

non-square, we need to explicitly select a pivot element for each constraint. In other words, we
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need to determine a pivot assignment. Pivot assignment is also important for square matrices as

it has an effect on convergence.

Definition 7. A pivot assignment is an assignment of constraints to variables

~v: Constraints — Variables.

A feasible pivot assignment v must be surjective and total. Surjectiveness is necessary
because we require one constraint for each variable, otherwise the variable’s value would not
be changed by the algorithm. Totality is inherent in the definition of the SOR algorithm, which

requires a pivot variable for every constraint.

3.5.1 Pivot Assignment Algorithms

Below we propose three pivot assignment algorithms, one random, one deterministic and two
phase. While the random algorithm avoids the issues of surjectiveness and totality by random-
ization, deterministic and two phase algorithms ensure these properties, using the notions of

most influential variables and constraints defined as follows.

Definition 8. The most influential variable of a constraint is the one with the highest influence.
The most influential constraint of a variable is the constraint where the variable has the highest

influence.

Random Pivot Assignment

The algorithm for random pivot assignment is given below as Algorithm (I} The random algo-
rithm assigns the pivot variable for each constraint randomly in each iteration (line 2). This
means that in general the pivot assignment is changed in each iteration.

It is not inherently obvious that randomized assignments work for the SOR approach, but
it is the simplest approach that may work. Although the random algorithm generally does not
make the optimal assignment with regard to convergence, it reduces the effect of bad assign-
ments while allowing for good assignments. In particular, it is guaranteed that every suitable
variable will be chosen as pivot variable at some point. The general assumption underlying
randomized algorithms is that the effect of good choices outweighs the effect of bad choices.

One of the drawbacks of random assignment is that it causes fluctuation in the error. This
makes it harder to recognize whether the algorithm diverges, or whether fluctuations are only
temporary. To address this problem, we propose a deterministic approach in the following

section.
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Input: Constraints (C)

Output: Pivot Assignment vy

: for each constraint c do
Choose variable x of ¢ randomly
Assign y(c) = x

end for

Rl

Algorithm 1: Random pivot assignment

Deterministic Pivot Assignment

The algorithm for deterministic pivot assignment is given below in Algorithm 2| It creates a
single pivot assignment that is used consistently during the solving process and is explained in

the course of the following proof of correctness.
Theorem 3. The deterministic algorithm produces only feasible assignments.

Proof. Inlines 1-7 each constraint is assigned a variable x, therefore the resulting assignment is
total. In lines 8—11 every variable y that has not yet been assigned a constraint is assigned a new
constraint, which is a duplicate of an existing constraint. As a result, the resulting assignment
is surjective.

If the matrix is diagonally dominant, at the time the algorithm iterates over a particular
constraint, the most influential variable of this constraint will still be unassigned. After the first
loop, there will be no unassigned variables left. As a result, the algorithm chooses the diagonal
elements as pivots in the case of diagonally dominant matrices. Duplicating constraints of a

problem does not change the problem, hence this is a valid transformation. [

Input: Constraints (C)
Output: Pivot Assignment vy

1: for each constraint c do

2:  if some variables of c are still unassigned then

3 Choose unassigned variable x of ¢ with the largest influence, assign y(c) = z
4: else

5: Choose the most influential variable = of ¢, assign y(c) = x
6: endif

7: end for

8: for each still unassigned variable y do

9:  Find the most influential constraint ¢ for y

10:  Duplicate c to ¢/, assign y(c') =y

11: end for

Algorithm 2: Deterministic pivot assignment



3.6 Summary

Two Phase Pivot Assignment

The algorithm for two phase pivot assignment is given below in Algorithm |3| This algorithm
tries to find the most influential constraint for a variable and the most influential variable for a
constraint.

Input: Constraints (C), variables (X)

Output: Pivot Assignment vy

1: for all constraints C' do

2:  Choose the most influential variable x of constraint ¢, assign v(c) = x
3 Remove x from X

4: end for

5: for all variables x : X do

6 Choose the most influential constraint ¢ for x

7:  Duplicate c to ¢/, assign y(¢') = x

8: end for

Algorithm 3: Two phase pivot assignment

In lines 1-3 it tries to assign a best variable x for all constraints. In lines 4-7 for all vari-
ables X, it tries to assign a best constraint z , which is a duplicate of an existing constraint.
This algorithm constantly selects the pivots which have maximum impact. But with that some
variables are not used as pivots or some constraints are used several times with different pivots.
Therefore, the resulting assignments are not total and surjective.

In the general case constraint-based Uls are over-determined, which can result in conflicts
between constraints of the problem. A proper pivot assignment algorithm alone is not sufficient
to deal with such cases. A technique to handle conflicts between constraints, e.g. in the form of
soft constraints, is required. We describe techniques to handle conflicts between constraints in
Chapter [ which also experimentally evaluates our proposed pivot assignment algorithms to-

gether with the conflict resolution algorithms with regard to their convergence and performance.

3.6 Summary

We have proposed new algorithms for using SOR for solving constraint-based Ul layout prob-
lems. In particular, we presented the algorithms for pivot assignment that make it possible to
solve problems with non-square coefficient matrices. We also extend SOR for solving linear

inequality constraints.
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Extending Successive Over-Relaxation
for Soft Constraints

4.1 Introduction

Besides its inability to deal with non-square matrices, the common SOR method has another
shortcoming. Many problems, such as constraint-based UI layout, may contain conflicting
constraints. This may be caused by over-constraining, i.e. by adding too many constraints,
making a problem infeasible. If a specification contains conflicting constraints, the common
SOR method simply will not converge.

To deal with conflicts, soft constraints can be introduced. One simple example of constraint-
based Ul layout for hard and soft constraints is shown in Figure

In contrast to the usual hard constraints, which cannot be violated, soft constraints may
be violated as much as necessary if no other solution can be found. Soft constraints can be
prioritized so that in a conflict between two soft constraints only the soft constraint with the
lower priority is violated. This leads naturally to the notion of constraint hierarchies, where all
constraints are essentially soft constraints, and the constraints that are considered “hard” simply
have the highest priorities [21]]. Using only soft constraints has the advantage that a problem is
always solvable, which cannot be guaranteed if hard constraints are used.

In this chapter we propose three conflict resolution algorithms for solving systems of pri-

oritized linear constraints with the SOR method. The first algorithm successively adds non-

29
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Figure 4.1: Example of constraint-based Ul layout with hard and soft constraints

conflicting constraints in descending order of priority. The second algorithm starts with all
constraints and successively removes conflicting constraints in ascending order of priority. The
third algorithm is a mixture of both and adapts the binary search algorithm to the problem
of searching for the best conflict-free subproblem. These algorithms yield conflict-free sub-
problems to a given problem. There are some existing algorithms for finding feasible subprob-
lems for sets of constraints [29], but they do not take into account prioritization of constraints,

which is important for constraint-based UI layout problems.

The pivot assignment algorithms presented in Chapter [3| and the conflict resolution algo-
rithms presented below give a total of six different solution procedures that enable SOR to be
applied to more linear constraint problems, such as constraint-based UI layout. These solution
procedures were experimentally evaluated with regard to their convergence and performance,
using randomly generated Ul layout specifications. The results show that most of the proposed
algorithms are optimal and efficient. Furthermore, we observed that some of our implemented
solvers outperform Matlab’s LINPROG linear optimization package [115]], LP-Solve [17] and
the implementation of QR-decomposition of the Apache Commons Math Library [8]]. LP-Solve
is a well-known linear programming solver that has been used for constraint-based UI layout.
The implementation of QR-decomposition in the Apache Commons Math Library is an exam-
ple of a direct method. The methodology as well as the results of the evaluation can be found
in Section4.6] Section presents our conclusions.

For sparse linear problems, SOR is known to perform very well. However, SOR in its
standard form cannot be applied to the constraint-based Ul layout problems for two reasons.

First, the coefficient matrices are non-square: there are usually more constraints than variables.
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Second, many of the constraints are soft because they describe desirable properties in the layout
(e.g. preferred sizes), which cannot be satisfied under all conditions (e.g. all layout sizes). As a
result, the existing Ul layout solvers use algorithms other than SOR. Some of these solvers are
discussed in Section

Hard constraints are constraints that must always be satisfied. If this is impossible, there is
no solution. For many problems, including constraint-based UI layout, conflicting constraints
occur naturally in specifications, as they express properties of a solution that are desirable but
not mandatory. As a result, soft constraints need to be supported that are satisfied if possible,
but do not render the specification infeasible if they are not. A natural way to support soft
constraints is to treat all constraints as soft constraints, with different priorities (p). These
priorities can be defined as a total order on all constraints that specifies which one of two
constraints should be violated in case of a conflict.

To define the solution of a system of prioritized soft constraints, we first have to define
the subset £ C Constraints of enabled constraints. We consider the characteristic function
1g : Constraints — {0,1} of E, which expresses whether a constraint is contained in F, to
construct an integer in binary representation (¢). According to their priority, each constraint is
represented by a bit of that integer, with constraints of higher priority taking the more significant
bits. The value of the characteristic function for the constraint with the highest priority is
considered the most significant bit. Then such subsets can be compared by using the numerical
order > of the integers. We are interested in the subset that is largest in that order and still
fulfills the following property: all constraints in the subset are non-conflicting.

Below we first discuss existing approaches for solving linear soft constraints. Then, we de-
scribe three algorithms that address support for soft constraints in the SOR method: prioritized
irreducible infeasible subsystem (IIS) detection, prioritized deletion filtering and prioritized

grouping constraints.

4.2 Related Work

All constraint solvers for UI layout must support over-determined systems. The commonly
used techniques for dealing with over-determined problems are weighted constraints and con-
straint hierarchies [47./63,92]. Weighted constraints are typically used with some general forms
of direct methods, while constraint hierarchies are especially utilized in linear programming
based algorithms. Many UI layout solvers are based on linear programming and support soft
constraints using slack variables in the objective function [[11}/13,[22,86,91].

Most of the direct methods for soft constraint problems are least squares methods such
as LU-decomposition and QR-decomposition [[125]. The UI layout solver HiRise [65] is an
example of this category. Its successor, HiRise2 [66] solves hierarchies of linear constraints by

applying an LU-decomposition-based simplex method.
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However, if weights are used to express a hierarchy of constraints the differences between
them has to be very large. This in turn can push numerical limits. Hence it is desirable to

enforce priorities of constraints without using weights directly.

Many different local propagation algorithms have been proposed for solving constraint hi-
erarchies in Ul layouts. The DeltaBlue [46], SkyBlue [110] and Detail [67] algorithms are
examples of this category. The DeltaBlue and SkyBlue algorithms cannot handle simultane-
ous constraints that depend on each other. However, the Detail algorithm can solve constraints
simultaneously based on local propagation. All of the methods for handling soft constraints
utilized in these solvers are designed to work with direct methods, so they inherit the problems
that direct methods usually have with sparse matrices.

QUICKXPLAIN [[77] tries to find a conflict-free constraint system by successively adding
or removing constraints from the group of constraints which is similar to prioritized grouping
constraints. The groups of constraints to be added or removed are determined by a recursive
decomposition of the problem. It is mixture of QuickSort and MergeSort in the sense that
QUICKXPLAIN must solve both of the two subproblems resulting from the problem decom-
position. In contrast to QuickSort and MergeSort, the result of the right subproblem, which is
solved first by QUICKXPLAIN, has an impact on the formulation of the left subproblem. This
is a particularity of QUICKXPLAIN.

The Maximum Satisfiability (MAXSAT) problem is a generalization of the Satisfiability
(SAT) problem which can represent optimization problems. The SAT problem tries to find an
assignment that satisfies all the constraints if one exists; otherwise no satisfiable assignment
exists. The goal of MAXSAT is to find an assignment that satisfies the maximum number
of constraints. The MAXSAT solvers are based on branch and bound solvers and satisability
testing [647,/18,60, 83,84, 89].

The problem of finding the largest possible subset of constraints that has a feasible solution
given a set of linear constraints is widely known as the Maximum Feasible Subsystem (MaxFS)
problem [29]. The dual problem of MaxFS is the problem of finding the irreducible infeasible
subsystem (IIS) [3]. If one more constraint is removed from an IIS, the subsystem will become
feasible. For both problems different solving methods were proposed.

To solve the MaxFS problem, non-deterministic as well as deterministic methods were pro-
posed. Some of these methods use heuristics [4,88]. Only a few methods solve the problem
deterministically, among which is the branch and cut method proposed by Pfetsch [99] is such a
deterministic method. Besides methods to solve MaxFS, there are methods to solve the IIS prob-
lem, including deletion filtering, IIS detection algorithm, and the grouping constraints method.

Deletion filtering [30] starts with the set of all constraints. For each constraint in the set,
the method temporarily drops the constraint from the set and checks the feasibility of the re-
duced set. If the reduced set is feasible, the method returns the dropped constraint to the set

of constraints. If the reduced set is infeasible, the method removes the dropped constraint per-
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manently. Baker et al. [12] proposed the algorithm, Diagnosis of Over-determined Constraint
Satisfaction Problems. This algorithm tries to find the set of least important constraints that
can be removed to solve the remaining constraint satisfaction problem. If the solution is not
optimal then it tries to find next-best sets of least-important constraints until an optimal solution
is found.

The IIS detection algorithm [118,|119] starts with a single constraint and adds constraints
successively. If the system is infeasible after adding a new constraint, then the method discards
the new constraint.

The grouping constraints method was introduced by Guieu and Chinneck [56] to speed up
the IIS detection algorithm and deletion filtering. It adds or drops constraints in groups by using
the deletion filtering or IIS detection algorithms.

Even though these methods deal with the problem of finding a feasible subsystem, it is not
possible to apply them directly. The main reason for this is that they do not consider prioritized
constraints, as necessary for problems such as constraint-based UI layout. As discussed in
Section 4.1 we have to find not only the set with the maximum number of constraints, but also
the set of constraints with maz(¢). We call this problem prioritized MaxFS, and propose as
a solution the following algorithms: prioritized IIS detection, prioritized deletion filtering and

prioritized grouping constraints.

4.3 Prioritized IIS Detection

In Prioritized IIS detection, which is depicted as Algorithm |4, we start with an empty set & of
enabled constraints (line 1). We add constraints incrementally in order of descending priority so
that £ is conflict-free, until all non-conflicting constraints have been added. Iterating through
the constraints, we add each constraint tentatively to £ (“enabling” it), and try to solve the
resulting specification (line 7). Note that whenever a constraint is added, the pivot assignment
needs to be recalculated. If a solution is found, we proceed to the next constraint. If no solution
is found, the tentatively added constraint is removed again. In that case, the previous solution is
restored and we proceed to the next constraint. This algorithm assumes that the method used for
solving converges if there is no conflict. The algorithm approximates max(¢) starting from the
most significant bit and progressing down to the least significant bit. This property distinguishes

our algorithm from the existing IIS detection algorithm.

4.4 Prioritized Deletion Filtering

Prioritized deletion filtering is an algorithm that assumes a predicate con flicting(c) with certain

properties to exist. The assumption is that during one unsuccessful attempt to solve the current
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Input: Constraints (C)
Output: Non-conflicting constraints

1: DISABLE(C)

2: SORT(C) (by priority)

3: for each constraint ¢ in order of priority, descending do
4 Remember current variable values

5. ENABLE(c)

6:  Assign pivot elements for all constraints
7:  Apply SOR

8:  if solution not optimal then

9 DISABLE(c)
10: Restore old variable values
11:  endif
12: end for

Algorithm 4: Prioritized IIS Detection

specification, we can collect reliable information on each single constraint as to whether it is

conflicting.

