

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

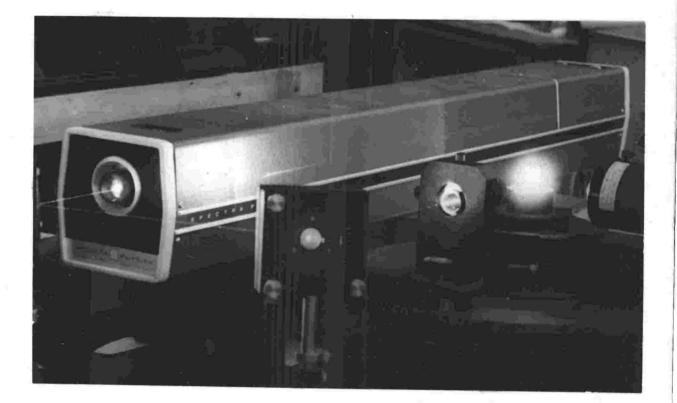
Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>


General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

BIOPHYSICAL

STUDIES OF

MACROMOLECULES

P.R.WILLS

FOREWORD

This thesis is presented in fulfilment of the requirements for the degree of Doctor of Philosophy in Biochemistry at the University of Auckland by Peter Rowland Wills.

A thesis is very rarely born of a single person's labour and this one is no exception. I would therefore like to express my gratitude to the many people who have helped me at various stages along the way, and trust that the final result does justice to their hopes. In particular, I would like to acknowledge the wise guidance I have received from my supervisors, Dr R. Geddes (Department of Biochemistry) and Dr J.D. Harvey (Department of Physics). Their encouragement and understanding in changing circumstances has been of great assistance to me and will always be remembered. Several other friends who I would like to mention have helped in specific ways: Martin Upsdell gave me advice about computing and taught me Algol; Greg Stratton and Nan Pin Chee prepared samples of glycogen; Warren Davison managed the photography; Helen Parkin provided all sorts of assistance in the day to day routine of the laboratory; Crispen Gardiner arranged working space for me at the University of Waikato; John and Judi Winslade gave me the key to their home in Mt Eden.

Thanks are also due to Professor A.G. Renwick in whose department I have had the benefit of working for the last four years.

The thesis was typed by Ms L. Bailey and Mrs S. Zimmerman. Their patience and expertise are evident on every page and the fact that the task was completed at considerable personal cost to them is appreciated.

iii

My list of acknowledgements would not be complete without a special note to my wife Lynette who has had to live through the four years during which this thesis has been in preparation. She has helped me to do all sorts of things, ranging from getting started to getting finished, but mostly it has been enough just for her to be there.

This thesis began as a brief excursion into the field of laser light scattering. At that stage it was to be completed within a year or so and submitted for the degree of Master of Science. However, the opportunity to extend the work into a Ph.D. offered itself and I accepted, knowing there would be plenty to interest and challenge me. Glycogen was the obvious choice of substances to examine since it was regularly prepared with high purity in our laboratory. It soon became evident that other techniques had to be used in conjunction with intensity fluctuation spectroscopy if the maximum benefit was to be gained from this new biophysical method. We therefore decided to attempt to give a complete hydrodynamic description of glycogen making use of a minimum of data (Chapter 3). This led to an examination of the theories which treat macromolecules as hydrodynamic particles (Section 1.2). It was recently found that glycogen can be modified using disulphide-bond breaking reagents, so a whole new series of measurements were made on the new material. The results of this study have led to a reappraisal of our knowledge of the molecular structure of glycogen.

We were also interested in the possibility of using our laser light scattering equipment to make measurements on protein solutions (Chapter 4). We began with bovine serum albumin and gathered information on its interaction with salicylate which correlated well with the previous work of W.N. Vant in our laboratory. What can be accomplished with difficulty is usually

iv

more interesting that what can be accomplished with ease, and so we decided to examine the properties of lysozyme using intensity fluctuation spectroscopy. This substance is right at the lower limit of the size range of molecules which can be examined using our equipment, but we met with some degree of success and learnt many valuable lessons.

No-one who believes science is a philosophical adventure can write a thesis without his prejudices becoming evident at some stage. I have therefore started with a brief consideration of some of the deeper questions facing the type of research in which I have participated. The thoughts in Section 1.1 correspond to many evenings and lunchtimes spent in spirited conversation and debate with a number of close friends, one of whom is no longer here. Some of the broader aspects of scientific philosophy were discussed in papers which I gave at consecutive annual Religious Studies Colloquia at the University of Auckland. The published versions of these papers are included in Appendix IV because they form an integral part of the intellectual background from which this thesis has originated. I acknowledge the profound effect which my teachers (Professor John Morton, Dr Robert Mann, Mr David Williams), fellow students (Bill Vant, Bill Wilson, Mike Bevan) and friends (Fletcher Cole, Greg Judkins) have had on the development of the ideas expressed in these philosophical essays.

