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Abstract

For analysing the behaviour of pedestrians in a scene,
it is common practice that pedestrian localization, clas-
sification, and tracking are conducted consecutively. The
direction of a pedestrian, being part of the pose, implies
the future path. This paper proposes novel Random Deci-
sion Forests (RDFs) to simultaneously classify pedestrians
and their directions, without adding an extra module for di-
rection classification to the pedestrian classification mod-
ule. The proposed algorithm is trained and tested on the
TUD multi-view pedestrian and Daimler Mono Pedestrian
Benchmark data-sets. The proposed integrated RDF classi-
fiers perform comparable to pedestrian or direction trained
separated RDF classifiers. The integrated RDFs yield re-
sults comparable to those of state-of-the-art and baseline
methods aiming for pedestrian classification or body direc-
tion classification, respectively.

1. Introduction

In a driver assistance system (DAS) context, pedestrians,
as the most vulnerable road users, require special attention
for being protected. Algorithms [7, 8, 13, 16, 28] are pro-
posed to classify pedestrians, instead of taking them just as
“obstacles” (such as cars, buildings, or rubbish bins) which
block a direction of driving. Due to clustered backgrounds,
changes in illumination, variable clothing, different poses,
or changes in localization, pedestrian detection (i.e. local-
ization and classification) is still a challenging task if aiming
at close to 100% accuracy.

In order to further analyse their behaviour, e.g. when
crossing a road, detected pedestrians are tracked conse-
quently. Tracking-by-detection algorithms [3, 20, 21, 26,
29, 30] work by associating temporally detected pedestri-
ans to derived trajectories. Due to noisy classification re-
sults and irregular movements, detection and motion-based
tracking methods produce even more noisy trajectories, es-

pecially when a pedestrian is standing or slowly moving
only. Knowledge about previous trajectories or motion is
normally utilized to predict possible locations of pedestri-
ans in the current frame. A pedestrian may change the
walking path abruptly, especially when moving slowly, or
when starting to walk again after standing. In these cases,
the model about previous motion requires time to converge
to the new motion, and information about body direction
helps to converge faster. Body direction implies a direction
of a future path, which may be totally uncorrelated to the
previous trajectory. Discrete body-direction classification
algorithms are proposed in [1, 4, 18, 23, 32], assigning ei-
ther one of eight (namely N, NE, E, SE, S, SW, W, or NW)
or of four directions (namely N, E, S, W) to each pedestrian;
see Fig. 1. [16] points out that adopting such a classification
of directions reduces the effect of noisy tracking results and
improves path prediction.

Pedestrian and direction classification are commonly
handled separately in different processing modules. Differ-
ent classifiers are trained for pedestrian and direction clas-
sification, respectively. For direction classification, again
multiple classifiers are trained for each direction separately.

Figure 1. Direction-labelled pedestrian (N, E, S, or W), pedestrian,
or non-pedestrian bounding boxes. Direction-labelled pedestrians
are from the TUD Multiple View Pedestrian database, and pedes-
trian or non-pedestrian boxes are from the Daimler Mono Pedes-
trian database.
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Figure 2. Pedestrians and their body directions are classified
simultaneously in one RDF classifier. During training, non-
pedestrians, pedestrians, and direction-labelled pedestrians are
employed all together. The structural flexibility of RDF enables
auto-adjusting of the focus for both classification tasks. Going
through the trained RDF, test bounding boxes are classified to be
either a non-pedestrian (class Non), or a pedestrian with direction
(N, E, S, or W).

In [11, 18], both tasks are considered together by adopting
cascade classifiers or a Bayesian model. This paper pro-
poses novel RDF structures to address both classification
tasks in one RDF classifier, as briefly sketched in Fig. 2.
The experiments prove that the proposed combined RDFs
is able to handle both classification tasks successfully with-
out degrading the performance of each task.

The paper is structured as follows. In Section 2 we
briefly review related work. Section 3 provides the pro-
posed algorithm. Experiments and their interpretation are
given in Section 4. Section 5 concludes.

