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Inverse Skeletal Strokes

Dongwei Liu and Reinhard Klette

The .enpeda.. Project, Department of Computer Science
The University of Auckland, New Zealand

Abstract. The skeletal stroke method is a general brush tool which
can take a straight vector artwork as “ink”. It is easy to apply, but it is
limited by the requirement of straight inputs. To offer additional input
options, we present inverse skeletal strokes, a method for straightening
warped vector artworks.

Our method takes a user stroke to help understanding the structure
of an input artwork. The key-idea is finding a set of arcs which show
the “directional trend” of the artwork, and map the artwork into a new
version in which these arcs are straightened.

We propose a measure representing the degree of parallelism between
two arcs. Using this measure, we select a set of arcs from the input
artwork which are approximately parallel to the given user stroke. This
is a condensed representation of a user’s intention. Then we transform
the user stroke with the goal to maximize the degree of parallelism to
each of the selected approximately parallel arcs. At last, we parametrize
the artwork with respect to the optimized stroke, and map it into a
straight version.

Key words: Skeletal strokes, artwork, straightening of patterns, paral-
lelism.

1 Introduction

The skeletal stroke method has been suggested in [6] for the design of 2-dimensi-
onal (2D) vector graphics. The method parametrizes a given artwork along a
straight line, and then maps it onto a curved path. The skeletal stroke method
serves as a general brush tool in commercial vector drawing applications, such as
Microsoft Expression Design or Adobe Illustrator. See Fig. 1, left, for an example.

The skeletal stroke method is based on theories which have been developed
some years ago, such as procedurally generating repeated border pattern [5],
or mapping geometric objects along curved paths [3]. Later on, those ideas were
improved to deal with more complex cases of given artwork and curved paths
[6, 7, 2].

The skeletal stroke method is easy to apply, but there is a limited set of possi-
ble straight inputs. Therefore, it is desirable to have a method that maps warped
artworks into straight ones. This is illustrated in Fig. 1, right. Components of
existing graphic designs can thus be used by the skeletal stroke method.
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Difficulties for straightening warped artwork arise because the desired ge-
ometrical transform depends on the given artwork and users intentions. Image
deformation methods allow users to warp pictures, for example, by dragging han-
dles [4], or by deforming an envelope around a pictures [8]. These methods can
freely bend pictures while having invariance properties with respect to details.
But these methods are not designed for straightening artwork, and straightening
would require complex user interactions.

The key to straighten a warped artwork is to find out a proper “backbone
path”. Medial axis methods [10, 1] extract skeletons of shapes, but these skeletons
are not the “representative backbone” we need. First, skeletons obtained by
medial axis methods have branches or non-smooth arcs which are “misleading”
for defining a proper representation. Second, the skeletons only depends on the
outline of a shape, and drawn textures in the interior (i.e., the artwork) is not
considered for skeleton extraction.

In this paper, we present a way to generate inverse skeletal strokes. Our
method finds the latent backbone of an artwork and maps it into a straightened
version. At a general level, geometric transforms (e.g. affine, perspective) are
defined by classes of invariance properties, as outlined by Felix Klein in 1872 in
his Erlangen Program. Invariance properties for inverse skeletal strokes can be
postulated by incidence invariance and that length ratios should be kept locally
approximately constant. However, the second constraint is not given in a strict
mathematical sense. These comments should only indicate that the presented
mapping is actually in a space between geometric and topological transforms.

The “straightness” of artwork is a subjective concept. Thus we take a user
stroke as input to help in understanding the structure of the given artwork. Note
that such an user stroke is drawn as a sketch, not accurate, and thus not yet the
possible input for a precise mapping of artwork.

We observe that for a great proportion of artwork, there is a set of potential
arcs in an artwork which indicate a directional trend of it. If we parametrize
such an artwork by an arc a which is approximately parallel to such a subset
of arcs, we can then map the artwork into a new version in which these arcs
are straightened, i.e. the chosen directional trend of the artwork is straightened.
Thus, this arc a would be a proper backbone for the artwork.

