

LIBRARY Te Tumu Herenga THE UNIVERSITY OF AUCKLAND

# http://researchspace.auckland.ac.nz

## ResearchSpace@Auckland

### **Copyright Statement**

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

## General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

STUDIES ON THE MODE OF ACTION OF THE ANTITUMOUR ACRIDINE 4'-(9-ACRIDINYLAMINO)METHANESULPHON-*m*-ANISIDIDE (*m*-AMSA)

> A thesis submitted to the University of Auckland for the degree of Doctor of Philosophy

> > by

William R. Wilson

Department of Cell Biology University of Auckland

March, 1978

"Too much trust should not be put in an experiment done with the object of getting information."

W.D. Bancroft (1928)

#### TABLE OF CONTENTS

| ACKNOWLEDGEMENTS                                                                           | 1  |
|--------------------------------------------------------------------------------------------|----|
| SUMMARY                                                                                    | 2  |
| SYMBOLS AND ABBREVIATIONS                                                                  | 4  |
|                                                                                            |    |
| Chapter One                                                                                |    |
| TOWARDS A RATIONAL CANCER CHEMOTHERAPY                                                     | 8  |
| 1.1 INTRODUCTION                                                                           | 8  |
| 1.2 THE DEVELOPMENT OF CANCER CHEMOTHERAPY                                                 | 8  |
| 1.3 PRINCIPLES OF CANCER CHEMOTHERAPY                                                      | 10 |
| 1.3.1 PROBLEMS IN OBTAINING CURE BY CHEMOTHERAPY                                           | 10 |
| 1.3.2 BASES OF SELECTIVE TOXICITY                                                          | 12 |
| (a) Selectivity Based on Cell Proliferation<br>Kinetics                                    | 13 |
|                                                                                            | 10 |
| (b) Selectivity based on Differential Exposure of Neurol and Neonlastic Colls to Cytotexic |    |
| of Normal and Neoplastic Cells to Cytotoxic<br>Drugs                                       | 18 |
| 1.3.3 MECHANISMS OF CELL KILLING BY ANTITUMOUR DRUGS                                       | 25 |
| (a) DNA Chauvanism                                                                         | 27 |
| (b) Mechanism of Cell Killing by Drugs                                                     |    |
| Acting on DNA                                                                              | 28 |
| 1.4 STRATEGY IN DRUG DESIGN                                                                | 33 |
| 1.5 BIOLOGICAL EFFECTS OF ACRIDINES                                                        | 40 |
| 1.5.1 MUTAGENESIS AND CARCINOGENESIS                                                       | 40 |
| 1.5.2 ANTIVIRAL ACTION                                                                     | 42 |
| 1.5.3 ANTIBACTERIAL ACTION                                                                 | 42 |
| 1.5.4 ANTIMALARIAL ACTION                                                                  | 43 |
| 1.5.5 ANTITUMOUR ACTION                                                                    | 44 |

| 1.6                      | DEVELOPMENT OF THE AMSA SERIES                                                                                                                         | 46                   |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|                          | 1.6.1 ORIGIN OF THE AMSA SERIES<br>1.6.2 STRUCTURE-ACTIVITY RELATIONSHIPS<br>1.6.3 ADJUSTMENT OF NET LIPOPHILICITY<br>1.6.4 PROBLEMS WITH DISTRIBUTION | 46<br>48<br>51<br>52 |
| 1.                       | 1.6.5 PRESENT STATUS<br>1.6.6 OTHER 9-ANILINOACRIDINES                                                                                                 | 53<br>54             |
| 1.7                      | SHORT REVIEW OF THE CURRENT LITERATURE ON AMSA                                                                                                         | 55                   |
| 1.8                      | SCOPE OF THE PRESENT STUDY                                                                                                                             | 59                   |
| Chapter Two<br>MATERIALS | D'                                                                                                                                                     | 62                   |
| 2.1                      | BIOLOGICAL MATERIALS                                                                                                                                   | 62                   |
|                          | 2.1.1 MICE<br>2.1.2 TUMOUR CELLS<br>2.1.2 BACTERIA<br>2.1.4 BACTERIOPHAGE T <sub>4</sub> CONTAINING [ <sup>3</sup> H]DNA                               | 62<br>62<br>62<br>62 |
| 2.2                      | ACRIDINES                                                                                                                                              | 63                   |
|                          | 2.2.1 AMSA DRUGS<br>2.2.2 OTHER ACRIDINES                                                                                                              | 63<br>63             |
| 2.3                      | RADIOCHEMICALS                                                                                                                                         | 64                   |
|                          | 2.3.1 [acridinyl-G- <sup>3</sup> H]AMSA COMPOUNDS<br>2.3.2 [phenyl-G- <sup>3</sup> H]AMSA<br>2.3.3 OTHER RADIOCHEMICALS                                | 64<br>66<br>66       |
| 2.4                      | LIQUID SCINTILLATION COCKTAILS                                                                                                                         | 67                   |
| 2.5                      | BUFFERS                                                                                                                                                | 67                   |
| i.                       | 2.5.1 SHE BUFFERS<br>2.5.2 PBS<br>2.5.3 SBSS<br>2.5.4 TRIETHYLAMMONIUM BICARBONATE                                                                     | 67<br>67<br>67<br>67 |
| 2.6                      | CULTURE MEDIA AND SUPPLEMENTS                                                                                                                          | 67                   |
| 2.7                      | NUCLEIC ACIDS                                                                                                                                          | 68                   |
| 2.8                      | CHROMATOGRAPHIC MATRICES                                                                                                                               | 68                   |