The steps are shown in Algorithm We start with all constraints enabled, i.e. £ =
Constraints (line 1). We try to solve the specification, and if an optimal solution is found,
this means FE is conflict-free. In this case, we return the solution. Otherwise, we remove the
conflicting constraint with the lowest priority from F (“disabling”) and recalculate the pivot

assignment.

With a very simple heuristic predicate based on the error fluctuation, as described below in
detail, this algorithm was used quite successfully during our evaluation. However, even if one
assumes a completely reliable predicate con flicting(C'), the set of constraints getting disabled
is generally larger than allowed in our definition of soft constraints. In contrast to prioritized
IIS detection, if there is a conflicting constraint ¢ of a higher priority in a specification, that
constraint will only be deleted after it might have already triggered removal of a constraint d of
a lower priority. After c is removed, d might be solvable, but has already been lost. We present
this approach to provide another perspective on addressing soft constraints, and as a motivation

for our third algorithm which is described in Section

Currently, we use the following heuristic: con flicting(c) is true if the value of its pivot
variable y(c) has been changed significantly during the last SOR iteration. While this condi-
tion is true for conflicting constraints, it is not a sufficient condition, as other non-conflicting

constraints may be affected by a conflict and hence satisfy this condition, too.
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Input: Constraints (C)

Output: Non-conflicting constraints
1: ENABLE(C)
2: SORT(C) (by priority)
3: for each constraint do

4:  Assign pivot elements for all constraints
5:  Apply SOR
6:  if solution is optimal then
7: return solution
8: endif
9:  for each constraint c in order of priority, ascending do
10: if con flicting(c) then
11: DISABLE(c)
12: break
13: end if
14:  end for
15: end for

Algorithm 5: Prioritized Deletion Filtering

4.5 Prioritized Grouping Constraints

The prioritized grouping constraints algorithm is a combination of prioritized IIS detection
and prioritized deletion filtering algorithms. It tries to find a conflict-free constraint system
by successively adding or removing constraints from the system of constraints. If a constraint
system is conflict-free, the algorithm adds constraints; if it has conflicts, the algorithm removes
constraints. It adds and removes not only one constraint at a time, but also groups of constraints,
and the size of the groups follows the classic patterns of a binary search approach. The algorithm
ends if the system is conflict-free and no more constraints can be added. This algorithm, in
contrast to the prioritized deletion filter, does not require a predicate con flicting(c).

The steps are shown in Algorithm [6] below. First, the algorithm is initialized by sorting the
list of constraints (C) (line 1) and initializing some variables (line 2). The variables beginning
and end determine the upper-inclusive and the lower-exclusive bounds of the area of the list
of constraints which possibly contains conflicting constraints, e.g. the search window. These
bounds are adjusted while the algorithm is running.

When initializing the algorithm, we set end = 2|C|, which is adjusted to end = |C]| in
the first iteration. Hence in the second iteration we check the whole list from the first entry
(beginning = 0) to the last entry (end = |C| — 1).

After initialization the algorithm enters a loop which iteratively finds the prioritized MaxFS
(max(c)). First, the algorithm checks whether the calculated solution of the previous step is
optimal. If this is the case, we know that, at least up to end, there is no conflict in the constraint
list. We can, therefore, set the upper bound beginning of the search window to end, ignore the

old search window in the following iterations, and increase the lower bound end to form a new
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window. The variable value end is increased exponentially with 9.

If the solution is not optimal, we have either identified a conflicting constraint, or we still
need to decrease the size of the search window exponentially (line 15). We have found a con-
flicting constraint if the size of the search window is shrunk to a single constraint (line 10).
In that case, we deactivate this constraint (line 11), move the upper bound of our search space
to index position end (line 12), and set the size of our search window to one (line 13) for the
following iteration.

Now, after the bounds of the search window are calculated, the constraints within the search
window (beginning, end) are enabled and all constraints below the search window are disabled
(line 18). The constraints above beginning are still enabled from the preceding iterations.
Finally, the pivot elements for the enabled constraints are determined and the problem is solved
for the enabled constraints (lines 19 and 20).

Similar to the aforementioned algorithms, this algorithm assumes that SOR converges if
there is no conflict in the system. Under that assumption, it finds max(¢), i.e. it will end with the
same constraints as prioritized IIS detection. However, in contrast to prioritized IIS detection, it

adds and removes constraints in bigger steps, which reduces the number of required iterations.

Input: Constraints (C)

Output: Non-conflicting constraints
1: SORT(C) by priority
2: § < 1; beginning < 0; end < 2(|C]|)
3: while beginning < |C| do

4:  if solution optimal then

5 Remember current variable values

6: beginning < end

7: end < end + 0 (or |C| if it is out of bounds); 0 < 24
8 else

9: Restore old variable values

10: if end = beginning + 1 then

11: DISABLE(C|beginning])

12: beginning < end

13: end < end + 1 (or |C| if it is out of bounds); 6 < 2
14: else

15: end < beginning + w

16: end if

17:  end if

18:  ENABLE(Clbeginning . .. (end — 1)]) and DISABLE(Clend . .. (|C| — 1)])
19:  Assign pivot elements for all enabled constraints

20:  SOLVE enabled constraints

21: end while

Algorithm 6: Prioritized Grouping Constraints

Figure depicts a run of the prioritized grouping constraints algorithm. In this example,
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Figure 4.2: Example run of the prioritized grouping constraints algorithm

the constraint problem consists of 10 constraints, ordered according to their priority. The con-
straint pairs (2, 9), (5, 8) and (7, 10) are conflicting. The objective is to find a problem with
max(t).

The algorithm starts in iteration O by just initializing the size of the search window and
solving the complete list for the first time. With that result it enters iteration 1 with a search
window that consists of the complete list of constraints (0 — 9), and tries to solve them. This
problem cannot be solved since we have three conflicts in the list, as described above. In
iteration 2, the search window is halved and the algorithm tries to solve the problem in the
upper part (0 — 4). This subproblem is solvable and the algorithm moves the beginning of the
search window to index 5 and starts with a new search window of size 6 = 2 in iteration 3. The
new subproblem is solvable as well and ¢ is doubled to 4 so that the subproblem in iteration
4 contains again the whole list of constraints which are not solvable. In iteration 5 the search
window is halved again. Since only one constraint is in the search window left and the problem
is still not solvable the problem in the search window must be conflicting with one of the higher
prioritized constraints and has to be disabled. The new search window in iteration 6 starts
below the disabled constraint with size 2. It again contains conflicting constraints and is halved
which yields a search window of size 1 in the next iteration and a subproblem which is still not
solvable. Hence constraint 8 is conflicting as well and is disabled. Again the search window
is moved below the disabled constraint in iteration 8. The new subproblem is not solvable and
constraint 9 is disabled. In the last iteration the search window is of size 0 and the problem is
solvable, which indicates that all conflicts are found and the algorithm can terminate. As the
example shows, the prioritized grouping constraints algorithm deactivates only lower prioritized
conflicting constraints resulting in max(¢). This property distinguishes our algorithm from the

existing grouping constraints algorithm.
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4.6 Experimental Evaluation

In this section, we present an experimental evaluation of the proposed algorithms. We conducted
three different experiments to evaluate (1) their convergence behaviour, (2) their performance
in terms of computation time, and (3) their ability to detect and resolve conflicts (the quality of

a solution).

4.6.1 Methodology

For all three experiments we used the same computer and test data generator, but instrumental-
ized the algorithms differently. We used the following setup: a desktop computer with an Intel
i5 3.3GHz processor and 64-bit Windows 7 running an Oracle Java virtual machine. Layout
specifications were randomly generated using the test data generator described in Algorithm
For each experiment the same set of test data was used. The specification size was varied from 4
to 2402 constraints, in increments of 4 (2 new constraints for the position and 2 new constraint
for the preferred size of a new widget). For each size, 10 different layouts were generated,
resulting in a total of 6000 different layout specifications being evaluated. A linear relaxation
parameter of 0.7 and a tolerance of 0.01 were used for SOR. We use 1000 maximum number of
iterations until the algorithm gets near optimal solutions or an indication of likely infeasibility
of the system.

In Experiment 1, we investigated the convergence behaviour of each algorithm by measuring
the number of sub-optimal solutions. A solution is sub-optimal if the error of a constraint (the
difference between the right-hand and left-hand sides) is not smaller than the tolerance.

In Experiment 2, we measured the performance in terms of computational time 7' in mil-
liseconds (ms), depending on the problem size measured in number of constraints c. Each of
the proposed algorithms was used to solve each of the problems of the test data set, and the
time was taken. As a reference, all the generated specifications were also solved with Matlab’s
LINPROG solver [[115]] and LP-Solve [|17]]. We selected these two solvers because LINPROG is
widely known for its speed|'|, and LP-Solve has previously been used to solve constraint-based
Ul layout problems [86]. Additionally, we wanted to know how well our algorithms could com-
pete with a direct method. Hence we also used the implementation of QR-decomposition in the
Apache Commons Mathematics Library [8], which is a freely available open-source library.

In Experiment 3, we evaluated the quality of the solutions, which is given by the integer ¢.
As explained in Section[4.1] the algorithms should find max(:), so a solution with a larger . has a
better quality. We consider z, the bit-wise negation of ¢, as this allows us to differentiate between
solutions of different quality more easily. The ¢ values of solutions for a problem differ usually
only in the less significant bits (the most important constraints are usually enabled), whereas ¢

reflects noteworthy quality differences in the more significant bits.

Thttp://plato.asu.edu/ftp/Ipfree.html
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To calculate 7, we set a bit in a bit array of the length of the list of constraints if a constraint

22402 Since such numbers are hard to

is disabled. So in the worst case, ¢ can become as large as
evaluate and interpret, we simplify them by only expressing an ordinal relationship between the
solutions of all 8 algorithms for one problem. This is done with integer values rank, expressing
the ranking of a solution: one is the rank of the solution with the lowest 7, and 6 is the rank
of the solution with the highest 7 for a given problem. Thus, the higher the rank the worse the
solution of a solver. In the case of a ties, i.e. if two or more algorithms produce the same 7, we
use the mean of the involved ranks, as is usually done in such situations to preserve the sum of

all ranks.

Finally, we use the rank values to compare all algorithms pairwise. We compare two algo-

rithms x and y by testing the distribution of the differences (d)
d = rank, — rank,

for all problems with a Wilcoxon signed-rank test on a significance level of a« = 0.001. If the
test accepts the alternative hypothesis that d < 0, we conclude that algorithm x produces better
results than algorithm y. These results are aggregated over all comparisons. We do not consider
QR decomposition in this experiment because it just finds an unweighted least squares solution,

i.e. without considering any priorities.

Algorithm[7]shows how random sets of areas A are created by partitioning the bounding area
of a GUL. First, A only contains the bounding area of the GUI. Then, while the number of areas
|A] in A is less than the number of areas n,,..s that the layout should contain, we divide one of
the existing areas, thus increasing the total number of areas by one. Line 4 randomly chooses
an area a of A, and line 5 removes it from A. Then, we randomly decide whether to divide a
vertically or horizontally. Random is a random value between 0 and 1. x,,.,, is a new x-tab that
is inserted in order to divide a vertically; ¥,.., 1S a new y-tab that is inserted in order to divide a
horizontally. Because of the growing number of smaller areas and the uniformly random choice
of the area that is subdivided next, the algorithm produces layouts with some large areas and
many small ones. In our tests, we put a button into each of the areas of the generated layouts.
The total GUI size was chosen randomly to be (800 100, 600 100). A random minimum size
was set for each area to be (10 (400/14re¢qs), 10 (300/14¢q5). Minimum sizes are important for
the controls in the areas to be rendered correctly, and it is important to reduce the maximum for
each minimum size with increasing nareas in order to have a feasible layout. If the minimum
sizes are too large then the minimum widths or minimum heights of adjacent areas might add up
to more than the total size of the GUI so that there cannot be a solution. For each area, peypand

and pgp.ink are chosen randomly between O and 1.
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function GENERATE(74;¢45)
A < (left,top, right, bottom)
while |A| < ngpeqs do
a «<—randomFElement(A)
A+—A—(a)
if random < 0.5 then
A AU (a.left, a.top, Tpew, a.bottom), (Tpew, a.top, a.right, a.bottom)
else
A« AU(a.left,a.top, a.right, Ynew), (x.left, Ynew, a.right, a.bottom)
end if
: end while
: end function

N e A A o ey

—_ = =
M 22

Algorithm 7: Generation of a random partition of areas.

4.6.2 Results

In Experiment 1, we found that all algorithms converge. This result is obvious since the algo-
rithms are designed to find a solvable subproblem.

In Experiment 2, we analyzed the trends of the computational performance of the algorithms
using different regression models (linear, quadratic, cubic and log). We found that the best-

fitting model is the polynomial model
T = ﬁo + 616 + 5202 + 5303 + €.

Key parameters of the models are depicted in Table a graphical representation of the models
can be found in Figures [4.3|— .5 Table§.1]explains the symbols used.

Table 4.1: Symbols used for the performance regression model

Symbol Explanation
Bo Intercept of the regression model
B1—3 Estimated model parameters
¢ Number of constraints
T Measured time in milliseconds
R?  Coefficient of determination of the estimated regression models

For some strategies, some parameters do not have a significant effect, which can be inter-
preted as the complexity of the algorithm not following a certain polynomial trend. For ex-
ample, prioritized deletion filtering with deterministic pivot assignment seems to have a purely
quadratic runtime behaviour. For a better comparison of the runtime behaviour of the strategies,
we considered all combinations of the soft constraint and pivot assignment algorithms. Fig-
ure [4.3]illustrates the performance comparison of prioritized IIS detection, prioritized deletion

filtering and prioritized grouping constraints using random pivot assignment. As the graphs
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Table 4.2: Regression models for the different solving strategies

Strategy Bo b1 B2 B3 R?

Pr. grouping constraints / deter. 1283"" —10.45™" 2.350 - 10792"" 5865 - 1079 0.9877
Pr. grouping constraints / rand. 8.341"" —4.692-10792"" 1.225.107%"" —1.305- 10798 0.9917
Pr. deletion filtering / rand. —0.6399  5.333-107%  8.946 - 107%™ 2.831-107%"" 0.9925
Pr. IIS detection / rand. 4.174™" —2.270-10792"" 1.620- 107%™ —1.087 - 107%™ 0.9957

Pr. IIS detection / deter. —619.5™"" 3.953"" —4.368 - 10793 1,243 . 1079 0.9971

Pr. deletion filtering / deter. 1.537  —7.698-107%  1.668-10~%"* 7.015-10719 0.9893
LINPROG 1829 1.591-107%  4.934.1079%"" 1.577.107%%"" 0.9367

LP-Solve —2.491°"" 3.924 - 10792 2,079 - 10~%"* 1.904 - 10~%"" 0.9900

QR-Decomposition —37.70""  0.2802""  —4.009 - 10794 2.850 - 10797""" 0.9989

Significance codes: " p < 0.001, deter: deterministic , rand: random
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Figure 4.3: Performance comparison of prioritized IIS detection, prioritized deletion filtering and priori-
tized grouping constraints using random pivot assignment

indicate, prioritized grouping constraints exhibits better performance than prioritized deletion
filtering and prioritized IIS detection.