Therefore, we first extract a set of arcs from a given artwork, which are ap-
proximately parallel to the provided user stroke. This represents a user’s inten-

Fig. 1. Left: The skeletal stroke method maps a straight artwork onto a curved path
(here: four times). Right: The inverse skeletal stroke method maps a curved artwork
into a straight version.
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Fig. 2. The work flow of our method. From top-left following arrows: (1) Input an
artwork and a user stroke. The user stroke is shown as a blue arc. (2) Extract a set
of potential arcs that are approximately parallel to the user stroke. (3) Transform the
user stroke into an arc a which is more parallel to the chosen set of arcs. (4) Map the
artwork into a straightened version.

tion. Then, we transform the user stroke into one which is as parallel as possible
to all those selected arcs. At last, we parametrize the input artwork with respect
to this optimized stroke, and map the whole artwork into a straightened version.
Figure 2 shows the workflow of our method.

The paper is structured as follows. A formal description of artwork, arcs, and
arc parallelism are given in Section 2. Then Section 3 provides detail process of
our inverse skeletal strokes method. Experiments results are shown and discussed
in Section 4. At last Section 5 concludes.

2 Basic Concepts and Notations

Before discussing the process of inverse skeletal strokes method, we first give a
formal description of some related concepts.

2.1 Vector Artwork and User Stroke

We define artwork, denoted by U , as a vector picture in a 2D real space. An
artwork U = {u1, u2, . . .} is composed of one or several individual graphic units.
A graphic unit (or short, a unit) can be described by a simple curve (i.e. a Jordan
curve [9]) that defines the outline, and a set of display features such as filling
style or colour. In this paper we only modify the outline (i.e. the curve defining
the unit), not the display features.
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We use cubic Bézier curves in a parametric form, defined as follows:

b(t) = p0(1− t)3 + 3p1t(1− t)2 + 3p2t
2(1− t) + p3t

3

for t ∈ [0, 1], end points p0 and p3 of the curve, and control points p1 and p2.
Curves are considered in the real plane R2.

An outline of a unit u can be represented by a closed sequence of cubic Bézier
curves b1, b2, . . . , bm with end points p0,i and p3,i, and control points p1,i and
p2,i, for i = 1, . . . ,m, where p3,i = p0,i+1, for i = 1, . . . ,m− 1, and p3,m = p0,1.

A connected part of an outline of a unit is an arc. Such an arc a is a se-
quence of subsequent cubic Bézier curves, i.e. a subsequence of the sequence b1,
b2, . . . , bm for the whole outline. A stroke as of a user is also assumed to be such
an arc. We also assume that as is smooth and of sufficient length on both side.

2.2 Arc Parallelism

Two arcs a1 and a2 in 2D space are parallel if a1 is an envelope of congruent
circles centred on a2. See Fig. 3, left, for an example. The figure shows on the
right a translation of one arc into another one; this does not define parallelism
in general. Being parallel is an equivalence relation on the set of arcs in a 2D
plane.

Following this definition, we propose a measure representing the degree of
parallelism between two arcs a1 and a2.

Our motivation is that a1 is an arc in an artwork, and a2 is a user stroke.
Thus, we assume that a2 is of sufficient length on both sides, and we only consider
the parallelism between a1 and a subarc b2 ⊆ a2.

Arc a1 defines a subarc b2 of a2 as follows: Assume an orientation for arc
a1 and, accordingly, a tangential vector tq for any point q ∈ a1. At an endpoint
q of a1 we use a one-sided derivative along a1 for defining tq. We denote −→qp a
vector from q ∈ a1 to p ∈ a2 which is perpendicular to tq. Let qb and qe be the
two endpoints of a1, and pb and pe be the corresponding points on a2. Then, pb
and pe are the endpoints of b2. We say b2 is the impacted region of a1 on a2. See
Fig. 4.