|            | 2.9 SOLVENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 68 |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|            | 2.10 OTHER CHEMICALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 68 |
|            | 2.11 MISCELLANEOUS MATERIALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 70 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|            | ter Three                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| DIST       | RIBUTION AND METABOLISM OF AMSA DRUGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 71 |
| ш <i>г</i> | 3.1 INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 71 |
|            | 3.2 METHODS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 75 |
|            | 3.2.1 BLOOD AND BLOOD PLASMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 75 |
| a          | 3.2.2 THIN LAYER CHROMATOGRAPHY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 75 |
|            | 3.2.3 GEL EXCLUSION CHROMATOGRAPHY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 75 |
|            | 3.2.4 ESTIMATION OF PROTEIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 76 |
|            | 3.2.5 ESTIMATION OF THIOLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 76 |
|            | 3.2.6 PREPARATION OF THE PROTEIN ADDUCT FORMED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 76 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 76 |
|            | No. Contraction of the second s | 77 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 77 |
| э.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 77 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 78 |
|            | 3.3.1 THE DISTRIBUTION AND METABOLISM OF AMSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|            | COMPOUNDS IN THE MOUSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 78 |
|            | (a) <i>m</i> -AMSA has a Short Half-Life in Blood Plasma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 78 |
|            | (b) Biotransformation Products in Plasma are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 79 |
|            | (c) <i>o</i> -AMSA does not Distribute as Readily as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 80 |
|            | 3.3.2 THE BIOTRANSFORMATION OF AMSA DRUGS IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 80 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 80 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 82 |
|            | (c) The Biotransformation Reaction Occurs in<br>Several Other Systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 82 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|            | 3.3.3 EVIDENCE FOR THE FORMATION OF COVALENT ACRIDINE-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ş, |
|            | PROTEIN ADDUCTS BY NUCLEOPHILIC DISPLACEMENT OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|            | THE METHANESULPHONANILIDE MOIETY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 83 |