Figure {4.4] compares prioritized IIS detection, prioritized deletion filtering and prioritized
grouping constraints using deterministic pivot assignment. Generally, these strategies are slower

than the strategies with random pivot assignment because the computation of the pivot assign-
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Figure 4.4: Runtime comparison of prioritized 1IS detection, prioritized deletion filtering and prioritized
grouping constraints with deterministic pivot assignment

ment is more complex and takes longer. The slowest strategy is prioritized grouping constraints
with deterministic pivot assignment, followed by prioritized IIS detection with deterministic
pivot assignment. Prioritized deletion filtering with deterministic pivot assignment has the best
performance. The runtime of prioritized deletion filtering with deterministic pivot assignment
appears almost linear in the number of constraints. This is due to the fact that for prioritized
deletion filtering, the pivot assignment only needs to be recomputed for each conflicting con-
straint. The runtime performance of prioritized grouping constraints has the highest volatility.
This is due to the fact that the performance of prioritized grouping constraints depends on the
distribution of conflicting constraints over the list of constraints. If conflicting constraints are
close, the algorithm searches only a small fraction of the whole list. If conflicting constraints

are almost equally distributed over the list of constraints, the algorithm searches the whole list.

Figure 4.5] compares all the aforementioned algorithms, except for the slow prioritized IIS
detection and prioritized grouping constraints with deterministic pivot assignment, to LIN-
PROG, LP-Solve and QR-decomposition. Generally, all our algorithms perform significantly
better than LINPROG, LP-Solve and QR-decomposition, especially for bigger problems, with
prioritized grouping constraints with random pivot assignment exhibiting the best runtime be-

haviour.

Table[d.3|depicts the results of Experiment 3, the comparisons of the algorithms according to
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Figure 4.5: Performance comparison of the best solving strategies with LINPROG, LP-Solve and QR-
decomposition

Rank Strategy

1 Pr. IIS detection / random, Pr. grouping constraints / random

2 Pr. deletion filtering / random

3 Pr. grouping constraints / deter., Pr. IIS detection / deter.
4 LINPROG

5  LP-Solve

6

Pr. deletion filtering / deter.

Table 4.3: Comparison of the quality of the solutions produced by the different algorithms (rank 1 =
best)

the overall solution quality. The pairwise test results showed that the algorithms can be ordered
totally, i.e. each algorithm is better than all the algorithms ranked below it (i.e. with a bigger rank
number). The solvers with random pivot assignment produce the best results, with prioritized
IIS detection and prioritized grouping constraints at the top. The worst solutions are produced
by prioritized deletion filtering with deterministic pivot assignment and the two simplex solvers,
LINPROG and LP-Solve. Solvers with a deterministic pivot assignment produce mid-quality

solutions.
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4.6.3 Discussion

The performance results show that the prioritized grouping constraints algorithm with random
pivot assignment is the fastest and that the prioritized IIS detection with deterministic pivot
assignment is the slowest. Nevertheless, all proposed algorithms except for prioritized IIS de-
tection and prioritized grouping constraints with deterministic pivot assignment are faster than
QR-decomposition, LP-Solve and LINPROG. One likely reason why LINPROG and LP-Solve
are slower, is that they are based on the simplex algorithm with one Gauss-Jordan elimination
step per iteration, i.e. using a direct method. As described earlier, direct methods suffer from
fill-in effects when solving sparse systems, which generally make them inferior to indirect,
iterative methods in this case.

Our evaluation has shown that random pivot assignment positively impacts the quality of
solutions. One reason may be the common property of randomized algorithms to achieve a good
overall behaviour by avoiding systematic worst cases. Prioritized IIS detection and Prioritized
grouping constraints yield the best solutions. The reason is that these solvers test constraints
step by step. However, the grouping constraints algorithm yields almost as good results as
prioritized IIS detection.

It is natural that LINPROG and LP-Solve are outperformed by the newly introduced algo-
rithms in terms of solution quality, since they resolve conflicts differently. If a high-priority
constraint needs to be violated, these approaches will not simply “abandon” the constraint, as
our algorithms would do. Instead, they still try to minimize this violation, even if this comes at
the cost of violating many lower-priority constraints. This means a worse ¢ value is generated.

If the two properties measured by the above previously described experiments are consid-
ered together, the prioritized grouping constraints algorithm with a random pivot assignment is

the best. It is the fastest, and its overall solution quality is at the top.

4.7 Summary

The Chapter proposed new algorithms for using SOR for solving constraint-based UI layout
problems. In particular, we presented the following contributions:

e Algorithms to resolve conflicts in over-determined specifications by using soft constraints.

e An experimental evaluation that shows that the proposed algorithms find feasible sub-
problems and outperform a modern linear programming solver, LINPROG, LP-Solve,

and a QR-decomposition solvers with respect to execution time.

The work presented in this chapter lays a foundation for the application of iterative methods for

solvers of constraint-based Uls. In our evaluation, we identified prioritized grouping constraints
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with random pivot assignment as the fastest algorithm, which produces an acceptable quality of
solutions.

With the contributions mentioned above, we have demonstrated that indirect methods can
efficiently be used for solvers for constraint-based Uls. With the algorithms presented in this
chapter, it is possible to bring the benefits of solving sparse matrices efficiently with indirect

methods to the domain of constraint-based Ul layout.



46

Extending Successive Over-Relaxation for Soft Constraints




Constraints Reordering Technique for
Successive Over-Relaxation

5.1 Introduction

If Successive Over-Relaxation (SOR) is applied to linear systems, the ordering in which con-
straints are solved affects the convergence behaviour of the algorithm. A bad ordering can slow
down the convergence whereas a good ordering can speed it up. To overcome this problem, we
propose an algorithm in this chapter that reorders the sequence of constraints used during solv-
ing in an optimal way. Our contribution consists of, first, a metric to measure the optimality of
a constraint sequence and, second, a simulated annealing based algorithm, which optimizes the
order of constraints. This algorithm has to be seen as an addition to our previously presented
algorithms for conflict resolution and pivot assignment, which we outlined in Chapter |3| and
Chapter 4]

The performance of SOR with sequence optimization is evaluated empirically using ran-
domly generated UI layout specifications of various sizes. The results show that our proposed
algorithm outperform Matlab’s LINPROG linear optimization package [115]], LP-Solve [17]
and the implementation of QR-decomposition of the Apache Commons Math Library [_8]. LP-
Solve is a well-known linear programming solver that has been used for constraint-based Ul
layout. The implementation of QR-decomposition of the Apache Commons Math Library is an

example of a direct method.

47
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The rest of the chapter is organized as follows. Section [5.2]discusses related work about
constraint reordering. Section [5.3|puts this research into context with background information
about constraint reordering. An algorithm to optimize the solving sequence of constraints is
described in Section[5.4] We evaluate the effect of solving sequence optimization in Section[5.5]

and draw conclusions in Section [5.6l

5.2 Related Work

Reordering of equation systems is discussed in several domains. Highly related to our contribu-
tion are algorithms that reorder square linear systems of equations to reduce the computational
effort, and they are explained below.

Some reordering of rows and columns is used to minimize fill-in in direct methods using
graph theory and the minimum degree algorithm [1|]. The Cuthill-McKee ordering [31] and
other related algorithms [107]] are also in this category. These reordering techniques try to find
a permutation of the unknowns that minimizes the fill-in, changing the sparsity pattern but not
the solution.

Benzi et al. [14,|15]] tested the Reverse Cuthill-McKee (RCM) and Nested Dissection (ND)
reordering algorithms for solving square linear systems and found that reordering of the coef-
ficient matrix reduced the number of iterations when solving with Krylov subspace methods.
They also analyzed the convergence behaviour of these reordering algorithms and concluded
that some matrices that had not converged before reordering converged afterwards.

Florez et al. [43]] present results about the effect of reordering techniques on the rate of
convergence of the iterative Krylov subspace methods for non-symmetric sparse linear systems.
They used the minimum degree algorithm to minimize fill-in in direct methods similar to Benzi
et al. [[14, 15]]. Their reordering algorithm is useful for direct as well as iterative methods.

Ghidetti et al. [37,50] propose reordering algorithms for solving square linear systems using
the generalized minimal residual (GMRES) and conjugate gradient methods. They conclude
that reordering algorithms can help in reducing the number of iterations. This can lead to a
reduced computational effort for iterative methods.

Hallett and Fisher [69] discuss a constraint reordering approach with SOR for non-linear
systems that is based on an extension of the well known convergence theorem that the spec-
tral radius of an iteration matrix of a linear problem has to be less than 1 (see Theorem 2 in
Section [2.2.5). They applied a row reordering technique to get maximum pivot coefficients on
the diagonal position for square non-linear systems. They formulate on the basis of the conver-
gence theorem an optimization criteria that should approximately hold and present an algorithm
to reorder a system in order to optimize the criteria. The algorithm is applied to several econo-
metric models. The authors found that the convergence speed is indeed improved. These results

are proved in [68]. Even though the results are promising Hallett and Fisher found that their



5.3 Background: Effects of Constraint Reordering on Convergence of SOR

49

approach does not produce optimal reordering in the general case.

All the above mentioned techniques can not be applied directly in our case because we have
non-square systems. It was found that reordering the equations can have an effect on the conver-
gence of SOR for solving linear square systems [107]. We propose a more general reordering
technique for non-square linear systems. To solve such systems efficiently we define a metric
which measures the goodness of solving a sequence. Afterwards we describe an optimization

procedure which optimizes the sequence according to the defined metric.

5.3 Background: Effects of Constraint Reordering on Con-

vergence of SOR

To specify the context for our algorithm we give a short overview about effects of constraint

reordering on the convergence of SOR. Consider the system with the data given in Example

Example 1.

11 — 0929 — 0923 =0
—09x; + 123 +0x3=0
— 0921 +0x3+123=0

In this order, this Example does not converge with SOR for any arbitrary initial guess except

zero for any relaxation parameter values inside the interval (0, 2).

Proof. The SOR iteration converges for an arbitrary initial guess only if the spectral radius of
an iteration matrix is less than one [[107]. To show that this does not hold for this example first
we derive the SOR iteration matrix and then calculate the spectral radius of the iteration matrix.

The SOR iteration matrix is given in ([5.I). For any relaxation parameter one of the eigenvalues

of this iteration matrix is greater than one. Thus SOR will not converge. [
1—w 0.9w 0.9w
0.9w(1 —w) (0.9w)? + (1 —w) (0.9w)? (5.1
0.9w(1 — w) (0.9w)? (0.9w)* + (1 — w)

Consider the system with reordered equations in Example2]

Example 2.

—09x; + 12y +0x3=0
11 — 0929 — 0923 =0
— 0921 + 029+ 123 =0
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In this order, the system converges with SOR for any arbitrary initial estimates and relax-

ation parameter values.

Proof. To check the convergence, we derive the SOR iteration matrix for the reordered Exam-
ple 2l The reordering used in this example is only a row reordering, so the reordering also

changes the pivot assignment. The SOR iteration matrix is given in ([5.2).

(0.9)%(1 — w) 0.9w 0
—0.9w(1 —w) (—w)*+ (0.9)*(1 — w) 0 (5.2)
0 —(0.9)%w(1 — w) (1 —w)
All the eigenvalues for this iteration matrix are less than one and thus SOR converges. [

5.4 Optimizing the Solving Sequence of Constraints

The goal of the optimization of the solving sequence of constraints is to have a faster conver-
gence rate, which is based on the observation that the SOR method solves one constraint at a
time and uses the updated variable values to solve the next constraint in the list of constraints.

A constraint ¢; is used to calculate a value for a variable x,,. This variable has a coefficient
ajo, the pivot coefficient of constraint ¢;. To calculate the variable value the values of the
previous iteration are used. A constraint c; influences a constraint ¢; directly, if its pivot variable
appears in ¢; (i.e. the variable was changed by SOR using c;).

To explain this idea we first have to introduce some terms.

Definition 9. A constraint ¢; (an influencing constraint of ¢;) with pivot coefficient a;, influ-

ences another constraint c; iff
Qo # 0.

Definition 10. The influence ¢; ; of an influencing constraint c; is the fraction of the coefficient

of its pivot element in constraint c;, a,,, and the coefficient of the pivot element of constraint c;,

Q4 EI
Qio

LZ:] =
(0%]

The influence of an influencing constraint ¢; on an influenced constraint ¢; depends on the
influencing coefficient a;, in ¢; and the coefficient a;; of the pivot element [ of constraint ¢;. The
greater the influencing coefficient a,, compared to a;; is, the greater the influence of c;. If the

variable values converge towards the solution of the constraint system, solving one constraint in

I'This is a common convergence proof for the Gauss-Seidel algorithm [90] applied to square linear systems.
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one iteration usually produces an error (¢;) in SOR as each iteration approximates the solution.

The error is defined as

j=n
lefl= 16 = > (aj0m;)].
j=0
It is O if a possible solution for z is found.

We take equation for the error of one variable value in SOR and generalize it for non-square
linear systems. Furthermore, we insert the calculated error values of other variables into the
error equation. Thus the error of a constraint ¢; in iteration k + 1 can be expressed dependant

on the errors of all influencing constraints and their influence ¢; ;

-1 n

k41 k41 k

& = |Z Li,j€j+ + Z Lij€jl- (5.3)
j=1

j=l+1

Similar to equation ([2.28)) when solving equation ([5.3)) it is clear that the problem converges
more quickly if error (¢;)is smaller. We try to reorder the constraints in a way that the error (¢;)
becomes smaller and hence contribute towards minimizing the overall error e.

The following example of an over-determined system illustrates the idea of identifying the

effect of the constraints on each other:

T = % + 1z9 — }Lxg (CY)
xy =2+ 8x +1xs (Co)
T, = 411 + %xg — %1’3 (Cs)
T =0+ §$1 + gIg (Cy)

In this example, the sequence, in which the constraints are solved, determines the convergence
of the system.

Figure identifies the effect of the constraints on each other. The nodes of the figure are
the constraints with selected pivot elements, the edges are the influences the constraints have on
other constraints. The blue arrows indicate that a direct influencing dependency exists between
the two constraints. For example, constraint C; influences constraint C; by a value of 1, since
the pivot variable of C) is x5 and the coefficient of x5 in C is 1. Constraint C'y is the constraint
whose pivot variable value is calculated before the pivot variable value of (' is calculated. A
black arrow means there could be an influence if the constraints are reordered. Foe example, C
could influence C; with pivot coefficient 4/5 if C} is calculated directly before C);. But since
(5 is calculated before, the variable value of x; is overwritten by constraint C'; and hence there

is no direct influence of C].
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4/5 1 1/7 3/ /4 6/7] 4/5 1 1/7 3/ /4 6/7]

/77\ e /77\ 2
a/5 / a5 /

(@) Converging (<C1,C2,C5,C4>) (b) Diverging (<C1,C2,C4,C5>)

Figure 5.1: Graphical representation of problem with 4 constraints

If C5 is solved prior to Cy, the system converges (see Figure a)), otherwise it diverges
(see Figure [5.1|b)). Divergence is a rather extreme case of convergence behavior but demon-
strates the effect clearly. If Csis used to calculate the value of x;, which is subsequently used
in Cy, the system converges (see Figure a)). On the contrary, if C} is used to calculate the
value of 5, which is subsequently used in Cs, the system diverges (see Figure [5.1]b)).

Our idea is to find the path that minimizes the influences. Therefore, we, firstly, have to
define a metric, which measures the goodness of solving sequence and, secondly, we have to
describe an optimization procedure, which optimizes the sequence according to the defined

metric.

