http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
SURFACE ANALYSIS OF PARTICULATE EMISSIONS
BEFORE AND AFTER ATMOSPHERIC AGING

by
Geoffrey Stephen Henshaw

A thesis submitted to
the University of Auckland
in fulfilment of the
requirements for the degree of
Doctor of Philosophy in Chemistry.

Auckland

The reactions and transformations of atmospheric primary particles have been studied using the surface analysis techniques of X-ray Photoelectron Spectroscopy (XPS), Auger Electron Spectroscopy (AES), Scanning Electron Microscopy (SEM) and Secondary Ion Mass Spectrometry (SIMS).

Particles emitted from a steel mill were studied at their point of emission, during transport through the atmosphere and after deposition. The mill was located in a coastal region removed from other major industrial particle sources which made the identification of the mill particulate emissions possible in ambient samples. The mill utilizes indigenous titanomagnetite ironsand and coal as the raw materials. There is evidence of the surface enrichment of volatile trace elements such as Zn, S, Na, K and P from the raw materials in the particulate emissions.

Particle samples were collected from sites within the mill which represented different stages in the iron-making process, including the rotary kilns, electric melting furnaces and the vanadium recovery plant. This established an inventory of particulate emissions.

Mill sourced particles were then identified and studied in air samples collected downwind of the mill on silver-coated nucleopore filters. AES and SIMS depth profiling studies indicated the mill particles became surface enriched in sea salt components such as S, predominately as sulfate, Cl⁻ and Na⁺ after atmospheric aging. This was attributed to their coagulation with
the marine derived ambient aerosol. SIMS ion imaging and mass spectral analysis suggested a characteristic "fingerprint" of the mill emissions could be distinguished in the ambient aerosol up to 8 km downwind of the mill.

An experimental rig was constructed to model the interaction between the mill particles and the natural marine aerosol. A bubble nebuliser was developed to produce an artificial sea salt aerosol which was reacted with a metal powder in the fluidised bed of the rig. The metal powder was then aged under controlled relative humidity (RH) conditions. It was shown that an iron powder, after reaction and aging at 75 % RH, developed an aqueous surface layer which quickly led to electrochemical corrosion, dissolution and oxidation of the particle surface.

Evidence of this corrosion of metal particles occurring in the environment was found in a SEM-EDX study of the mill particles deposited on pine needles downwind of the mill. It was argued that these reactions would increase the bio-availability of the particle components. A model which incorporated these observations was developed to describe the morphogenesis of atmospheric primary particles during aging in the New Zealand environment.

XPS was used to study ambient aerosols deposited on both botanical and artificial passive sampling surfaces. Plant leaves were shown to be excellent collectors of particulate material and were suited to analysis by XPS. Site differences in the atmospheric aerosol load and composition were detected on vine leaves located on a hill side (high NaCl) and at a roadside (high sulfate and silicates) in a rural area. Zn and Fe species were detected by XPS on pine needles up to 2 km downwind of the steel mill.
ACKNOWLEDGEMENTS

Firstly, I would like to thank my supervisor Dr Jim Metson for his warm enthusiasm, guidance and occasional humour.

I would also like to thank NZ Steel Ltd for their financial support and the staff in Technical Services, particularly Jeremy Batchelor, for their co-operation and interest in this work.

I am grateful for the University Grants Committee Postgraduate Scholarship which enabled me to undertake this project.

A number of people have been involved in this work at a technical level. Thanks to David Stringer for the SEM training and computer wizardry, Paul Van der Heide and Dr Margaret Hyland for the SIMS analysis, and Kevin McMahon for the impactor sampler. Thanks also to Michael Brajkovich, winemaker at Kumeu River Winery, for allowing sampling sites to be established within the vineyard.

To my colleagues, Paul Van der Heide and Alistair Gillespie, I am grateful for your friendships and help over the years and wish you well for the future.

There have been special friends with whom I have felt a kinship of spirit and mind and I wish acknowledge your support in this endeavour; Doug Cleverly with his wine, woman and crystalline emotion, Alan Cathro and his joie de vivre, Niall Parkes and Helen Moroney, my whanau, kia kaha. To my friends at Ponsonby Baptist Church, my turangawaewae, our lives are interwoven and we walk the journey together until Christ’s return.

I wish to thank my family, Graeme, Sarah, Andrew, Joanne, Derek, Heyley and Alisdair for their encouragement, laughter and love.

