

Version
This is the Accepted Manuscript version. This version is defined in the NISO
recommended practice RP-8-2008 http://www.niso.org/publications/rp/

Suggested Reference

Khan, W., & Klette, R. (2014). Accuracy of Trajectories Estimation in a Driver-
Assistance Context. In Image and Video Technology -- PSIVT 2013 Workshops,
Lecture Notes in Computer Science Vol. 8334 (pp. 47-58). Guanajuato: Springer.
doi:10.1007/978-3-642-53926-8_5

Copyright

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-
642-53926-8_5

Items in ResearchSpace are protected by copyright, with all rights reserved, unless
otherwise indicated. Previously published items are made available in accordance
with the copyright policy of the publisher.

http://www.springer.com/gp/open-access/authors-rights/self-archiving-
policy/2124

http://www.sherpa.ac.uk/romeo/issn/0302-9743/

https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm

http://www.niso.org/publications/rp/
http://dx.doi.org/10.1007/978-3-642-53926-8_5
http://dx.doi.org/10.1007/978-3-642-53926-8_5
http://dx.doi.org/10.1007/978-3-642-53926-8_5
http://www.springer.com/gp/open-access/authors-rights/self-archiving-policy/2124
http://www.springer.com/gp/open-access/authors-rights/self-archiving-policy/2124
http://www.sherpa.ac.uk/romeo/issn/0302-9743/
https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm
https://researchspace.auckland.ac.nz/

Accuracy of Trajectories Estimation
in a Driver-Assistance Context

Waqar Khan? and Reinhard Klette

Computer Science Department, Tamaki Innovation Campus,
The University of Auckland, New Zealand

Abstract. Feature-point tracking for the purpose of object tracking in a
driver-assistance context is not an easy task. First, to track rigid objects,
feature points have to be matched frame-by-frame and then, by using
disparity maps, their real-world position can be derived, from which the
object velocity is estimated.
Unfortunately, a feature-point matcher cannot find (reliable) matches in
all frames. In fact, the performance of a matcher varies with the type
of feature-point detector and descriptor used. Our comparison of differ-
ent feature-point matchers gives a general impression of how descriptor
performance degrades as a rigid object approaches the ego-vehicle in a
collision-scenario video sequence. To handle the mismatches, we use a
Kalman-filter-based tracker for each tracked feature point. The tracker
with the maximum number of matches and with a most recent match
is chosen as the optimal tracker. The role of the optimal tracker is to
assist in updating the tracker of a feature point which had no match.
The optimal tracker is also used in estimating the object velocity.
To understand the behaviour of the safety system, we used the DoG
detector in combination with SURF, BRIEF, and FREAK descriptors,
while BP and SGM are used as stereo matchers. The novelty in our
work is the performance evaluation of a stereo-based collision avoidance
system (avoidance by brake warning) in a real collision scenario.

1 Introduction

To estimate an opposing vehicle or object trajectory, which may be a hazard for
the ego-vehicle (i.e. the vehicle the vision system is operating in), the object has
to be tracked as it moves around in a scene. Like stereo matching between ref-
erence and match cameras, tracking also involves searching for correspondences
between images captured over time on the same camera. Generally, object track-
ing is considered to be a challenging task. Difficulties in tracking arise due to the
following factors: object motion, camera motion, change in object pose, changes
in the scene, non-rigid objects, and object occlusions.

The approach to tracking may vary based on the application. Few assump-
tions are used based on the application of tracking. For example, we assume
that the object is rigid. We will also assume that tracked feature points (FPs)

? Email: wkha011@aucklanduni.ac.nz

2 Waqar Khan and Reinhard Klette

on object surfaces are always binocularly visible to stereo cameras. The object
is assumed to be pre-detected in the left camera image, with a bounding box
around the object.

Before tracking the object, it has to be represented first. If multiple FPs are
used, then it becomes a challenge to distinguish which set of FPs belong to the
same object over the course of time. Often, for a rigid object, a common motion
constraint is applied where neighbouring features that are seen moving together
are grouped to represent the same object [6].