۳.,

| (a) The Biotransformation Product is a Protein<br>Adduct Containing a Covalently Bound Acridin<br>Ring                                                                                | e<br>83         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| (b) The Methanesulphonanilide Moiety is Dis-<br>placed During the Reaction                                                                                                            | 84              |
| 3.3.4 EVIDENCE THAT THE DISPLACING GROUP IN THE BIO-                                                                                                                                  |                 |
| TRANSFORMATION REACTION IS A THIOL                                                                                                                                                    | 86              |
| (a) The Rate of Biotransformation of AMSA Drugs<br>Correlated with Their Reactivity Towards<br>Mercaptoethanol                                                                        | is<br>86        |
| (b) Attempts to Identify Acridinglated Amino Aci<br>Obtained by Hydrolysis of the Protein Adduct                                                                                      |                 |
| <ul> <li>(c) The Rate of Hydrolysis of the Adduct to 9-<br/>Acridanone Resembles That for 9-Ethylthio-<br/>acridine</li> <li>(d) The Fluorescence Emission Spectrum of the</li> </ul> | 88              |
| Protein Adduct does not Correspond to Model<br>9-Substituted Acridines<br>(e) The Reaction of AMSA with Calf Serum Proteir                                                            | 88<br>15        |
| is Blocked by Carboxymethylation of Protein<br>Thiols                                                                                                                                 | 89              |
| (f) The Free Thiol Content of Plamsa Decreases                                                                                                                                        |                 |
| During Formation of Protein Adducts                                                                                                                                                   | 90              |
| 3.4 CONCLUSIONS                                                                                                                                                                       | 90              |
|                                                                                                                                                                                       |                 |
| Chapter Four<br>EFFECTS OF <i>m</i> -AMSA ON TUMOUR CELLS <i>IN VIVO</i>                                                                                                              | 95              |
| 4.1 INTRODUCTION                                                                                                                                                                      | 95              |
|                                                                                                                                                                                       | 97              |
| 4.2 METHODS                                                                                                                                                                           | 97              |
| 4.2.1 GROWTH OF TUMOUR CELLS IN VIVO                                                                                                                                                  | 97              |
| 4.2.2 MEASUREMENT OF CELL DENSITY                                                                                                                                                     | 98              |
| 4.2.3 TRYPAN BLUE TEST FOR CELL VIABILITY                                                                                                                                             | 98              |
| 4.2.4 MEASUREMENT OF ACID-INSOLUBLE RADIOACTIVITY<br>FOLLOWING [ <sup>3</sup> H]Tdr LABELLING                                                                                         | 50              |
| 4.2.5 RECOVERY OF BONE MARROW AND SPLEEN CELLS FROM M                                                                                                                                 | I <i>C</i> E 98 |
| 4.3 RESULTS AND DISCUSSION                                                                                                                                                            | 99              |
| T.O. NEODETO THIS STOCOGRAM                                                                                                                                                           | 2               |
|                                                                                                                                                                                       |                 |

| 4.3.1 EFFECTS ON THE L1210 LEUKAEMIA IN VIVO                                                                                                                                         | 99                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| <ul><li>(a) Measurement of DNA Synthesis In Vivo</li><li>(b) Effects of m-AMSA on TdR Incorporation and</li></ul>                                                                    | 99                |
| Cell Number In Vivo                                                                                                                                                                  | 101               |
| 4.3.2 ANTITUMOUR EFFECTS OF AMSA DRUGS IN MICE<br>BEARING MASTOCYTOMA P815                                                                                                           | 10 <b>3</b>       |
| 4.4 CONCLUSIONS                                                                                                                                                                      | 104               |
| 4.5 APPENDIX                                                                                                                                                                         | 106               |
| Chapter Five<br>DEVELOPMENT OF A TISSUE CULTURE MODEL FOR THE ANTITUMOUR ACTION<br>OF AMSA DRUGS                                                                                     | 107               |
| 5.1 INTRODUCTION                                                                                                                                                                     | 107               |
| 5.2 METHODS                                                                                                                                                                          | 108               |
| 5.2.1 TISSUE CULTURE TECHNIQUES<br>5.2.2 MEASUREMENT OF CELL DENSITY AND VIABILITY<br>5.2.3 MEASUREMENT OF UPTAKE OF [acridiny1-G- <sup>3</sup> H]AMSA<br>DRUGS BY MASTOCYTOMA CELLS | 108<br>109<br>109 |
| 5.3 RESULTS AND DISCUSSION                                                                                                                                                           | 110               |
| 5.3.1 CULTURE CONDITIONS FOR MASTOCYTOMA CELLS<br>5.3.2 ACUTE CYTOTOXICITY OF AMSA DRUGS<br>5.3.3 GROWTH INHIBITION BY AMSA DRUGS                                                    | 110<br>111<br>112 |
| (a) Continuous Exposure<br>(b) Pulse exposure                                                                                                                                        | 112<br>113        |
| 5.3.4 BIOTRANSFORMATION OF [acridiny1-G- <sup>3</sup> H]AMSA DRUGS<br>IN MASTOCYTOMA CULTURES<br>5.3.5 UPTAKE OF [acridiny1-G- <sup>3</sup> H]AMSA DRUGS BY                          | 115               |
| MASTOCYTOMA CELLS                                                                                                                                                                    | 117               |
| <ul> <li>(a) Uptake of [acridiny1-G-<sup>3</sup>H]m-AMSA</li> <li>(b) Comparison of Uptake of AMSA, o-AMSA</li> </ul>                                                                | 117               |
| and <i>m</i> -AMSA                                                                                                                                                                   | 119               |
| 5.4 CONCLUSIONS                                                                                                                                                                      | 121               |