Fig. 3. Arc parallelism. Left: An arc, congruent circles centred on this arc, and an
envelope parallel to the given arc. Right: Two arcs defined by a translation of one arc
into the other; those two arcs are not parallel.
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Fig. 4. Measure of arc parallelism. Blue subarc b2 ⊆ a2 is defined by two end points
of a1. A third arc â, parallel to a1, is defined by congruent circles of radius µd(b2, a1).
The difference between â and b2 is the proposed measure for the degree of parallelism
between a1 and a2.

Let p be an arbitrary point on b2, and d(p, q) be the minimum Euclidean
distance from p to a1, which can be represented by a point q ∈ a1. For a point
q ∈ a1, the vectors tq and −→qp also define the sign of d(p, q). If tq and −→qp describe
a left-hand orientation, we denote the sign of d(p, q) by o(q) = 1, otherwise we
have o(q) = −1.

We denote by µd(b2, a1) = E[d(p, q) · o(q)] the expected value of d(p, q), for
all p ∈ b2. We call this the mean distance between b2 and a1. The negative or
positive of µd(b2, a1) defines whether b2 is on the negative or positive side of a1.
(If equal to zero then we also consider it on the positive side.)

Now consider a third arc â1 that is parallel to a1, and on the same side (i.e.
negative or positive) of a2 relatively to a1. Further assume that the parallelism
of â with a1 is defined by congruent circles of radius µd(b2, a1). See Fig. 4. Thus,
we have that

µd(b2, â) = E[d(p, q̂) · o(q̂)] = 0

for all p ∈ b2, where q̂ ∈ â defines the minimum distance d(p, q̂) as above, o(q̂)
defines the sign of d(p, q̂). Informally speaking, arc â is a modification of b2 which
follows parallel to a1, i.e. if a1 and b2 are parallel, â would overlap with b2. We
call â an auxiliary arc of a1.

Now we calculate σd(b2, â), the variance of d(p, q̂).

σd(b2, â) = E[d(p, q̂)2 · o(q̂)2]− µ2
d(b2, â)

= E[d(p, q̂)2 · o(q̂)2]

If a1 and b2 are parallel, there would be that d(p, q̂) = σd(b2, â) = 0. Otherwise,
σd(b2, â) will increase as â becomes more and more different to a2. Thus, we can
use σd(b2, â) to measure the parallelism of a1 and a2.

According to the properties of parallel arcs, any line perpendicular to â is
also a line which is perpendicular to a1. Now assume q is the corresponding
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points of q̂ on a1, we have that

d(p, q̂) · o(q̂) = d(p, q) · o(q)− µd(b2, a1)

σd(b2, â) = E[d(p, q̂)2 · o(q̂)2]

= E[d(p, q)2]− 2 · E[d(p, q)] · µd(b2, a1) + µd(b2, a1)2

= E[d(p, q)2]− µd(b2, a1)2 = σd(b2, a1)

Thus, the variance σd(b2, a1) of d(p, q) is just our measurement of the degree of
parallelism between a1 and a2.

So far we discussed continuous geometric entities in the Euclidean plane. For
implementing the ideas, we apply the following discretization. For a set a, 〈a〉
denotes a discrete representation of this set.

We uniformly (with respect to a fixed arc length [9] increment 4L) sample
an arc b2, and obtain a set of samples 〈b2〉 = {pi : i = 1, . . . , n} ⊂ b2. Let
d(pi, q̂i) denote the minimum Euclidean distance from pi ∈ 〈b2〉 to â, where
q̂i ∈ â, for i = 1, . . . , n. Then we use the mean M [d(pi, q̂i)

2] as an approximation
of E[d(p, q̂)2], and the variance V [d(pi, q̂i)] =

∑n
i=1(d(pi, q̂i) −M [d(pi, q̂i)])

2 as
an approximation of σd(b2, a1).

3 Inverse Skeletal Strokes

Our system takes an artwork Us and a user stroke as as input, where subscript
s indicates “source”. We output a straightened version of artwork Us, denoted
by Ut, where t indicates “target”.