We recall that a tracker is a module of a collision-avoidance system. With the
object assumed to be pre-detected, FPs are first identified on the detected object
at observation time k = 0. To track an object over time, these FPs are tracked
in the following observed stereo frames over time. In order to match the FPs,
each feature point (FP) is represented by a descriptor. A descriptor can describe
salient features also known as attributes. So, at k = 0 the initially identified FPs
are represented by their descriptors.

For discussing a tracking situation, consider the subsequent frame at k = 1.
The object’s position may change, leading to a change in positions of previously
identified FPs. For an object detected in the first frame, the FPs detected over
its region are the query FPs, while the FPs detected in the following frame are
the train FPs. 1

In a stereo-vision system, we have two cameras. The left camera provides
reference images, while the right camera gives the match images. We assume that
images are geometrically rectified. We also assume that the detection of FPs is
performed only on reference image IL(u, v). Hence, matching between detected
FPs over subsequent observations leads to 2-dimensional IL(u, v) image space
tracking, where a matched train FP represents the updated position of a query
FP.

The real-world position of each query or train FP is computed through dis-
parity d at IL(u, v). The disparity is computed from reference to match images.

However, mismatches in FP matching is the limitation. Thus, an additional
step of outlier-removal is necessary to select only the correct matches. Due to
this, at each following frame, not all the query FPs have a correct match. Hence,
to track each query FP in real-world 3D space, a Kalman filter (KF) [8] is used,
which in the absence of a correct match can predict the real-world position
instead of the corresponding FP.

By using the KF, this tracker estimates the future position and velocity of
each FP. The estimated velocity is later used to determine whether the ego-
vehicle is on a collision course. If it is then the system issues a braking warning
to the driver, who can later apply brakes to avoid the collision. Figure 1 shows
our experimental set-up for the evaluation of a driver assistance system.

The objective of this study is to practically test the findings from purely
theoretical models described in [9, 10] for a collision scenario. In the collision
experiment, we kept a safe braking distance from the opposing vehicle. The

1 The naming convention is consistent with the one used in Open Source Computer
Vision (OpenCV) library for matching the FPs.

Accuracy of Trajectories Estimation in a Driver-Assistance Context 3

marked position is used by the driver of the ego-vehicle to apply brakes after
the ego-vehicle crosses it to safely avoid collision (without a warning system).
Similarly, the safety system must recognize the collision scenario and issue a
warning before the ego-vehicle crosses this mark on the road, hence issuing a
timely warning. To validate this, an observer is used, who raises a flag after the
ego-vehicle has crossed the marker. This observer is also visible to reference and
match cameras in the ego-vehicle.

So, if the safety system can issue a warning (based on estimated trajectories)
before the observer raises the flag, then the system is proven to be issuing a
timely warning for that scenario. Figure 1 illustrates the choreography.

2 Feature-Point Detector, Descriptor, and Matcher

Given the reference rectified image as input, a FP detector looks for regions of
interest within the image. The FP orientation is computed with respect to the
direction of strong image gradient in a region. So, even if the image is rotated,
due to the strong image gradient, the orientation of detected FP can be changed.
Furthermore, due to rotated orientation of the detected FP, the descriptor can
be computed, independent of the image rotation. Such FP based algorithms are
called rotation invariant.

Furthermore, if the FP based algorithm computes only fixed sized features
instead of independently computing the optimal size for every FP then that
algorithm can detect same features, even if the image is scaled. Such algorithms
are called scale invariant.

2.1 Difference of Gaussian Detector

We briefly recall the detector part of the Scale Invariant Feature Transform
(SIFT) [11]. To detect the scale invariant FPs, a scale space is constructed by
convolving the image with Gaussian filters at various scales. Then, the Difference

Fig. 1. Choreographed sequence. The observer is a person holding a flag. The flag is
raised after the ego-vehicle, which is on a collision course, crosses the marker on the
road. The marker on the road is at a safe braking distance from the colliding object.