2. Related Work
Research on pedestrian classification or detection is con-

ducted at many research institutions worldwide. The deriva-
tion of global or holistic descriptors for a rectangular bound-
ing box with a trained classifier is a standard approach in the
field [7, 8, 9, 10, 17, 27, 28, 24]. Positive bounding boxes
contain at least one pedestrian, and negative boxes contain
background only; this classification is performed by using
holistic features. Then, one or more classifiers are trained

to separate pedestrians from the background. Finally, test
bounding boxes described by the same feature pass through
the classifier. Likelihoods are obtained, denoting whether
there is a pedestrian in a given bounding box.

The histogram of oriented gradients (HoG) proved to
be an efficient description for pedestrian classification [7].
Other features, such as Haar-like [17], histogram of ori-
ented flow (HoF) [8], or linear binary patterns (LBP) [27]
are adopted with HoG to further improve the performance.
The employed classifier is another important decision. Sup-
port vector machines (SVM) or AdaBoost are used to deal
with high-dimensional feature vectors. See [28] for a
comparison of different descriptors and classifiers used for
pedestrian detection and classification.

Instead of using a feature vector to describe the whole
bounding box, body-part-based features are employed
in [19, 12]. Gall et al. [13, 14, 15] train a classifier with
simple features of randomly extracted patches from training
samples. In [19], SIFT features are used to extract patches
in training samples containing body parts, e.g. leg, arm, or
torso, followed by clustering such patches. Visually similar
patches are grouped together. When applying the trained
classifier, selected boxes are matched with representations
of those clusters.

A pictorial structure-based method is proposed in [12]
for recognizing objects and their pose. A prior model is
calculated based on a database of images of connected body
parts. The method aims at detecting an optimal match of a
model with a given image. Thus, a pose is recognized when
corresponding to a model.

Methods for direction classification adopt features and
classifiers already used for pedestrian classification. The
HoG proved to perform better than a classic covariance
descriptor [2]. Multiple classifiers, e.g. by using SVM
or AdaBoost, are adopted for direction recognition, as
at least four directions (classes) are required to be sepa-
rated. Each classifier is trained for recognizing one direc-
tion [1, 2, 4, 18, 23, 32]. Maximum probability decides then
which direction is selected.

[23] presents a method based on silhouettes. Used
shape descriptors limit the range of direction to the inter-
val [0◦, 180◦]. [25] proposes to estimate pedestrian direc-
tion more robustly by selecting a recognition result based
on multiple still images, rather than just based on a single
image. In [2], multiple random-tree classifiers are trained
and compared with trained SVM classifiers. Outputs are
integrated using a mixture of approximated wrapped Gaus-
sians (MAWG). Using calculated probabilities of multiple
outputs obtained from all participating classifiers, the fi-
nal direction is obtained by maximizing the mixed prob-
ability of the WAWG. Direction recognition is difficult as
head pose, torso, and body might point into different di-
rections. But they are related to each other. For instance,



in [4, 5], body direction is estimated by considering loca-
tion and head pose, and assuming that tracks are available.

Very few researchers consider combining the pedestrian
detection and direction recognition tasks. [18] presents
a three stage process. Stages 1 and 2 adopt different
HoG (with blocks either overlapping or not) to reject non-
pedestrian boxes. In Stage 3, four SVM classifiers are
trained for the four directions separately using pedestrian
samples only. In [11], a unified Bayesian model, using
shape and motion cues, is proposed to classify pedestrians
and to recognize one of four directions.

RDF techniques have been adopted in various applica-
tions already, including keypoint recognition [22], object
detection [13], tracking [14], or action recognition [31]. In
[15], multiple objects (cars or pedestrians) are classified us-
ing one classifier trained with samples of both types of ob-
jects. In this paper we propose to integrate pedestrian and
direction classification tasks into one RDF classifier.

An RDF has a flexible structure, and details are given in
Section 3.1. Each node of one of the trees is a weak classi-
fier, and different target functions adopted enable the split-
ting process to achieve different goals. We proposes novel
structured RDFs, which are actually able to focus on differ-
ent tasks simultaneously. For the adaptive structured RDF,
initially, the splitting nodes focus on classifying pedestri-
ans in distinction to the background. When samples arrive
at the current node which contain mostly pedestrians, direc-
tion classification comes into the process. For our randomly
structured RDF, the target for a split node is randomly se-
lected.