3.1 The Algorithm

Our process involves four steps. First, we extract a family A of finitely many
candidate arcs from the units in Us, which are possible to approximately parallel
to as. Second, we measure the degree of parallelism between as and each arc
a ∈ A, and select a set of arcs Ap ⊆ A which are approximately parallel to as.
Third, we optimize as according to Ap and obtain a backbone at, making at as
parallel as possible to arcs in Ap. At last, we parametrize Us with respect to at,
and map it into a straightened version Ut.

The following subsection describe the steps in detail.

3.2 Extract Candidate Arcs

We extract candidate arcs from the outlines of units. As defined in Section 2.1,
a unit u ∈ Us is described by a simple curve. For each unit u ∈ Us, we cut it into
several arcs by extremum points and corner points as defined following. Then we
select the arcs with sufficient arc length as candidate arcs.

Let p be a point on the outline of u, and d(p, q) be the minimum Euclidean
distance from p to as, which can be represented by a point q ∈ as. We construct
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a function l with values l(q) ∈ [0, 1] to denote the location of q on as as follows:

l(q) =
L(qb, q)

L(qb, qe)

Here qb and qe are the begin point and end point of as, L(q1, q2) is the arc length
from q1 to q2 along as. Let p be an argument, then q = q(p) and l(q) = lq(p)
are functionally dependent on p. We call a point p an extreme point if lq(p) is
an extreme values.

A point p ∈ u is a corner point if the two one-sided derivatives are not equal
at this point.

We cut u into several arcs by extreme points and corner points. For an arc
a with two end point p1 and p2, if L(p1, p2) > C · L(u), we extract the arc of u
between p1 and p2 as a candidate arc. Here L(u) is the arc length of the outline
of u, C is a threshold ratio of empiric. We use C = 0.1. The arcs of insufficient
length are ignored, because they are not potential to show the directional trend
of the given artwork.

We denoted by A all candidate arcs extracted from each unit u ∈ Us.

3.3 Select Parallel Arcs

Now we get a set A of candidate arcs. From A, we detect the arcs that are
approximately parallel to the user stroke as.

For each arc ai, we calculate the parallelism measurement σd(bi, as) defined
in Section 2.2. If σi,s < w · L(bi), we consider ai is a parallel arc of as. Here the
threshold is formed by two parts: bi is the impacted region of ai on as, and L(bi)
is the arc length of bi (for standardization); w is an empirical parameter which
control the accuracy, here w = 0.02. We denoted by Ap all parallel arcs in A.
Figure 5 shows the process of extracting approximately parallel arcs.

Fig. 5. Extract approximately parallel arcs. Left: A given user stroke and a unit. Mid-
dle: We cut the outline of the unit into four candidate arcs according to extreme points
and corner points. Right: We detect two arcs that are approximately parallel to the
user stroke.

3.4 Optimize User Stroke

As we defined in Section 2.2, arc as would be increasingly parallel to an arc
a ∈ Ap, if the corresponding subarc bs moves more and more close to the auxiliary
arc â.
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For each arc a ∈ Ap, we calculate the auxiliary arc â parallel to a, and
the impacted region bs on as. For a point p ∈ as, we make a line lp that is
perpendicular to as on p. Then, we move p to pt ∈ lp which has the minimum
sum squared distance

∑
d(p t, q̂ t)2 to all the â that affect p, where q̂ t ∈ â

indicate the minimum distance from p to â. See Fig. 6 for an intuitive example.

We remove the subarcs on the two ends of as which are not affected by any
a ∈ Ap. Then we extend the two ends of as with line segments following the
one-sided derivative. For a subarc in the middle of as which is not affected by
any a ∈ Ap, we apply proper transformation that make it continue to the two
neighbor subarcs. Here we call the optimized stroke at a backbone path.