4 Waqar Khan and Reinhard Klette

of Gaussian (DoG) images are computed from the scaled images. Candidate
FPs are chosen based on minima and maxima of DoG images at various scales.
Candidate FPs location are further refined by interpolating neighbouring image
intensities. Candidate FPs that are with low contrast or are at the edge are
excluded, while the remaining form the set of detected scale invariant FPs.

2.2 Feature Point Descriptors

Speeded Up Robust Features Descriptor. The SURF descriptor describes
the intensity distribution in the neighbourhood of the detected FP. SURF de-
scriptor uses integral images along with Haar wavelets. To be rotation invariant,
the gradient values in u and v direction are computed from Haar wavelets in a
circular neighbourhood. The radius of this neighbourhood is derived from the
scale at which the FP was detected [3].

Binary Robust Independent Elementary Feature Descriptor. Calonder
et al. proposed Binary Robust Independent Elementary Feature (BRIEF) de-
scriptor [5]. To reduce sensitivity to noise a Gaussian smoothing is applied by a
9pixels × 9pixels averaging filter centred on the FP. Later, using the Gaussian
distribution around the detected FP, random pixels are chosen for comparison.
The proposed bitwise descriptor vector is obtained by comparing the intensity
of 512 pairs of pixels in a 48pixels× 48pixels region.

One of the advantages of a binary descriptor is that the matching of de-
scriptors is efficient. However, the disadvantage is that the descriptor is neither
invariant to orientation nor to scale changes.

Fast Retina Keypoint Descriptor. Alahi et al. originally proposed Fast
Retina Keypoint (FREAK) descriptor that is an extension of BRIEF descrip-
tor [2]. Inspired by human eye retinal pattern, the sampling of chosen points
follows a specific pattern with more chosen points closer to the detected FP and
as the distance increases the number of chosen points reduce exponentially. Due
to the specific sampling pattern approach the feature descriptor allows for the
‘coarse to fine’ approach. The descriptor is a binary vector consisting of sum of
estimated local gradients over selected point pairs.

2.3 Feature Point Matching and Outlier Removal

Correspondence between FPs in different frames can be done by matching FP
descriptors. For doing so, we used an exhaustive brute-force (BF) matching ap-
proach. To find a correspondence to a query FP descriptor, all train FP descrip-
tors are tested and only f nearest neighbours are chosen as matching descriptors.

FP matching often results in mismatching. Most common type of mismatch
occurs when FPs correspondence is incorrect. To remove such outliers we followed
a series of steps. Firstly, we used f = 2 to find two nearest descriptors for each
query FP. We used the known approach of ratio test to remove initial outliers.
After computing these distances of two nearest neighbours from the query FP,

Accuracy of Trajectories Estimation in a Driver-Assistance Context 5

we computed the ratio of the distances. The nearest point is chosen, only if the
ratio is greater than 1.5. The ratio test removed most of the outliers. To remove
the remaining outliers, we applied the RANSAC approach [7, 4].

3 Tracker

A common limitation, that the FP tracker has to overcome, is that the matcher
does not confirm that the matched points in one frame would also be matched
in the following frames. Furthermore, mismatches in positions can also occur, if
the stereo correspondence algorithm fails to determine the correct disparity for
the matching train FP.

Hence, each FP has a KF tracker affiliated with it. So that, when there is
a match for a FP, then its tracker has to be updated with the new observation
(real-world position). And, when there is no match found, then the tracker has to
predict FP’s real-world position. Due to the rigid object assumption, all trackers
should portray the similar real-world velocity estimate. So, during the prediction
phase the neighbouring FP trackers can assist as well.

3.1 Feature Point Tracking by Kalman Filter

A KF is usually defined in three steps (see Algorithm 1 for the complete object
tracking algorithm, and Table 1 for the detailed list system inputs).