3. Proposed Algorithm
The first subsection starts with a general outline, also re-

calling the RDF framework. Details of the algorithm are
provided in the following subsections.

3.1. Random Decision Forests

An RDF consists of a set of randomly trained decision
trees Tt, for t ∈ {1, . . . , N}. Each tree is considered as
being a weak classifier. Furthermore, such a weak classifier
consists of a set of split functions hierarchically arranged
into a tree structure. Thus, classification problems are split
by answering simple questions of the split functions.

There are two types of nodes in a decision tree, internal
(or split) or terminal (or leaf) nodes. Each split node has a
split function and two outgoing edges which are connected
to two nodes (split or leaf nodes); see Fig. 3. A split func-
tion hφ(·) decides which node (left or right) comes next:

IL(φ) = {I ∈ I|hφ(I) = 0} (1)
IR(φ) = {I ∈ I|hφ(I) = 1} (2)

where I denotes the set of inputs; hφ(·) and its parameters
φ are defined later.

Figure 3. Top: A decision tree; circles denote split nodes, rect-
angles denote leaf nodes. The arrows denote the path a bounding
box might define until reaching a leaf node. Bottom: Three possi-
ble split cases.

During training, a set Itr ⊂ I of labelled pedestrian and
background samples are employed for expanding the trees.
Starting at a root node, a decision tree is trained by grow-
ing subsequently internal nodes, i.e. by selecting suitable
functions hφ(·) with respect to a predefined target function.

Samples I ∈ Itr split along the internal nodes and end
up in a leaf node where a stop criterion is reached. The
distribution of classes in a leaf node L is then obtained
with respect to the samples I ∈ Itr reaching this leaf
node. The leaf node assigns pedestrian or non-pedestrian
class probabilities p(c|L), for c ∈ {0, 1}, and probabilities
p(c = 0, d|Lt), for d ∈ {N,E, S,W}, for body directions.

Each tree grows randomly and independently of the oth-
ers. Randomness is important when training a tree. This en-
sures a variety in the forest, or, in other words, trees are less
correlated this way with each-other. For a forest, it would be
meaningless to assemble “similar” trees. Details about in-
troducing randomness into the training procedure are given
in Section 3.5.

Let Its ⊂ I be a set of input bounding boxes used for
testing. Any Its ∈ Its is passed through the N trees Tt of
a trained forest. In each tree Tt, Its ends up in a leaf Lt.
Thus, N distributions are assigned to one test box. By

c∗ = argmaxc

N∑
t=1

p(c|Lt) (3)

d∗ = argmaxd

N∑
t=1

p(c = 0, d|Lt) (4)

we define that a maximum-likelihood decision is adopted to
classify a test box and, if c∗ = 0, their direction.

3.2. Features

Because HoG features lead to a strong performance in
solving both pedestrian and body direction classification



tasks [7, 2], similar features are adopted here. Bounding
boxes used for training or in testing are of identical size (in
our implementation of size 64 × 192). Three levels of cell
sizes, namely 8 × 8, 16 × 16, and 32 × 32, are adopted to
generate the feature vector, with a block size of 2 × 2 cells
and a block stride of one cell for each direction. An HoG
is calculated for each cell using 9 bins, which leads to a
7,165-dimensional feature vector.

But instead of using the vectors as a whole to train the
classifier, only a few components (possibly just one) of the
feature vectors are used in one split node to separate train-
ing samples into two kinds of subsequent nodes. A feature
vector is resized into an HoG matrix B of size 796 × 9,
where each row corresponds to a normalized cell, and each
column to a bin.

3.3. Split Functions

As discussed above, split functions are simplified ques-
tions aiming at solving the classification problem step by
step. They are relatively simple but essential.

Theoretically, hφ(I) could be any function that produces
a binary value in {0, 1}. In this case, one option is to com-
pare two feature values, defined by

hφ(I) =

{
0 if B(p, i)−B(q, j) > τ

1 otherwise
(5)

where the parameters φ = {p, q, i, j, τ} denote two block
numbers, the bin numbers, and the threshold.