5.4.1 Metric goodness of solving sequence (g)

To estimate the convergence behavior, we define a badness value 3; of constraint ¢ and initialize
it with 1 (8 = 1 Vi). The ; values are a substitution for epsilon; in ( but initialized
with 1. They solely serve the purpose to see how the constraint system behaves after some
iterations and how it reacts on changes in the order of constraints. It simplifies the calculation
thereby speeding up the calculation. Hence the ;s are calculated in k£ = 1..n iterations for each

constraint according to the equation:
. pk+1 k
VO BTN =) By
J#l
As for the error € the problem converges if all 3; become less than one.

The (3 values build a tuple B =< f;,...,8, >. Over this tuple, we define the metric

goodness of solving sequence(g) as the infinity norm over the tuple 5.
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5.4.2 Algorithm Based on Simulated Annealing

Simulated Annealing is a heuristic inspired by the physical process of annealing, in which as
molten metal slowly cools down whereas the molecules optimally arrange themselves in a crys-
talline framework structure until they reach an optimal solid state [100]. We used Simulated
Annealing to optimize the order of constraints according to the metric g, which has to be min-
imized ¢ — min. Algorithm transfers Simulated Annealing to the minimization of the

g.

I: s* < s1 < random(S)
20 g* < g(s")

3n+1

4: repeat

50 s N(sp)

6: if g(s) > g(s,) then
7. Sp+1 < S

8: endif

9: if g(s) > ¢* then

10: g < g(s), s < s
11:  else

12: p < random([0, 1])
13: if p < p(n) then
14: Sn+1 < S

15: end if

16:  end if

17: n++

18: until Stopping condition (X)

Figure 5.2: Simulated Annealing algorithm to minimize g with random() randomly selecting elements
and N() defining the neighborhood of a given solution (adapted from [100])

A randomly chosen solution candidate (s) from the solution set (S) is randomly altered
and tested for its overall performance according to the given objective function, in our case
the metric g (line 1). The solution set S consists of all possible permutations of the list of
constraints (C). A solution candidate s is one permutation that is iteratively compared to a
current solution (s,,). If the new solution candidate generates the same or a lower g, it is the
new solution for the next iteration (s, 1). However, if only strictly better solutions are taken,
it is likely that the procedure will get stuck in local optima and never find a global optimum.
Thus, Simulated Annealing sometimes accepts worse solutions. The probability (p) of accepting
such a negative change depends on the amount the ¢ increases and the number of processed
iterations. The longer the procedure runs the more unlikely it is that the procedure accepts a

worse solution [[100]].

To decrease the acceptance rate, the acceptance probability (p()) follows an exponential
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probability distribution

whereas T'(t) is the temperature at step t and All,, = II(s) — I1(s,,) the difference between the
current solution and the temporary best solution. The temperature 7'(¢) is a stepwise decreasing
function [|100].

The procedure stops () after Ny, iterations or after Nepqnge iterations without improve-

ments in g by € (line 18).

5.5 Experimental Evaluation

We conducted two different experiments to evaluate (i) the convergence behaviour and (ii) the

performance in terms of computation time. The experiments were conducted as follows.

5.5.1 Methodology

We implemented the problem and solution procedure by using the Opt4J tool suite [[85]]. This
is a framework for meta-heuristics and comprises an optimization runner, a configuration inter-
face, and many conveniences for testing implemented solution procedures.

In our experiments we used the following setup: a desktop computer with Intel Core 2 Duo
3GHz processor under Windows 7 running an Oracle Java virtual machine.

Ul-Layout specifications were randomly generated using the test data generator described
in Chapter[d] For each experiment the same set of test data was used. The specification size was
varied from 4 to 2402 constraints in increments of 4 (2 new constraints for the position and 2
new constraints for the preferred size of a new widget). For each size 10 different layouts were
generated resulting in a total of 6000 different layout specifications which were evaluated. A
relaxation parameter (w) of 0.7 and a tolerance of 0.01 were used for SOR.

In experiment (i) we investigated the convergence behaviour of each algorithm by measuring
the number of sub-optimal solutions. A solution is sub-optimal if the error of a constraint (the
difference between the right hand and left hand sides) is greater than the tolerance.

In experiment (ii) we measured the performance in terms of computational time 7" in mil-
liseconds (ms), depending on the problem size (number of constraints c). We solved each
problem one time with sequence optimization and the other time without sequence optimiza-
tion. For the solver with sequence optimization we counted the reordering of the constraints to
the measured solving time.

As a reference, all the generated specifications were also solved with Matlab’s LINPROG
solver [115], LP-Solve [17] and the QR-decomposition implementation in the Apache Com-
mons Mathematics Library [8|]. We selected LINPROG because it is a widely known for its
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speed E| and LP-Solve because it has been previously used to solve constraint-based Ul layout
problems [86]]. We included QR-decomposition implementation to have an implementation of
a direct method as a reference as well.

For each run the solving time and the optimality status was taken.

5.5.2 Results

The analysis of results is the same as in previous Chapters@]and [6] In experiment (i) we investi-
gated the convergence behaviour of our algorithm. We found that the algorithm converges with
and without sequence optimization in the end. This result is obvious since the conflict resolu-
tion algorithm is designed to find a solvable subproblem and shows that the conflict resolution

algorithm works.
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Figure 5.3: Runtime comparison of LINPROG, LP-Solve and QR-decomposition with our new solvers

In experiment (ii) we investigated the computational time behaviour with and without se-
quence optimization. To establish the trend of the performance of the algorithms, we defined
some regression models (linear, quadratic, log, cubic). We found that the best fitting model is
the polynomial model

T = Bo+ Bic+ Bac® + B3¢ + €

Zhttp://plato.asu.edu/ftp/Ipfree. html
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which gave us a good fit for the performance data. Key parameters of the models are depicted in
Table [5.2} a graphical representation of the models can be found in Figures [5.4]and Figures|5.3]
Table[5.1] explains the symbols used.

Table 5.1: Symbols used for the performance regression model
Symbol Explanation
Bo Intercept of the regression model
fB1_3 Estimated model parameters
¢ Number of constraints
T Measured time in milliseconds
R? Coefficient of determination of the regression models

Figure [5.4] illustrates the performance comparison of sequence optimization, for SOR with
sequence optimization and without sequence optimization using a random pivot assignment and
the prioritized grouping constraints algorithms. Both algorithms with sequence optimization
exhibited a better performance than the one without sequence optimization. However, it also

introduced a slightly higher variance in the data.
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Figure 5.4: Runtime with and without sequence optimization

Figure [5.3] illustrates the performance of solvers based on LINPROG, LP-Solve and QR-

decomposition compared to our new algorithms. Generally, both sequence optimization algo-
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Table 5.2: Regression models for the different solving strategies

Strategy Bo B1 B2 B3 R?

SOR withso 0.7793"" —5.161-1079"" 2.389.1079"*  _1.290-10799"" (.9983
SOR w/oso 0.8770° —9.392.10~03"*  3.787.10795"" _—1.324-10-99""" (.999
Withso  0.5345"  —3.860 - 10793 2.045-1079"" —1.118-10799""" 0.9984
LINPROG 18.29" 1.591 - 10794 4.934 1079 1.577-10798"  0.9367
LP-Solve —2.491""" 3.924-10792""  2.079-10~%""  1.904-1079"  (0.9900
QR-Decomposition —37.70""" 0.2802"" —4.009 - 1079 2.850 - 10797  0.9989

Significance codes: i p < 0.001, so: sequence optimization

rithms perform significantly better than the references LINPROG, LP-Solve and QR-decomposition

and the results confirmed previous observations [71].

5.5.3 Discussion

The results of the experiment show that sequence ordering according to the metric g reduces
the solving time significantly. However, they also show that sequence optimization exhibits
a slightly greater variance in the solving time. There could be two reasons for this: first, the
runtime behaviour of the ordering step with Simulated Annealing is less predictable due to the
random element of the algorithm and, second, is it possible that there are more influences on
the optimality of a sequence than are measured with g.

Generally, sequence optimization improves the convergence speed and should therefore be

included in implementations of solvers for constraint-based UI solvers based on SOR.

5.6 Summary

In this chapter we presented a Simulated Annealing based algorithm to optimize the solving
sequence of constraints to speed up the convergence of the SOR method for over-determined
systems in constraint-based Ul problems. The evaluation has shown that the reordering of the
sequence has an impact on the convergence behaviour and that our metric g reliably measures
the adequacy of a solving sequence of a list of constraints. The evaluation with synthetically
generated test problems from the domain of constraint-based Uls shows that the convergence
speed is improved. Thus, a preceding sequence optimization step can improve the runtime of
SOR-based Ul-solvers.
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Constraint-wise Under-relaxation

6.1 Introduction

When using the Successive Over-Relaxation (SOR) method for solving linear constraints for
GUI layout problems, one needs an estimate of the relaxation parameter to make it converge.
This can be achieved by estimating the eigenvalues of an iteration matrix of the SOR method [123]].
For small systems of equations, good estimates for the optimal relaxation parameter may be
possible because it is easy to estimate the eigenvalues of the iteration matrix; for large systems
however this may not be the case [123]].

The speed of convergence of basic iterative methods depends on the spectral radius of an
iteration matrix, defined as the absolute value of the maximum eigenvalue of an iteration matrix
(see Definition 3 for an iteration matrix in Chapter [2).

In this chapter, one of our significant approach in increasing the convergence rate of SOR
is the Constraint-wise Under-relaxation (CWU). The main difference between CWU approach
and other approaches such as [[126] is that our approach chooses different relaxation parame-
ters for each constraint while other approaches choose one global relaxation parameter for all
constraints.

For each constraint, the under-relaxation parameter is chosen in a way that a pivot coeffi-
cient, which is not row dominant, becomes a weight as if it would be row dominant. A coeffi-
cient is row dominant if it is greater than the absolute value of the sum of all other coefficients

of a row.
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The relaxation parameter (w) for SOR method lies inside the interval (0,2). w > 1 indicates
over-relaxation and w < 1 indicates under-relaxation. Over-relaxation helps in speeding up
convergence of SOR, but we cannot use over-relaxation because it diverges for GUI layout
problems. When we use SOR method, a best relaxation parameter value for GUIs is 0.7 because
it converges for GUI layout problems that has been shown empirically in Chapter @ Chapter 5]
and Chapter 8| In this chapter we use a relaxation parameter based on CWU formula that is

given as follows.

Definition 11. CWU formula: The optimal choice of (w) for SOR, denoted by w; is given by

_ 1
" lainaig-1),05-ainl”

wy

We know that if a matrix is strictly diagonally dominant then the convergence of SOR is
guaranteed. If we choose a relaxation parameter based on CWU formula then it can scale the
coefficient matrix in a way that it is equal to diagonally dominant criteria (see definition[2.19|in
Chapter [2).

We were unable to provide theoretical results on the convergence of SOR but we show em-
pirically that we can increase the computational performance of an SOR-based constraint solver
if we choose CWU. In this chapter, we report on experiments to test this approach experimen-
tally for solving linear constraint problems for GUI layout. In our experiments, we measured
the convergence and solving time for randomly generated GUI layout specifications of various
sizes.

The remainder of the chapter is structured as follows. We describe a related work in Sec-
tion The methodology used as well as the results of the evaluation are given in Section

Section [6.4] wraps the chapter up with conclusions.

6.2 Related Work

For a general system Az = b, there is no formula for finding the optimal relaxation parameter.
However, Young [126]] proposed a formula for calculating an optimal relaxation parameter for
consistently ordered and 2-cyclic matrices which is not useful for GUI layout problems because
this formula applies only on specific class of matrices. Furthermore, Young [[126] proved that if
the spectral radius of an iteration matrix is strictly less than one then SOR convergence can be
maximized and guaranteed.

Dancis [32] proposed that polynomial acceleration can improve the convergence of SOR
if the optimal relaxation parameter is selected. Subsequently, Eiermann et al. [39]] criticized
Dancis theory and showed that polynomial acceleration of SOR is not faster than SOR with
the optimal relaxation parameter proposed by Young [[126]. There are some other approaches
being developed for selection of relaxation parameters [[106, 113]] which use different relaxation
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parameters at each point. One of the drawbacks of these methods is that they are designed for

matrices with certain characteristic properties and therefore are not generally applicable.

6.3 Experimental Evaluation

In this section, we describe an experimental evaluation of the proposed algorithms. Two differ-
ent experiments were conducted to evaluate (1) the convergence behaviour and (2) the perfor-

mance in terms of computation time. The experiments were arranged as follows.

6.3.1 Methodology

The methodology is the same as in previous Chapters [ and [5] For experiments we used the
same computer and test data generator, but instrumentalized the algorithms differently. We used
the following setup: a desktop computer with Intel 15 3.3GHz processor under 64-bit Windows
7, running an Oracle Java virtual machine. Layout specifications were randomly generated
using the test data generator described in Chapter 4, For each experiment the same set of test
data was used. The specification size was varied from 4 to 2402 constraints, in increments of 4
(2 new constraints for the position and 2 new constraint for the preferred size of a new widget).
For each size, 10 different layouts were generated, resulting in a total of 6000 different layout
specifications that were evaluated. A tolerance of 0.01 was used for SOR.

In experiment 1, we investigated the convergence behaviour of each algorithm by measuring
the number of sub-optimal solutions. A solution is sub-optimal if the error of a constraint (the
difference between right-hand and left-hand sides) is greater than the tolerance.

In experiment 2, we measured the performance in terms of computational time 7" in mil-
liseconds (ms), depending on the problem size measured in number of constraints c. Each
of the proposed algorithms was used to solve each of the problems of the test data set, and
the time taken was recorded. As a reference, all the generated specifications were also solved
with Matlab’s LINPROG solver [[115]] and LP-Solve [|17]. We selected these two solvers be-
cause LINPROG is widely known for its speed [], and LP-Solve has been previously used to
solve constraint-based Ul layout problems [[86]]. Additionally, we wanted to know how well our
algorithms could compete with a direct method. Hence we also used the implementation of QR-
decomposition in the Apache Commons Mathematics Library [_8], which is a freely available

open-source library.

6.3.2 Results

The analysis of results is the same as in previous Chapters 4 and [5| In experiment 1, we

investigated the convergence behaviour of our approach. We found that the algorithm converges

Thttp://plato.asu.edu/ftp/Ipfree.html
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Figure 6.1: Performance comparison of the best solving strategies with LINPROG, LP-Solve and QR-
decomposition

with and without CWU. This result is obvious since the conflict resolution algorithm is designed
to find a solvable subproblem and shows that the conflict resolution algorithm works.

In experiment 2, we used different regression models (linear, quadratic, log and cubic) to
analyze the trends of the computational performance of the algorithms. We found that the best-

fitting model is the polynomial model
T = By + Bic+ Bac® + Bsc® + €.

Key parameters of the models are depicted in Table[6.2] Table [6.1]explains the symbols used.

Table 6.1: Symbols used for the performance regression model

Symbol Explanation
Bo Intercept of the regression model
0b1_3 Estimated model parameters
¢ Number of constraints
T Measured time in milliseconds
R? Coefficient of determination of the estimated regression models
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Table 6.2: Regression models for the different solving strategies

Strategy Bo B1 B2 B3 R?