Initialization of KF is the first step. Given the detected object in the first
frame on reference image of size w × h pixels with (u, v) = (0, 0) at the top-left
corner of the image. Let n be the number of query FPs detected in this frame.

Then, for j = {1, 2, . . . , n}, initialize KFj with the real-world location
−→̂
Orj of

query FP j at IL(u, v, d):

−→̂
Orj =

X̂r
j

Ŷ rj

Ẑrj

 =
b

d

 u− w/2
−(v − h/2)

f/τ

−
 b

2
0
0

 (1)

where d denotes the disparity, b is the baseline length, f is the focal length,
and τ is the pixel size. Superscript r denotes that the measurements are in the
ego-vehicle frame of reference.

Algorithm 2 describes the initialization KF for each query FP.
Prediction by KF is the second step. In the following frame, FPs are matched

and outliers were removed. Each KFj was asked to predict the new position
−−→
wOrj , which after first observations was still constant

−→̂
Orj , as there was only one

observation. However, with more observations, it was based on the KFj estimated

velocity
−−→
wV rj .

On real-world data, it is not possible for the matcher to guarantee the match
of every query FP throughout the video sequence. Therefore, we assigned weight

6 Waqar Khan and Reinhard Klette

wj to a FP j as a counter of its matches, i.e. every time there is a match, wj
was incremented.

In a case, when the matcher failed to find the match, then optimal tracker m
was chosen as the one with maximum wj . In a case, when two or more FPs had
the same wj count, then priority was given to the point with the most recent
successful match. Hence, the optimal Tracker m would have maximum

wj

(k−kj)δs ,

where kj denoted the observation number for FP j with recent successful match.

Previously in our models [9, 10], we assumed that the ego-motion is known,
while object trajectory was estimated. However, in our experiment, the object
is already static, while the ego-vehicle is moving. So, instead the system used

Algorithm 1 FP tracker

collisionDecisionSystem(f, b, dmax, τ, δs, w, h, td,
−−→
V i
crit, µ, g, rexc)returns state S

for each Observation k in {0, 1, . . .} do
if k == 0 then

Input detected object;
Detect n query FPs in this frame;
for each query FP j in {1, 2, . . . , n} do

Initialize (KFj,
−→̂
Or

j ,wj, kj) = initializeTracker(IL(u, v, d)) using Algo-
rithm 2

end for
System state S ← S0;

else
for each query FP j in {1, 2, . . . , n} do

KFj prediction of position
−−→
wOr

j and velocity
−−→
wV r

j ;
end for
m = FIND optimal tracker j with maximum confidence criteria:
wj/ ((k − kj)δs);
l = FIND j with smallest predicted distance: ||−−→wOr

j ||;
S ← canWait2(

−−→
wOr

l ,
−−−→
wV r

m, td,
−−→
V i
crit, δs, rexc, µ, g) using Algorithm 3;

if S = S3 then
Possible collision: issue precautionary warning as not safe to make further
observations;
return

end if
if S = S4 then

Definite collision: issue necessary warning;
return

end if
for each query FP j in {1, 2, . . . , n} do

(KFj,
−→̂
Or

j ,wj, kj) = updateTracker(k,wj , kj ,KFj,
−→̂
Or

j ,
−−−→
wV r

m) using Algo-
rithm 4;

end for
end if

end for

Accuracy of Trajectories Estimation in a Driver-Assistance Context 7

Algorithm 2 Initialize FP tracker

initializeTracker(IL(u, v, d)) returns (KFj,
−→̂
Or

j ,wj, kj)

For each FP j, compute
−→̂
Or

j using Equation 1;

Initialize KFj with
−→̂
Or

j ;
Let wj be the observation frequency and kj be the last frame with successful match
for j. Initialize wj = 0 and kj = k;

Algorithm 3 Determine if braking warning is due

canWait2(
−−→
wOr

l ,
−−−→
wV r

m, td,
−−→
V i
crit, δs, rexc, µ, g) returns state

Object distance: Dcc = ||−−→wOr
l ||;

if Dcc ≤ rexc then
Definite collision;
return S4;

end if
Object worst case position:

−−→
cOr =

−−→
wOr

l ;

Estimated vehicle velocity:
−→
V i = −−−−→wV r

m;

Vehicle braking displacement after td:
−→
Db =

−→
Vi(td + δs) +

(
(
−→
V i)2 − (

−−→
V i
crit)

2
)
/ (2µg);

Maximum vehicle displacement to reach
−−→
V i
crit :

−−−→
Oi

safe =
−→
V i · δs+

−→
Db +[rexc, 0, rexc]

T ;

if ||−−→cOr|| ≤ ||
−−−→
Oi

safe|| then
Might collide, and not safe to consider additional observation;
return S3

else
Might collide, but safe to consider additional observation;
return S2

end if

the measurements from the optimal tracker KFm to determine the ego-vehicle
velocity

−−−→
wV rm.

Warning decision is the intermediate step which does not affect the KF,
however does affect the output of the system. The system uses

−−−→
wV rm to compute

the safe braking displacement
−→
Db in XZ directions with

−−→
V icrit = [0, 0, 0]

T
ms−1(see

Algorithm 3).

Then, the system computes the FP l at the nearest predicted position
−−→
wOrl .

The system uses Algorithm 3 to determine whether it has to issue a necessary
warning at state S4, or a precautionary warning at state S3, or it can safely
wait for an additional observation at state S2.

Update of KF is the final step. Each KFj is updated based on the new matched
real-world position. In a case, when the matcher fails in finding the correct
match or the disparity is zero, then the optimal tracker m is used on the last

observation
−→̂
Orj to find the new predicted position. KFj is updated using this

predicted position (see Algorithm 4).

8 Waqar Khan and Reinhard Klette

Algorithm 4 Update FP tracker

updateTracker(k,wj , kj ,KFj,
−→̂
Or

j ,
−−−→
wV r

m) returns (KFj,
−→̂
Or

j ,wj, kj)
if match found in train FPs after outlier removal then
wj = wj + 1 and kj = k;

Use matched train FP to compute
−→̂
Or

j using Eq. 1 and update KFj;
else

Update KFj with
−→̂
Or

j +
−−−→
wV r

m · (k − kj)δs;
end if

4 System Parameters, Results, and Discussion

We use a collision experiment to evaluate the driver assistance system. Table 1,
summarizes the parameters used in this experiment. We use variants of semi-
global matching (SGM) stereo and belief propagation (BP) stereo for this sequence
for our evaluations. In each experiment, the detector is common, so the detected
points would also be common, however the observed points may vary depending
on the matching descriptors and disparities.

Symbol Description Typical value

f Focal length 8.9mm
τ Pixel size 5.01µm
w × h Sensor pixel resolution 960× 320 pixels
b Baseline length 395.8mm
dmax Maximum disparity 60
φ Vergence angle 0◦

δs Sampling interval 0.04 s
rexc Radius of vehicle exclusion zone 3.6m
V i Maximum Ego-vehicle speed 11.1 ms−1(40kmh)
−−→
V i
crit Maximum safe collision velocity

−→
0 ms−1(0kmh)

Vlimit Maximum speed limit 17ms−1(60kmh)
s Speeding factor 1.5
td Driver response time 1.5 s [1]
µ Coefficient of friction 0.45
g Gravitational constant 9.8 ms−2

n Number of FPs Detector dependant
tb Vehicle braking time To be estimated
−→
Db Maximum safe braking distance To be estimated

Table 1. System parameters.

Although the system is tracking all query FPs on object’s surface throughout
the sequence, however, it will be much easier to explain the track of a single FP.
Therefore, we choose the nearest observed query FP N in the first frame, and
visually track it throughout the sequence. The representation of tracked position

Accuracy of Trajectories Estimation in a Driver-Assistance Context 9

is in the ego-vehicle frame of reference. Note that, even for a single track, the
system will be tracking all query FPs at the back-end. And, in case there is a
mismatch for point N then one of these neighbouring trackers will become an
optimal tracker for N at that instance.