Each section of this thesis has been written so that it can be read and understood without knowledge of all the preceding material. This has necessitated the rigorous use of a cross-referencing system allowing definitive material not covered in one section to be found elsewhere.

> Peter R. Wills 15 March 1977

V

ABSTRACT

Hydrodynamic theories of macromolecular structure have been critically examined and used in the experimental study of the conformation of various biological molecules. This work has been carried out giving careful consideration to ancient and modern wisdom.

The fundamental molecular structure of liver glycogen has been investigated using a variety of biophysical techniques, including intensity fluctuation spectroscopy. It has been found that above a certain minimum size, molecules of this material are hydrodynamically equivalent to one another, and behave as if comprised of ideal spherical subunits. Smaller molecules do not have a smooth hydrodynamic surface and display a much higher degree of frictional interaction with the aqueous solvent. It has also been shown that when treated with disulphide-bond breaking reagents, large glycogen molecules are disrupted, but the structure of the subunits is undisturbed. The role of protein in glycogen structure has been confirmed by these studies.

Intensity fluctuation spectroscopy has also been applied to the study of protein conformation. The frictional coefficients of bovine serum albumin monomers and dimers have been measured, and an apparent conformational change in the monomer detected upon the binding of salicylate. The unfolding and subsequent aggregation of lysozyme when it is thermally denatured have been observed and the hydrodynamic radii of the native, folded state and the expanded, unfolded state of protein have been measured. There is a well defined transition temperature for the denaturation process.

vi

v	i	i	i

DEDICATION	(ii)
FOREWORD	(iii)
ABSTRACT	(vi)
CONTENTS	(vii)
GLOSSARY OF SYSTEMATIC NAMES	(xvii)
CHAPTER 1. PROLEGOMENA	1
CHAPTER 2. EXPERIMENTAL PROCEDURES	48
CHAPTER 3. THE MOLECULAR SIZE AND SHAPE OF LIVER GLYCOGEN	90
CHAPTER 4. LASER LIGHT SCATTERING STUDIES OF PROTEINS	173
APPENDICES	216
BIBLIOGRAPHY	240

CHAPTER ONE PROLEGOMENA

1.1	Philosophical Aspects of Biochemical Research		
1.2	Hydrodynamic Theories of Macromolecules	7	
1.2.1	Particle Models	7	
1.2.2	The Svedberg Equation	10	
1.2.3	Relevance of Viscosity Data	12	
1.2.4	Hydrodynamic Description of Macromolecules According		
	to Scheraga and Mandelkern (1953)	14	
	Figure 1.1 The Frictional Ratio and Viscosity Increment		
2	of Rigid Ellipsoids	18	
1.2.5	Concentration Dependence of Hydrodynamic Parameters	20	
1.2.6	The Effect of Macromolecular Polydispersity	24	
1.3	The Natural Polymer Glycogen	28	
1.3.1	Biological Aspects	28	
1.3.2	Methods for the Extraction of Glycogen	29	
1.3.3	Chemical Structure	30	
	Figure 1.2 Chemical Structure of Glycogen	31	
1.3.4	Structure of Particulate Glycogen	34	
	Figure 1.3 Gross Structure of Glycogen Molecules	36	
1.4	The Scattering of Light by Macromolecules	37	
1.4.1	Theory of Light Scattering	37	
1.4.2	Time-Dependence of Scattered Intensity	39	
	Figure 1.4 Scattering of Light by Concentration		
	Fluctuation	41	
1.4.3	Observation of Intensity Fluctuations	43	
1.4.4	Intensity Fluctuation Spectroscopy of Macromolecules	44	

CHAPTER TWO EXPERIMENTAL PROCEDURES

2.1	Preparation and Fractionation of Glycogen	49	
2.1.1	Preparation and Purification of Liver Glycogen	49	
2.1.2	Fractionation of Glycogen	49	
	Figure 2.1 Concentration Profile of Sucrose Gradients	51	
2.1.3	Modification of Glycogen with Disulphide-Bond Breaking		
	Reagents	53	
2.1.4	Glycogen Assays	53	
	(a) Iodine-Iodide Determination	53	
	(b) Phenol-Sulphuric Acid Determination	54	
2.2	Measurement of Partial Specific Volume	55	
2.2.1	Densitometric Method	55	
2.2.2	Glycogen 5.		
2.3	Simulation of Sedimentation Through a Sucrose Gradient	56	
2.3.1	Theory	56	
2.3.2	The Methods of Dingman (1972) and Hirst and Cox (1976) 5		
2.3.3	The Equations of Barber (1966) for the Density and		
	Viscosity of Sucrose Solutions	60	
	Figure 2.2 Viscosity of Sucrose Solutions	61	
2.3.4	Integration of the Sedimentation Equation	60	
2.3.5	Correction for Dependence of $s_{\rm 20,W}$ on Concentration	63	
2.4	Intensity Fluctuation Spectroscopy	65	
2.4.1	Theory	65	
2.4.2	Sample Preparation	67	
	Figure 2.3 Floating Cells used for Sample Clarification		
	by Centrifugation	68	