| Chapter Six                                                       |        |
|-------------------------------------------------------------------|--------|
| EFFECTS OF AMSA DRUGS ON THE PROGRESSION OF                       |        |
| MASTOCYTOMA CELLS THROUGH THE CELL CYCLE                          | 125    |
| 6.1 INTRODUCTION                                                  | 125    |
| 6.2 METHODS                                                       | 127    |
| 6.2.1 MEASUREMENT OF CELL VOLUME DISTRIBUTIONS AND MEAN           |        |
| CELL VOLUMES WITH A COULTER COUNTER                               | 127    |
| 6.2.2 MEASUREMENT OF VISCOSITY AND DENSITY OF CULTURE             |        |
| MEDIA                                                             | 128    |
| 6.2.3 DETERMINATION OF MITOTIC INDEX                              | 129    |
| 6.2.4 VELOCITY SEDIMENTATION OF MASTOCYTOMA CELLS                 | 130    |
| 6.2.5 ALKALINE SUCROSE GRADIENT ANALYSIS OF DNA                   |        |
| FROM MASTOCYTOMA CELLS                                            | 130    |
| 6.3 RESULTS AND DISCUSSION                                        | 131    |
| 6.3.2 EFFECTS OF AMSA DRUGS ON CELL VOLUME DISTRIBUTION           |        |
| AND MEAN CELL VOLUME                                              | 131    |
| (a) Volume Distribution of Cultured Cells                         | 131    |
| (b) Effects of AMSA Drugs                                         | 132    |
| 6.3.2 EFFECTS OF m-AMSA ON ENTRY INTO MITOSIS                     | 134    |
| 6.3.3 EFFECTS OF AMSA DRUGS ON [ <sup>3</sup> H]TdR INCORPORATION | 136    |
| (a) [ <sup>3</sup> H]TdR Metabolism in Mastocytoma Cell Culture   | es 136 |
| (b) Effects of AMSA Drugs                                         | 138    |
| 6.3.4 CELL CYCLE STAGE SPECIFICITY OF THE CYTOSTATIC              |        |
| ACTION OF AMSA DRUGS                                              | 139    |
| (a) Rationale for the Velocity Sedimentation/                     |        |
| Subculture (VSS) Method                                           | 139    |
| (b) Effect of Seeding Density on the Growth                       |        |
| Kinetics of Mastocytoma P815                                      | 140    |
| (c) VSS Analysis of Untreated Mastocytoma Cells                   | 141    |
| (d) Evaluation of the VSS Method Using Known S-                   |        |
| Phase-Specific Cytotoxic Agents                                   | 142    |
| (e) Determination of the Cell-Cycle-Stage                         |        |
| Specificity of AMSA Drugs by the VSS Method                       | 143    |
| 6.3.5 EFFECTS OF TREATMENT WITH m-AMSA ON THE STRUCTURAL          | ,      |
| INTEGRITY OF MASTOCYTOMA CELL DNA                                 | 144    |
| 6.4 CONCLUSIONS                                                   | 147    |