The tracking starts at k = 50 where the object is first detected and continues
until either a warning is issued by the system or the vehicle has the crossed the
safe brake distance marker at k = 110. So, basically, the system has to issue a
braking warning within 60 observations to be deemed as timely.

The output is in the form of a track plot in the XZ grid. Both dimensions
are measured in metres with reference to the ego-vehicle. The exclusion zone for
the ego-vehicle is represented by a red circle of radius rexc. In the plots, the rexc
is scaled based on X-axis only.

The observed or predicted position of point N is represented by a marker.
Which in general is a combination of a circle and a horizontal line. The centre
of circle presents the marked position of N in real-world from the ego-vehicle.

A green marker on the track, highlights an observation after correct FP match
and with disparity greater than 0 at that instance.

A blue marker on the track highlights, that either the matcher did not find a
match at that instance or the disparity of the corresponding train FP was zero.
Thus, optimal tracker prediction is used to mark at this position.

A red marker on the track highlights, that either the matcher did not find a
match at that instance or the disparity was zero. Also, the considered number
of observations for all trackers are less than 7 (thus optimal tracker may have
error in its estimations due to unsettled KF).

Due to integral disparities, the measured location might not change, leading
to a constant predicted position, hence multiple observation markers can be
drawn on top of each other.

If the system issues a braking warning before the safe braking distance i.e.
60 observations, then, the system labels the considered number of observations
next to the last marker in the plot. The track plots have SGM based output on
the left while BP based output on the right.

DoG Detector and SURF Descriptor. Figure. 2 illustrates that even with
the similarity in matched FPs, there was a difference in types of markers and
even position of markers. Firstly, the position of markers was different because
the disparities computed for the matched points were different for SGM and BP.
Secondly, the presence of red markers only in SGM’s plot suggested that, SGM
had generated zero disparities for the correct matches of N while for the same
points BP had green markers, hence correct disparities. There was no difference
in the timing of the warning, as both SGM and BP based systems issue timely
warnings after 52 observations. Even though there were zero disparities for SGM,
in the course of tracking, still the KF could accommodate them. This showed
that SGM with a KF tracker is a robust option.

DoG Detector and FREAK Descriptor. Figure 3 illustrates that while
the ego-vehicle approached the object, the green markers in relative frame of
reference are more evenly distributed for SGM than for BP. This highlights

10 Waqar Khan and Reinhard Klette

Fig. 2. DoG detector and SURF descriptor. Left: SGM, Right: BP.

that initially while N had correct FP matches, SGM also had better sub-pixel
disparities than that of integral BP disparities.

Fig. 3. DoG detector and FREAK descriptor. Left: SGM, Right: BP.

FREAK descriptor failed to identify any matches for point N after marked
Z-distance Z < 45m from ego-vehicle. Still, in both system (see Fig. 3), the
tracked path of N rightly changed. This change in predicted trajectory was also
consistent with real ego-vehicle trajectory (see Fig. 1).

Thus, in the absence of matches, the other FPs had correct matches and
disparities, leading to correct feedback from the optimal tracker to the point N .

Accuracy of Trajectories Estimation in a Driver-Assistance Context 11

This also showed that, while the object trajectory changed, it was important to
have matches either ideally for an optimal tracker or for any FP.

Due to the correct disparities of SGM, its system classified the collision sce-
nario earlier after 55 observations, while BP based system took longer (59 ob-
servations), but both were timely warnings.

Fig. 4. DoG detector and BRIEF descriptor. Left: SGM, Right: BP.

DoG Detector and BRIEF Descriptor. Figure. 4 shows the system’s per-
formance for BP and SGM using BRIEF descriptor. It became clear that the
BRIEF descriptor was able to match in the initial stages. However, as the scale
of object increased while the object came closer to the ego-vehicle. Then, there
were no FP matches, neither for the point N , nor for any optimal tracker. Hence,
the track estimated by the systems did not include the change in trajectory of
ego-vehicle as it approached the safe braking distance.