SOR without CWU  1.357°"  —1.241-10792"" 5.035-107%"" —2.035-10799"" 0.9997
SOR with CWU  1.035"  —1.112-10792™" 4.278.107%"" —9.176 - 1010 0.9994
LINPROG 18.29" 1.591 - 10794 4.934-1079" 15771079 0.9367
LP-Solve —2.491"" 3.924.10792""  2.079-1079""  1.904-1079""  0.9900
QR-Decomposition —37.70""" 0.2802"" —4.009 - 1079 2.850- 10797 0.9989

Significance codes: e p < 0.001, , CWU: Constraint-wise Under-relaxation
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Figure 6.2: Performance comparison of SOR with and without CWU

For some strategies, some parameters do not have a significant effect. This can be interpreted

as the complexity of the algorithm not following a certain polynomial trend.

Figure [0.2] illustrates the performance comparison of SOR with and without CWU. As the
graphs indicate, SOR with CWU exhibits better performance than SOR without CWU. Fig-
ure [6.1] compares our proposed algorithms to LINPROG, LP-Solve and QR-decomposition.
Generally, our SOR algorithm with CWU performs significantly better than LINPROG, LP-

Solve and QR-decomposition.
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6.3.3 Discussion

The performance results show that the SOR with CWU is the fastest and QR-decomposition
is the slowest. All our proposed algorithms are faster than QR-decomposition, LP-Solve and
LINPROG. As discussed earlier one plausible reason why LINPROG and LP-Solve are slower,
is that they are based on the simplex algorithm with one Gauss Jordan elimination step per
iteration, i.e. they use a direct method. As described earlier, direct methods suffer from fill-in
effects when solving sparse systems, which generally makes them inferior to indirect, iterative
methods in this case.

One reason why adjusting one fixed relaxation parameter for all constraints is slower is that
it takes more time to decrease the norm of the error because for some constraints this fixed

relaxation parameter can increase the error.

6.4 Summary

This chapter evaluated the use of CWU to improve the efficiency of our proposed algorithms for
solving constraint-based UI layout problems. We identified SOR with the CWU as the fastest

algorithm.



Kaczmarz Algorithm with Soft
Constraints

7.1 Introduction

The Kaczmarz method [78] is an iterative method for solving large systems of equations that
projects iterates orthogonally onto the solution space of each equation. In contrast to direct
methods such as Gaussian elimination or QR-factorization, this algorithm is efficient for prob-
lems with sparse matrices, as they appear in constraint-based user interface (UI) layout specifi-
cations.

Starting with an initial guess, the Kaczmarz algorithm selects a row index of the matrix and
projects the current iterate onto the solution space of that equation, refining the solution until
a sufficient precision is reached. Because it does not need any pivot assignment, it is ideal for
highly over-determined linear systems, as in many linear problems including the constraint-
based Ul layout. In our previous Chapters [3| and we proposed extensions to the original
SOR method to deal with this issue, however, the Kaczmarz method is inherently better suited
to solve non-square matrices.

Despite its efficiency for sparse systems, the Kaczmarz method is currently not used for
constraint-based UI layout. The reasons for this are two-fold. First, constraint-based Ul layout
contains linear equality and inequality constraints for specifying relationships among objects

such as “inside”, “above”, “below”, “left-of”, “right-of”” and “overlap”. Although the Kaczmarz
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algorithm and its variants are not designed to handle inequality constraints, preliminary work on
the Kaczmarz method for inequality constraints suggests the natural adaptation which ignores
inequality constraints if they are already satisfied, and otherwise treats them as equalities [82].

We also adapt this heuristic approach for the UI problem.

The second issue the Ul problem faces, like many other problems, is that the system may
contain conflicting constraints. This may happen by over-constraining, i.e. by adding too many
constraints, making the system infeasible. If a specification contains conflicting constraints,
the common Kaczmarz method simply will not converge. To resolve conflicts, soft constraints
can be introduced. In contrast to the usual sard constraints, which cannot be violated, soft con-
straints may be violated as much as necessary if no other solution can be found. Soft constraints
can be prioritized so that in a conflict between two soft constraints only the soft constraint with
the lower priority is violated. This leads naturally to the notion of constraint hierarchies, where
all constraints are essentially soft constraints, and the constraints that are considered “hard”
simply have the highest priorities [21]]. Using only soft constraints has the advantage that a
problem is always solvable, which cannot be guaranteed if only hard constraints are used.

In this chapter we use two conflict resolution algorithms for solving systems of prioritized
linear constraints with the Kaczmarz method. In the first algorithm non-conflicting constraints
are successively added in descending order of priority. In the second algorithm, constraints are
added or removed and the binary search algorithm is adapted to the problem of searching for
the best conflict-free subproblem. These algorithms yield conflict-free sub-problems to a given
problem. These algorithms are explained in detail in Chapter[d] Algorithms for finding feasible
subsystems already exists, but they differ from our approaches as they do not take into account
prioritized constraints [29].

We also use different techniques for optimizing the Kaczmarz algorithm similar to our pro-
cedure with SOR, these techniques are described in detail in Chapter [6] and Chapter [§] Fur-
thermore, in this chapter we use Least Squares Kaczmarz with a cooling function for solving

constraints for attractive GUIs.

With the presented conflict resolution algorithms Kaczmarz can be applied to linear con-
straint problems, for example in the domain of constraint-based UI layouts. They were exper-
imentally evaluated with regard to convergence and performance, using randomly generated
UI layout specifications. The results show that most of the proposed algorithms are optimal
and efficient. Furthermore, we observe that our implemented solvers outperform Matlab’s
LINPROG linear optimization package [115]], LP-Solve [17] and the implementation of QR-
decomposition of the Apache Commons Math Library [8]]. LP-Solve is a well-known linear
programming solver that has been used for constraint-based Ul layout. The implementation of

QR-decomposition of the Apache Commons Math Library is an example of a direct method.

The remainder of the chapter is organized as follows. We discuss a related work in Sec-
tion In Section [7.3] we describe the Kaczmarz method in detail, and introduce our methods
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for soft constraints in Chapter ] An optimization of Kaczmarz algorithm is described in Sec-
tion We introduce an approach about constraint solving for attractive GUISs in Section
The methodology as well as the results of the evaluation are shown in Section Section|/.7

wraps the chapter up with conclusions and an outlook to future work.

7.2 Related Work

Different direct and iterative methods exist which can solve least squares problems. If linear sys-
tems of equations are consistent then the Kaczmarz algorithm converges towards a least squares
solution. If the system is inconsistent then every sub-sequence of cycles through the system,
converges, but not necessarily to a least squares solution [38|]. There are several techniques that
have been proposed to deal with these inconsistencies. Herman [38] proposed that the Kacz-
marz algorithm converges towards weighted least squares solution if iterating both in z and
dual variable r. Popa analyzed a similar approach for solving least squares problems [[101.[102].
Censor showed that if the relaxation parameter goes to zero then the Kaczmarz method con-
verges towards a weighted least squares solution for inconsistent systems [25]. If the system
is unsolvable then the Kaczmarz algorithm converges if relaxation parameter is kept fixed at
certain intervals [[58]].

QOCA [22] uses the active set algorithm for solving quadratic programming problem for
graphical user interface layout. The latest work [127] on constraint based GUIs uses a quadratic
solving strategy which they find better than linear solving strategies. They [127] implemented
the active set method for solving a quadratic objective function subject to some linear con-
straints.

Most of the research related to GUI layout involves various algorithms for solving constraint
hierarchies. Research related to constraint-based Ul layout has provided results in the form of
tools [65,66] and algorithms [11,22] for specific tasks. Our work is concerned with two dif-
ferent aspects. We must find a solution for linear inequality constraints with iterative methods,
while also handling soft constraints. We discuss related work for both aspects in turn below.

Various algorithms are proposed for solving linear inequality constraints in the UI layout.
The Indigo algorithm [20] uses interval propagation to solve acyclic collections of inequal-
ity constraints, however, it does not handle simultaneous equality and inequality constraints.
This is overcome by the Detail method [64,67], which can solve linear equality and inequality
constraints simultaneously and uses Gaussian-elimination to solve constraints simultaneously.
The Cassowary solver [11] can also handle linear inequalities. It uses the simplex algorithm,
and inequalities are solved by introducing slack variables. The simplex algorithm is an itera-
tive method but requires one Gaussian elimination step per iteration which makes this method
slower than most other iterative methods. QOCA [91]] intends to overcome the difficulties in

maximizing the efficiency and facilitating the re-use of the solver in other applications. This
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solver introduces slack variables to convert inequality constraints into equality constraints in a
similar way to the Cassowary solver. The HiRise constraint solver [65] resolves both equality
and inequality constraints in combination with quasi-linear optimization.

However, none of the algorithms discussed above apply Kaczmarz for linear and least
squares solutions for UI layout. Because the constraint-based Ul layout problem contains in-
equality and soft constraints, existing Ul layout solvers use algorithms other than Kaczmarz.

Some of these solvers are already discussed in Chapter 4}

7.3 Kaczmarz Method

The Kaczmarz method is an iterative method used for solving large-scale over-determined linear
systems of equations [78]. It is also used in tomography, and in that setting is called the “alge-
braic reconstruction technique” (ART) [55]. Given a system of m equations and n variables of
the form

Ax =D, (7.1)

the Kaczmarz method projects orthogonally onto the solution hyperplane of each constraint in

the system sequentially. The algorithm can thus be described as follows.

(bz — Q; - .fll'k>ai
i

The1 = T + W (7.2)
where zy, is the k-th iterate, i = (k mod m) + 1 (for deterministic Kaczmarz), a; is the i-th
row of the matrix A, b; is the i-th component of the right-hand side vector, and ||a|| denotes
the Euclidean norm of the vector a. Alternatively, to randomize the Kaczmarz method, we can
choose a random ¢ with 1 < ¢ < m for each k.

Starting with an initial estimate x, the method projects the current iterate onto the solution
space of the next equation as shown in Figure The algorithm iterates until the relative
approximate error is less than a pre-specified tolerance. w is an optional relaxation parameter
that is set to 1 in the original Kaczmarz method. The runtime complexity for the Kaczmarz
method is O(n).

7.3.1 Convergence

The Kaczmarz method is guaranteed to converge if w lies inside the interval (0, 2) [78,95]. The
convergence bevaviour of Kaczmarz is shown in Figure

In this section we give the convergence proof using the terminology explained below.

Lemma 2 (Translation invariance). Let the Kaczmarz method for Az = b converge to T starting
with zy. Then the Kaczmarz method for the homogeneous system Ay = 0 starting with yy =

xo — & will have the same convergence behaviour, i.e. y, = x; — & for all k.



7.3 Kaczmarz Method

69

Figure 7.1: Kaczmarz method overview

Figure 7.2: Kaczmarz method convergence

The proof is by induction. The induction step follows trivially from the linear definition of

the iteration step.

Lemma 3 (Convergence of homogeneous system). The Kaczmarz method for the homogeneous

system Ay = 0 with nonsingular A converges exponentially for every initial guess yj.

Proof. The Kaczmarz method is a linear method; by definition, the change to the estimate in
every iteration step is a linear function that can be modelled with an iteration matrix K;(A). We
demonstrate that the spectral radius p fulfills p(K;(A)) = 1. It suffices to show that all vectors
are transformed to vectors of shorter or equal size (if p(/;(A)) > 1 there would be a vector
that gets longer). We observe that each solution hyperplane of the homogeneous system goes
through the origin. Since the iteration step performs an orthogonal projection, for w = 1 the

origin and the points y; and ;1 form a triangle with a right angle at ;.. Hence

1Yl < [yl (7.3)

by Pythagoras. For 0 < w < 2, yx41 1s equal in length to a weighted vector sum of y;, and the
result for w = 1, so its length is intermediate and equation ( ((7.3))) still holds. Hence we have
shown that p(K;(A)) < 1. But if the estimate is already a solution for the constraint, then it
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does not move, hence giving p(K;(A)) = 1. We now look at the product

K(A) = ][ Ki(A). (7.4)
1<i<m
For any 1y, we have
K(A)yo = Ym- (7.5)

We now show for any yo # O that ||yo|| > ||y || There must be one i so that y;_; # y;, since
A is nonsingular and hence yy # 0 cannot fulfill all constraints at once. Since in step ¢ we have

Yi—1 # yi, we also have by Pythagoras ||y;_1|| > ||v;

, as explained above. In all other steps the

error does not increase, hence we know
K (A)z| < =] (7.6)

This means, overall we know p(K(A)) = ¢ < 1. Hence the error of the estimate decreases
over the course of m iterations by at least ¢, and overall we get an exponential convergence
behaviour with base < %/c. O

The proof can be easily generalized to a singular A by only considering the nonsingular

orthogonal subspace. Both lemmata together clearly give:
Theorem 4. The Kaczmarz method for Az = b converges for every initial guess x.

The constant ¢ is a characteristic of the problem matrix A, similar to the condition number.
Since the convergence rate of the Kaczmarz method depends on c, it is imaginable that pre-
conditioners could be used to reduce c and enhance the convergence speed.

As described by (7.2), the convergence rate of the Kaczmarz method may depend on the
ordering of the rows of the matrix A. A problematic ordering can lead to a drastically reduced
rate of convergence. To overcome this, a randomized variant can be used. Strohmer and Ver-
shynin proposed a further variant with weighted probabilities proportional to the norm of the
ith row [114].

In the inconsistent case, it has been shown that the method exhibits the same convergence
down to a threshold [97]], and modified methods even converge to the least-squares solution [26,
49,/129]. The convergence rate can further be improved by selecting blocks of rows at a time
for the projection [38,/40,96,98].

7.3.2 Inequalities

The Kaczmarz method supports only linear equations, but we extend this algorithm for solving

linear inequalities in a natural way, as in [82]. In each iteration, the algorithm ignores inequal-
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ities if they are satisfied, and otherwise treats them as if they were equations. This means that

inequalities influence the solving process only if this is necessary.

7.4 Optimization of Kaczmarz

We apply different techniques for optimizing the Kaczmarz algorithm similar to our procedure
with SOR. Some of these techniques accelerate the convergence of the Kaczmarz algorithm for
solving GUI layout problems and some do not effect the convergence speed at all. Techniques
used to enhance the convergence speed of SOR include constraint reordering, Constraint-wise
Under-relaxation (CWU) and a warm-start strategy.

Constraint reordering is not applicable to the Kaczmarz method. With SOR we used the
constraint reordering algorithm to first reorder the sequence of constraints based on pivot as-
signment and then use a simulated annealing (SA) based algorithm to optimize the order of
constraints. The Kaczmarz algorithm is designed to solve non-square systems so we do not
need pivot assignments. Our constraint reordering algorithm for SOR is based on pivot assign-
ment therefore can not be immediately applied to the Kaczmarz method. Constraint reordering
is explained in detail in Chapter [5}

CWU is applicable to the Kaczmarz algorithm but its efficiency is not much improved by
using this technique. CWU for SOR is described in detail in Chapter ] Kaczmarz with CWU
gives similar results as Kaczmarz with over-relaxation as shown in Figure Over-relaxation
is commonly used to speed up the convergence of the Kaczmarz algorithm.

A warm start strategy is applicable to the Kaczmarz algorithm and helps to speed up its

convergence. This is described in detail in Chapter [§]

7.5 Least Squares Kaczmarz for Constraints Solving for At-
tractive GUIs

A common problem in a GUI is that in general a layout cannot allocate its preferred size. In a
constraint-based layout a soft constraint can be used to specify the preferred size of a widget.
There are various strategies for solving soft constraints. If soft constraints are solved using
a linear programming approach then the widget sizes are in general underspecified, and it is
undetermined how space is distributed to the widgets. If soft constraints are solved using a least
squares approach then available space is distributed in a well-determined way [127].