More parameters increase the chance of over-fitting [6].
A second option is given by using one feature-value only,
defined by

hφ(I) =

{
0 if B(p, i) > τ

1 otherwise
(6)

In order to split the training samples properly, parameters
φ = {p, q, i, j, τ} or φ = {p, i, τ} for each internal node
are learned with respect to maximizing a predefined target
function. Having different target functions, split nodes are
generated differently. Thus it is essential to define an ap-
propriate objective function for obtaining “good” split func-
tions.

3.4. Goodness of Splitting

In order to handle the pedestrian and body direction
recognition simultaneously, the target function ocd(φ, I)
is defined by two terms, a pedestrian classification term
oc(φ, I) and a direction classification term od(φ, I). An
option is to identify ocd(φ, I) randomly either with oc(φ, I)
or with od(φ, I). Another option is a weighted sum

ocd(φ, I) = oc(φ, I) + w(I) · od(φ, I) (7)
w(I) = γ ·max{p(c = 0|I)− η, 0} (8)

The weight w(I) changes with respect to p(c0|I), the prob-
ability of a pedestrian in the current node. Direction classifi-
cation is conducted only if the probability of being a pedes-
trian is larger than a threshold η. The higher the probability
of a pedestrian is, the more we consider od(φ, I). At the
beginning, pedestrian classification has the priority. A sim-
plified demonstration is shown in Fig. 4; here we assume
that γ and η are constant variables.

Figure 4. Auto adjusting the split focus from a parent split node
(left) to one of the two child nodes (right). Left: Red rectangles
identify non-pedestrian samples, and black circles are for pedes-
trians (direction-labelled or unlabelled). As p(c = 0|I) < η,
splitting focuses on separating samples of pedestrians from those
of non-pedestrians. Right: Darker (cyan) and lighter (purple) cir-
cles denote pedestrians with different directions, say, N and S. As
p(c = 0|I) > η, splitting focuses now on classifying directions.

In order to measure the goodness of splitting, for pedes-
trians and non-pedestrians with oc(φ, I), and direction
classes with od(φ, I), Shannon entropy-based measures
oc(φ, I) and od(φ, I) are defined as follows:

oc(φ, I) = Ec(I)−
∑

k∈{L,R}

ωkEc(Ik(φ)) (9)

od(φ, I) = Ed(I)−
∑

k∈{L,R}

ωkEd(Ik(φ)) (10)

Ec(I) = −
∑
c

p(c|I) log(p(c|I)) (11)

Ed(I) =

−
∑
d

p(c = 0, d|I) log(p(c = 0, d|I)) (12)

ωk = |Ik(φ)|/|I(φ)| (13)

where Ec(I) and Ed(I) denote entropies of pedestrian and
direction classes, respectively, and ω is the weight for bal-
ancing the bias caused by the different numbers of samples
going to the left or right child node.

3.5. Implementation

Training: as the dataset adopted in [11] is not pub-
licly available, we combine several datasets (TUD multi-
view pedestrian, the Daimler Mono Pedestrian Classifica-
tion Benchmark, and Daimler Mono Pedestrian Detection
Benchmark data-sets) to train and test the proposed method,



named the Pedview dataset. For training, 15,000 nonpedes-
trian samples from the Classification Benchmark dataset,
6,000 pedestrian samples from the Detection Benchmark
dataset, and 4,935 direction-labelled pedestrian samples
from the TUD multi-view pedestrian dataset are employed.
Of those, 8,000 samples (3,000 from the TUD dataset) are
randomly chosen for training a single tree.

Learn split node: Starting with the first split node (the
root node), samples are split to the left or right child node
according to the value of the split function. As the split
function is supposed to split different classes, the suitable
parameters φ are learned from the samples. For ensuring
a variety of trees and time efficiency, parameters in φs,
for s = 1, 2, . . . , 1000, except τ , are selected randomly.
For parameters ps and is, a range [τmin, τmax] of values
B(ps, is) is calculated. Then, out of ten randomly selected
values τ ∈ [τmin, τmax] we choose that τs which maxi-
mizes Equ. (7) for {ps, is}. The intention is to have those
parameters φ = {p∗, i∗, τ∗} for the current node which
maximize Equ. (7) for all the parameters φs = {ps, is, τs},
for s = 1, . . . , 1000.