Finally, my wife to be, Angela Kay Mollard. I have finished this despite your welcome diversion and now we begin a new life together. I thank you for your patience, fiestiness and unfathomable love. I have uncovered much over the course of this work but only now am I beginning to learn.
TABLE OF CONTENTS

TITLE ... i
ABSTRACT ... ii
ACKNOWLEDGEMENTS .. iv
TABLE OF CONTENTS .. v
LIST OF FIGURES .. x
LIST OF TABLES .. xv
GLOSSARY OF SYMBOLS xvi

CHAPTER ONE INTRODUCTION

1.1 Particles in the atmosphere .. 1
 1.1.1 The formation and physical properties of atmospheric particles 2
 1.1.2 Particle motion and deposition 7
 1.1.3 The chemical composition of atmospheric particles 9
 1.1.4 Heterogeneous chemistry of the atmospheric aerosol 12
1.2 Surface analysis techniques 15
 1.2.1 X-ray Photoelectron Spectroscopy 15
 1.2.2 Auger Electron Spectroscopy 17
 1.2.3 The electron spectrometer - experimental conditions 20
 1.2.4 Secondary Mass Spectrometry (SIMS) 22
 1.2.5 The SIMS Instrument - experimental conditions 24
Table of contents.

1.2.6 Conclusions and future prospects .. 25
1.3 Surface analysis in atmospheric environmental studies 27
 1.3.1 Surface studies of the natural aerosol 28
 1.3.2 Surface studies of primary particles from anthropogenic sources ... 29
1.4 Toxicological behaviour of aerosols .. 32
 1.4.1 Toxicological studies of SO$_2$-aerosol mixtures 32
 1.4.2 The effects of aerosols on vegetation 33
1.5 Aims of this study .. 37

CHAPTER TWO CHARACTERISATION OF PARTICULATE EMISSIONS FROM A STEEL MILL

2.1 Introduction ... 38
 2.1.1 Studies of particles produced by high temperature industrial processes ... 39
 2.1.2 The steel mill ... 42
 2.1.1.1 Rotary kiln ... 44
 2.1.1.2 Melting furnace .. 45
 2.1.1.3 Vanadium recovery plant ... 45
 2.2 Experimental methods .. 46
 2.3 Results and discussion .. 48
 2.3.1 Rotary kiln stack ... 48
 2.3.1.1 SEM-EDX analysis .. 48
 2.3.1.2 XPS analysis .. 54
 2.3.2 Slag tap at the melting furnace 57
 2.3.2.1 SEM-EDX analysis .. 57
 2.3.2.2 XPS analysis .. 62
 2.3.2.3 AES analysis .. 66
 2.3.2.4 SIMS analysis .. 70
 2.3.2.5 Summary ... 75
Table of Contents.

2.3.3 Vanadium recovery unit (VRU) ... 76
 2.3.3.1 SEM-EDX analysis .. 76
 2.3.3.2 XPS analysis ... 76
 2.3.3.3 AES analysis ... 81
 2.3.3.4 Summary .. 81

2.4 Conclusions ... 83

CHAPTER THREE SURFACE STUDIES OF MILL PARTICLES AFTER
ATMOSPHERIC AGING

3.1 Introduction ... 84
3.2 Experimental methods ... 86
 3.2.1 Sample collection and preparation 86
 3.2.2 Instrumental methods .. 86
3.3 Results and discussion .. 89
 3.3.1 AES analysis of individual mill particles - preliminary findings 89
 3.3.2 AES depth profiling of individual mill particles - case studies ... 92
 3.3.2.1 Fe oxide particle with a surface layer of marine
 components .. 93
 3.3.2.2 Ca and Fe particle ... 93
 3.3.2.3 Surface oxidised Fe-Si alloy particle 96
 3.3.2.4 Vanadium particle .. 101
 3.3.2.4 Summary of AES single particle study 104
 3.3.3 SIMS analysis of 150 μm diameter filter areas 105
 3.3.3.1 Mass spectra ... 105
 3.3.3.2 Depth profiles ... 108
 3.3.3.3 Ion images .. 108
 3.3.3.4 Summary of the SIMS analysis 116
3.4 Conclusions ... 118
Table of Contents

CHAPTER FOUR LABORATORY STUDY OF METAL PARTICLE AND MARINE AEROSOL INTERACTIONS

4.1 Introduction .. 120
4.2 Experimental .. 121
4.3 Results and discussion .. 124
 4.3.1 The artificial marine aerosol 124
 4.3.2 The iron powder ... 126
 4.3.3 Iron particle-marine aerosol interactions 132
 4.3.3.1 Iron particles aged at 0% relative humidity ... 132
 4.3.3.2 Iron particles aged at 75% relative humidity ... 137
4.4 Conclusions .. 143