6.4 CONCLUSIONS

| 6.5        | APPEND | DIX I. MEAN CELL VOLUME OF MASTOCYTOMA P815 CELLS                          | 150 |
|------------|--------|----------------------------------------------------------------------------|-----|
|            | 6.5.1  | ESTIMATION OF MEAN CELL VOLUME WITH A COULTER                              |     |
|            |        | COUNTER                                                                    | 150 |
|            |        | (a) Absolute Calibration                                                   | 150 |
|            |        | (b) Haematological Calibration                                             | 151 |
|            | 6.5.2  | ESTIMATE OF MEAN CELL VOLUME FROM SEDIMENTATION                            |     |
|            |        | VELOCITY                                                                   | 152 |
|            | 6.5.3  | ESTIMATE OF MEAN CELL VOLUME USING PACKING OF                              |     |
|            |        | CELLS BY CENTRIFUGATION                                                    | 154 |
| 6.6        | APPENI | DIX II. RADIOTOXICITIES OF [ <sup>3</sup> H]- AND [ <sup>14</sup> C]TdR IN |     |
|            |        | MASTOCYTOMA CELL CULTURES                                                  | 157 |
|            | 6.6.1  | EFFECTS OF [ <sup>3</sup> H]Tdr on growth and rates of                     |     |
| 2          |        | EXOGENOUS T'dR INCORPORATION                                               | 157 |
|            | 6.6.2  | EFFECTS OF [ <sup>14</sup> C]TdR ON GROWTH OF MASTOCYTOMA CELLS            | 159 |
|            | 6.6.3  | COMPARISON OF THE SEDIMENTATION BEHAVIOUR IN                               |     |
|            |        | ALKALI OF DNA LABELLED WITH [3H]- AND [14C]TdR                             | 159 |
|            |        |                                                                            |     |
| Chapter So |        |                                                                            |     |
| THE INTER  | ACTION | OF <i>m</i> -AMSA AND RELATED COMPOUNDS WITH                               |     |
| NUCLEIC A  | CIDS   |                                                                            | 162 |
| 7.1        | INTRO  | DUCTION                                                                    | 162 |
|            | 7.1.1  | NON-COVALENT INTERACTIONS OF DRUGS WITH                                    |     |
|            |        | NUCLEIC ACIDS                                                              | 162 |
|            | 7.1.2  | DESCRIPTION OF BINDING EQUILIBRIA                                          | 163 |
|            |        | (a) Analysis of Binding Data                                               | 163 |
|            |        | (b) Methods for Measuring Free and Bound                                   |     |
|            |        | Ligand Concentrations                                                      | 169 |
|            |        | (c) Available Descriptions of Binding Isotherms                            |     |
|            |        | for Acridines                                                              | 171 |
|            | 7.1.3  | THE STRUCTURE OF ACRIDINE:DNA COMPLEXES                                    | 176 |
|            |        | (a) Evidence for Intercalation                                             | 176 |
|            |        | (b) Stereochemistry of Intercalation Complexes                             | 178 |
|            | 7.1.4  | EFFECTS OF ACRIDINES ON THE TEMPLATE ACTIVITY                              |     |
|            |        | OF DNA                                                                     | 182 |
|            | 7.1.5  | DNA AS A RECEPTOR FOR THE BIOLOGICAL EFFECTS OF                            |     |
|            |        | ACRIDINES                                                                  | 186 |
|            | 7.1.6  | BACKGROUND AND SCOPE OF THE PRESENT STUDY                                  | 191 |

| 7.2 | METHODS                                                  | 194 |
|-----|----------------------------------------------------------|-----|
|     | 7.2.1 NUCLEIC ACIDS                                      | 194 |
|     | 7.2.2 MEASUREMENT OF THE EFFECTS OF NUCLEIC ACIDS ON     |     |
|     | THE VISIBLE ABSORPTION SPECTRA OF THE DRUGS              | 194 |
|     | 7.2.3 CALCULATION OF BINDING PARAMETERS FROM             |     |
|     | SPECTROPHOTOMETRIC TITRATIONS                            | 195 |
|     | 7.2.4 MEASUREMENTS OF THE EFFECTS OF DRUGS ON THE        |     |
|     | THERMAL DENATURATION OF DNA                              | 196 |
| 7.3 | RESULTS                                                  | 197 |
|     |                                                          | 197 |
|     | 7.3.2 VISIBLE ABSORPTION SPECTRA OF DRUGS                | 198 |
|     | 7.3.3 SPECTRAL CHANGES INDUCED BY NUCLEIC ACIDS          | 198 |
|     | 7.3.4 SPECTROPHOTOMETRIC DETERMINATIONS OF BINDING       |     |
|     | PARAMETERS                                               | 199 |
|     | (a) Interaction with Native CT DNA in 0.01 SHE           | 199 |
|     | (b) Interaction of $o-$ and $m-AMSA$ with Native CT      |     |
|     | DNA at Higher Ionic Strength                             | 200 |
|     | (c) Interaction with Denatured CT DNA                    | 200 |
|     | (d) Interaction with TYMV RNA                            | 202 |
|     | 7.3.5 EFFECTS ON THE THERMAL DENATURATION OF DNA         | 203 |
| 7.4 | DISCUSSION                                               | 204 |
|     | 7.4.1 SPECTRAL CHANGES INDUCED BY NUCLEIC ACIDS          | 204 |
|     | 7.4.2 BINDING TO NATIVE CT DNA                           | 205 |
|     | 7.4.3 BINDING TO DENATURED CT DNA AND TYMV RNA           | 208 |
|     | 7.4.4 EFFECTS ON THE STABILITY OF THE DOUBLE HELIX       | 211 |
|     | 7.4.5 MODEL BUILDING                                     | 212 |
|     | 7.4.6. THE BIOLOGICAL SIGNIFICANCE OF BINDING TO NUCLEIC |     |
|     | ACIDS                                                    | 215 |
| 7.5 | CONCLUSIONS                                              | 220 |
| 7.6 | APPENDIX. THE CHOICE OF LATTICE UNIT IN THE McGHEE       |     |
|     |                                                          | 222 |
|     | 7.6.1 THE DEFINITION OF "FREE SITE", AND ITS IMPLICATION |     |
|     | -                                                        | 222 |
|     | 7.6.2 THE EFFECT OF CHOICE OF LATTICE UNIT ON THE        |     |
|     |                                                          | 224 |
|     |                                                          |     |
|     |                                                          |     |
|     |                                                          |     |
|     |                                                          |     |
|     |                                                          |     |