Stop growing: If a stop criteria is reached, the node stops
splitting, otherwise, split functions are again learned for
both child nodes using the samples reaching this node. The
depth in the tree and the number of samples reaching a node
are considered as stop criterion, as a deep tree (i.e. a tree of
large depth) leads to an over-fitting problem and, if only a
few samples reach a leaf node, then there might also be a
bias in the distribution. Thus, if a defined maximum depth
is reached, or the number of samples (so far) at a node is be-
low a threshold then we stop with splitting. Specific settings
for each forest are given in Section 4.1.

Compensate sample bias: In order to reduce a bias de-
fined by the different cardinalities of samples across classes
during training, we compensate by using the following fac-
tors rc and rd at a given leaf node L:

p(c|L) = |ILc | · rc/
∑
c

(|ILc | · rc) (14)

rc = |Itr|/|Itrc | (15)

p(d|L) = |ILd | · rd/
∑
d

(|ILd | · rd) (16)

rd = |Ild|/|Ildc | (17)
p(c = 0, d|L) = p(c = 0|L) · p(d|L) (18)

where |Itr| = 8, 000 for each tree; set Ild ⊂ Itr contains
all the direction-labelled samples in Itr, and set IL ⊂ Itr
contains all the samples arriving at leaf node L. Subscripts
c or d select training samples in class c, or with direction d.

The larger the number N of trees, the better the perfor-
mance of the classifier. We choose N = 120 for all experi-
ments.

Testing: 10,000 nonpedestrian bounding boxes from the

Algorithm 1 (Training)
Input: Randomly selected set I of 7,500 samples with cor-
responding HoG matrixes B.
Output: Trained trees Tt, for t = 1, 2, . . . , N

1: Let Tt = ∅, num = |I|, dep = 0, stop criterion
tnum = 20, tdep = 15, temporal data store variables
tempocd1 = 0, tempocd2 = 0.

2: if num < tnum || dep > tdep then
3: calculate p(c|L), p(c = 0, d|L) with I, according to

Eqs. (14) and (18);
4: add leaf L to the tree: Tt = Tt ∪ L
5: return Tt.
6: else
7: dep = dep+ 1;
8: for s = 1, . . . , 1000 do
9: randomly select a parameter set {ps, is};

10: find range [τmin, τmax] of ps;
11: for h = 1, . . . , 10 do
12: randomly select τh ∈ [τmin, τmax];
13: split I into ILh, IRh according to Equ. (6);
14: calculate ocd({ps, is, τh}, I) with Equ. (7);
15: if ocd({ps, is, τh}, I) > tempocd2 then
16: tempocd2 = ocd(φs, I);
17: τs = τh, φs = {ps, is, τs};
18: end if
19: end for
20: if tempocd2 > tempocd1 then
21: φ∗ = φs;
22: end if
23: end for
24: expand tree by new split node: Tt = Tt ∪ φ∗;
25: split I into IL and IR;
26: num = |IL|, I = IL, and go to line 2;
27: num = |IR|, I = IR, and go to line 2;
28: end if

Classification Benchmark dataset, 3,000 pedestrian bound-
ing boxes from the Detection Benchmark dataset, and 248
direction-labelled pedestrian bounding boxes from the TUD
multi-view pedestrian dataset are adopted.

Each test input is passed through each tree Tt in the for-
est. First, the feature matrixB is calculated. For any current
node, the value of the split function is computed, and then
the input is passed on to the corresponding (left or right)
child node until it reaches a leaf nodeLt. Equation (4) spec-
ifies the final output.

Algorithms 1 and 2 specify our training and RDF testing
procedures, respectively.

4. Experiments
In this section, we aim (1) to prove that the proposed

task-combining forests perform comparable to single-task



Algorithm 2 (Testing)
Input: Test bounding box I , corresponding HoG matrix B,
trained trees Tt, with t = 1, 2, . . . , N .
Output: Class label c∗ and, if c∗ = 0, also d∗.