CHAPTER FIVE SURFACE ANALYTICAL STUDY OF PASSIVE AIR SAMPLERS

5.1 Introduction .. 144
5.2 Experimental methods .. 146
 5.2.1 Sampling sites .. 146
 5.2.2 Artificial passive samplers 149
 5.2.3 Biological samples and sample preparation 149
 5.2.4 Analysis techniques 153
5.3 Results and discussion 154
 5.3.1 Kumeu passive samplers 154
 5.3.1.1 XPS results 154
 5.3.1.2 SEM-EDX results 164
 5.3.1.3 Summary of results from the analysis of the Kumeu passive air samplers 167
 5.3.2 Glenbrook sites 169
 5.3.2.1 XPS analysis of the artificial sampling substrates 169
 5.3.2.2 Summary of results from the analysis of the Glenbrook
Table of Contents.

artificial air samplers ... 175
5.3.2.3 Kiwifruit skins ... 175
5.3.2.4 Pine needles ... 177
5.3.2.5 Summary of results from the analysis of Glenbrook biological samplers ... 186
5.4 Conclusions .. 187

CHAPTER SIX CONCLUDING REMARKS
6.1 Model for the atmospheric aging of primary particles in the New Zealand environment ... 190
6.2 Future work ... 193

APPENDICES
Appendix A SIMS quantification by the RSF method 195
Appendix B AES single particle spectra 197

LIST OF REFERENCES ... 214
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Schematic of the atmospheric size distribution showing the three modes and their main sources and sinks.</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Schematic diagram showing mechanisms of aerosol formation in the atmosphere.</td>
<td>6</td>
</tr>
<tr>
<td>1.3</td>
<td>Schematic picture of an aged atmospheric particle.</td>
<td>11</td>
</tr>
<tr>
<td>1.4</td>
<td>Schematic diagram of the Auger emission process.</td>
<td>18</td>
</tr>
<tr>
<td>1.5</td>
<td>Diagram of the Kratos XSAM 800 electron spectrometer.</td>
<td>21</td>
</tr>
<tr>
<td>1.6</td>
<td>Schematic diagram of the Cameca IMS 3f ion microscope.</td>
<td>24</td>
</tr>
<tr>
<td>1.7</td>
<td>Stylised diagram of the uptake resistances through a leaf for atmospheric species.</td>
<td>35</td>
</tr>
<tr>
<td>2.1</td>
<td>Schematic diagram of ash formation and behaviour in coal combustion.</td>
<td>40</td>
</tr>
<tr>
<td>2.2</td>
<td>Map of the Glenbrook environs showing the position of the steel mill.</td>
<td>43</td>
</tr>
<tr>
<td>2.3</td>
<td>SEM micrograph of the rotary kiln particles on the glassfibre collection filter.</td>
<td>49</td>
</tr>
<tr>
<td>2.4</td>
<td>XRD pattern of the rotary kiln sample.</td>
<td>51</td>
</tr>
<tr>
<td>2.5</td>
<td>Graph showing the fractional removal efficiency of particulate emission control equipment as a function of particle size.</td>
<td>53</td>
</tr>
<tr>
<td>2.6</td>
<td>XPS spectrum of the rotary kiln particles.</td>
<td>55</td>
</tr>
<tr>
<td>2.7</td>
<td>SEM micrographs of the slag tap particles.</td>
<td>58</td>
</tr>
<tr>
<td>2.8</td>
<td>SEM micrograph of a ruptured slag tap particle.</td>
<td>59</td>
</tr>
<tr>
<td>2.9</td>
<td>SEM micrographs of slag tap particle crystallinity</td>
<td>60</td>
</tr>
<tr>
<td>2.10</td>
<td>SIMS ion image of slag tap particles.</td>
<td>61</td>
</tr>
</tbody>
</table>

List of figures.