| Chapter Eight                                      |     |
|----------------------------------------------------|-----|
| CONCLUDING DISCUSSION                              | 228 |
| 8.1 THE MECHANISM OF ACTION OF m-AMSA              | 228 |
| 8.2 FACTORS DETERMINING THE ACTIVITY OF AMSA DRUGS | 231 |
| 8.3 A COMPARISON OF <i>m</i> -AMSA WITH ADRIAMYCIN | 234 |
| 8.4 FURTHER WORK                                   | 237 |
|                                                    |     |

267

BIBLIOGRAPHY

ERRATA

PUBLICATIONS

#### ACKNOWLEDGEMENTS

I wish to thank Dr Bruce Baguley for his enlightened supervision of this study, his enthusiasm and his personal friendship. I feel bound to attest his unique qualities as a teacher, and in particular the humanity with which he has approached this difficult task.

Dr Bruce Cain, Dr Bill Denny and Mr Graeme Attwell of the Cancer Chemotherapy Laboratory, Cancer Society of N.Z., have played an essential part in this study. I wish to thank them for generous provision of materials, for free access to unpublished data, and for many stimulating discussions. I have come to respect not only their ability, but also their dedication to cancer chemotherapy. I also wish to acknowledge my indebtedness to Dr Michael Waring of the Department of Pharmacology, University of Cambridge, for invaluable arguments and discussions on the DNA binding studies. I have learned much from our brief encounters.

I owe a debt to the staff of the Cell Biology Department for their assistance and advice with many problems encountered in this study, and for tolerating my extramural activities. In particular I wish to thank Professor Ray Ralph for his provision of tissue culture facilities and interest in this work, and Mrs Ellen-Marie Falkenhaug for assistance with the mitotic index determinations.

. To Lynda, who tried to ignore the whole performance and almost succeeded, and to my children who waited patiently through the long days of thesis preparation, I give my love. I acknowledge that they and my close friends have shared in the costs, but not in the rewards, of experimental science.

Above all, I want to thank Jude Meikle for her encouragement, help and personal friendship throughout all phases of this work. She is the secret coauthor of this study. My debt to her extends from expert technical help with the development of the VSS method, to long nights on the typewriter. If I have emerged from this ordeal with my sanity preserved (which remains to be determined) it is because of her.

#### SUMMARY

- (1) The mode of action of a novel antitumour acridine 4'-(9-acridinylamino)methansulphon-m-anisidide (m-AMSA) has been investigated. Two congeners of m-AMSA, 4'-(9-acridinylamino)methanesulphonanilide (AMSA) and 4'-(9acridinylamino)methanesulphon-o-anisidide (o-AMSA) were also studied for comparative purposes. m-AMSA is being evaluated clinically at present under the auspices of the National Cancer Institute, U.S.A.
  - (2) Treatment of mice bearing the mast cell tumour, mastocytoma P815, with m-AMSA provided some complete cures. AMSA was almost as effective as m-AMSA but its dose potency was 6-fold lower. o-AMSA was inactive.
  - (3) m-AMSA was found to have a short half-life in mice. Loss of m-AMSA from plasma was due, in part, to the formation of highly fluorescent covalent protein adducts. The rate of this reaction was similar for all three AMSA congeners, and is probably not required for antitumour activity.
  - (4) The reaction of AMSA drugs with proteins was shown to occur by nucleophilic displacement of the methanesulphonanilide moiety. Evidence is presented that thiols are the predominant reaction centres in proteins.
  - (5) A tissue culture model for the antitumour action of *m*-AMSA was developed using mastocytoma P815 cells. Profound growth inhibition and eventual killing was demonstrated using drug concentrations and durations of exposure attainable in mice. The potencies of the three AMSA congeners paralleled their antitumour potencies *in vivo*, except at very high drug concentrations.
  - (6) The rates of biotransformation of AMSA drugs, and their extent of uptake by cells in culture, could not account for the differing potencies of the three AMSA congeners.
  - (7) m-AMSA prevented the progression of mastocytoma cells through the cell division cycle under conditions where net cell growth was unaffected.