1: for t = 1, . . . , N do
2: pass I through Tt until reaching a leaf node Lt, ob-

tain distribution p(c|Lt), p(c = 0, d|Lt);
3: end for
4: obtain c∗ and d∗ with Equ. (4);
5: return c∗, d∗.

aimed methods, and (2) compare different settings to struc-
ture a task-combining forest. The experimental design is
described in detail in Section 4.1, and the experimental re-
sults are illustrated in Section 4.2.

4.1. Experimental Design

Nine experiments reported in this section have been de-
signed as follows:

(1) PedD1 - RDF trained with pedestrian and non-
pedestrian samples using split function Equ. (6), maximum
depth to be 15, minimum number of samples to be 20,

(2) PedD2 - RDF trained with pedestrian and non-
pedestrian samples using split function Equ. (5), maximum
depth to be 15, minimum number of samples to be 20,

(3) FourD1 - RDF trained with four-direction-labelled
pedestrian samples using split function Equ. (6), maximum
depth to be 10, minimum number of samples to be 10,

(4) FourD2 - RDF trained with four-direction-labelled
pedestrian samples using split function Equ. (5), maximum
depth to be 10, minimum number of samples to be 10,

(5) FourPedWD1 - RDF trained with four-direction-
labelled samples, pedestrian samples and non-pedestrian
samples using split function Equ. (6) and weighted-
combining target function Equ. (7), maximum depth to be
15, minimum number of samples to be 20,

(6) FourPedWD2 - RDF trained with four-direction-
labelled samples, pedestrian samples and non-pedestrian
samples using split function Equ. (5) and weighted-
combining target function Equ. (7), maximum depth to be
15, minimum number of samples to be 20,

(7) FourPedRD1 - RDF trained with four-direction-
labelled samples, pedestrian samples and non-pedestrian
samples using split function Equ. (6), and target function
randomly selected to be oc or od, maximum depth to be 15,
minimum number of samples to be 20,

(8) FourPedRD2 - RDF trained with four-direction-
labelled samples, pedestrian samples and non-pedestrian
samples using split function Equ. (5), and target function
randomly selected to be oc or od, maximum depth to be 15,
minimum number of samples to be 20,

(9) PedSVM - Linear SVM trained with pedestrian and
non-pedestrian samples,

Table 2. Confusion matrix FourD1
N E S W

N 0.91 0.00 0.09 0.00
E 0.00 0.73 0.18 0.09
S 0.45 0.00 0.53 0.03
W 0.12 0.18 0.12 0.56

Table 3. Confusion matrix FourD2
N E S W

N 0.90 0.00 0.82 0.02
E 0.10 0.67 0.05 0.19
S 0.48 0.10 0.36 0.07
W 0.06 0.22 0.00 0.72

The four directions are N, E, S, and W. The forests
trained with four direction labelled samples are tested with
eight directions, N, NE, E, SE, S, SW, W, and NW.

4.2. Experimental Results

Direction classification performance. See Table 1 for
the direction classification accuracy obtained by six forests
(FourD1, FourD2, FourPedWD1, FourPedWD2, FourPe-
dRD1, and FourPedRD2), and three state-of-the-art di-
rection classification methods ([1]-Max, [2]-AWG, and
[4]). The average performance of four and eight direc-
tion cases are illustrated in column overall(Four) and over-
all(Eight) respectively. The classifications of in-between di-
rections, NE, SE, SW, and NW, are taken as correct if they
are classified to be their adjacent directions. When test
FourPedWD1, FourPedWD2, FourPedRD1, and FourPe-
dRD2, classification results are obtained with a detection
rate of 0.95. In order to obtain more robust results, the
direction classification results are filtered using a constant
threshold.

As shown in Table 1, the integrated forests yield com-
parable results to direction forests and three state-of-the-art
methods, which proves that the proposed integration RDF
structure is efficient for combining direction classification
with pedestrian classification.

One value-based split function performs better than two
value-based split functions in direction forests and weight-
integrated forests. But the performance of the two value-
based function is significantly improved by the random in-
tegrated structure. Both random integrated forests outper-
form the weight integrated forests. Thus, based on this Ped-
view dataset, we conclude that the introduction of appro-
priate randomness leads to better performance, especially
when more parameters are employed in split function.