х

2.4.3	Experimental Arrangement	70
	Figure 2.4 Experimental Arrangement used for Intensity	
	Fluctuation Spectroscopy	71
2.4.4	Data Analysis	73
2.5	Measurement of Shape-Dependent Frictional Ratio	79
2.5.1	Sedimentation Method	79
2.5.2	Construction of Models	80
2.5.3	Experimental Procedure	80
2.6	Measurement of Viscosity	81
2.6.1	Capillary Viscometry	81
2.6.2	Glycogen Solutions	81
2.7	Gel Column Chromatography	83
2.7.1	Exclusion Chromatography	83
2.7.2	Experimental Details	83
0.0		
2.8	Continuous Diafiltration Determination of Drug-Binding	85
2.8.1	Continuous Diafiltration Method	85
	Figure 2.5 Experimental Arrangement for Continuous	
	Diafiltration	86
2.8.2	Experimental Arrangement	88
2.8.3	Salicylate Assay	88
2.8.4	Data Analysis	89

xi

44

CHAPTER THREE THE MOLECULAR SIZE AND SHAPE OF LIVER GLYCOGEN

3.1	Partial Specific Volume of Glycogen	91
	Table 3.1 Specific Volume of Liver Glycogen	93
3.2	Standard Sedimentation Coefficients of Glycogen Fractions	94
3.2.1	Dependence of Sedimentation Coefficient on Glycogen	
	Concentration	94
3.2.2	Results	96
	Table 3.2 Standard Sedimentation Coefficients of	
	Glycogen Fractions	99
3.3	Standard Diffusion Coefficients of Glycogen Fractions	101
3.3.1	Results	101
	Table 3.3 Standard Diffusion Coefficients of Glycogen	
	Fractions	102
3.3.2	Dependence of Diffusion Coefficient on Glycogen	
	Concentration	103
	Figure 3.1 Dependence of Diffusion Coefficient on	
	Glycogen Concentration	104
3.3.3	The "Anomalous" Fractions	103
	Table 3.4 Comparison of $\overline{D_z}$ Obtained for Glycogen	
	Fractions in 0.1 M-NaCl and Sucrose Solution	107
3.3.4	Standard Diffusion Coefficients of Fractions of	
	Chemically Modified Glycogen	106
	Table 3.5 Standard Diffusion Coefficients of Fractions	
	of Chemically Modified Glycogen	109
3.3.5	Standard Diffusion Coefficients of Fractions of Brain	
	Glycogen	111
	Table 3.6 Standard Diffusion Coefficients of Fractions	
	of Brain Glycogen	112

3.3.6	Relationship Between Sedimentation Coefficient and Diffusion		
	Coefficient for Glycogen Molecules	113	
	Figure 3.2 Relationship Between Sedimentation Coefficient		
	and Diffusion Coefficient for Glycogen Molecules	114	
3.3.7	Standard Diffusion Coefficient of Whole Fraction Glycogen	118	
3.4	Computation of the Molecular Weight Distribution of Liver		
	Glycogen	122	
3.4.1	Results	122	
	Table 3.7 Weight Mean Molecular Weights of Glycogen		
	Fractions	123	
	Figure 3.3 Molecular Weight Distribution of Liver		
	Glycogen	125	
3.4.2	Moments of the Molecular Weight Distribution	127	
	Table 3.8 Moments of the Molecular Weight Distribution	129	
3.4.3	Relationship Between Molecular Weight and Sedimentation		
	Coefficient for Molecules of Liver Glycogen	130	
3.5	The Frictional Ratio of Glycogen Molecules	132	
3.5.1	Calculations based on $\overline{s_w}$ and $\overline{D_z}$	132	
	Table 3.9 Frictional Ratio of Molecules in Glycogen		
	Fractions	133	
3.5.2	Model Studies	134	
	Figure 3.4 Symmetry of Models	135	
	Table 3.10 Frictional Ratios of Clusters of Spheres	137	
	Table 3.11 Limiting Frictional Ratios for Various		
	Subunit Packing Modes	140	
3.5.3	Hydration of Glycogen Molecules	141	
	Figure 3.5 Frictional Ratio of Glycogen Molecules and		
	Model Structures	142	