There has been recent research by Zeidler et al. [[127] that shows that a least squares ap-
proach yields good aesthetic results for small as well as for large layout sizes. They compared
different solving strategies with respect to aesthetics. Their proposed solving strategies were
implemented and evaluated using the Auckland Layout Model (ALM), which is the constraint
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based layout model described in Chapter [T] of this thesis. They performed a user evaluation
where they compared different solving strategies. In this evaluation participants were asked to
judge the layouts by their visual appearance, they prefer GUI layouts in which space is dis-
tributed according to the preferred size of a layout. They implemented the active set method
using a quadratic objective function to get a least squares solution. In this method they try to
minimize the sum of deviations from a desired target value. Furthermore, they described that
linear and least squares approaches lead to different behaviors when distributing the deviation
to the layout items. They analyzed aesthetic aspects for different constraint solving strategies

but did not consider the performance of such strategies.

ALM - 3 Buttons ALM - 3 Buttons

Buttoni

Buktanl

Buttonz

Buttonz

Bukton3

Button3

(a) Three buttons using linear programming ap- (b) Three buttons using least squares approach
proach

Figure 7.3: Two different solving strategies for a simple three-button layout

This research motivated us to develop such a solving strategy that distributes the available
space according to the preferred size of the layout in a GUI, and compare the performance of
different constraint solving strategies. If we use our proposed linear constraint solving algo-
rithms for resizing a window in a GUI then a space is not distributed according to the preferred
size of the layout. To distribute the space according to the preferred size of the layout, we
propose a least squares approach. Figure [7.3]shows the resulting layout solved by using linear
programming (linear objective function) and least squares (quadratic objective function) ap-
proaches. Figure b) shows how a quadratic objective function minimizes the deviation to
the preferred item size for each item, not just the sum of deviations of all items.

As a specification in UI layout contains conflicting constraints (the preferred size con-
straints), the Kaczmarz method will simply diverge. That is why we introduce a least squares
approach for solving conflicting constraints in GUIs. For that we first introduce a cooling func-
tion in the Kaczmarz algorithm, second we propose an approach for distinguishing hard and
soft constraints, and finally we describe solution technique for solving these constraints. The
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Figure 7.4: Example: Least Squares Kaczmarz method using a cooling function

Least Squares Kaczmarz method using a cooling function is described in the following.

7.5.1 Least Squares Kaczmarz Method using a Cooling Function

The Least Squares Kaczmarz method using a cooling function converges towards a weighted
least squares solution for inconsistent systems as the relaxation parameter goes to zero [25].
Given a system of equations Az = b, Least Squares Kaczmarz using a cooling function C' can

be defined as follows:

(bz — Q; - xk)ai
]2

where xy, is the k-th iterate, i = (k' mod m)+1 (for deterministic Kaczmarz), p is the penalty (a

1= |k/m+1] (1.7)

xk+1:xk+w*p*0l*

weight) assigned to each constraint, a; is the i-th row of the matrix A, b; is the i-th component of
the right-hand side vector, and ||a|| denotes the Euclidean norm of the vector a. The relaxation
parameter for the Kaczmarz algorithm lies inside the interval 0 < w < 2 [95]]. In this algorithm,
the cooling function is decreased by a factor of C' for every m iterations. The value for the
cooling function lies inside the interval 0 < C' < 1. The following example illustrates the idea

of Least Squares Kaczmarz using a cooling function.

Example 3.
T = 0
To = 0

(L’1+ZE2:1

Example [3]is an over-determined inconsistent linear system. If we apply Least Squares

Kaczmarz using a cooling function, then we eventually get the least squares solution as shown
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in Figure When solving this example, we set the value for the cooling function to 0.9 as
it helps the relaxation parameter to cool down to zero slowly as illustrated in the figure. The
relaxation parameter w is set to 1.9 (over-relaxation) as this helps in speeding up convergence.
We also used these parameter values in our experiments for solving randomly generated GUI

layout specifications of various sizes, as reported below, and found them to work well.

7.5.2 Distinguishing Hard and Soft Constraints

The minimum constraints are usually hard constraints (see Chapter {)) in a UI layout specifi-
cation: we give them a very high priority because widgets cannot render if they do not have
enough space. The overall size of a layout is fixed and hence should be a hard constraint as
well. But the preferred width and height constraints are soft constraints (see Chapter ] for an
explanation of soft constraints), which need to be only satisfied if possible.

Figure a) shows a layout solved by a linear programming (linear objective function)
approach. All hard constraints are satisfied as expected. The soft constraints for the first two
buttons are satisfied exactly, meaning their heights are equal to their preferred heights. The only
violated constraint is the preferred height of the third button. As we can see, if we use a linear
programming approach then soft constraints are not violated in a uniform way. If we solve these
constraints by using the least squares (quadratic objective function) approach then the resulting
layout has the desired uniform appearance as shown in Figure b). Soft constraints (the
preferred size constraints) together with a least squares approach ensure that all widgets have a
well-defined size and that there is a unique solution, resulting in an equal distribution of errors
among the conflicting constraints.

In ALM (see Chapter [I)) all constraints are specified as soft constraints and we assign higher
and lower priorities to these constraints. If we use the linear programming approach and there
are conflicts between higher and lower priority constraints, then constraints with higher prior-
ities will always be satisfied and constraints with lower priorities will be violated. When we
use a least squares approach and there are conflicting constraints then all affected soft con-
straints are violated to some degree (high-priority constraints less than low-priority constraints,
if a weighted least-squares approach is used). To control the violation of soft constraints, we
need a conflict resolution strategy where higher priority constraints win over lower priority con-
straints. The idea is to identify conflicts beforehand, and turn the conflicting constraints with
higher priorities into hard constraints, while ensuring the conflicting constraints with lower pri-
orities remain soft constraints. In any case, any non-conflicting constraint can become a hard
constraint. This is similar to finding the maximum feasible subset for these constraints.

We propose an approach for distinguishing hard and soft constraints according to priorities
that is similar to Algorithm [] described in Chapter ] Our approach consists of the following
steps that are shown in Algorithm [8| This algorithm starts with an empty set £ of enabled
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Input: Constraints (C)

Output: Hard (“enabled”) and soft (“disabled”) constraints
1: DISABLE(C)
2: SORT(C) (by priority)
3: for each constraint c in order of priority, descending do

4:  ENABLE ¢
5:  Solve all enabled constraints (E) using Kaczmarz
6:  if solution not optimal then
7: DISABLE ¢
8: DISABLE all constraints in C' with the same penalty p as ¢
9: endif
10: end for

Algorithm 8: Distinguishing hard and soft constraints

constraints (line 1). It then adds constraints incrementally in order of descending priority and
solves all enabled constraints using Kaczmarz. Other iterative algorithms could also be used to
solve all enabled constraints, but we used the Kaczmarz algorithm because it is a good choice
for solving GUI layout problems efficiently, as discussed in Section If there 1s a conflict
between higher and lower priority constraints then constraints with lower priority becomes dis-
abled. Iterating through the constraints, it ensures that if a constraint with a certain penalty p
was disabled, then all other constraints with the same penalty p are also marked as disabled (line
8). In this way we distribute the error among groups of similar widgets. All disabled constraints
become soft constraints and all enabled constraints become hard constraints. In the following

section we describe how we solve these constraints.

7.5.3 Solution Technique for Hard and Soft Constraints

After distinguishing hard and soft constraints we apply a hybrid of the original Kaczmarz and
Least Squares Kaczmarz for solving these constraints. We treat hard and soft constraints dif-
ferently. We use the following steps that are shown in Algorithm O] Iterating through the
constraints (line 1), if a constraint is hard (enabled), then it is solved using the original Kacz-
marz (without a cooling function). If a constraint is soft (disabled), then it is solved using Least
Squares Kaczmarz (with a cooling function), using its penalty p as a weight. The algorithm
terminates if the difference between previous and current solution (error €*) is less than the pre-
specified tolerance (line 11). The algorithm makes sure that problematic constraints are always
solved with least squares, so they will compromise if necessary. If soft constraints of the same
penalty p are affected by a conflict, they will share the error equally.

Hard and soft constraints are solved simultaneously because they influence each other. If
we solve the hard constraints separately then there are usually infinitely many solutions and we
cannot choose the solution that is best for the soft constraints. When solving these constraints

together we can choose a feasible solution for the hard constraints while minimizing the error
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for the soft constraints.

Input: Constraints (C)
Output: Exact Solution for Hard Constraints, Weight Least Squares Solution for Soft Con-
straints

1: for each iteration 7 do

2:  for each constraint c do

3: if c is hard (enabled) then

4: Apply projection on ¢ using equation

//c s soft (disabled)

5: else

6: Apply projection with a cooling function on c using equation|/.7
7: end if

8:  end for

9:  Calculate the error e* = gPrevious _ yeurrent
10:  if maximum of the error e’ < tolerance then
11: Terminate the algorithm
12:  endif
13: end for

Algorithm 9: Solution technique for hard and soft constraints
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7.6 Experimental Evaluation

In this section we present an experimental evaluation of the proposed algorithms. We conduct
three different experiments to evaluate (i) their convergence behaviour, and (ii) their perfor-
mance in terms of computation time(iii) their ability to detect and resolve conflicts (the quality

of a solution).

7.6.1 Methodology

The methodology is the same as in previous Chapters @ and [ For all experiments we used the
same hardware and test data generator, but instrumentalized the algorithms differently. We used
the following setup: a desktop computer with Intel i5 3.3GHz processor and 64-bit Windows 7,
running an Oracle Java virtual machine. Layout specifications were randomly generated using
the test data generator described in Chapter [3] For each experiment the same set of test data
was used. The specification size was varied from 4 to 2402 constraints, in increments of 4
constraints (2 new constraints for positioning and 2 new constraint for the preferred size of a
new widget). For each size 10 different layouts were generated, resulting in a total of 6000
different layout specifications. A tolerance of 0.01 was used for solving. For the Kaczmarz
method a relaxation parameter of 1.5 was used; for SOR a slightly smaller relaxation parameter
of 0.7 had to be used to avoid problems of divergence. For the Least Squares Kaczmarz method
with C, a relaxation parameter of 1.9 was used and cooling factor was set to 0.9.

In the first experiment we investigated the convergence behaviour of the algorithms. We
measured for each algorithm the number of sub-optimal solutions. A solution is sub-optimal if
the error of a constraint (the difference between the right-hand and left-hand side) is not smaller
than the given tolerance.

In the second experiment we measured the performance in terms of computation time (7°)
in milliseconds (ms), depending on the problem size measured in number of constraints (c).
Each of the proposed algorithms was used to solve each of the problems of the test data set and
the time was measured. As a reference, all the generated specifications were also solved with
Matlab’s LINPROG solver [[115]] and LP-Solve [17]]. We selected these solvers as LINPROG
is widely known for its speed, and LP-Solve has been previously used to solve constraint-
based UI layout problems [86]]. Additionally, we wanted to test our algorithms against a direct
method, so we also included the implementation of QR-decomposition in the Apache Commons
Mathematics Library [8]], which is a freely available open-source library.

In experiment 3, we evaluated the quality of the solutions, which is given by the integer ¢.
As explained in Chapter the algorithms should find max(¢), so a solution with a larger ¢ has a
better quality. We consider z, the bit-wise negation of ¢, as this allows us to differentiate between
solutions of different quality more easily. The ¢ values of solutions for a problem differ usually

only in the less significant bits (the most important constraints are usually enabled), whereas ¢
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reflects noteworthy quality differences in the more significant bits.

To calculate 7, we set a bit in a bit array of the length of the list of constraints if a constraint
is disabled. So in the worst case, 7 can become as large as 22*°2. Since such numbers are hard to
evaluate and interpret, we simplify them by only expressing an ordinal relationship between the
solutions of all 5 algorithms for one problem. This is done with integer values rank, expressing
the ranking of a solution: one is the rank of the solution with the lowest 7, and 4 is the rank
of the solution with the highest 7 for a given problem. Thus, the higher the rank the worse the
solution of a solver. In the case of ties, i.e. if two or more algorithms produce the same 7, we
use the mean of the involved ranks, as is usually done in such situations to preserve the sum of
all ranks.

Finally, we use the rank values to compare all algorithms pairwise. We compare two algo-
rithms x and y by testing the distribution of the differences (d)

d = rank, — rank,

for all problems with a Wilcoxon signed-rank test on a significance level of o« = 0.001. If the
test accepts the alternative hypothesis that d < 0, we conclude that algorithm x produces better
results than algorithm y. These results are aggregated over all comparisons. We do not consider
QR decomposition in this experiment because it only finds an unweighted least squares solution,

i.e. without considering any priorities.

7.6.2 Results

The analysis of results is the same as in previous Chaptersdand [6] The first experiment demon-
strates the convergence behaviour of our algorithms. We found that all algorithms converge,
which is obvious since the algorithms were designed to find a solvable subproblem.

In the second experiment we investigated the performance behaviour of all algorithms. To
identify the performance trend of the algorithms over ¢, we defined some regression models
(linear, quadratic, log, cubic). We found that the best-fitting model is the polynomial model

T = By + Bic + Pac® + Bsc® + ¢,

which gave us a good fit for the performance data.
Key parameters of the models are depicted in Table a graphical representation of the
models can be found in Figures[7.5]— Table[7.1| explains the symbols used.
Figure[7.5]illustrates the performance of Kaczmarz with prioritized IIS detection, Kaczmarz
with prioritized grouping constraints, Kaczmarz with CWU, Least Squares Kaczmarz with cool-
ing function and SOR with prioritized grouping constraints. As the graphs indicate, Kaczmarz
with prioritized grouping constraints and Kaczmarz with CWU exhibit better performance than
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Figure 7.5: Performance comparison of Kaczmarz with prioritized 11S detection, Kaczmarz with prior-
itized grouping constraints, Kaczmarz with CWU, Least Squares Kaczmarz with cooling
function and SOR with random pivot assignment

Kaczmarz with prioritized IIS detection, SOR with prioritized grouping constraints and Least

Squares Kaczmarz with cooling function.

Figure compares all the aforementioned algorithms to LINPROG, LP-Solve and QR-
decomposition. SOR with prioritized grouping constraints is slower than Kaczmarz with prior-
itized IIS detection. Generally, all our algorithms perform significantly better than LINPROG,
LP-Solve and QR-decomposition, especially for bigger problems. Kaczmarz with prioritized

grouping constraints exhibits the best runtime behaviour.

SOR with prioritized grouping constraints is slower than Kaczmarz with prioritized IIS de-
tection because the computation of the pivot assignment is more complex and takes longer. This
is due to the fact that for SOR with prioritized grouping constraints the pivot assignment only
needs to be recomputed for each conflicting constraint. The runtime performance of Kaczmarz
with prioritized grouping constraints has the highest volatility. That is due to the fact that the
performance of Kaczmarz with prioritized grouping constraints depends on the distribution of
conflicting constraints over the list of constraints. If conflicting constraints are close, the al-
gorithm searches only a small fraction of the whole list. If conflicting constraints are almost

equally distributed over the list of constraints, the algorithm searches the whole list.

Table depicts the results of experiment 3, the comparisons of the algorithms according
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Table 7.1: Symbols used for the performance regression model

Symbol Explanation
Bo Intercept of the regression model
0b1-3 Estimated model parameters
¢ Number of constraints
T Measured time in milliseconds
R? Coefficient of determination of the estimated regression models

Table 7.2: Regression models for the different solving strategies

Strategy Bo b1 B2 B3 R?