Fig. 6. Optimize the user stroke. Here as is a given user stroke, a is a parallel arc of as.
We make an auxiliary arc â of a, and transform the impacted region bs of as toward
â. Thus, the optimized stroke can be as parallel as possible to a.

3.5 Map Artwork to Straightened Version

Given an artwork Ur = ui, i = 1, . . . , n and a backbone at, we use an inverse
method of skeletal strokes [6] to parametrize the artwork U , and map it along a
straight path. Informally speaking, we deform the 2D space around at, making
at a straignt line in the deformed space. See Fig. 7 for an intuitive expression.

Suppose pf the start point of at. For a point p ∈ Ur, we note point q ∈ at
as the point on at with the minim Euclidean distance d(p, q) from q to p. We
note L(pf , q) the arc length from pf to q along at. Then p is parametrize by a
coordinate (L(pf , q), d(p, q)).

Then we map Ur to Ut along a straight path y = 0. For any point pr ∈ Ur,
the coordinate of the corresponding point pt ∈ Ut is the same with the parameter
coordinate of pr along ab.

The shape of a vector artwork is represented by a set of finite many Bézier
curves. For mapping a vector artwork, we only have to map these Bézier curves.
For each Bézier curve br(t) ∈ Ur, first we sample four points on it at pr,0 = br(0),
pr,1 = br(1/3), pr,2 = br(2/3), and pr,3 = br(1). Then, we map these points to
pt,0, pt,1, pt,2, and pt,3. At last we use a new Bézier curve bt(t) to fit the four
mapped points pt,1, pt,2, pt,3, and pt,4. Here bt(t) is the mapped version of br(t).
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Fig. 7. Parametrize an artwork by a backbone, and map the artwork to a straight
version.

4 Experiments

We implement our method with C++ and Qt 5.0.1. These experiments are made
on a PC with Intel Core i5-3550 3.3GHz and RAM of 8GB. The run time for
each experiment in Fig. 8 is less then 5 seconds, and for each experiment in
Fig. 9 is less then 9 seconds.

Two examples of experimental results with simple input patterns are shown in
Fig. 8. The input patterns are highly regular, thus the results show the accuracy
of our method.

Fig. 8. Experimental results when having simple patterns as inputs. Left: Input art-
works and user strokes. Right: Straightened artworks.

Experimental results of more complex cases are shown in Figs. 9 From these
results we can see that our method is robust for handling complex artworks in
practical application.

As we described in Section 1, an original user stroke is only drawn as a
sketch, and is not accurate enough for straightening an given artwork. Figure 10
compares the the mapping results using an original user stroke and the opti-



10 Dongwei Liu and Reinhard Klette

mized stroke. Using the same input artwork and user stroke, the output artwork
mapped with the optimized stroke is straightened, but the version mapped with
the original user stroke still contains undesirable curvatures.

Fig. 9. Experimental results when having more complex artwork as inputs.

Fig. 10. Comparison of mapping a given artwork with an original user stroke and
the optimized stroke. Left: An artwork, an original user stroke (blue arc), and the
optimized stroke (green arc). Middle: A version of the given artwork mapped along the
original user stroke. Right: Another version of the given artwork mapped along the the
optimized stroke.
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As we discussed in section 1, our method assume that there are some arcs
in the given artwork which indicate a directional trend of the artwork. This
assumption is an limitation of our method.

5 Conclusions

The paper proposed a novel theoretical framework (e.g. discussion of parallel
arcs) and a novel algorithm for straightening vector artworks. This is the inverse
process to the known skeletal stroke method.

Guided by a user stroke, the provided method extract a set of potential arcs
in a given artwork which indicate a directional trend of it. Then the user stroke is
transformed into one which is as parallel as possible to all those selected arcs. At
last the given artwork is parameterized with the optimized stroke, and mapped
into a straightened version.

The provided method can be used as a technique for generating proper inputs
for the skeletal stroke method. Thus, it can broaden the range of application of
the skeletal stroke method.

Acknowledgment: This paper is supported by China Scholarship council.
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