xiii

3.6	Viscosity of Glycogen Solutions	146
3.6.1	Intrinsic Viscosities of Glycogen Fractions	146
	Table 3.12 Intrinsic Viscosities of Glycogen Fractions	147
3.6.2	Viscosity Increment of Glycogen Molecules	149
3.6.3	Hydrodynamic Description of Glycogen Molecules	150
	Figure 3.6 The Effect of Molecular Weight on Various	
	Hydrodynamic Parameters of Glycogen	151
	Table 3.13 Hydrodynamic Parameters of Glycogen Molecules	152
3.6.4	Viscosity Data for Chemically Modified Glycogen	154
	Table 3.14 Intrinsic Viscosities of Fractions of	
	Chemically Modified Glycogen	156
	Table 3.15 Hydrodynamic Parameters of Chemically Modified	
	Glycogen	158
3.7	Correlations with Floatron Migrographs of Classes Malassia	100
5.1	Correlations with Electron Micrographs of Glycogen Molecules	160
3.7.1	Particle Sizes	160
	Figure 3.7 Electron Micrographs of Selected Glycogen	
	Fractions	161
	Table 3.16 Electron Microscopic Measurements of Glycogen	
	Particles	163
	Figure 3.8 Molecular Weight Distributions of Individual	
	Glycogen Fractions	165
3.7.2	Calculation of the Size of a Glycogen β -particle	167
3.8	Conclusions: The Molecular Structure of Glycogen	170

CHAPTER FOUR LASER LIGHT SCATTERING STUDIES OF PROTEINS

4.1	Properties of Bovine Serum Albumin and Interaction with	
	Salicylate	174
4.1.1	Polymeric Components of Bovine Serum Albumin	174
	Figure 4.1 Gel-Filtration of Bovine Serum Albumin	175
	Figure 4.2 Composition of Bovine Serum Albumin Fractions	176
	Table 4.1 Standard Diffusion Coefficients of Bovine	
	Serum Albumin Fractions	181
4.1.2	Binding of Salicylate to Bovine Serum Albumin	182
	Figure 4.3 Binding of Salicylate to Bovine Serum Albumin	184
	Figure 4.4 Analysis of Binding of Salicylate to Bovine	
	Serum Albumin by Method of Scatchard (1949)	186
	Table 4.2 Effect of Salicylate on the Diffusion	
	Coefficient of Bovine Serum Albumin	188
	Figure 4.5 Effect of Bound Salicylate on the Diffusion	
	Coefficient of Bovine Serum Albumin	189
4.2	Thermal Properties of Lysozyme	192
4.2.1	Native and Denatured States of Enzymes	192
4.2.2	Thermal Denaturation of Lysozyme	195
	Figure 4.6 Aggregation of Lysozyme at High Temperature	198
	Figure 4.7 Temperature-Dependence of Diffusion Coefficient	
	for a Sample of Lysozyme	201
	Figure 4.8 Standard Diffusion Coefficient of Hen Egg	
	White Lysozyme at 80 [°] C	202
	Figure 4.9 Thermal Unfolding of Hen Egg White Lysozyme	205
4.2.3	Conclusions	206

xv

4.3	Intensity Fluctuation Spectroscopy of Flavoproteins	208
4.3.1	Flavoprotein Enzymes	208
4.3.2	L-Lactate Oxidase	209
	Table 4.3 Standard Diffusion Coefficient of L-Lactate	
	Oxidase from Mycobacterium Smegmatis	210
4.3.3	D-Amino Acid Oxidase	212
	Table 4.4 Diffusion Coefficient of a Sample of D-Amino	
	Acid Oxidase from Porcine Kidney	213
APPENDICES AND BIBLIOGRAPHY		
1111 11101		
Appendix I Numerical Integration of Experimentally Determined		

	Functions	216
Appendix II	Computer Programme to Calculate Glycogen Molecular	
	Weight Distributions from Sucrose Gradient	
	Separation Data	219
Appendix III	Application of Laser Light Scattering to	
	Biological Problems	222
Appendix IV	Philosophical Papers	227
Bibliography		240

٠

GLOSSARY OF SYSTEMATIC NAMES

Ŋ

V

DNA	Deoxyribonucleic acid
Iothalamic acid	5 - Acetamido - 2,4,6 - triiodo - N - methyl - isophthalamic acid
PPO	2,5 - Diphenyloxazole
РОРОР	1,4 - Di - 2 - (5 - phenyloxazoly1) - benzene
salicylic acid	2 - hydroxy benzoic acid