2.11 XRD patterns of the slag tap particles. 63
2.12 S 2p and Si 2p XPS regions of the slag tap particles. 65
2.13 AES spectra of sulfur compounds showing the S LMM region. 67
2.14 XPS S 2p spectra of Na₂SO₄. 68
2.15 AES S LMM spectra of individual slag tap particles. 69
2.16 AES depth profile of a slag tap particle. 71
2.17 SIMS relative elemental concentrations in slag tap particles. 72
2.18 ⁶⁷Al⁺ and ⁴⁸Ti⁺ ion images of a slag tap particle. 73
2.19 ⁶⁴Zn⁺ ion image of a slag tap particle. 74
2.20 SEM micrograph of the VRU particles. 77
2.21 XPS spectrum of the VRU particles. 79
2.22 P 2p region of the VRU particles. 79
2.23 AES spectra of an agglomerated VRU particle. 82
3.1 Beam geometry around a spherical particle in the Kratos XSAM spectrometer. 800
3.2 Diagram showing etch rates as a function of ion beam angle of incidence. 87
3.3 AES spectra of a mill particle collected downwind of the mill. 90
3.4 AES spectrum of a Zn particle collected downwind of the mill. 91
3.5 AES spectrum of a 5 μm particle collected downwind of the mill. 94
3.6 AES depth profile of the 5 μm particle. 94
3.7 AES spectrum of a 16 μm particle collected downwind of the mill. 95
3.8 AES depth profile of the 16 μm particle. 95
3.9 AES spectrum of a 6 μm particle collected downwind of the mill. 98
3.10 AES spectrum of particle after etching. 98
3.11 AES depth profile of the 6 μm particle. 99
3.12 AES Fe LMM spectra of the 6 μm particle. 100
3.13 AES spectrum of a 8 μm particle collected downwind of the mill. 102
3.14 AES depth profile of the 8 μm particle. 102
3.15 SIMS elemental concentrations of the 2 km sample. 106
3.16 SIMS elemental concentrations of the 8 km sample. 106
3.17 SIMS depth profiles of the 2 km filter. 107
3.18 SIMS ion images of the downwind sample. 109-111
3.19 SIMS ion images of the upwind sample. 112-114
4.1 Nebuliser for the production of a sea salt aerosol. 122
4.2 Mixing rig for the metal powder and sea salt aerosol. 123
4.3 SEM micrograph of the sea salt particles produced by the nebuliser. 125
4.4 XPS spectrum of the sea salt particles produced by the nebuliser. 125
4.5 SEM micrograph of the BDH Fe powder. 127
4.6 XPS spectrum of the BDH Fe powder. 127
4.7 C 1s region of the BDH Fe powder. 128
4.8 Fe 2p₃/₂ region of the BDH Fe powder. 128
4.9 O 1s region of the BDH Fe powder. 130
4.10 Fe 2p depth profile of the BDH Fe powder. 131
4.11 O 1s depth profile of the BDH Fe powder. 131
4.12 SEM micrographs of the Fe powder after reaction and aging in a desiccator. 133
4.13 XPS spectrum of the Fe powder after reaction and aging in a desiccator. 134
4.14 Fe 2p₃/₂ region of the Fe powder after reaction and aging in a desiccator. 135
4.15 O 1s region of the Fe powder after reaction and aging in a desiccator. 135
4.16 Fe 2p depth profile of the Fe powder after reaction and aging in a desiccator. 136
4.17 SEM micrographs of the Fe powder after reaction and aging at 75 % relative humidity. 138
4.18 Fe 2p₃/₂ region of the Fe powder after reaction and aging at
75 % relative humidity.