Physiologically attainable drug concentrations inhibited chromosome condensation in cells which were less than 10 minutes from the  $G_2^-$  phase/mitosis boundary at the time of drug addition. The sedimentation rate on alkaline sucrose gradients of DNA from cells treated with *m*-AMSA was lower than that from untreated cells, suggesting that this agent may cause fragmentation of DNA.

- (8) A new method for the investigation of the cell cycle stage selectivity of antitumour drugs was developed. This technique demonstrated that *m*-AMSA and AMSA have significant cycle stage selectivity, the growth of cells late in cycle being most affected.
- (9) Spectrophotometric determinations of binding parameters for the interaction of AMSA derivatives with native DNA indicated that *m*-AMSA bound with lower affinity that did *o*-AMSA or AMSA. This conclusion was supported by the helix stabilization caused by these drugs. However, the association constants were sufficiently high for each derivative to ensure that essentially all intracellular drug available for binding to DNA would be bound.
- (10) The ratio of the association constant for native DNA to that for a single-stranded viral RNA was higher for m-AMSA than for AMSA. This selectivity, if operative in vivo, could account for the high dose potency of m-AMSA.

SYMBOLS AND ABBREVIATIONS

| Ά                                   | amplification factor (Coulter Counter)                        |
|-------------------------------------|---------------------------------------------------------------|
| 9-AA                                | 9-aminoacridine                                               |
| [acridinyl-g- <sup>3</sup> H]AMSA   | AMSA randomly labelled ( <sup>3</sup> H) in the acridine ring |
| [acridinyl-G- <sup>3</sup> H]m-AMSA | <i>m</i> -AMSA randomly labelled ( $^{3}$ H) in acridine ring |
| [acridinyl-G- <sup>3</sup> H]0-AMSA | O-AMSA randomly labelled ( <sup>3</sup> H) in acridine ring   |
| AMSA                                | 4'-(9-acridinylamino)methanesulphonanilide                    |
| Ara-C                               | 1-β-D-arabinofuranosylcytosine                                |
| A <sub>x</sub>                      | absorbance at wavelength $x(nm)$                              |
| BCNU                                | 1,3-bis(2-chloroethyl)-l-nitrosourea                          |
| BSA                                 | bovine serum albumin                                          |
| С <sub>р</sub>                      | concentration of bound ligand                                 |
| c <sub>f</sub>                      | concentration of free ligand                                  |
| Ci                                  | curie                                                         |
| CM-protein                          | carboxymethylated protein                                     |
| cpm                                 | counts per minute                                             |
| [ <sup>14</sup> C]TdR               | [2-14C]thymidine                                              |
| CT DNA                              | deoxyribonucleic acid from calf thymus                        |
| DNA                                 | deoxyribonucleic acid                                         |
| dpm                                 | disintegrations per minute                                    |
| DTNB                                | 5,5'-dithiobis(2-nitrobenzoic acid)                           |
| DTT                                 | dithiothreitol                                                |
| F                                   | aperture current factor (Coulter Counter)                     |
| 3'-F-AMSA                           | 4'-(9-acridinylamino)methanesulphon-m-fluoro-                 |
|                                     | anilide                                                       |
| fl                                  | femtolitre                                                    |
| fu                                  | unit of fluorescence intensity                                |
| g                                   | gram, or gravitational acceleration                           |
| h                                   | hour                                                          |
| HEPES                               | N-2-hydroxyethylpiperazine-N'-2-ethanesulphonic               |
|                                     | acid                                                          |
| HU                                  | hydroxyurea                                                   |
| i.c                                 | intracerebral                                                 |
| i.p.                                | intraperitoneal                                               |
|                                     |                                                               |

.