Pr. grouping constraints / Kacz. 1.143™" —7.027 - 10793 2,459 . 107%™ —1.615-107%9"" 0.999
CWU / Kacz.0.9979"" —6.604 - 10793 2.172 . 10705™" —7.526 - 10~10""* 0.995

C' / Least Squares Kacz.—3.622"""  0.02344™"  1.812-107%"" 1.057-107%"" 0.9367

Pr. IIS detection / rand. 1.035"" —1.112 - 10792™" 4.278 . 1079 —9.176 - 10~10"*0.9994

Pr. 1IS detection / Kacz. 1.136™ —7.740 - 1079 2,723 . 10705 —5.587 - 10~10""0.9994
LINPROG 18.29"" 1.591-107%  4.934.1079"" 1.577.1079"" 0.9367
LP-Solve—2.491"" 3.924 - 10792"" 2.079- 10~ 1.904 - 10~ 0.9900
QR-Decomposition—37.70""  0.2802""  —4.009 - 107%4" 2.850 - 10797 0.9989

Significance codes: = p < 0.001, Kacz: Kaczmarz

Table 7.3: Comparison of the quality of the solutions produced by the different algorithms (rank 1 =
best)

Rank Strategy

1 Pr. grouping constraints / Kaczmarz, Pr. IIS detection / Kaczmarz
2 Pr. grouping constraints / SOR

3 LINPROG

4 LP-Solve

to the overall solution quality. The pairwise test results showed that algorithms can be ordered
totally, i.e. each algorithm is better than all the algorithms ranked below it (i.e. with a bigger rank
number). Kaczmarz with prioritized grouping constraints produce the best results. However,
Kaczmarz with prioritized IIS detection yields almost as good results as prioritized grouping
constraints. The worst solutions are produced by the two simplex solvers, LINPROG and LP-

Solve. SOR with prioritized grouping constraints produce mid-quality solutions.

7.6.3 Discussion

The performance results show that the Kaczmarz method with prioritized grouping constraints

is the fastest and that QR-decomposition, a direct method, is the slowest for our UI problem.
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All proposed algorithms are faster than QR-decomposition, LP-Solve and LINPROG.

The Kaczmarz algorithm with prioritized IIS detection exhibits a better performance than
SOR with prioritized IIS detection and Least Squares Kaczmarz with cooling function. A likely
factor contributing to this is that for Kaczmarz a slightly larger relaxation parameter can be used
than that for SOR . Smaller relaxation parameters may slow down the convergence of iterative
methods, potentially requiring more iterations to converge. However, it was not possible to
increase the relaxation parameter of SOR as this would cause divergence for some of the prob-
lems. Kaczmarz with prioritized grouping constraints requires less computation time than all
other strategies, hence it appears to be the most appropriate algorithm.

The runtime of the two linear programming solvers exhibits a much larger variance com-
pared to the purely iterative solvers. One possible reason for this is that for some cases the
direct methods used in the linear programming solvers are particularly inefficient, e.g. due to
fill-in effects. A smaller variance and hence more predictable runtime is particularly beneficial
for the UI layout domain because large changes in runtime can affect the user experience, e.g.
when resizing a GUI window interactively.

It is natural that LINPROG and LP-Solve are outperformed by the newly introduced algo-
rithms in terms of solution quality, since they resolve conflicts differently. If a high-priority
constraint needs to be violated, these approaches will not simply “abandon” the constraint, as
our algorithms would do. Instead, they still try to minimize this violation, even if this comes at

the cost of violating many lower-priority constraints. This means a worse ¢ value is generated.

7.7 Summary

This chapter proposed new algorithms for using the Kaczmarz method for solving constraint-

based UI layout problems. We have presented the following contributions:

e We developed algorithms to resolve conflicts in over-determined specifications by using

soft constraints.
e We extended Kaczmarz for solving linear inequality and soft constraints for GUI.

e We extended Kaczmarz for solving constraints for GUIs by generating balanced layouts:

it can help in making GUIs attractive.

e We presented an experimental evaluation that shows that the proposed algorithms find

feasible subproblems and outperform modern linear programming solvers.

The work presented in this chapter lays a foundation for the application of iterative methods for

solvers of constraint-based Uls.
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Figure 7.6: Performance comparison of the best solving strategies with LINPROG, LP-Solve, QR-
decomposition and prioritized IIS detection using random pivot assignment



Speeding Up Kaczmarz and Successive
Over-RelaxatioS with a Warm-Start
Strategy

8.1 Introduction

Many computer programs have graphical user interfaces (GUIs), which need good layout to
make efficient use of the available screen real estate. Most GUIs do not have a fixed layout,
but are resizable and able to adapt themselves. Constraints are a powerful tool for specifying
adaptable GUI layouts: they are used to specify a layout in a general form, and a constraint
solver is used to find a satisfying concrete layout, e.g. for a specific GUI size. The constraint
solver has to calculate a new layout every time a GUI is resized or changed, so it needs to
be efficient to ensure a good user experience. One common approach for constraint solvers is
based on the Gauss-Seidel algorithm and Successive Over-Relaxation (SOR) and the previous
chapter described another frequently used approach: the Kaczmarz algorithm.

Our observation is that a solution after resizing or changing is similar in structure to the pre-
vious solution. Thus, we hypothesized that we could increase the computational performance
of the Kaczmarz and an SOR-based constraint solvers if we reuse the solution of a previous
layout to warm-start the solving of a new layout. In this chapter we report on experiments to

test this hypothesis experimentally for three common use cases: big-step resizing, small-step

83
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resizing and constraint change. In our experiments, we measured the solving time for randomly
generated GUI layout specifications of various sizes. For all three cases we found that the
performance is improved if an existing solution is used as a starting solution for a new layout.
The remainder of the chapter is organized as follows. We disscuss related work in Sec-
tion and then explain the warm start strategy in Section We test our hypothesis experi-
mentally with randomly generated GUIs in Section[8.4] To give the context for our experiments
we give some required background on constraint-based GUIs and iterative solvers in Chapter|2]

and draw our conclusions in Section

8.2 Related Work

Approaches related to warm start strategies have been proposed in numerous previous works [48),
54,93]]. Warm-start strategies with interior-point methods have been applied by authors [[76l/124]
for linear programming problems. They [41,120] proposed a warm-start strategy based on an
active set method for solving quadratic programming problems. A warm-start strategy based
on an interior point method for solving quadratic programs in predictive control is proposed
by [111]].

Lessard et al. analyzed computational speed and the use of warm starting (where they used
the most recent estimate for initializing the iterative scheme) of different iterative methods for
large systems [81]. These methods include multigrid, preconditioned conjugate-gradient, and
several new variants of these methods. They identified the best algorithm with the warm-start
strategy in terms of computational time. They [122] used warm starting approaches to speed up
gradient projection for sparse reconstruction (GPSR) and iterative shrinkage/thresholding (IST)
algorithms, in these algorithms the warm-started approach is used to reduce the computational
cost from an advanced starting point for the sparse reconstruction by separable approximation
(SpaRSA) algorithmic framework for solving large-scale optimization problems. Other meth-
ods of accelerating convergence by using warm start techniques in iterative solution procedures
are [42,44,104]. However, none of the above discussed algorithms applies Kaczmarz and SOR-
based methods for constraint-based Ul layout and therefore none explicitly exploit the sparsity

property of constraint-based Ul problems.

8.3 Warm-Start Strategy

A GUI layout specification has to be solved whenever the conditions under which a GUI is dis-
played or the GUI itself change. Most GUISs can be resized, e.g. to adapt to different screen sizes
or to let the user choose an appropriate size dynamically. Sometimes GUIs need to be changed
dynamically to adjust to content of different sizes. Each time a GUI is resized or changed, the

existing GUI layout specification is changed and a new specification is created. However, the
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Figure 8.1: A GUI constraint specification before and after resizing

new specification is similar to the previous one because the widgets and their relations typically
stay the same. Usually, only some size parameters change. For example, Figure [8.1] shows a
GUI before and after resizing with the corresponding constraint specifications. Only the height

constraint at the beginning of the specification is changed.

As a consequence, constraint solvers for GUI layout usually have to solve specifications
that are similar to the specifications that have been solved previously. For that reason, it seems
plausible that the previous solution is a good initial value for the iterative solving process —
something that is known as a warm-start strategy. This leds us to the following hypothesis:
Using a previous solution of a GUI constraint specification to warm-start the Kaczmarz and

SOR solvers reduces the solving time.

We tested this hypothesis by considering three common use cases where GUIs are changed
during runtime. The first is small-step resizing, where the GUI size is changed by a small
amount, e.g. when it is resized by a user dynamically. The second is big-step resizing, where
the GUI size is changed by a larger amount, e.g. when the GUI size is maximized. And third,
changes of several constraints, e.g. when the sizes of labels are adjusted for a different language.
The solving times when using Kaczmarz and SOR with and without a warm-start strategy was

compared for the three use cases, using randomly generated layout specifications of different
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sizes.

During application runtime, GUIs need to be adapted to changing conditions such as the
available GUI size. This is done by changing some of the constraints, typically a small num-
ber. For example, the overall size of the GUI is typically specified by constraints: one for the
width and one for the height. When the GUI size changes, only these two constraints need to
be adjusted, as shown in Figure Another typical situation where constraints need to be
changed is when preferred sizes change. For example, if the language settings are changed in

an application, the preferred sizes of textual labels have to adjust to the new language.

8.4 Experiment

In this section, we evaluate the use of warm-starting for GUI layout problems using the Kacz-
marz algorithm and SOR. We tested specifically the effect of warm-starting a constraint solver

on the performance in terms of computation time.

8.4.1 Methodology

We conducted the experiments with our implementation of the Kaczmarz and SOR methods
for GUI layout, which uses random pivot assignment and Prioritized IIS Detection as a conflict
resolution strategy. We used two versions of that solver: the first version started every solver

run with an initial solution z = (0, ..., 0), the second version started every solver run with the

*

optimal solution from the previous run z = .

We evaluated the following three use cases:

1. Small-step resizing: The width and height of the window was randomly changed by a
value in between 0 and 3 pixels.

2. Big-step resizing: The width and height of the GUI window was randomly changed by a
value between 4 and 3000 pixels.

3. Constraint change: 10 per cent of all constraints of a GUI were randomly changed.

Small-step resizing occurs in practice when a window is continuously resized by dragging a
window border. Big-step resizing occurs when a GUI is initially loaded on different screens,
when a GUI is switched to or from full-screen mode, or when the orientation of a screen is
changed. Constraint changes as in use case 3 occur, for example, when several preferred sizes
change as a result of changing the language of an application.

Layout specifications were randomly generated using the parameterized algorithm described
in Chapter [3] The problem size was varied from O to 201 areas. For each area 4 constraints

are added, which specify the position of the area in the layout. Additionally, a specification



8.4 Experiment

87

needs 4 constraints to define the size of the window. We therefore started with a problem of 4
constraints and ended with a problem of 808 constraints. For each size, 10 random layouts were
evaluated. For each of the three use cases, each of these random layouts was changed 20 times,
and the solving time was measured. A linear relaxation parameter of 0.7 and a tolerance of 0.01
were used for solving. The measurements were performed on a desktop computer with Intel i5

3.3GHz processor and 64-bit Windows 7 running an Oracle Java virtual machine.

Table 8.1: Symbols used for the performance regression model

Symbol Explanation

Bo Intercept of the regression model
B1_3 Estimated model parameters
¢ Number of constraints
T Measured time in milliseconds
R? Coefficient of determination

To compare the performance of both versions of the solver we used a regression model
T = f(c)+e

and examined the estimated model visually and numerically. See Table [8.1] for an explanation

of the symbols used.

8.4.2 Results

To identify the performance trend of the solvers, we tried different regression functions f (linear,

quadratic, log, cubic). We found that the best fitting model is the polynomial model
T = By + Prc+ Pac® + Bsc® + e

Key parameters of the regression models are depicted in Table A graphical representation
of the measurements and the models can be found in Figures [8.2] [8.3] and [.4] The results
suggest a better performance of the solver with the warm-start strategy for all three use cases.
The variance of the measured runtime differs noticeably for both approaches. It is smaller
for the rather small changes in small-step resizing, and bigger for the big-step resizing and
constraint change use cases. Especially for constraint change, this indicates that some problems
with a lot of conflicts were generated, which require more iterations and hence a longer runtime.
The variance of the measured runtime differs for both warm start and cold start approaches. It
looks as if the former is smaller, which is another advantage of the warm-start approach. It is

somewhat astonishing that the experiments showed the warm start strategy had only a relatively
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Table 8.2: Regression models for solvers with and without warm-start strategy

Strategy Bo B1 B2 B3 R?
Ssr with warm start / SOR 6.508 - 104" —8.940 - 102" 23.55"" 7.576 - 10~ 0.999
Ssr w/o warm start / SOR 4.104 - 10*™* 68.00™" 26.05"" 5.971-1073"  0.999

Ssr with warm start / Kacz. 1.864 - 1072 —2.435 - 10~4"" 7.181 - 107" 2.076 - 10~*™"  0.9992
Ssr w/o warm start / Kacz. 1.173 - 1072 2.870- 1075 8.129-1076"" 4.991-1079""  0.9937
Bsr with warm start / SOR 3.186 - 104" —89.32" 13.42™ 3.202- 1073 0.996
Bsr w/o warm start / SOR 1.208 - 10+ 3.729 - 10%™** 18.24™"  4.921-1073"  0.999
Bsr with warm start / Kacz. 2.407 - 1072 —2.781 - 10~4"" 6.981 - 10-6" 1.811-10~9""  0.9957
Bsr w/o warm start / Kacz. 3.570 - 1073 2.796 - 10~*™" 8.231- 107" 6.731- 102"  0.9829
Cc with warm start / SOR 1.074 - 10°™ —1.289 - 103"  21.88"  —2.721-10~*"" 0.976
Cc w/o warm start / SOR 1.231 - 105" —1.648-10%""  30.17""  —2.837-10~*"" 0.962
Cc with warm start / Kacz. 1.864 - 1072 —2.435 . 10~4"" 7.181 - 107%™ 2.076- 1079  0.9992
Cc w/o warm start / Kacz. 1.173 - 1072 2.870 - 107°™" 8.129 - 106" 4.991 . 107"  0.9937

Significance codes: = p < 0.001, Ssr: Small-step resizing, Bsr: Big-step resizing, Cc: Constraint changes
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Figure 8.2: Small-step resizing performance results

small effect. One reason could be the use of the random pivot selector. Since it selects pivot
elements randomly, it can select pivot elements which let the solution deviate strongly from the
initial solution before it actually converges towards the new solution. Another reason could be
that the changes in the specification — even though they are fairly small — drastically change the

solution in some cases. This can be, for example, due to conflict resolution. Some constraints
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Figure 8.3: Big-step resizing performance results

that were not satisfied with the old specification, can become satisfiable and suddenly have
an effect on the solution after the specification is changed. Similarly, small changes in the
specification can lead to new conflicts and hence disabling of constraints.

The effects of the warm-start strategy are comparable for all three use cases, but are the
strongest for small-step resizing. This is convenient, as speed is of particular importance for the
small-step resizing use case. Small-step resizing is typically done interactively by the user, and

for a good user experience the GUI should react to such resizing in real-time.