4.19 O 1s region of the Fe powder after reaction and aging at 75 % relative humidity.

4.20 Fe 2p depth profile of the Fe powder after reaction and aging at 75% relative humidity.

4.21 O 1s depth profile of the Fe powder after reaction and aging at 75 % relative humidity.

4.22 Schematic diagram of the corrosion of the Fe powder by Cl' at 75 % relative humidity.

5.1 Map of the Kumeu region showing sampling sites.

5.2 Map of the Glenbrook region showing sampling sites.

5.3 Passive air sampling device.

5.4 XPS spectra of the sampling substrates before atmospheric exposure.

5.5 Cu 2p region of the Kumeu copper substrates.

5.6 XPS spectra of the Kumeu silver substrates.

5.7 XPS spectra of the Kumeu copper substrates.

5.8 XPS spectra of the Kumeu graphite substrates.

5.9 XPS spectra of the Kumeu leaf samples.

5.10 SEM micrographs and x-ray analysis of crystalline features on the silver substrate from Kumeu site 3.

5.11 SEM micrographs and x-ray analysis of particles on the surface of the silver substrate from Kumeu site 3.

5.12 C 1s regions of the silver and copper substrates from the Glenbrook site 3.

5.13 Graph of XPS atomic concentrations versus etch time for the silver substrate from Glenbrook site 4.

5.14 XPS spectra of stained and unstained regions on kiwifruit.

5.15 EDX maps of the stained kiwifruit skin.

5.16 SEM micrograph of a mill particle on a kiwifruit skin.

List of figures.
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.17</td>
<td>SEM micrographs of pine needles collected 2 km from the mill.</td>
<td>181</td>
</tr>
<tr>
<td>5.18</td>
<td>SEM micrographs of pine needles collected 5 km from the mill.</td>
<td>182</td>
</tr>
<tr>
<td>5.19</td>
<td>SEM micrograph and x-ray analysis of mill particles on the pine needles.</td>
<td>183</td>
</tr>
<tr>
<td>5.20</td>
<td>SEM micrograph of a particle, on a pine needle, exhibiting corrosion morphology.</td>
<td>184</td>
</tr>
<tr>
<td>6.1</td>
<td>Chemical structure and evolution of a mill particle at emission, during atmospheric transport and after a period of aging in the atmosphere.</td>
<td>191</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Deliquescence points of some salts found in the atmospheric aerosol particles.</td>
</tr>
<tr>
<td>1.2</td>
<td>Mean atmospheric lifetimes and travel distances of atmospheric aerosol particles.</td>
</tr>
<tr>
<td>1.3</td>
<td>Survey of surface analysis techniques.</td>
</tr>
<tr>
<td>2.1</td>
<td>Sampling methods and conditions at the steel mill.</td>
</tr>
<tr>
<td>2.2</td>
<td>XPS and SEM-EDX analyses of the rotary kiln particles.</td>
</tr>
<tr>
<td>2.3</td>
<td>XRD data for the rotary kiln particles.</td>
</tr>
<tr>
<td>2.4</td>
<td>Auger parameters of Zn compounds.</td>
</tr>
<tr>
<td>2.5</td>
<td>XPS and SEM-EDX analyses of the slag tap particles.</td>
</tr>
<tr>
<td>2.6</td>
<td>XPS and SEM-EDX analyses of the VRU particles.</td>
</tr>
<tr>
<td>2.7</td>
<td>Auger parameters for sodium compounds.</td>
</tr>
<tr>
<td>4.1</td>
<td>XPS composition of the laboratory sea salt aerosol.</td>
</tr>
<tr>
<td>5.1</td>
<td>Meterological data for the Kumeu region during the sampling period.</td>
</tr>
<tr>
<td>5.2</td>
<td>XPS analysis of the Kumeu substrate surfaces.</td>
</tr>
<tr>
<td>5.3</td>
<td>Na:Cl ratios for the Kumeu substrates.</td>
</tr>
<tr>
<td>5.4</td>
<td>N 1s binding energies for nitrogen species.</td>
</tr>
<tr>
<td>5.5</td>
<td>Description of the atmospheric aerosol at the Kumeu sites.</td>
</tr>
<tr>
<td>5.6</td>
<td>XPS analysis of the Glenbrook substrate surfaces.</td>
</tr>
<tr>
<td>5.7</td>
<td>Na:Cl ratios for the Glenbrook sites.</td>
</tr>
<tr>
<td>5.8</td>
<td>Silver Auger parameters for various silver compounds.</td>
</tr>
<tr>
<td>5.9</td>
<td>XPS concentrations of elements on stained and unstained regions of a kiwifruit skin.</td>
</tr>
<tr>
<td>5.10</td>
<td>XPS concentrations of elements on pine needles collected from sites downwind of the mill.</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>1.1</td>