| i.v.             | intravenous                                     |
|------------------|-------------------------------------------------|
| k                | calibration factor (Coulter Counter)            |
| К <sub>е</sub>   | association constant for a single lattice       |
| c                | residue                                         |
| K s              | association constant for a site defined by      |
| 5                | the saturation binding ratio                    |
| kg               | kilogram                                        |
| <sup>LD</sup> 10 | dose of drug which is lethal to 10% of the      |
| 10               | test organisms                                  |
| LDS              | lithium dodecyl sulphate                        |
| LFER             | linear free energy relationship                 |
| m                | metre (unless otherwise defined)                |
| М                | molar                                           |
| m-AMSA           | 4'-(9-acridinylamino)methanesulphon-m-          |
|                  | anisidide                                       |
| 3'-Me-AMSA       | 4'-(9-acridinylamino)methanesulphon-m-          |
|                  | toluidide                                       |
| MeOH             | methanol                                        |
| mCi              | millicurie                                      |
| mg               | milligram                                       |
| min              | minute                                          |
| min.             | minimum                                         |
| ml               | millilitre                                      |
| mol              | mole                                            |
| mmol             | millimole                                       |
| n                | nucleic acid binding site size, in nucleotides  |
| n'               | nucleic acid binding site size, in base pairs   |
| N                | nucleic acid concentration in nucleotide        |
|                  | residues (unless otherwise defined)             |
| Ni               | number of pulses in the ith channel             |
| nm               | nanometre                                       |
| nM               | nanomolar                                       |
| nmol             | nanomole                                        |
| NNCS             | neonatal calf serum                             |
| 0-AMSA           | 4'-(9-acridinylamino)methanesulphon-o-anisidide |
| P                | partition coefficient                           |
| PBS              | phosphate-buffered saline                       |
| PF               | proflavine                                      |
|                  | picogram                                        |
| þà               | Preodram                                        |

| [phenyl-g- <sup>3</sup> H]AMSA           | AMSA randomly labelled ( <sup>3</sup> H) in the phenyl ring |
|------------------------------------------|-------------------------------------------------------------|
| pmol                                     | picomole                                                    |
| POPOP                                    | 1,4-bis[2-(5-phenyloxazolyl)]-benzene;phenyl-               |
|                                          | oxazolylphenyl-oxazolylphenyl                               |
| PPO                                      | 2,5-diphenyloxazole                                         |
| q.d.                                     | daily administration                                        |
| QSAR                                     | quantitative structure-activity relationship                |
| r                                        | radius                                                      |
| r                                        | binding ratio (unless otherwise defined)                    |
| R <sub>f</sub>                           | chromatographic mobility                                    |
| RNA                                      | ribonucleic acid                                            |
| rpm                                      | revolutions per minute                                      |
| S                                        | second                                                      |
| SBSS                                     | Shortman's balanced salt solution                           |
| S.C.                                     | subcutaneous                                                |
| S.D.                                     | standard deviation                                          |
| Sf                                       | concentration of free (unoccupied) ligand                   |
|                                          | binding sites                                               |
| SHE                                      | buffer (saline-HEPES-EDTA)                                  |
| t                                        | elapsed time                                                |
| т                                        | sedimentation time                                          |
| T                                        | half-life (unless otherwise defined)                        |
| Tg                                       | cell generation time                                        |
| TCA                                      | Trichloroacetic acid                                        |
| TdR                                      | thymidine                                                   |
| TLC                                      | thin layer chromatography                                   |
| tris                                     | tris(hydroxymethyl)aminomethane                             |
| TYNV                                     | turnip yellow mosaic virus                                  |
| uv                                       | ultraviolet                                                 |
| v                                        | mean cell volume                                            |
| V m                                      | volume of medium in wet pellet                              |
| V <sub>c</sub>                           | volume of cells in wet pellet                               |
| w/v                                      | weight per volume                                           |
| v/v                                      | volume per volume                                           |
| 51 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( |                                                             |
| α                                        | number of ligand binding sites per lattice                  |
|                                          | residue                                                     |
| δ <sub>1</sub>                           | channel number                                              |
| ε                                        | molar extinction coefficient                                |
| 4                                        |                                                             |

| Δε                | differential molar extinction coefficient       |
|-------------------|-------------------------------------------------|
| η                 | absolute viscosity                              |
| λ                 | wavelength                                      |
| λ <sub>i</sub>    | wavelength of an isobestic point                |
| $\lambda_{m}^{-}$ | wavelength at maximum of difference spectrum    |
| μ                 | ionic strength                                  |
| μCi               | microcurie                                      |
| μg                | microgram                                       |
| μι                | microlitre                                      |
| μM                | micromolar                                      |
| 1µmol             | micromole                                       |
| ν                 | binding ratio (mol ligand/mol base pairs)       |
| v<br>L            | binding ratio (mol ligand/mol lattice residues) |
| ρ                 | absolute density of cells                       |
| ρο                | absolute density of solution                    |
| Pw                | absolute density of water                       |
| o<br>m            | Hammett substituent constant (meta)             |
| σ <sub>p</sub>    | Hammett substituent constant (para)             |
| Φ                 | cell volume fraction                            |
| ω                 | mitotic index                                   |
|                   |                                                 |
| - 14 C            |                                                 |
|                   |                                                 |
| с.                |                                                 |
|                   |                                                 |