8.5 Summary

In constraint-based GUIs with dynamic behaviour, the specification that represents the layout
of the GUI is often changed, e.g. when a window is resized. These changes are usually small,
resulting in specifications that are very similar. Since the specifications are similar, one can
expect also the results to be similar. Therefore, we evaluated the use of a warm-start strategy to
improve the efficiency of Kaczmarz and SOR-based constraint solvers for GUIs. Three common
use cases were evaluated with randomly generated GUI layouts: small-step resizing, big-step
resizing, and random changes of several constraints.

We found that the Kaczmarz and SOR-based methods with a warm-start strategy indeed
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Figure 8.4: Constraint change performance results

exhibit a better runtime behaviour than a solver without a warm-start strategy. Implementing
a warm-start strategy in such solvers does not introduce additional computational effort, as
existing values are simply reused. It is therefore advisable to equip Kaczmarz and SOR-based
GUI layout solvers with a warm-start strategy.

However, we also found that the effect of a warm-start strategy is weaker than we expected.
Possible reasons for this are the random pivot assignment and the Prioritized IIS Detection

conflict resolution strategy used in the experiment.
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The concepts, algorithms and techniques presented in the previous chapters are implemented
in several research prototypes, which are based on the Auckland Layout Model (ALM) [86].
ALM is a constraint-based layout manager with ports to several programming languages and
environments. Besides others, a Java-based implementation is available that uses the popular
Simplex-based solver Lp-Solve [17] to solve GUI layout problems, which is available onlineE]
and is used in several other research projects. More details are given in Section 9.1

The algorithms implemented in this thesis can be considered as extensions to ALM, which
aim at replacing the Simplex method with indirect methods. Their implementations are con-
tained in the package linsolve and described in Section An overall summary of different

components involved in ALM and linsolve is provided here as a class diagram in Figure 0.1}

9.1 Auckland Layout Model (ALM)

There are various implementations of constraint-based layout managers available of whom the
most prominent is the Cocoa API of Apple’s Mac OS Beside this there exists some academic
implementations. One of them is the Auckland Layout Model (ALM) [86] which is freely
available and already the basis of several research projects [128]. ALM allows to describe GUIs

in an algebraic way which makes it possible to create layouts in a more abstract manner. A more

1http://lpsolve.sourceforge.net
2Cocoa Auto Layout Guide, 2012 http://developer.apple.com
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detailed description of ALM is given in Chapter|[I} Below is a description of all important ALM

classes and interfaces as illustrated in Figure [9.1]

9.1.1 ALMLayout

ALMLayout is a general class for creating layouts on the screen. It implements a layout
manager and can be used by Java applications which need to use ALM as a layout manager.
The LayoutManager class is a Java interface for GUI layout, it defines the interface for
classes that know how to lay out widgets. In addition to standard methods for a layout manager,
ALMLayout provides a set of methods to enable users to benefit from ALM specific features.
For example, the addConstraint() method allows users to add a customized set of constraints
to the layout. At the end, when a user completes the design of the layout, everything is trans-
lated to a linear system and stored in a Layout Spec object. This linear system is solved by
linear solvers which will be described in Section[9.2]

9.1.2 Variable, XTab and YTab

The XTab class represents a vertical grid line and the YTab class represents a horizontal grid

line. They extend the Variable class. They are used by the methods of ALMLayout.

9.1.3 Row and Column

The Row class represents a row defined by two y-tabs and the Column class represents a col-

umn defined by two x-tabs.
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9.2 linsolve

There are different solvers implemented in the linsolve package for solving linear systems of
constraints created by ALM. Their classes are illustrated in Figure

9.2.1 LinearSpec

LinearSpec is a class for accumulating constraints. Constraints are generated by different
classes, e.g. Area and Constraint. Solvers have access to the LinearSpec class. It

contains the linear system which should be solved by a solver when its solve() method is called.

9.2.2 LayoutSpec

The LayoutSpec class contains information about layout components. Users create areas
using method addArea() in this class. Each layout has an associated LinearSpec which

contains the linear system that describes the layout.

9.2.3 Constraint

The Constraint class represents a linear constraint. The constraint can be in form of a
equality or an inequality. A penalty can be associated to the constraint which specifies its

priority. Higher priority constraints have less chance to get violated.

9.24 LinearSolver

The LinearSolver is an interface for all solvers. The add(V ariable) method adds a variable
in LinearSolver and remove(Constraint) method tells a solver to remove a constraint
from this solver which is important because some solvers manage their own representation of
constraints. The solve() method tries to solve the linear problem and return the result of the

solving attempt.

9.2.5 AbstractlinearSolver

The AbstractLinearSolver is an abstract implementation of a linear solver. All solvers
extend this abstract class. The initVariableV alues() method initialise all variables with 0 if
they do not contain a previous value.

If a cached simplified version of the problem exists, it is used instead of LinearSpec.
The remove Presolved() method is used to remove a cached presolved model, if existent.This is

automatically done each time after the model has been changed to avoid an old cached presolved
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model getting out of sync. The add() method adds a constraint to this solver. Some solvers keep
their own set of constraints, remove() method removes a constraint from this solver.

The update() method tells a solver to update a constraint in this solver because some solvers
manage their own representation of constraints.

The KaczmarzSolver, LpSolve, SORSolver, QR—decomposition and LINPROG
are implementations of solvers used in Chapter 4 and Chapter [7]

9.2.6 AbstractSoftSolver

The AbstractSoftSolver is an abstract class for conflict resolution strategies such as
PrioritizedIISDetection,PrioritizedGroupingConstraints and
PrioritizedDeletionFiltering(see Chapter [ for details). The actual solver is in-
jected via the provided constructor. The class gets a LinearSpec and makes sure that the

constraints in the specification are treated as soft constraints.

9.2.7 SOR and PivotSummandSelector

SORSolver is a concrete implementation of AbstractSoftSolver and contains the im-
plementation of a SOR solver (see Chapter 2] for details). SOR and its foundation the Gauss-
Seidel Algorithm are not capable of solving non-square systems. To nevertheless apply SOR to
such systems a pivot assignment has to be done.

PivotSummandSelector is used for a pivot assignment which is an interface of
RandomPivotAssignment, DeterministicPivotAssignment and

TwoPhasePivotAssignment. They are explained in detail in Chapter 3]

9.2.8 AbstractMatlabSolver

The AbstractMatlabSolver is an abstract class for LINPROGSolver, which uses Mat-
lab code to solve constraint-based GUIs. LINPROG is an implementation only available in
Matlab. Calls to LINPROG have first to be translated to proper Matlab calls. This is done with
AbstractMatlabSolver. To connect to Matlab it uses the mat labcontrol library. It
basically requires Matlab to be installed together with Matlab’s Optimization toolbox. The main
contribution of MatlabSolver is the generation of Matlab-commands, reading and writing back
the calculated results. The intended use of the class is to compare the runtime of other solvers

with the runtime of Matlab solvers.
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10

Conclusion and Future Work

This chapter concludes the thesis and points out future directions. Section lists the major

achievements of this thesis and Section discusses possible directions for future work.

10.1 Achievements

The primary focus of this research was to design efficient algorithms for solving constraint-

based GUI layout specifications. We highlight the major achievements of our work below.

e Extending SOR for Non-Square Matrices. SOR is one of the most commonly used iter-
ative methods for solving linear constraint problems. Non-square matrices occur in GUI
layout specifications, this is a problem for the common SOR method, which assumes that
the problem matrix is square and has a non-zero diagonal. The standard SOR algorithms
choose the pivot variable on the diagonal of the coefficient matrix. In the case of square
matrices with non-zero diagonals, this is an easy way to ensure that every constraint has
a pivot variable, and that every variable is chosen once so that its value can be approx-
imated. The common SOR algorithms usually assume that a pivot assignment has been
performed and that the chosen pivot elements are placed on the diagonal of the problem

matrix. In square matrices, this can always be achieved by simple matrix transformations.

In this first contribution, we extended the SOR method to solve non-square matrices. We

proposed three pivot assignment algorithms for solving non-square matrices. In the first
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algorithm, pivot elements were selected pseudo-randomly. In the second algorithm, pivot
elements were selected deterministically by optimizing certain selection criteria. In the
third algorithm, the best constraint for a variable was selected and the best variable for
a constraint was selected. The problem of pivot assignment in the case of non-square
matrices and the two algorithms were explained in detail in Chapter[3] These results have
been published at the ICTAI’ 12 conference [71].

Extending SOR for Soft Constraints. Linear problems including Ul layout may contain
conflicting constraints. SOR will simply not converge if a specification contains conflict-
ing constraints. To deal with conflicting constraints, we introduced soft constraints. In
contrast to the usual hard constraints, which cannot be violated, soft constraints may be
violated if no other solution can be found. Using only soft constraints has the advantage
that a problem is always solvable, which cannot be guaranteed if hard constraints are used.
In the second contribution, we proposed three conflict resolution algorithms for solving
systems of prioritized linear constraints with the SOR method. In the first algorithm, non-
conflicting constraints are successively added in descending order of priority. The second
algorithm starts with all constraints and successively removes conflicting constraints in
ascending order of priority. The third algorithm is a mixture of both and adapts the binary
search algorithm to the problem of searching the best conflict-free subproblem. These al-
gorithms were explained in detail in Chapter[d] Some of these results have been published
at the ICTAI’ 12 conference [[71]].

An Optimization of SOR. If SOR is applied to linear systems, the ordering in which
constraints are solved affects the convergence behaviour of the algorithm. A bad ordering
can slow down the convergence of an algorithm whereas a good ordering can speed it
up. To overcome this problem, we proposed an algorithm to reorder the sequence of
constraints specification in an optimal way. Our contribution consists of, first, a metric
to measure the optimality of a constraint sequence and, second, a Simulated Annealing
based algorithm, which optimizes the order of constraints that was explained in detail in
Chapter [5] These results have been accepted at the ICSM’ 14 journal [[73].

A New Optimization Technique for SOR. One of the disadvantages of iterative methods
is that convergence is not guaranteed for general matrices. We showed empirically that if
we choose Constraint-Wise Under-relaxation (CWU), then SOR convergence is improved

for GUI layout problems.

Extending Kaczmarz with Soft Constraints. Computing the pivot assignment for solv-
ing non-square matrices can make Successive Over-Relaxation (SOR) slow. To overcome
this, we considered the Kaczmarz method in Chapter [/, which does not need any pivot

assignment for solving non-square matrices. These results have been published at IC-
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TAI’13 conference [74]]. Moreover, the least squares Kaczmarz method is introduced for

solving attractive GUIs.

e Speeding Up Kaczmarz and SOR with a Warm-Start Strategy. One approach to lay-
out is to use constraints to describe the GUI and let a constraint solver find a satisfying
layout. One type of constraint solver is based on the Gauss-Seidel algorithm and Succes-
sive Over-Relaxation (SOR) and another type of solver is Kaczmarz. The most current
GUISs are not of fixed size but resizable. A constraint solver has to find a new layout every
time a GUI is resized, which can be time consuming. Our observation was that a solu-
tion after resizing was similar in structure to a solution before resizing. We hypothesized
that we could increase the computational performance of Kaczmarz and SOR-based con-
straint solvers if we reused the solution of a previous layout to warm start the solving of a
new layout. In Chapter [§ we explained a warm start strategy to speed up Kaczmarz and
SOR for GUI layouts. The results of this research have been published at the ICDIM’ 13
conference [72]. Together the contributions demonstrate that iterative methods can effi-
ciently be used for solving constraint-based GUIs. With the algorithms presented in this
thesis, it is now possible to bring the benefits of solving sparse matrices efficiently with

iterative methods to the domain of UI layout.

10.2 Future Directions

This section describes possible future directions in which this research could be extended. Time

constraints prevented us from exploring these areas ourselves.

e There is room for improvement in the deterministic pivot assignment algorithm. The
results of the experiment indicate that an optimal pivot assignment can have a significant
effect on the speed of convergence. Currently, deterministic pivot assignment only takes
the influence of coefficients of constraints into account. The inferior performance of this
assignment compared to a purely random one indicates that there are other factors that
have an effect on convergence. One such factor is the order of the constraints during

solving.

e Some applications in constraint-based Uls could benefit from the formulation of non-
linear constraints. Integrating the solving of non-linear constraints into the framework of
the Gauss-Seidel method would extend the application domain of our algorithms. Some

non-linear constraints can be solved with Gauss-Seidel and SOR.

e Other iterative algorithms using an optimal relaxation parameter for user interface layouts

and general linear problems could also be evaluated.
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e The warm starts strategy can also be used to a wider class of problems. Besides the reuse
of existing values, there are also other types of pre processing techniques for iterative
solvers available, which could improve the convergence behaviour of SOR solvers for
constraint-based GUIs. Examples include coefficient matrix reordering or the application
of pre conditioners. Their applicability and effect on the efficiency of SOR solvers for
constraint-based GUIs should also be tested.

Other future directions include testing all our proposed algorithms on general linear prob-

lems and presenting comparisons between various iterative algorithms.

10.3 Applications of Iterative Methods

This section surveys real world applications of our extended iterative methods, one could use

these methods outside of User Interface domain.

10.3.1 Saddle Point Problems

Saddle point problems are encountered in a wide variety of fields such as computer science
and engineering. A number of applications can be found in the real world where saddle point
problems naturally arise, for example computational fluid dynamics [51,103|], image reconstruc-
tion [S7], constrained optimization [121]] and economics [9]. Saddle point problems naturally
arise when a certain quantity has to be minimized subject to certain constraints. The solution
of saddle point problems is a prominent area in the numerical research field due to its specific
character and its appearance in many engineering fields such as fluid and solid mechanics [23]].

Large and sparse problems usually occur in saddle point problems. There are various meth-
ods that have been developed for solving these problems recently. While, saddle point systems
have widely different structural and sparsity properties and come in different sizes. One reason
why Iterative methods are of interest for solving these problems is that they are usually large

and sparse.

10.3.2 Computerized Tomography

Computerized Tomography (CT) was introduced in the 1970s for the purpose of diagnostic
radiology, but since then various applications of it have been developed and have become popu-
lar(e.g. electro-magnetic geotomography). Computed tomography has played an important role
in medicine and industrial applications [61,/75]. As a result of this, continuous efforts are made
in order to improve image reconstruction algorithms. CT is concerned with reconstruction of

a function from its line or plane integrals. From a mathematical point of view, such problems
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are known as inverse problems. Computerized Tomography gives rise to large and sparse linear
systems of equations.

These linear systems of equations which occurring in computer tomography are both under-
determined and over-determined. Various methods have been developed for solving these prob-
lems, the most well known method is image reconstruction from projections. Stationary iterative
methods can be applied for solving the problems that appear in Computerized Tomography(CT),
because these methods are more efficient for solving large and sparse problems compared to di-

rect methods.

10.4 Reflections

In this section I provide some personal opinions and thoughts related to my PhD experience.
In the end I truly enjoyed the process of writing a thesis, though it was difficult sometimes
to motivate myself if the work was very challenging. For example when doing performance
testing of my proposed algorithms for large problems, nonobvious memory issues on the testbed
created problems, and it took long time to figure out this issue.

The motivation behind the project was in the beginning quite challenging. I found it more
interesting when, by working with example problems, the motivation became more clear to me.
There is also further work opportunities on the theory part of some of the proposed algorithms.
Some extensions e.g. of the strategies to deal separately with soft constraints are yet to be
explored, but could not be included due to a lack of time.

Looking back, I can now say that that this research project allowed me to gain a deep un-
derstanding of iterative algorithms and application of these algorithms on constraint-based GUI
layout. I hope that my proposed algorithms for solving constraints for GUI layout can serve as

a platform for future research.
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