<td>Deliquescence points of some salts found in the atmospheric aerosol particles.</td>
</tr>
<tr>
<td>1.2</td>
<td>Mean atmospheric lifetimes and travel distances of atmospheric aerosol particles.</td>
</tr>
<tr>
<td>1.3</td>
<td>Survey of surface analysis techniques.</td>
</tr>
<tr>
<td>2.1</td>
<td>Sampling methods and conditions at the steel mill.</td>
</tr>
<tr>
<td>2.2</td>
<td>XPS and SEM-EDX analyses of the rotary kiln particles.</td>
</tr>
<tr>
<td>2.3</td>
<td>XRD data for the rotary kiln particles.</td>
</tr>
<tr>
<td>2.4</td>
<td>Auger parameters of Zn compounds.</td>
</tr>
<tr>
<td>2.5</td>
<td>XPS and SEM-EDX analyses of the slag tap particles.</td>
</tr>
<tr>
<td>2.6</td>
<td>XPS and SEM-EDX analyses of the VRU particles.</td>
</tr>
<tr>
<td>2.7</td>
<td>Auger parameters for sodium compounds.</td>
</tr>
<tr>
<td>4.1</td>
<td>XPS composition of the laboratory sea salt aerosol.</td>
</tr>
<tr>
<td>5.1</td>
<td>Meterological data for the Kumeu region during the sampling period.</td>
</tr>
<tr>
<td>5.2</td>
<td>XPS analysis of the Kumeu substrate surfaces.</td>
</tr>
<tr>
<td>5.3</td>
<td>Na:Cl ratios for the Kumeu substrates.</td>
</tr>
<tr>
<td>5.4</td>
<td>N 1s binding energies for nitrogen species.</td>
</tr>
<tr>
<td>5.5</td>
<td>Description of the atmospheric aerosol at the Kumeu sites.</td>
</tr>
<tr>
<td>5.6</td>
<td>XPS analysis of the Glenbrook substrate surfaces.</td>
</tr>
<tr>
<td>5.7</td>
<td>Na:Cl ratios for the Glenbrook sites.</td>
</tr>
<tr>
<td>5.8</td>
<td>Silver Auger parameters for various silver compounds.</td>
</tr>
<tr>
<td>5.9</td>
<td>XPS concentrations of elements on stained and unstained regions of a kiwifruit skin.</td>
</tr>
<tr>
<td>5.10</td>
<td>XPS concentrations of elements on pine needles collected from sites downwind of the mill.</td>
</tr>
</tbody>
</table>
GLOSSARY OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Isotope abundance</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Slip correction factor for particle velocity</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>Overlayer thickness</td>
<td>Å</td>
</tr>
<tr>
<td>D</td>
<td>Particle diameter</td>
<td>μm</td>
</tr>
<tr>
<td>D'</td>
<td>Fick's diffusion co-efficient</td>
<td></td>
</tr>
<tr>
<td>D_0</td>
<td>Critical diameter for growth through homogeneous nucleation</td>
<td>μm</td>
</tr>
<tr>
<td>D_a</td>
<td>Aerodynamic diameter</td>
<td>μm</td>
</tr>
<tr>
<td>E_b</td>
<td>Binding energy</td>
<td>eV</td>
</tr>
<tr>
<td>E_k</td>
<td>Kinetic energy</td>
<td>eV</td>
</tr>
<tr>
<td>F_r</td>
<td>Resistance force acting on a particle due to laminar flow of air</td>
<td>N</td>
</tr>
<tr>
<td>$h\nu$</td>
<td>Photon energy</td>
<td>eV</td>
</tr>
<tr>
<td>I</td>
<td>Intensity</td>
<td>counts per sec (cps)</td>
</tr>
<tr>
<td>j</td>
<td>Total angular momentum quantum number</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>Flux of particles</td>
<td>cm^2s^{-1}</td>
</tr>
<tr>
<td>l</td>
<td>Particle mean free path through the air</td>
<td>μm</td>
</tr>
<tr>
<td>m</td>
<td>Atomic mass</td>
<td>amu</td>
</tr>
<tr>
<td>N_a</td>
<td>Number concentration</td>
<td>cm^{-3}</td>
</tr>
<tr>
<td>r</td>
<td>Uptake resistance</td>
<td>s.cm^{-1}</td>
</tr>
<tr>
<td>s</td>
<td>Spin orbital quantum number</td>
<td></td>
</tr>
<tr>
<td>z</td>
<td>Atomic charge</td>
<td></td>
</tr>
</tbody>
</table>
GREEK

α Auger parameter eV
η Gas viscosity m.l⁻¹.s⁻¹
λ Inelastic mean free path of an electron through a solid Å
ρ Density g.cm⁻¹
t Atmospheric residence time day
φ Spectrometer work function eV

ABBREVIATIONS

AES Auger Electron Spectroscopy
FWHM Full Width Half Maximum
LAMMA Laser Microprobe Mass Analysis
RH Relative Humidity
RSF Relative Sensitivity Factor
SEM-EDX Scanning Electron Microscopy with Energy Dispersive X-ray analysis.
SIMS Secondary Ion Mass Spectroscopy
XPS X-ray Photoelectron Spectroscopy
UHV Ultra High Vacuum