The confusion matrixes are illustrated in Table 2 to 7.
As shown in Table 1, the performance of S direction clas-
sification is relatively low over the forests. The confusion
matrices show that S is mostly classified to be N, The W
direction is mostly confused with the E direction.



Table 1. Direction classification performance
N NE E SE S SW W NW overall(Four) overall(Eight)

FourD1 0.91 0.95 0.73 0.48 0.53 0.56 0.59 0.77 0.69 0.69
FourD2 0.90 0.91 0.67 0.41 0.36 0.40 0.72 0.61 0.66 0.62

FourPedWD1 0.92 0.92 0.79 0.48 0.23 0.49 0.63 0.84 0.64 0.66
FourPedWD2 0.90 0.86 0.64 0.55 0.25 0.40 0.65 0.78 0.61 0.63
FourPedRD1 0.95 0.95 0.78 0.41 0.32 0.47 0.60 0.86 0.66 0.67
FourPedRD2 0.91 0.83 0.85 0.52 0.37 0.44 0.69 0.72 0.71 0.67

[2]-AWG 0.76 0.57 0.95 0.36 0.64 0.55 0.86 0.52 0.80 0.65
[4]-Tracking 0.71 0.37 0.65 0.36 0.41 0.59 0.70 0.53 0.62 0.54

[1]-Max 0.46 0.35 0.54 0.08 0.4 0.08 0.38 0.23 0.45 0.32

Table 4. Confusion matrix FourPedWD1
N E S W

N 0.92 0.02 0.07 0.00
E 0.16 0.79 0.05 0.00
S 0.68 0.04 0.23 0.04
W 0.06 0.31 0.00 0.62

Table 5. Confusion matrix FourPedWD2
N E S W

N 0.90 0.03 0.07 0.00
E 0.14 0.64 0.09 0.14
S 0.65 0.05 0.26 0.05
W 0.00 0.35 0.00 0.64

Table 6. Confusion matrix FourPedRD1
N E S W

N 0.95 0.00 0.05 0.00
E 0.06 0.78 0.11 0.06
S 0.61 0.05 0.32 0.02
W 0.00 0.33 0.07 0.60

Table 7. Confusion matrix FourPedRD2
N E S W

N 0.91 0.02 0.05 0.02
E 0.10 0.85 0.00 0.05
S 0.51 0.07 0.37 0.05
W 0.06 0.25 0.00 0.69

Pedestrian classification. Precision-recall curves of
pedestrian and integrated forests are illustrated in Figure 5.
With an increase of detection rate (recall), the precision de-
creases accordingly. When the detection rate is over 0.9,
the precision drops dramatically. Thus, the forests are com-
pared with a base-line method PedSVM in Table 8, with a
detection rate of 0.9.

The integrated forests perform similar to pedestrian
forests and base-line method, which proves that the inte-
grated RDF structure is efficient for combining pedestrian
classification with direction classification, without degrad-
ing in performance.

Table 8. Pedestrian classification performance
Precision False Positive

PedSVM 0.988 0.004
PedD1 0.985 0.005
PedD2 0.991 0.003

FourPedWD1 0.987 0.004
FourPedWD2 0.984 0.005
FourPedRD1 0.988 0.004
FourPedRD2 0.986 0.004
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Figure 5. Precision-recall graph for pedestrian classification.

Processing time. The processing time for one bound-
ing box when passed through a tree (depth < 15) is less
than 5 ms on a PC defined by Core i7 1.9 Hz, and 3.84GB.
As the processing of trees are independent calculations, i.e.
the bounding box goes through each tree without interfering
with the other trees, parallel computing is possible.

5. Conclusions
This paper proposes to integrate pedestrian detection and

direction classification into a single RDF classifier. The pa-
per discussed how to specify and implement such an RDF,
and illustrated its efficiency by reporting about experiments
using three data sets available online. The proposed inte-
grated classifier performs comparable to separately trained
RDFs for pedestrian detection or direction classification



tasks, and to state-of-the-art methods. There is still a need
to further improve the performance for decisions between
S and N, W and E directions. Expanding available sets of
direction-labelled samples on the net would be beneficial
for more extensive testing.
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