The system was still able to issue timely warnings, but this would be a less
likely case if the object was approaching the ego-vehicle from X-distance > rexc.

5 Conclusions

The number of feature points matched in each frame, cannot be used to identify
the best feature point matcher for the purpose of feature point based object
tracking. To have a good estimate, the same feature point has to be correctly
matched frame-by-frame. Most matchers fail to do so. Instead, multiple feature
points can be used for tracking through a Kalman filter. So, when there is a
mismatch, an optimal tracker for any neighbouring feature point with maximum
number of matches can assist in determining the next real position.

12 Waqar Khan and Reinhard Klette

If the observed object trajectory is changing, then it is important that there
is at least one up-to-date optimal tracker. So that even in case of a mismatch,
the changing trajectory is correctly estimated by the tracker. Similarly, for the
evaluation of a tracker in general, it is essential to evaluate it on a variable
trajectory dataset.

In our experiment, we found out that SGM based estimations were far more
accurate, compared to BP. Similarly, changing the feature point descriptor for
frame-to-frame feature point matching would also change the system’s perfor-
mance. SURF descriptor was found to be much better than FREAK and BRIEF
descriptors for the DoG detector.

We designed and tested a stereo-based safety system that can issue timely
warning to avoid a possible collision scenario. It would also be very interesting to
validate the system performance with a laterally moving object, crossing in front
of the path of the ego-vehicle. The key limitation for recording such a sequence
is the synchronization of ego-vehicle and colliding object. Nevertheless, a safe
braking distance away from the point of collision can play an important role in
choreographing such a sequence, and eventually evaluating any driver assistance
system.

References

1. G. Abe and J. Richardson. The influence of alarm timing on driver response to
collision warning systems following system failure. J. Behaviour & Information
Technology, vol. 25, no.5, pages 443–452, 2006.

2. A. Alahi, R. Ortiz, and P. Vandergheynst. Freak: Fast retina keypoint. In Proc.
IEEE Int. Conf. Computer Vision Pattern Recognition, pages 510–517, 2012.

3. H. Bay, T. Tuytelaars, and L. V. Gool. Surf: Speeded up robust features. In Proc.
European Conf. Computer Vision, pages 408–417, 2006.

4. T. Botterill, S. Mills, and R. Green. Fast RANSAC hypothesis generation for es-
sential matrix estimation. In Proc. Int. Conf. Digital Image Computing Techniques
Applications, pages 561–566, 2011.

5. M. Calonder, V. Lepetit, C. Strecha, and P. Fua. Brief: Binary robust independent
elementary features. In Proc. European Conf. Computer Vision, pages 778–792,
Springer, 2010.

6. B. Coifman, D. Beymer, P. McLauchlan, and J. Malik. A real-time computer vision
system for vehicle tracking and traffic surveillance. Transportation Research Part
C: Emerging Technologies, vol. 6, no. 4, pages 271–288, 1998.

7. M. A. Fischler and C. R. Bolles. Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Comm.
ACM, vol. 24, no. 6, pages 381–395, ACM, 1981.

8. R. E. Kalman. A new approach to linear filtering and prediction problems. J. Basic
Engineering, vol. 82, no. 1, pages 35–45, 1960.

9. W. Khan and J. Morris. Safety of stereo driver assistance systems. In Proc. IEEE
Symp. Intell. Vehicles (IV), pages 469–475, 2012.

10. W. Khan and R. Klette. Stereo accuracy for collision avoidance for varying collision
trajectories. In Proc. IEEE Symp. Intell. Vehicles (IV), 2013.

11. D. G. Lowe. Object recognition from local scale-invariant features. In Proc. IEEE
Int. Conf. Computer Vision, pages 1150–1157, 1999.

